1
|
Wang JY, Chen GTE, Braguy J, Al-Babili S. Distinguishing the functions of canonical strigolactones as rhizospheric signals. TRENDS IN PLANT SCIENCE 2024; 29:925-936. [PMID: 38521698 DOI: 10.1016/j.tplants.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Bürger M, Chory J. A potential role of heat-moisture couplings in the range expansion of Striga asiatica. Ecol Evol 2024; 14:e11332. [PMID: 38756681 PMCID: PMC11097002 DOI: 10.1002/ece3.11332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite-based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat-moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Howard Hughes Medical Institute, Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Joanne Chory
- Plant Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Howard Hughes Medical Institute, Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Vurro M. Are root parasitic broomrapes still a good target for bioherbicide control? PEST MANAGEMENT SCIENCE 2024; 80:10-18. [PMID: 36641632 DOI: 10.1002/ps.7360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Root parasitic weeds of the genera Orobanche and Phelipanche (commonly named broomrapes) are responsible for enormous yield losses of several crops all around the world. Traditional weed management methods, including among others the use of herbicides, soil fumigation and solarization, and mechanical, agronomic or physical methods, may have limits of use or can provide a modicum of control. Difficulties in controlling parasitic weeds are due to both the enormous number of seeds produced by each plant that can remain viable for many years, even in the absence of a host, and to the unique physiological and biological properties of the parasite. Although long considered a suitable and promising approach, biological control, in particular the use of microbial organisms or compounds stimulating or inhibiting seed germination, has had no commercial success and no products have reached the market. This article provides a quick overview of the bioherbicide approaches attempted until now, briefly discussing the causes of the failures and the possibility to improve biocontrol agents' effectiveness. Indeed, despite the failures, the 'bioherbicide' approach deserves renewed interest in light of the enormous scientific and technological progress made in past years, which offers new chances of success. © 2023 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| |
Collapse
|
4
|
Chen GTE, Wang JY, Votta C, Braguy J, Jamil M, Kirschner GK, Fiorilli V, Berqdar L, Balakrishna A, Blilou I, Lanfranco L, Al-Babili S. Disruption of the rice 4-DEOXYOROBANCHOL HYDROXYLASE unravels specific functions of canonical strigolactones. Proc Natl Acad Sci U S A 2023; 120:e2306263120. [PMID: 37819983 PMCID: PMC10589652 DOI: 10.1073/pnas.2306263120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species. The cytochrome P450 OsMAX1-900 forms 4DO from CL through repeated oxygenation and ring closure, while the homologous enzyme OsMAX1-1400 hydroxylates 4DO into Oro. To better understand the biological function of 4DO and Oro, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or in both OsMAX1-900 and OsMAX1-1400. The loss of OsMAX1-1400 activity led to a complete lack of Oro and an accumulation of its precursor 4DO. Moreover, Os1400 mutants showed shorter plant height, panicle and panicle base length, but no tillering phenotype. Hormone quantification and transcriptome analysis of Os1400 mutants revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both Oro and 4DO did not show the observed Os1400 architectural phenotypes, indicating their being a result of 4DO accumulation. Treatment of wild-type plants with 4DO confirmed this assumption. A comparison of the Striga seed germinating activity and the mycorrhization of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrated that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 has a negative impact on mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and reveals their particular contributions to establishing architecture and rhizospheric communications.
Collapse
Affiliation(s)
- Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Gwendolyn K. Kirschner
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Ikram Blilou
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Piwowarczyk R, Kolanowska M. Effect of global warming on the potential distribution of a holoparasitic plant (Phelypaea tournefortii): both climate and host distribution matter. Sci Rep 2023; 13:10741. [PMID: 37400559 PMCID: PMC10318063 DOI: 10.1038/s41598-023-37897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
Phelypaea tournefortii (Orobanchaceae) primarily occurs in the Caucasus (Armenia, Azerbaijan, Georgia, and N Iran) and Turkey. This perennial, holoparasitic herb is achlorophyllous and possesses one of the most intense red flowers among all plants worldwide. It occurs as a parasite on the roots of several Tanacetum (Asteraceae) species and prefers steppe and semi-arid habitats. Climate change may affect holoparasites both directly through effects on their physiology and indirectly as a consequence of its effects on their host plants and habitats. In this study, we used the ecological niche modeling approach to estimate the possible effects of climate change on P. tournefortii and to evaluate the effect of its parasitic relationships with two preferred host species on the chances of survival of this species under global warming. We used four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) and three different simulations (CNRM, GISS-E2, INM). We modeled the species' current and future distribution using the maximum entropy method implemented in MaxEnt using seven bioclimatic variables and species occurrence records (Phelypaea tournefortii - 63 records, Tanacetum argyrophyllum - 40, Tanacetum chiliophyllum - 21). According to our analyses, P. tournefortii will likely contract its geographical range remarkably. In response to global warming, the coverage of the species' suitable niches will decrease by at least 34%, especially in central and southern Armenia, Nakhchivan in Azerbaijan, northern Iran, and NE Turkey. In the worst-case scenario, the species will go completely extinct. Additionally, the studied plant's hosts will lose at least 36% of currently suitable niches boosting the range contraction of P. tournefortii. The GISS-E2 scenario will be least damaging, while the CNRM will be most damaging to climate change for studied species. Our study shows the importance of including ecological data in niche models to obtain more reliable predictions of the future distribution of parasitic plants.
Collapse
Affiliation(s)
- Renata Piwowarczyk
- Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Street, 25-406, Kielce, Poland
| | - Marta Kolanowska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
6
|
Ito S, Braguy J, Wang JY, Yoda A, Fiorilli V, Takahashi I, Jamil M, Felemban A, Miyazaki S, Mazzarella T, Chen GTE, Shinozawa A, Balakrishna A, Berqdar L, Rajan C, Ali S, Haider I, Sasaki Y, Yajima S, Akiyama K, Lanfranco L, Zurbriggen MD, Nomura T, Asami T, Al-Babili S. Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. SCIENCE ADVANCES 2022; 8:eadd1278. [PMID: 36322663 PMCID: PMC9629705 DOI: 10.1126/sciadv.add1278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 05/09/2023]
Abstract
Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Justine Braguy
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf 40225, Germany
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Akiyoshi Yoda
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad Jamil
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abrar Felemban
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sho Miyazaki
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Guan-Ting Erica Chen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Akihisa Shinozawa
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
- Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamis Berqdar
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chakravarty Rajan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shawkat Ali
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| | - Imran Haider
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kohki Akiyama
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf 40225, Germany
| | - Takahito Nomura
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Zhang L, Cao X, Yao Z, Dong X, Chen M, Xiao L, Zhao S. Identification of risk areas for
Orobanche cumana
and
Phelipanche aegyptiaca
in China, based on the major host plant and CMIP6 climate scenarios. Ecol Evol 2022; 12:e8824. [PMID: 35462975 PMCID: PMC9018459 DOI: 10.1002/ece3.8824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic broomrape of the genus Orobanche poses a formidable threat to producing many crops in Europe, Africa, and Asia. Orobanche cumana and Phelipanche aegyptiaca are two of China's most destructive root parasitic plants, causing extreme sunflower, tomato, melon, and tobacco damage. However, the potentially suitable areas of O. cumana and P. aegyptiaca in China have not been predicted, and little is known about the important environmental factors that affect their extension. Due to their invasiveness and economic importance, studying how climate change and host plants may affect broomrapes’ distribution is necessary. In the study, we first predicted the potentially suitable areas of the invasive weeds (O. cumana and P. aegyptiaca) and their susceptible host plants (Helianthus annuus and Solanum lycopersicon) using MaxEnt. Then, the risk zones and distribution shifts of two broomrapes under different climate conditions were identified by incorporating the distribution of their susceptible host plants. The results highlighted that the potential middle‐ and high‐risk zones for O. cumana and P. aegyptiaca amounted to 197.88 × 104 km2 and 12.90 × 104 km2, respectively. Notably, Xinjiang and Inner Mongolia were the highest‐risk areas within the distribution and establishment of O. cumana and P. aegyptiaca. Elevation and topsoil pH were the decisive factors for shaping O. cumana distribution; precipitation seasonality and annual precipitation were the dominant bioclimatic variables limiting the spread of P. aegyptiaca. The potentially suitable areas and risk zones of O. cumana would decrease significantly, and those of P. aegyptiaca would fluctuate slightly under future climate change scenarios. Overall, our study suggested that the two broomrapes’ risk zones will significantly northward to higher latitudes. The results will provide suggestions for preventing O. cumana and P. aegyptiaca.
Collapse
Affiliation(s)
- Lu Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi University Shihezi China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Xiaolei Cao
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi University Shihezi China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Xue Dong
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Meixiu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Lifeng Xiao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Sifeng Zhao
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi University Shihezi China
| |
Collapse
|
8
|
Parker C. A Personal History in Parasitic Weeds and Their Control. PLANTS 2021; 10:plants10112249. [PMID: 34834612 PMCID: PMC8622887 DOI: 10.3390/plants10112249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022]
Abstract
This invited paper summarises a career in which I became increasingly involved in research and related activities on Striga and other parasitic weeds. It also presents a personal view of the present status of parasitic weed problems and their control.
Collapse
Affiliation(s)
- Chris Parker
- Independent Researcher, 6 Royal York Crescent, Bristol BS8 4JZ, UK
| |
Collapse
|
9
|
Sadda AS, Coppens d’Eeckenbrugge G, Saidou AA, Diouf A, Jangorzo NS, Issoufou HBA, Malam-Issa O. The witchweed Striga gesnerioides and the cultivated cowpea: A geographical and historical analysis of their West African distribution points to the prevalence of agro-ecological factors and the parasite's multilocal evolution potential. PLoS One 2021; 16:e0254803. [PMID: 34347813 PMCID: PMC8336835 DOI: 10.1371/journal.pone.0254803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
The increasing severity of Striga gesnerioides attacks on cowpea across West Africa has been related to its prolificity, seed mobility and longevity, and adaptation to aridity, in a context of agricultural intensification. To understand this fast extension, we analyzed (1) the distributions of the crop and the witchweed with ecological niche modeling and multivariate climate analysis, and (2) the chronological information available from collections and the literature. The ecoclimatic envelope of S. gesnerioides attacks on cowpea is the same as on wild hosts. Consistently, the modeled distribution of cowpea infestations is closely similar to the simple superposition of the parasite model (involving all hosts) and the crop model. Striga gesnerioides infestations are restricted to the driest component of the cultivated cowpea ecoclimatic niche, corresponding to the Sahelian and Sudano-Sahelian belts and the Dahomey gap. Thus, the parasite distribution, determined by its own requirements, does not constrain cowpea cultivation under Guinean climates. The spatial and temporal distributions of S. gesnerioides field infestations are consistent with an earlier impact on cowpea production in eastern West Africa, related itself to a similar trend in cowpea cultivation intensification from Niger, Nigeria and Benin to Burkina Faso and Ghana. Mali and Senegal were affected later, and literature reports of Senegalese strains of S. gesnerioides from the wild developing virulence on cowpea offer a model for the diffusion of witchweed parasitism by multilocal evolution, through host-driven selection, instead of epidemic diffusion. A contrario, in Côte d’Ivoire, cowpea is much less widespread, so the parasite has remained confined to the wild compartment. Thus, both historical and ecogeographic analyses refute the vision of S. gesnerioides as an invader. Instead, they point to the increasing importance and intensification of the crop, and the consequent loss of biodiversity, as the main drivers of the extension and diversification of its crop-specific strains.
Collapse
Affiliation(s)
- Abou-Soufianou Sadda
- UMR DAP, Université Dan Dicko Dankoulodo de Maradi, Maradi, Niger
- IRD, UMR IEES-Paris, SU/IRD/CNRS/INRA/UPEC/Univ. Paris Diderot, Centre IRD de France Nord, Bondy Cedex, France
| | - Geo Coppens d’Eeckenbrugge
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- * E-mail:
| | - Abdoul-Aziz Saidou
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Abdoulaye Diouf
- UMR ECODYV, Université Dan Dicko Dankoulodo de Maradi, ADS Maradi, Niger
| | | | | | - Oumarou Malam-Issa
- IRD, UMR IEES-Paris, SU/IRD/CNRS/INRA/UPEC/Univ. Paris Diderot, Centre IRD de France Nord, Bondy Cedex, France
| |
Collapse
|
10
|
Zagorchev L, Stöggl W, Teofanova D, Li J, Kranner I. Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2021; 22:7418. [PMID: 34299036 PMCID: PMC8304456 DOI: 10.3390/ijms22147418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| | - Denitsa Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| |
Collapse
|
11
|
Kabiri S, Rodenburg J, van Ast A, Pflug S, Kool H, Bastiaans L. Impact of the facultative parasitic weed Rhamphicarpa fistulosa (Hochst.) Benth. on photosynthesis of its host Oryza sativa L. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153438. [PMID: 34034043 DOI: 10.1016/j.jplph.2021.153438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 04/24/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Rhamphicarpa fistulosa is a facultative root parasitic annual forb, of the family Orobanchaceae that is native to sub-Saharan Africa. Parasitism results in yield reductions by the host plants but it is not known how exactly R. fistulosa affects its host or how the host responds physiologically. In three pot experiments, we investigated whether and when the parasite affects photosynthesis of rice, whether the level of impact was parasite density dependent and explored mechanisms underlying the response of rice photosynthesis to parasitism. Photosynthesis and related parameters were measured at a range of light use intensities. Host photosynthesis was negatively affected while light use efficiency was negatively affected only later on in the growth process. Except for dark respiration rates, which were never affected by parasite infection, suppression of host photosynthesis at light saturation, the initial light-use efficiency, chlorophyll content, specific leaf area and shoot weight were parasite density dependent with a stronger effect for higher parasite densities. Only at 56 days after sowing, the slope of the linear relationship between light adapted quantum efficiency of PSII electron transport (ΦPSII) and the quantum yield of CO2 assimilation (ΦCO2) of infected plants was less than those of un-infected plants. There was a considerable time lag between the parasite's acquisition of benefits from the association, in terms of growth (previously observed around 42 DAS), and the reduction of host photosynthesis (around 56 DAS). Expression of relative reductions in host growth rates started at the same time as the relative suppression of host photosynthesis. This indicated that R. fistulosa affects host growth by first extracting assimilates and making considerable gains in growth, before impacting host photosynthesis and growth.
Collapse
Affiliation(s)
- Stella Kabiri
- National Agricultural Research Organization (NARO), MUZARDI, P.O.Box 164, Mukono, Uganda.
| | - Jonne Rodenburg
- Natural Resources Institute (NRI), University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Aad van Ast
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6700 AK, the Netherlands
| | - Stefanie Pflug
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Hanna Kool
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6700 AK, the Netherlands
| | - Lammert Bastiaans
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6700 AK, the Netherlands
| |
Collapse
|
12
|
Casadesús A, Munné-Bosch S. Holoparasitic plant-host interactions and their impact on Mediterranean ecosystems. PLANT PHYSIOLOGY 2021; 185:1325-1338. [PMID: 35237829 PMCID: PMC8133675 DOI: 10.1093/plphys/kiab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/11/2021] [Indexed: 06/13/2023]
Abstract
Although photosynthesis is essential to sustain life on Earth, not all plants use sunlight to synthesize nutrients from carbon dioxide and water. Holoparasitic plants, which are important in agricultural and natural ecosystems, are dependent on other plants for nutrients. Phytohormones are crucial in holoparasitic plant-host interactions, from seed germination to senescence, not only because they act as growth and developmental regulators, but also because of their central role in the regulation of host photosynthesis and source-sink relations between the host and the holoparasitic plant. Here, we compile and discuss current knowledge on the impact and ecophysiology of holoparasitic plants (such as the broomrapes Orobanche sp. and Phelipanche sp.) that infest economically important dicotyledonous crops in Mediterranean agroecosystems (legumes [Fabaceae], sunflowers [Helianthus sp.], or tomato [Solanum lycopersicum] plants). We also highlight the role of holoparasitic plant-host interactions (such as those between Cytinus hypocistis and various shrubs of the genus Cistus) in shaping natural Mediterranean ecosystems. The roles of phytohormones in controlling plant-host interactions, abiotic factors in parasitism, and the biological significance of natural seed banks and how dormancy and germination are regulated, will all be discussed. Holoparasitic plants are unique organisms; improving our understanding of their interaction with hosts as study models will help us to better manage parasitic plants, both in agricultural and natural ecosystems.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute in Biodiversity (IrBio), University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute in Biodiversity (IrBio), University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety (INSA), Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Jamil M, Kountche BA, Al-Babili S. Current progress in Striga management. PLANT PHYSIOLOGY 2021; 185:1339-1352. [PMID: 33793943 PMCID: PMC8133620 DOI: 10.1093/plphys/kiab040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.
Collapse
Affiliation(s)
- Muhammad Jamil
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Boubacar A Kountche
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
14
|
Yu W, Wardrop NA, Bain RES, Alegana V, Graham LJ, Wright JA. Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya. PLoS One 2019; 14:e0216923. [PMID: 31100084 PMCID: PMC6524943 DOI: 10.1371/journal.pone.0216923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
Water point mapping databases, generated through surveys of water sources such as wells and boreholes, are now available in many low and middle income countries, but often suffer from incomplete coverage. To address the partial coverage in such databases and gain insights into spatial patterns of water resource use, this study investigated the use of a maximum entropy (MaxEnt) approach to predict the geospatial distribution of drinking-water sources, using two types of unimproved sources in Kenya as illustration. Geographic locations of unprotected dug wells and surface water sources derived from the Water Point Data Exchange (WPDx) database were used as inputs to the MaxEnt model alongside geological/hydrogeological and socio-economic covariates. Predictive performance of the MaxEnt models was high (all > 0.9) based on Area Under the Receiver Operator Curve (AUC), and the predicted spatial distribution of water point was broadly consistent with household use of these unimproved drinking-water sources reported in household survey and census data. In developing countries where geospatial datasets concerning drinking-water sources often have necessarily limited resolution or incomplete spatial coverage, the modelled surface can provide an initial indication of the geography of unimproved drinking-water sources to target unserved populations and assess water source vulnerability to contamination and hazards.
Collapse
Affiliation(s)
- Weiyu Yu
- University of Southampton, Southampton, Hampshire, United Kingdom
| | | | - Robert E. S. Bain
- Division of Data, Research and Policy, United Nations Children's Fund (UNICEF), New York, New York, United States of America
| | - Victor Alegana
- University of Southampton, Southampton, Hampshire, United Kingdom
- Population Health Unit, Kenya Medical Research Institute—Wellcome Trust Research Programme, Nairobi, Kenya
| | - Laura J. Graham
- University of Southampton, Southampton, Hampshire, United Kingdom
| | - Jim A. Wright
- University of Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
15
|
Samejima H, Sugimoto Y. Recent research progress in combatting root parasitic weeds. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1420427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hiroaki Samejima
- Division of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yukihiro Sugimoto
- Division of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
16
|
Ronald M, Charles M, Stanford M, Eddie M. Predictions of the Striga Scourge under New Climate in Southern Africa: A Perspective. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jbs.2017.194.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. FRONTIERS IN PLANT SCIENCE 2017; 8:95. [PMID: 28243245 PMCID: PMC5303747 DOI: 10.3389/fpls.2017.00095] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/17/2017] [Indexed: 05/22/2023]
Abstract
Whilst it is agreed that climate change will impact on the long-term interactions between crops and weeds, the results of this impact are far from clear. We suggest that a thorough understanding of weed dominance and weed interactions, depending on crop and weed ecosystems and crop sequences in the ecosystem, will be the key determining factor for successful weed management. Indeed, we claim that recent changes observed throughout the world within the weed spectrum in different cropping systems which were ostensibly related to climate change, warrant a deeper examination of weed vulnerabilities before a full understanding is reached. For example, the uncontrolled establishment of weeds in crops leads to a mixed population, in terms of C3 and C4 pathways, and this poses a considerable level of complexity for weed management. There is a need to include all possible combinations of crops and weeds while studying the impact of climate change on crop-weed competitive interactions, since, from a weed management perspective, C4 weeds would flourish in the increased temperature scenario and pose serious yield penalties. This is particularly alarming as a majority of the most competitive weeds are C4 plants. Although CO2 is considered as a main contributing factor for climate change, a few Australian studies have also predicted differing responses of weed species due to shifts in rainfall patterns. Reduced water availability, due to recurrent and unforeseen droughts, would alter the competitive balance between crops and some weed species, intensifying the crop-weed competition pressure. Although it is recognized that the weed pressure associated with climate change is a significant threat to crop production, either through increased temperatures, rainfall shift, and elevated CO2 levels, the current knowledge of this effect is very sparse. A few models that have attempted to predict these interactions are discussed in this paper, since these models could play an integral role in developing future management programs for future weed threats. This review has presented a comprehensive discussion of the recent research in this area, and has identified key deficiencies which need further research in crop-weed eco-systems to formulate suitable control measures before the real impacts of climate change set in.
Collapse
Affiliation(s)
- Kulasekaran Ramesh
- Indian Council of Agricultural Research – Indian Institute of Soil ScienceBhopal, India
| | - Amar Matloob
- Department of Agronomy, Muhammad Nawaz Shareef University of AgricultureMultan, Pakistan
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, ToowoombaQLD, Australia
| | - Farhena Aslam
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
- Ayub Agricultural Research InstituteFaisalabad, Pakistan
| | - Singarayer K. Florentine
- Centre for Environmental Management, Faculty of Science and Technology, Federation University Australia, Mount HelenVIC, Australia
| | - Bhagirath S. Chauhan
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, ToowoombaQLD, Australia
| |
Collapse
|
18
|
Fernández-Aparicio M, Reboud X, Gibot-Leclerc S. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:135. [PMID: 26925071 PMCID: PMC4759268 DOI: 10.3389/fpls.2016.00135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/12/2016] [Indexed: 05/20/2023]
Abstract
Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrapes are in current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree. We reviewed relevant facts about the biology and physiology of broomrape weeds and the major feasible control strategies. The points of vulnerability of some underground events, key for their parasitism such as crop-induced germination or haustorial development are reviewed as inhibition targets of the broomrape-crop association. Among the reviewed strategies are those aimed (1) to reduce broomrape seed bank viability, such as fumigation, herbigation, solarization and use of broomrape-specific pathogens; (2) diversion strategies to reduce the broomrape ability to timely detect the host such as those based on promotion of suicidal germination, on introduction of allelochemical interference, or on down-regulating host exudation of germination-inducing factors; (3) strategies to inhibit the capacity of the broomrape seedling to penetrate the crop and connect with the vascular system, such as biotic or abiotic inhibition of broomrape radicle growth and crop resistance to broomrape penetration either natural, genetically engineered or elicited by biotic- or abiotic-resistance-inducing agents; and (4) strategies acting once broomrape seedling has bridged its vascular system with that of the host, aimed to impede or to endure the parasitic sink such as those based on the delivery of herbicides via haustoria, use of resistant or tolerant varieties and implementation of cultural practices improving crop competitiveness.
Collapse
|
19
|
Lewis KC, Porter RD. Global approaches to addressing biofuel-related invasive species risks and incorporation into U.S. laws and policies. ECOL MONOGR 2014. [DOI: 10.1890/13-1625.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
|
21
|
Cissoko M, Boisnard A, Rodenburg J, Press MC, Scholes JD. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. THE NEW PHYTOLOGIST 2011; 192:952-963. [PMID: 21883232 DOI: 10.1111/j.1469-8137.2011.03846.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Striga hermonthica and S. asiatica are root parasitic weeds that infect the major cereal crops of sub-Saharan Africa causing severe losses in yield. The interspecific upland NEw RICe for Africa (NERICA) cultivars are popular amongst subsistence farmers, but little is known about their post-attachment resistance against Striga. Here, we evaluate the post-attachment resistance levels of the NERICA cultivars and their parents against ecotypes of S. hermonthica and S.asiatica, characterize the phenotype of the resistance mechanisms and determine the effect of Striga on host biomass. Some NERICA cultivars showed good broad-spectrum resistance against several Striga ecotypes, whereas others showed intermediate resistance or were very susceptible. The phenotype of a resistant interaction was often characterized by an inability of the parasite to penetrate the endodermis. Moreover, some parasites formed only a few connections to the host xylem, grew slowly and remained small. The most resistant NERICA cultivars were least damaged by Striga, although even a small number of parasites caused a reduction in above-ground host biomass. The elucidation of the molecular genetic basis of the resistance mechanisms and tolerance would allow the development of cultivars with multiple, durable resistance for use in farmers' fields.
Collapse
Affiliation(s)
- Mamadou Cissoko
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Arnaud Boisnard
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jonne Rodenburg
- Africa Rice Center, East and Southern Africa Rice Program, PO Box 33581, Tanzania
| | - Malcolm C Press
- College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julie D Scholes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
|
23
|
DeVaney SC, McNyset KM, Williams JB, Peterson AT, Wiley EO. A tale of four "carp": invasion potential and ecological niche modeling. PLoS One 2009; 4:e5451. [PMID: 19421314 PMCID: PMC2673581 DOI: 10.1371/journal.pone.0005451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 04/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Invasive species are a serious problem in ecosystems, but are difficult to eradicate once established. Predictive methods can be key in determining which areas are of concern regarding invasion by such species to prevent establishment [1]. We assessed the geographic potential of four Eurasian cyprinid fishes (common carp, tench, grass carp, black carp) as invaders in North America via ecological niche modeling (ENM). These "carp" represent four stages of invasion of the continent (a long-established invader with a wide distribution, a long-established invader with a limited distribution, a spreading invader whose distribution is expanding, and a newly introduced potential invader that is not yet established), and as such illustrate the progressive reduction of distributional disequilibrium over the history of species' invasions. METHODOLOGY/PRINCIPAL FINDINGS We used ENM to estimate the potential distributional area for each species in North America using models based on native range distribution data. Environmental data layers for native and introduced ranges were imported from state, national, and international climate and environmental databases. Models were evaluated using independent validation data on native and invaded areas. We calculated omission error for the independent validation data for each species: all native range tests were highly successful (all omission values <7%); invaded-range predictions were predictive for common and grass carp (omission values 8.8 and 19.8%, respectively). Model omission was high for introduced tench populations (54.7%), but the model correctly identified some areas where the species has been successful; distributional predictions for black carp show that large portions of eastern North America are at risk. CONCLUSIONS/SIGNIFICANCE ENMs predicted potential ranges of carp species accurately even in regions where the species have not been present until recently. ENM can forecast species' potential geographic ranges with reasonable precision and within the short screening time required by proposed U.S. invasive species legislation.
Collapse
Affiliation(s)
- Shannon C DeVaney
- The University of Kansas, Natural History Museum and Biodiversity Research Center, Lawrence, KS, USA.
| | | | | | | | | |
Collapse
|
24
|
Parker C. Observations on the current status of Orobanche and Striga problems worldwide. PEST MANAGEMENT SCIENCE 2009; 65:453-9. [PMID: 19206075 DOI: 10.1002/ps.1713] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Species of Orobanche and Striga are among the most damaging parasitic weed species worldwide, but there are few reliable statistics on the full extent of the economic losses they cause. The distribution, host range and economic importance of the major species of Orobanche and Striga are briefly summarised. A review of literature over the period since 1991 suggests that many million hectares are infested and that the losses amount to $ US billions annually. Unfortunately there are almost no fully reliable figures on which to base these figures precisely. Meanwhile, there is little evidence of any significant change in intensity, range or losses caused over this period. Any reduction in the importance of these damaging weeds is sporadic, and alleviation of the problems is mostly localised. Furthermore, while the importance of Orobanche species may be broadly static, Striga species on cereals continue to become more serious in many countries owing to continued loss of soil fertility. It is suggested that new techniques may be needed for measurement of the extent of losses caused by these genera and their economic impact. There is continued urgency to develop control measures appropriate to the farming systems involved, and to reduce the risk of spread of both groups of parasite to new areas.
Collapse
|
25
|
Jeschke JM, Strayer DL. Usefulness of Bioclimatic Models for Studying Climate Change and Invasive Species. Ann N Y Acad Sci 2008; 1134:1-24. [DOI: 10.1196/annals.1439.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|