1
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
2
|
Yuan Q, Fu W, Li X, Xu Z, Liu X, Li Z, Shao X. Design, Synthesis, Bioactivity, and Tentative Exploration of Action Mode for Benzyl Ester-Containing Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16112-16127. [PMID: 38985656 DOI: 10.1021/acs.jafc.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The active splicing strategy has witnessed improvement in bioactivity and antifungal spectra in pesticide discovery. Herein, a series of simple-structured molecules (Y1-Y53) containing chloro-substituted benzyl esters were designed using the above strategy. The structure-activity relationship (SAR) analysis demonstrated that the fatty acid fragment-structured esters were more effective than those containing an aromatic acid moiety or naphthenic acid part. Compounds Y36 and Y41, which featured a thiazole-4-acid moiety and trifluoromethyl aliphatic acid part, respectively, exhibited excellent in vivo curative activity (89.4%, 100 mg/L Y36) and in vitro fungicidal activity (EC50 = 0.708 mg/L, Y41) against Botrytis cinerea. Determination of antifungal spectra and analysis of scanning electron microscopy (SEM), membrane permeability, cell peroxidation, ergosterol content, oxalic acid pathways, and enzymatic assays were performed separately here. Compound Y41 is cost effective due to its simple structure and shows promise as a disease control candidate. In addition, Y41 might act on a novel target through a new pathway that disrupts the cell membrane integrity by inducing cell peroxidation.
Collapse
Affiliation(s)
- Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiaoyan Li
- College of Humanities and Economic Management, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Ocán-Torres D, Martínez-Burgos WJ, Manzoki MC, Soccol VT, Neto CJD, Soccol CR. Microbial Bioherbicides Based on Cell-Free Phytotoxic Metabolites: Analysis and Perspectives on Their Application in Weed Control as an Innovative Sustainable Solution. PLANTS (BASEL, SWITZERLAND) 2024; 13:1996. [PMID: 39065523 PMCID: PMC11280510 DOI: 10.3390/plants13141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Weeds cause significant agricultural losses worldwide, and herbicides have traditionally been the main solution to this problem. However, the extensive use of herbicides has led to multiple cases of weed resistance, which could generate an increase in the application concentration and consequently a higher persistence in the environment, hindering natural degradation processes. Consequently, more environmentally friendly alternatives, such as microbial bioherbicides, have been sought. Although these bioherbicides are promising, their efficacy remains a challenge, as evidenced by their limited commercial and industrial production. This article reviews the current status of microbial-based bioherbicides and highlights the potential of cell-free metabolites to improve their efficacy and commercial attractiveness. Stirred tank bioreactors are identified as the most widely used for production-scale submerged fermentation. In addition, the use of alternative carbon and nitrogen sources, such as industrial waste, supports the circular economy. Furthermore, this article discusses the optimization of downstream processes using bioprospecting and in silico technologies to identify target metabolites, which leads to more precise and efficient production strategies. Bacterial bioherbicides, particularly those derived from Pseudomonas and Xanthomonas, and fungal bioherbicides from genera such as Alternaria, Colletotrichum, Trichoderma and Phoma, show significant potential. Nevertheless, limitations such as their restricted range of action, their persistence in the environment, and regulatory issues restrict their commercial availability. The utilization of cell-free microbial metabolites is proposed as a promising solution due to their simpler handling and application. In addition, modern technologies, including encapsulation and integrated management with chemical herbicides, are investigated to enhance the efficacy and sustainability of bioherbicides.
Collapse
Affiliation(s)
| | - Walter José Martínez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.O.-T.); (M.C.M.); (V.T.S.); (C.J.D.N.)
| | | | | | | | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.O.-T.); (M.C.M.); (V.T.S.); (C.J.D.N.)
| |
Collapse
|
4
|
Xiao H, Mei LC, Lin HY, Chen Z, Yu XH, Yang J, Tong Q, Yang GF. Expression, purification, and characterization of transmembrane protein homogentisate solanesyltransferase. Appl Microbiol Biotechnol 2024; 108:256. [PMID: 38451307 PMCID: PMC10920428 DOI: 10.1007/s00253-024-13094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Homogentisate solanesyltransferase (HST) is a crucial enzyme in the plastoquinone biosynthetic pathway and has recently emerged as a promising target for herbicides. In this study, we successfully expressed and purified a stable and highly pure form of seven times transmembrane protein Chlamydomonas reinhardtii HST (CrHST). The final yield of CrHST protein obtained was 12.2 mg per liter of M9 medium. We evaluated the inhibitory effect on CrHST using Des-Morpholinocarbony Cyclopyrimorate (DMC) and found its IC50 value to be 3.63 ± 0.53 μM, indicating significant inhibitory potential. Additionally, we investigated the substrate affinity of CrHST with two substrates, determining the Km values as 22.76 ± 1.70 μM for FPP and 48.54 ± 3.89 μM for HGA. Through sequence alignment analyses and three-dimensional structure predictions, we identified conserved amino acid residues forming the active cavity in the enzyme. The results from molecular docking and binding energy calculations indicate that DMC has a greater binding affinity with HST compared to HGA. These findings represent substantial progress in understanding CrHST's properties and potential for herbicide development. KEY POINTS: • First high-yield transmembrane CrHST protein via E. coli system • Preliminarily identified active cavity composition via activity testing • Determined substrate and inhibitor modes via molecular docking.
Collapse
Affiliation(s)
- Han Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Long-Can Mei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Zhao Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Xin-He Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qiong Tong
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
5
|
Selby TP, Satterfield AD, Puri A, Stevenson TM, Travis DA, Campbell MJ, Taggi AE, Hughes KA, Bereznak J. Bioisosteric Tactics in the Discovery of Tetflupyrolimet: A New Mode-of-Action Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18197-18204. [PMID: 37285594 DOI: 10.1021/acs.jafc.3c01634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The last new herbicidal modes-of-action with commercial significance were introduced to the marketplace multiple decades ago. Serious weed resistance to most herbicidal classes have since emerged with widespread use. Aryl pyrrolidinone anilides represent an entirely new mode-of-action class of herbicides that interfere with de novo pyrimidine biosynthesis in plants via inhibition of dihydroorotate dehydrogenase. The chemical lead for this new herbicide class discovery was identified from high-volume sourced greenhouse screening that required structural reassignment of the hit molecule followed by an extensive synthetic optimization effort. With excellent grass weed control and pronounced safety on rice, the selected commercial development candidate has a proposed common name of tetflupyrolimet and represents the first member of the new HRAC (Herbicide Resistance Action Committee) Group 28. This paper describes the discovery path to tetflupyrolimet with an added focus on the bioisosteric modifications pursued in optimization, including replacements of the lactam core itself.
Collapse
Affiliation(s)
- Thomas P Selby
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - Andrew D Satterfield
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - Atul Puri
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - Thomas M Stevenson
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - D Andrew Travis
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - Matthew J Campbell
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - Andrew E Taggi
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - Kenneth A Hughes
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| | - James Bereznak
- FMC Corporation, Stine Research Center, 1090 Elkton Road, Newark, Delaware 19711, USA
| |
Collapse
|
6
|
Kang ILH, Emptage RP, Kim SI, Gutteridge S. A Novel mechanism of herbicide action through disruption of pyrimidine biosynthesis. Proc Natl Acad Sci U S A 2023; 120:e2313197120. [PMID: 37988466 PMCID: PMC10691210 DOI: 10.1073/pnas.2313197120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023] Open
Abstract
A lead aryl pyrrolidinone anilide identified using high-throughput in vivo screening was optimized for efficacy, crop safety, and weed spectrum, resulting in tetflupyrolimet. Known modes of action were ruled out through in vitro enzyme and in vivo plant-based assays. Genomic sequencing of aryl pyrrolidinone anilide-resistant Arabidopsis thaliana progeny combined with nutrient reversal experiments and metabolomic analyses confirmed that the molecular target of the chemistry was dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway. In vitro enzymatic and biophysical assays and a cocrystal structure with purified recombinant plant DHODH further confirmed this enzyme as the target site of this class of chemistry. Like known inhibitors of other DHODH orthologs, these molecules occupy the membrane-adjacent binding site of the electron acceptor ubiquinone. Identification of a new herbicidal chemical scaffold paired with a novel mode of action, the first such finding in over three decades, represents an important leap in combatting weed resistance and feeding a growing worldwide population.
Collapse
Affiliation(s)
- IL-Ho Kang
- FMC Agricultural Solutions, Stine Research Center, Newark, DE19711
| | - Ryan P. Emptage
- FMC Agricultural Solutions, Stine Research Center, Newark, DE19711
| | - Sang-Ic Kim
- FMC Agricultural Solutions, Stine Research Center, Newark, DE19711
| | | |
Collapse
|
7
|
Traxler C, Gaines TA, Küpper A, Luemmen P, Dayan FE. The nexus between reactive oxygen species and the mechanism of action of herbicides. J Biol Chem 2023; 299:105267. [PMID: 37734554 PMCID: PMC10591016 DOI: 10.1016/j.jbc.2023.105267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.
Collapse
Affiliation(s)
- Catherine Traxler
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anita Küpper
- Plant Biotechnology Division, Bayer CropScience, Chesterfield, Missouri, USA
| | - Peter Luemmen
- Research & Development Division, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
8
|
Ma S, Jia R, Li X, Wang W, Jin L, Zhang X, Yu H, Yang J, Dong L, Zhang L, Dong J. Herbicidal Active Compound Ferulic Acid Ethyl Ester Affects Fatty Acid Synthesis by Targeting the 3-Ketoacyl-Acyl Carrier Protein Synthase I (KAS I). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:276-287. [PMID: 36588523 DOI: 10.1021/acs.jafc.2c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring new herbicide targets based on natural product derivatives is an important research aspect for the generation of innovative pesticides. Ferulic acid ethyl ester (FAEE), a natural product derivative from ferulic acid, has significant herbicidal activity mainly by inhibiting the normal growth of weed seedling roots. However, the FAEE target protein underlying its herbicidal activity has not been identified. In this study, we synthesized an FAEE probe to locate its site of action. We discovered that FAEE entry point was via the root tips. Fourteen major binding proteins were identified using Drug affinity responsive target stability (DARTS) combined with LC-MS/MS, which included 3-ketoacyl-acyl carrier protein synthase I (KAS I) and phenylalanine ammonia-lyase I (PAL I). The KAS I and PAL I proteins/genes expression was changed significantly after exposure to FAEE, as evidenced by combined transcriptomic and proteomic analysis. A molecular docking assay indicated that KAS I and FAEE had a strong binding ability. Combined with previous studies on FAEE mechanism of action, and based on our results, we conclude that FAEE targeting KAS I lead to the blockage of the fatty acid synthesis pathway and result in plant death.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ran Jia
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xin Li
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wen Wang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Liyu Jin
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hualong Yu
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Juan Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China
| | - Lili Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
9
|
Haywood J, Breese KJ, Zhang J, Waters MT, Bond CS, Stubbs KA, Mylne JS. A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action. Nat Commun 2022; 13:5563. [PMID: 36137996 PMCID: PMC9500038 DOI: 10.1038/s41467-022-33185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Decades of intense herbicide use has led to resistance in weeds. Without innovative weed management practices and new herbicidal modes of action, the unabated rise of herbicide resistance will undoubtedly place further stress upon food security. HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is the rate limiting enzyme of the eukaryotic mevalonate pathway successfully targeted by statins to treat hypercholesterolemia in humans. As HMGR inhibitors have been shown to be herbicidal, HMGR could represent a mode of action target for the development of herbicides. Here, we present the crystal structure of a HMGR from Arabidopsis thaliana (AtHMG1) which exhibits a wider active site than previously determined structures from different species. This plant conserved feature enables the rational design of specific HMGR inhibitors and we develop a tolerance trait through sequence analysis of fungal gene clusters. These results suggest HMGR to be a viable herbicide target modifiable to provide a tolerance trait.
Collapse
Affiliation(s)
- Joel Haywood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Jingjing Zhang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Joshua S Mylne
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
10
|
Effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album under simulated rainfall conditions. PLoS One 2022; 17:e0267649. [PMID: 35657781 PMCID: PMC9165882 DOI: 10.1371/journal.pone.0267649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
This experiment was conducted to study the effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album. Simulating three rainfall intensities of 2 mm/h (light rain), 6 mm/h (moderate rain) and 10 mm/h (heavy rain) at different interval times (0.5 h, 1 h, 2 h, 4 h) to analyze variable regulation of the control effect, the photosynthetic pigment content and chlorophyll fluorescence parameters of C. album after spraying mesotrione. With the extension of rainfall time interval, the inhibition rate of plant height, plant control effect and fresh weight control effect of C. album were gradually increased, the inhibition effect of rainfall on the efficacy was gradually decreased, at the same time, the contents of chlorophyll a, chlorophyll b, carotenoids, the maximum photochemical quantum efficiency (Fv/Fm), the actual photochemical quantum yield (Y (II)) and quantum yield (Y (NO)) production of regular energy consumption of C. album were also increased, while the nonregulatory energy decreased gradually. The results showed that the contents of chlorophyll a and chlorophyll b in leaves of C. album increased significantly by 35.63% and 35.38% compared with the control under the condition of simulating 6 mm/h in interval 1 hour. The study suggested that simulating 10 mm/h rainfall intensity had the greatest effect on C. album, the photosynthetic pigment content, Fv/Fm and Y (II) of leaves were significantly higher than those in the control groups under 0.5 h, 1 h and 2 h interval treatments. The carotenoid content was the lowest and Y (NO) was the largest under the 4 h interval treatment. As is displayed that rainfall reduced the weed control effect in the aspect of controlling C. album on mesotrione, which is partly contributed to increase photosynthetic pigment content and enhance the PS II photochemical activity. In conclusion, the rain intensity of ≤2 mm/h did not affect the control effect of mesotrione on C. album. At 6 mm/h within 1 h after treatment, the control effect of fresh weight was significantly reduced by more than 7.14%, and at 10 mm/h within 2 h, the control effect was significantly reduced by more than 14.78%.
Collapse
|
11
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Sukhoverkov KV, Breese KJ, Debowski AW, Murcha MW, Stubbs KA, Mylne JS. Inhibition of chloroplast translation as a new target for herbicides. RSC Chem Biol 2022; 3:37-43. [PMID: 35128407 PMCID: PMC8729176 DOI: 10.1039/d1cb00192b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
The rise in herbicide resistance over recent decades threatens global agriculture and food security and so discovery of new modes of action is increasingly important. Here we reveal linezolid, an oxazolidinone antibiotic that inhibits microbial translation, is also herbicidal. To validate the herbicidal mode of action of linezolid we confirmed its micromolar inhibition is specific to chloroplast translation and did not affect photosynthesis directly. To assess the herbicide potential of linezolid, testing against a range of weed and crop species found it effective pre- and post-emergence. Using structure-activity analysis we identified the critical elements for herbicidal activity, but importantly also show, using antimicrobial susceptibility assays, that separation of antibacterial and herbicidal activities was possible. Overall these results validate chloroplast translation as a viable herbicidal target.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Karen J Breese
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Aleksandra W Debowski
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- School of Biomedical Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Monika W Murcha
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
13
|
Haywood J, Vadlamani G, Stubbs KA, Mylne JS. Antibiotic resistance lessons for the herbicide resistance crisis. PEST MANAGEMENT SCIENCE 2021; 77:3807-3814. [PMID: 33682995 DOI: 10.1002/ps.6357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
The challenges of resistance to antibiotics and resistance to herbicides have much in common. Antibiotic resistance became a risk in the 1950s, but a concerted global effort to manage it did not begin until after 2000. Widespread herbicide use began during the 1950s and was soon followed by an unabated rise in resistance. Here, we examine what lessons for combatting herbicide resistance could be learnt from the global, coordinated efforts of all stakeholders to avert the antibiotic resistance crisis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Haywood
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Grishma Vadlamani
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
14
|
Hachisu S. Strategies for discovering resistance-breaking, safe and sustainable commercial herbicides with novel modes of action and chemotypes. PEST MANAGEMENT SCIENCE 2021; 77:3042-3048. [PMID: 33817955 DOI: 10.1002/ps.6397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 05/26/2023]
Abstract
Farmers need to manage weeds to grow and harvest crops that are essential to our food and energy supply, and herbicides are the most important tool in the farmers' armory to combat weeds. There is now a crisis in agriculture that has been brought about by herbicides being rendered ineffective by resistant weeds or withdrawn from the market due to safety concerns. Efficacious herbicides with novel modes of action (MoAs) and chemotypes are urgently needed to control resistant weeds and satisfy public and regulators' stringent requirements for safe and sustainable products. This article explores the main strategies being deployed by academic and industrial institutions to discover the next generation of commercial herbicides: phenotypic and in vitro target based approaches. There are early signs that much needed innovation and herbicidal products with novel MoAs are on the horizon from start-ups and established agrochemical companies. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry.
Collapse
|
15
|
Qu RY, He B, Yang JF, Lin HY, Yang WC, Wu QY, Li QX, Yang GF. Where are the new herbicides? PEST MANAGEMENT SCIENCE 2021; 77:2620-2625. [PMID: 33460493 DOI: 10.1002/ps.6285] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 05/26/2023]
Abstract
Herbicide resistance has become one of the foremost problems in crop production worldwide. New herbicides are required to manage weeds that have evolved resistance to the existing herbicides. However, relatively few herbicides with new modes of action (MOAs) have been discovered in the past two decades. Therefore, the discovery of new herbicides (i.e., new chemical classes or MOAs) remains a primary but ongoing strategy to overcome herbicide resistance and ensure crop production. In this mini-review, starting with the inherent characteristics of the target proteins and the inhibitor structures, we propose two strategies for the rational design of new herbicides and one computational method for the risk evaluation of target mutation-conferred herbicide resistance. The information presented here may improve the utilization of known targets and inspire the discovery of herbicides with new targets. We believe that these strategies may trigger the sustainable development of herbicides in the future. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Bo He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Qiong-You Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
16
|
Sukhoverkov KV, Corral MG, Leroux J, Haywood J, Johnen P, Newton T, Stubbs KA, Mylne JS. Improved herbicide discovery using physico-chemical rules refined by antimalarial library screening. RSC Adv 2021; 11:8459-8467. [PMID: 35423398 PMCID: PMC8695207 DOI: 10.1039/d1ra00914a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Herbicides have physico-chemical properties not unlike orally-delivered human drugs, but are known to diverge in their limits for proton donors, partition coefficients and molecular weight. To further refine rules specific for herbicides, we exploited the close evolutionary relationship between Plasmodium falciparum and plants by screening the entire Malaria Box, a chemical library of novel chemical scaffolds with activity against the blood stage of P. falciparum. Initial screening against Arabidopsis thaliana on agar media and subsequently on soil demonstrated the crucial nature of log P and formal charge are to active molecules. Using this information, a weighted scoring system was applied to a large chemical library of liver-stage effective antimalarial leads, and of the six top-scoring compounds, one had potency comparable to that of commercial herbicides. This novel compound, MMV1206386, has no close structural analogues among commercial herbicides. Physiological profiling suggested that MMV1206386 has a new mode of action and overall demonstrates how weighted rules can help during herbicide discovery programs.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Maxime G Corral
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Julie Leroux
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Joel Haywood
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| | | | - Trevor Newton
- BASF SE Speyerer Straße 2 67117 Limburgerhof Germany
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway, Crawley Perth 6009 Australia
| |
Collapse
|
17
|
Shino M, Hamada T, Shigematsu Y, Banba S. In vivo and in vitro evidence for the inhibition of homogentisate solanesyltransferase by cyclopyrimorate. PEST MANAGEMENT SCIENCE 2020; 76:3389-3394. [PMID: 31773889 DOI: 10.1002/ps.5698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cyclopyrimorate is a highly effective bleaching herbicide discovered by Mitsui Chemicals Agro, Inc. The target site was recently reported to be homogentisate solanesyltransferase (HST) in the plastoquinone (PQ) biosynthesis pathway on the basis of the number of intermediates in cyclopyrimorate-treated plants and in vitro HST assays. Here, the target site of cyclopyrimorate was further explored using both in vivo and in vitro experiments. RESULTS The cyclopyrimorate-dependent bleaching effect on Arabidopsis thaliana was reversed by decyl PQ, suggesting that this symptom is attributable to the inhibition of PQ biosynthesis. Furthermore, homogentisate (HGA), a substrate of HST, weakly reversed the bleaching effect of cyclopyrimorate in a dose-dependent manner. We expected that the weak reversal by HGA was due to competitive inhibition by cyclopyrimorate or des-morpholinocarbonyl cyclopyrimorate (DMC), a metabolite of cyclopyrimorate in plants that exhibit higher HST-inhibitory activity as compared to cyclopyrimorate. Kinetic analysis was therefore conducted using DMC. DMC inhibited HST competitively with respect to HGA, and was a mixed non-competitive inhibitor with respect to the other substrate, farnesyl diphosphate. Moreover, neither cyclopyrimorate nor DMC inhibited 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanesyl-1,4-benzoquinone methyltransferase, which is located downstream of HST in the PQ biosynthesis pathway. CONCLUSIONS The target site of cyclopyrimorate and DMC is HST, which is a novel target site for commercial herbicides. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mamiko Shino
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| | - Takahiro Hamada
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| | - Yoshio Shigematsu
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| |
Collapse
|
18
|
Kahlau S, Schröder F, Freigang J, Laber B, Lange G, Passon D, Kleeßen S, Lohse M, Schulz A, von Koskull-Döring P, Klie S, Gille S. Aclonifen targets solanesyl diphosphate synthase, representing a novel mode of action for herbicides. PEST MANAGEMENT SCIENCE 2020; 76:3377-3388. [PMID: 32034864 DOI: 10.1002/ps.5781] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aclonifen is a unique diphenyl ether herbicide. Despite its structural similarities to known inhibitors of the protoporphyrinogen oxidase (e.g. acifluorfen, bifenox or oxadiazon), which result in leaf necrosis, aclonifen causes a different phenotype that is described as bleaching. This also is reflected by the Herbicide Resistance Action Committee (HRAC) classification that categorizes aclonifen as an inhibitor of pigment biosynthesis with an unknown target. RESULTS A comprehensive Arabidopsis thaliana RNAseq dataset comprising 49 different inhibitor treatments and covering 40 known target pathways was used to predict the aclonifen mode of action (MoA) by a random forest classifier. The classifier predicts for aclonifen a MoA within the carotenoid biosynthesis pathway similar to the reference compound norflurazon that inhibits the phytoene desaturase. Upon aclonifen treatment, the phytoene desaturation reaction is disturbed, resulting in a characteristic phytoene accumulation in vivo. However, direct enzyme inhibition by the herbicide was excluded for known herbicidal targets such as phytoene desaturase, 4-hydroxyphenylpyruvate dioxygenase and homogentisate solanesyltransferase. Eventually, the solanesyl diphosphate synthase (SPS), providing one of the two homogentisate solanesyltransferase substrate molecules, could be identified as the molecular target of aclonifen. Inhibition was confirmed using biochemical activity assays for the A. thaliana SPSs 1 and 2. Furthermore, a Chlamydomonas reinhardtii homolog was used for co-crystallization of the enzyme-inhibitor complex, showing that one inhibitor molecule binds at the interface between two protein monomers. CONCLUSION Solanesyl diphosphate synthase was identified as the target of aclonifen, representing a novel mode of action for herbicides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Jörg Freigang
- Crop Science Division, Structural Biology, Bayer AG, Monheim am Rhein, Germany
| | - Bernd Laber
- Crop Science Division, Weed Control, Bayer AG, Frankfurt am Main, Germany
| | - Gudrun Lange
- Crop Science Division, Computational Life Science, Bayer AG, Frankfurt am Main, Germany
| | | | | | | | - Arno Schulz
- Crop Science Division, Weed Control, Bayer AG, Frankfurt am Main, Germany
| | | | | | - Sascha Gille
- Crop Science Division, Weed Control, Bayer AG, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Umetsu N, Shirai Y. Development of novel pesticides in the 21st century. JOURNAL OF PESTICIDE SCIENCE 2020; 45:54-74. [PMID: 33132734 PMCID: PMC7581488 DOI: 10.1584/jpestics.d20-201] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
General trends and strategies for novel pesticides are summarized. Global pesticide sales and pesticide discovery research are also briefly reviewed. At least 105 chemical pesticides have been launched during the past decade or are under development: 43 fungicides, 34 insecticides/acaricides, 6 nematicides, 21 herbicides, and 1 herbicide safener. Most of them are safe to humans and environmentally friendly. The most developed fungicides are SDHI (succinate dehydrogenase inhibitors), DMI (demethylation inhibitors), QoI (quinone outside inhibitors), and QiI (quinone inside inhibitors). Due to the development of resistance to fungicides with existing modes of action, many fungicides possessing various novel modes of action have been launched or are under development. The trend of insecticide development is changing from organophosphorus, carbamate, and synthetic pyrethroids to nicotinic and diamide insecticides. During the past decade, compounds possessing a variety of novel modes of action have also been launched or are under development. Flupyradifurone and flupyrimin, exhibiting extremely low honeybee toxicity, have been developed and subjected to practical use. Herbicides possessing varied modes of action, such as acetolactate synthase, p-hydroxyphenylpyruvate dioxygenase, protoporphyrinogen oxidase, and very-long-chain fatty acid elongase inhibition, have been developed, but no herbicides possessing a novel mode action have commercialized in nearly 30 years. It is of interest that cyclopyrimorate, which was recently launched, and tetflupyrolimet, which is under development, have novel modes action: homogentisate solanesyltransferase (HST) and dihydroorotate dehydrogenase (DHODH) inhibition, respectively. The development of useful acaricides and nematicides is also progressing. Some natural product origin pesticides are getting attention.
Collapse
Affiliation(s)
- Noriharu Umetsu
- Kibi International University, Department of Agriculture
- To whom correspondence should be addressed. E-mail:
| | - Yuichi Shirai
- OAT Agrio Co., Ltd., Research and Development Division
| |
Collapse
|
20
|
Dayan FE. Current Status and Future Prospects in Herbicide Discovery. PLANTS 2019; 8:plants8090341. [PMID: 31514265 PMCID: PMC6783942 DOI: 10.3390/plants8090341] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
Herbicides represent about 60% of the pesticides (by volume) used worldwide. The success of herbicides can be attributed in part to a relatively steady discovery of one unique mechanisms of action (MOA) every two years from the early 1950s to the mid-1980s. While this situation changed dramatically after the introduction of glyphosate-resistant crops, evolution of resistance to glyphosate has renewed the agrichemical industry interest in new chemistry interacting with novel target sites. This review analyses recent characterization of new herbicide target sites, the chemical classes developed to inhibit these target sites, and where appropriate the innovative technologies used in these discovery programs.
Collapse
Affiliation(s)
- Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
21
|
Díaz-Tielas C, Graña E, Sánchez-Moreiras AM, Reigosa MJ, Vaughn JN, Pan Z, Bajsa-Hirschel J, Duke MV, Duke SO. Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. PEST MANAGEMENT SCIENCE 2019; 75:2490-2504. [PMID: 30868714 DOI: 10.1002/ps.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND New modes of action are needed for herbicides. The flavonoid synthesis intermediate t-chalcone causes apoptosis-like symptoms in roots and bleaching of shoots of Arabidospsis, suggesting a unique mode of action as a phytotoxin. RESULTS Using RNA-Seq, transcriptome changes were monitored in Arabidopsis seedlings during the first 24 h of exposure (at 1, 3, 6, 12 and 24 h) to 21 μm t-chalcone (I50 dose), examining effects on roots and shoots separately. Expression of 892 and 1000 genes was affected in roots and shoots, respectively. According to biological classification, many of the affected genes were transcription factors and genes associated with oxidative stress, heat shock proteins, xenobiotic detoxification, ABA and auxin biosynthesis, and primary metabolic processess. These are secondary effects found with most phytotoxins. Potent phytotoxins usually act by inhibiting enzymes of primary metabolism. KEGG pathway analysis of transcriptome results from the first 3 h of t-chalcone exposure indicated several potential primary metabolism target sites for t-chalcone. Of these, p-hydroxyphenylpyruvate dioxygenase (HPPD) and tyrosine amino transferase were consistent with the bleaching effect of the phytotoxin. Supplementation studies with Lemna paucicostata and Arabidiopsis supported HPPD as the target, although in vitro enzyme inhibition was not found. CONCLUSIONS t-Chalcone is possibly a protoxin that is converted to a HPPD inhibitor in vivo. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - Elisa Graña
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | | | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - Justin N Vaughn
- Genomics and Bioinformatics Research Unit, USDA, ARS, Athens, GA, USA
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, USDA, ARS, Oxford, MS, USA
| | | | - Mary V Duke
- Genomics and Bioinformatics Research, USDA, ARS, Stoneville, MS, USA
| | - Stephen O Duke
- Natural Products Utilization Research Unit, USDA, ARS, Oxford, MS, USA
| |
Collapse
|
22
|
|