1
|
Sivam HGP, Chin BY, Gan SY, Ng JH, Gwenhure A, Chan EWL. Lipopolysaccharide (LPS) stimulation of Pancreatic Ductal Adenocarcinoma (PDAC) and macrophages activates the NLRP3 inflammasome that influences the levels of pro-inflammatory cytokines in a co-culture model. Cancer Biol Ther 2023; 24:2284857. [PMID: 38018872 PMCID: PMC10783839 DOI: 10.1080/15384047.2023.2284857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Modified macrophages, tumor-associated macrophages (TAMs), are key contributors to the survival, growth, and metastatic behavior of pancreatic ductal adenocarcinoma (PDAC) cells. Central to the role of inflammation and TAMs lies the NLRP3 inflammasome. This study investigated the effects of LPS-stimulated inflammation on cell proliferation, levels of pro-inflammatory cytokines, and the NLRP3 inflammasome pathway in a co-culture model using PDAC cells and macrophages in the presence or absence of MCC950, a NLRP3-specific inhibitor. The effects of LPS-stimulated inflammation were tested on two PDAC cell lines (Panc 10.05 and SW 1990) co-cultured with RAW 264.7 macrophages. Cell proliferation was determined using the MTT assay. Levels of pro-inflammatory cytokines, IL-1β, and TNF-α were determined by ELISA. Western blot analyses were used to examine the expression of NLRP3 in both PDAC cells and macrophages. The co-culture and interaction between PDAC cell lines and macrophages led to pro-inflammatory microenvironment under LPS stimulation as evidenced by high levels of secreted IL-1β and TNF-α. Inhibition of the NLRP3 inflammasome by MCC950 counteracted the effects of LPS stimulation on the regulation of the NLRP3 inflammasome and pro-inflammatory cytokines in PDAC and macrophages. However, MCC950 differentially modified the viability of the metastatic vs primary PDAC cell lines. LPS stimulation increased PDAC cell viability by regulating the NLRP3 inflammasome and pro-inflammatory cytokines in the tumor microenvironment of PDAC cells/macrophages co-cultures. The specific inhibition of the NLRP inflammasome by MCC950 effectively counteracted the LPS-stimulated inflammation.
Collapse
Affiliation(s)
| | - Beek Yoke Chin
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Sook Yee Gan
- Department of Life Science, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jia Hao Ng
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Agnes Gwenhure
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Elaine Wan Ling Chan
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
3
|
Patel A, Saraswat A, Patel H, Chen ZS, Patel K. Palmitoyl Carnitine-Anchored Nanoliposomes for Neovasculature-Specific Delivery of Gemcitabine Elaidate to Treat Pancreatic Cancer. Cancers (Basel) 2022; 15:cancers15010182. [PMID: 36612178 PMCID: PMC9818435 DOI: 10.3390/cancers15010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Being the fourth most fatal malignancy worldwide, pancreatic cancer is on track to become the second leading cause of cancer-related deaths in the United States by 2030. Gemcitabine is a first-line chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC). Gemcitabine Elaidate (Gem Elaidate) is a lipophilic derivative which allows hENT1-independent intracellular delivery of gemcitabine and better pharmacokinetics and entrapment in a nanocarrier. Cancer cells and neovasculature are negatively charged compared to healthy cells. Palmitoyl-DL-carnitine chloride (PC) is a Protein kinase C (PKC) inhibitor which also provides a cationic surface charge to nanoliposomes for targeting tumor neovasculature and augmented anticancer potency. The objectives of our study are: (a) to develop and characterize a PKC inhibitor-anchored Gem Elaidate-loaded PEGylated nanoliposome (PGPLs) and (b) to investigate the anticancer activity of Gem Elaidate and PGPLs in 2D and 3D models of pancreatic cancer. The optimized PGPLs resulted in a particle size of 80 ± 2.31 nm, a polydispersity index of 0.15 ± 0.05 and a ζ-potential of +31.6 ± 3.54 mV, with a 93.25% encapsulation efficiency of Gem Elaidate in PGPLs. Our results demonstrate higher cellular uptake, inhibition in migration, as well as angiogenesis potential and significant apoptosis induced by PGPLs in 3D multicellular tumor spheroids of pancreatic cancer cells. Hence, PGPLs could be an effective and novel nanoformulation for the neovasculature-specific delivery of Gemcitabine Elaidate to treat PDAC.
Collapse
|
4
|
Sharma N, Arora V. Strategies for drug targeting in pancreatic cancer. Pancreatology 2022; 22:937-950. [PMID: 36055937 DOI: 10.1016/j.pan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is expected to replace lung cancer as the second greatest cause of cancer mortality by 2025. It has been a particularly the most lethal kind of cancer. OBJECTIVE Despite the new innovations, research, and improvements in drug design; there are many hurdles limiting their therapeutic applications such as intrinsic resistance to chemotherapeutics, inability to deliver a sufficient concentration of drug to the target site, lack of effectiveness of drug delivery systems. These are the major contributing factors to limit the treatment. So, the main objective is to overcome these types of problems by nanotechnology and ligand conjugation approach to achieve targeted drug delivery. METHOD Nanotechnology has emerged as a major approach to develop cancer treatment. Regardless of the severity, there are several issues that restrict the therapeutic impact, including inadequate transport across biological barriers, limited cellular absorption, degradation, and faster clearance. RESULT Targeted drug delivery may overcome these obstacles by binding a natural ligand to the surface of nanocarriers, which enhances the drug's capacity to release at the desired site and minimizes adverse effects. CONCLUSION This study will investigate the possible outcomes of targeted therapeutic agent delivery in the treatment of pancreatic cancer, as well as the limitations and future prospects.
Collapse
Affiliation(s)
- Navni Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, 140113, India.
| | - Vimal Arora
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, 140113, India
| |
Collapse
|
5
|
Schild T, McReynolds MR, Shea C, Low V, Schaffer BE, Asara JM, Piskounova E, Dephoure N, Rabinowitz JD, Gomes AP, Blenis J. NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Rep 2021; 35:109238. [PMID: 34133937 DOI: 10.1016/j.celrep.2021.109238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic adaptations and the signaling events that control them promote the survival of pancreatic ductal adenocarcinoma (PDAC) at the fibrotic tumor site, overcoming stresses associated with nutrient and oxygen deprivation. Recently, rewiring of NADPH production has been shown to play a key role in this process. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells. However, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). In this study, we show that oncogenic KRAS promotes protein kinase C (PKC)-mediated NADK phosphorylation, leading to its hyperactivation, thus sustaining both NADP+ and NADPH levels in PDAC cells. Together, our data show that increased NADK activity is an important adaptation driven by oncogenic signaling. Our findings indicate that NADK could serve as a much-needed therapeutic target for PDAC.
Collapse
Affiliation(s)
- Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Christie Shea
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Tri-institutional PhD Program in Chemical Biology, New York, NY 10021, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bethany E Schaffer
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA; Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
6
|
Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones. Int J Mol Sci 2020; 21:ijms21103671. [PMID: 32456148 PMCID: PMC7279380 DOI: 10.3390/ijms21103671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.
Collapse
|
7
|
Katopodis P, Chudasama D, Wander G, Sales L, Kumar J, Pandhal M, Anikin V, Chatterjee J, Hall M, Karteris E. Kinase Inhibitors and Ovarian Cancer. Cancers (Basel) 2019; 11:E1357. [PMID: 31547471 PMCID: PMC6770231 DOI: 10.3390/cancers11091357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is fifth in the rankings of cancer deaths among women, and accounts for more deaths than any other gynecological malignancy. Despite some improvement in overall-(OS) and progression-free survival (PFS) following surgery and first-line chemotherapy, there is a need for development of novel and more effective therapeutic strategies. In this mini review, we provide a summary of the current landscape of the clinical use of tyrosine kinase inhibitors (TKIs) and mechanistic target of rapamycin (mTOR) inhibitors in ovarian cancer. Emerging data from phase I and II trials reveals that a combinatorial treatment that includes TKIs and chemotherapy agents seems promising in terms of PFS despite some adverse effects recorded; whereas the use of mTOR inhibitors seems less effective. There is a need for further research into the inhibition of multiple signaling pathways in ovarian cancer and progression to phase III trials for drugs that seem most promising.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London UB9 6JH, UK.
| | - Dimple Chudasama
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Gurleen Wander
- Chelsea and Westminster Hospital NHS Trust, London UB9 6JH, UK.
| | - Louise Sales
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Juhi Kumar
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Manreen Pandhal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Vladimir Anikin
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London UB9 6JH, UK.
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, 119146 Moscow, Russia.
| | - Jayanta Chatterjee
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Marcia Hall
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood HA6 2RN, UK.
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
8
|
Hart M, Rheinheimer S, Leidinger P, Backes C, Menegatti J, Fehlmann T, Grässer F, Keller A, Meese E. Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget 2018; 7:34288-99. [PMID: 27144431 PMCID: PMC5085156 DOI: 10.18632/oncotarget.9103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
Circulating miRNAs have been associated with numerous human diseases. The lack of understanding the functional roles of blood-born miRNAs limits, however, largely their value as disease marker. In a systems biology analysis we identified miR-34a as strongly associated with pathogenesis. Genome-wide analysis of miRNAs in blood cell fractions highlighted miR-34a as most significantly up-regulated in CD3+ cells of lung cancer patients. By our in silico analysis members of the protein kinase C family (PKC) were indicated as miR-34a target genes. Using a luciferase assay, we confirmed binding of miR-34a-5p to target sequences within the 3′UTRs of five PKC family members. To verify the biological effect, we transfected HEK 293T and Jurkat cells with miR-34a-5p causing reduced endogenous protein levels of PKC isozymes. By combining bioinformatics approaches with experimental validation, we demonstrate that one of the most relevant disease associated miRNAs has the ability to control the expression of a gene family.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Petra Leidinger
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
9
|
Lei Z, Wang J, Sun W, Chen X, Jiao W, Zhang H, Lei T, Li F. PKCδ reveals a tumor promoter function by promoting cell proliferation and migration in somatotropinomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:208-215. [PMID: 31938102 PMCID: PMC6957976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/13/2017] [Indexed: 06/10/2023]
Abstract
Protein kinase C δ (PKCδ), a subtype of PKC family, has been recognized as a tumor promoter or suppressor depending on different tissue specificities in various tumor types. However, the effects of PKCδ on somatotropinomas are poorly understood. This study aims to explore the precise role of PKCδ in promoting tumor progression in somatotropinomas. In the present study, we examined the expression levels of PKCδ in clinical specimens of human somatotropinomas to show that PKCδ overexpression correlated with invasive properties of somatotropinomas. Furthermore, we employed rat anterior pituitary GH3 cells as the experiment model to demonstrate that PKCδ activation by PKC agonist (Phorbol-12-myristate-13-acetate, PMA) significantly promoted the proliferation and migration potential of GH3 cells, and these effects could be abolished following PKCδ inhibition by specific inhibitor Rottlerin. Mechanistically, PKCδ activated ERK1/2 signaling, which was responsible for PKCδ-induced promotion of GH3 cell proliferation and migration. Taken together, our results indicated that PKCδ functions as a tumor promoter by promoting cell proliferation and migration in somatotropinomas.
Collapse
Affiliation(s)
- Zhuowei Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Junwen Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wei Sun
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xi Chen
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wei Jiao
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Huaqiu Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
10
|
Fazio EN, Young CC, Toma J, Levy M, Berger KR, Johnson CL, Mehmood R, Swan P, Chu A, Cregan SP, Dilworth FJ, Howlett CJ, Pin CL. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice. Mol Biol Cell 2017; 28:2347-2359. [PMID: 28701342 PMCID: PMC5576899 DOI: 10.1091/mbc.e17-04-0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3-/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC.
Collapse
Affiliation(s)
- Elena N Fazio
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Claire C Young
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Jelena Toma
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Michael Levy
- Children's Health Research Institute, London, ON N6C 2V5, Canada
| | - Kurt R Berger
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Charis L Johnson
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Rashid Mehmood
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Patrick Swan
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
- Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Alphonse Chu
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Sean P Cregan
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
- Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - F Jeffrey Dilworth
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Christopher L Pin
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway. Cell Death Dis 2017; 8:e2793. [PMID: 28518146 PMCID: PMC5584527 DOI: 10.1038/cddis.2017.202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 11/08/2022]
Abstract
Acyl-CoA thioesterase 7 (ACOT7) is a major isoform of the ACOT family that catalyzes hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. However, canonical and non-canonical functions of ACOT7 remain to be discovered. In this study, for the first time, ACOT7 was shown to be responsive to genotoxic stresses such as ionizing radiation (IR) and the anti-cancer drug doxorubicin in time- and dose-dependent manners. ACOT7 knockdown induced cytostasis via activation of the p53-p21 signaling pathway without a DNA damage response. PKCζ was specifically involved in ACOT7 depletion-mediated cell cycle arrest as an upstream molecule of the p53-p21 signaling pathway in MCF7 human breast carcinoma and A549 human lung carcinoma cells. Of the other members of the ACOT family, including ACOT1, 4, 8, 9, 11, 12, and 13 that were expressed in human, ACOT4, 8, and 12 were responsive to genotoxic stresses. However, none of those had a role in cytostasis via activation of the PKCζ-p53-p21 signaling pathway. Analysis of the ACOT7 prognostic value revealed that low ACOT7 levels prolonged overall survival periods in breast and lung cancer patients. Furthermore, ACOT7 mRNA levels were higher in lung cancer patient tissues compared to normal tissues. We also observed a synergistic effect of ACOT7 depletion in combination with either IR or doxorubicin on cell proliferation in breast and lung cancer cells. Together, our data suggest that a low level of ACOT7 may be involved, at least in part, in the prevention of human breast and lung cancer development via regulation of cell cycle progression.
Collapse
|
13
|
Arencibia JM, Fröhner W, Krupa M, Pastor-Flores D, Merker P, Oellerich T, Neimanis S, Schmithals C, Köberle V, Süß E, Zeuzem S, Stark H, Piiper A, Odadzic D, Schulze JO, Biondi RM. An Allosteric Inhibitor Scaffold Targeting the PIF-Pocket of Atypical Protein Kinase C Isoforms. ACS Chem Biol 2017; 12:564-573. [PMID: 28045490 DOI: 10.1021/acschembio.6b00827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a current and pressing need for improved cancer therapies. The use of small molecule kinase inhibitors and their application in combinatorial regimens represent an approach to personalized targeted cancer therapy. A number of AGC kinases, including atypical Protein Kinase C enzymes (PKCs), are validated drug targets for cancer treatment. Most drug development programs for protein kinases focus on the development of drugs that bind at the ATP-binding site. Alternatively, allosteric drugs have great potential for the development of future innovative drugs. However, the rational development of allosteric drugs poses important challenges because the compounds not only must bind to a given site but also must stabilize forms of the protein with a desired effect at a distant site. Here we describe the development of a new class of compounds targeting a regulatory site (PIF-pocket) present in the kinase domain and provide biochemical and crystallographic data showing that these compounds allosterically inhibit the activity of atypical PKCs. PS432, a representative compound, decreased the rate of proliferation of non-small cell lung cancer cells more potently than aurothiomalate, an atypical PKCι inhibitor currently under evaluation in clinical trials, and significantly reduced tumor growth without side effects in a mouse xenograft model. The druglike chemical class provides ample possibilities for the synthesis of derivative compounds, with the potential to allosterically modulate the activity of atypical PKCs and other kinases.
Collapse
Affiliation(s)
- Jose M. Arencibia
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Wolfgang Fröhner
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Magdalena Krupa
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Daniel Pastor-Flores
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Piotr Merker
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department
of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt am
Main, Germany
| | - Sonja Neimanis
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Christian Schmithals
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Verena Köberle
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Evelyn Süß
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Holger Stark
- Institut
für Pharmazeutische Chemie, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | - Albrecht Piiper
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dalibor Odadzic
- Institut
für Pharmazeutische Chemie, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | - Jörg O. Schulze
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ricardo M. Biondi
- Research
Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
15
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|