1
|
Kim YM, Jang CS. Development of molecular markers based on real-time PCR to detect flax and sesame in commercial amaranth products. Food Sci Biotechnol 2024; 33:3313-3322. [PMID: 39328221 PMCID: PMC11422535 DOI: 10.1007/s10068-024-01584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 09/28/2024] Open
Abstract
Amaranthus, Sesamum indicum, and Linum usitatissimum are the most popular oilseed grains worldwide. Protein-rich Amaranthus contains bioactive peptides, is nutritious, and exhibits anti-allergic properties. Sesamum indicum is a primary trigger of anaphylaxis. Linum usitatissimum also displays allergenic properties. A DNA marker assessable using quantitative real-time PCR was developed to detect S. indicum and L. usitatissimum as allergenic contaminants of anti-allergenic Amaranthus. The efficiency of each primer set ranged from 90-98%, and high linear correlation (R2 > 0.99) was obtained between crossover values and the log DNA concentration. We established a Ct value of 0.1% of the binary as a cutoff. The practical application of the designed marker was confirmed by analyzing 20 commercial products. The qPCR system developed for detecting flaxseed and sesame can be applied for regulatory monitoring of allergenic substances in commercial amaranth-containing foods, thus contributing to protecting public health and safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01584-2.
Collapse
Affiliation(s)
- Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
2
|
Lin PY, Mai HY, Wu CY, Lin HC, Chi LY. Association between untreated caries and cariogenic bacteria in adolescents in Taiwan. J Dent Sci 2024; 19:2027-2034. [PMID: 39347066 PMCID: PMC11437309 DOI: 10.1016/j.jds.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/31/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose There is a paucity of research focused on salivary bacteria analyzed through real-time polymerase chain reaction (qPCR) among adolescents. The current study determined the quantity of Streptococcus mutans (SM) and Lactobacillus (LB) in saliva obtained from Taiwanese adolescents and investigated the association between the oral bacteria and untreated dental caries. Materials and methods This cross-sectional study recruited Taiwanese students aged 10-18. Saliva was collected using a Salivette kit and then analyzed through qPCR. The relative quantification values of SM and LB were coded based on mean fold ratios, with values > 2 coded as high and other values coded as low. Untreated dental caries was assessed through standard oral examinations. Univariate and multivariate logistic regression models were used to estimate the association between the levels of bacteria in the saliva of the study participants and the presence of untreated caries. Results The study involved 421 adolescents. 56 (13.3%) had both SM and LB values of >2 and were coded as having high levels of bacteria, whereas the other 365 (86.7%) students were coded as having low levels. The multivariate logistic regression analysis revealed that adolescents who had high combined salivary SM and LB levels had an odds ratio of having untreated dental caries of 2.05 (95% CI = 1.09, 3.86, P = 0.027) compared with those who had low salivary SM and LB levels. Conclusion The results of the present study indicate that salivary SM and LB levels are significantly associated with adolescents having untreated caries.
Collapse
Affiliation(s)
- Po-Yen Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Yuan Mai
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yi Wu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ching Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, Taipei City Hospital Renai Branch, Taipei, Taiwan
- Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Lin-Yang Chi
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Chen W, Zhang K, Huang F, Zhao L, Waldren G, Jiang Q, Chen S, Wang B, Guo W, Zhang D, Zhang J. Advancing quantitative PCR with color cycle multiplex amplification. Nucleic Acids Res 2024; 52:e81. [PMID: 39119904 PMCID: PMC11417387 DOI: 10.1093/nar/gkae683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Quantitative PCR (qPCR) is the gold standard for detection and quantitation of known DNA targets, but the scarcity of spectrally distinct fluorophores and filter sets limits the number of detectable targets. Here, we introduce color cycle multiplex amplification (CCMA) to significantly increase the number of detectable DNA targets in a single qPCR reaction using standard instrumentation. In CCMA, presence of one DNA target species results in a pre-programmed pattern of fluorescence increases. This pattern is distinguished by cycle thresholds (Cts) through rationally designed delays in amplification. For example, we design an assay wherein Staphylococcus aureus sequentially induces FAM, then Cy5.5, then ROX fluorescence increases with more than 3 cycles between each signal. CCMA offers notably higher potential for multiplexing because it uses fluorescence permutation rather than combination. With 4 distinct fluorescence colors, CCMA theoretically allows the detection of up to 136 distinct DNA target sequences using fluorescence permutation. Experimentally, we demonstrated a single-tube qPCR assay screening 21 sepsis-related bacterial DNA targets in samples of blood, sputum, pleural effusion and bronchoalveolar lavage fluid, with 89% clinical sensitivity and 100% clinical specificity, showing its potential as a powerful tool for advanced quantitative screening in molecular diagnostics.
Collapse
Affiliation(s)
- Wei Chen
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Kerou Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Fei Huang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200032, China
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | | | - Qi Jiang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Sherry X Chen
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Bonnie Wang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200032, China
| | - David Y Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Jinny X Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| |
Collapse
|
4
|
Mirabile A, Sangiorgio G, Bonacci PG, Bivona D, Nicitra E, Bonomo C, Bongiorno D, Stefani S, Musso N. Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings. Diagnostics (Basel) 2024; 14:1598. [PMID: 39125474 PMCID: PMC11311727 DOI: 10.3390/diagnostics14151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR's role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored.
Collapse
Affiliation(s)
- Alessia Mirabile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| |
Collapse
|
5
|
Song R, Chen Z, Xiao H, Wang H. The CRISPR-Cas system in molecular diagnostics. Clin Chim Acta 2024; 561:119820. [PMID: 38901631 DOI: 10.1016/j.cca.2024.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Robust, sensitive, and rapid molecular detection tools are essential prerequisites for disease diagnosis and epidemiological control. However, the current mainstream tests necessitate expensive equipment and specialized operators, impeding the advancement of molecular diagnostics. The CRISPR-Cas system is an integral component of the bacterial adaptive immune system, wherein Cas proteins recognize PAM sequences by binding to CRISPR RNA, subsequently triggering DNA or RNA cleavage. The discovery of the CRISPR-Cas system has invigorated molecular diagnostics. With further in-depth research on this system, its application in molecular diagnosis is flourishing. In this review, we provide a comprehensive overview of recent research progress on the CRISPR-Cas system, specifically focusing on its application in molecular diagnosis.
Collapse
Affiliation(s)
- Rao Song
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhongyi Chen
- Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Haojun Wang
- Department of Pathology, Suining Central Hospital, Suining 629000, China.
| |
Collapse
|
6
|
Zhou H, Li H, Sun X, Lin J, Zhang C, Zhao J, Zhao L, Zhou M. Rapid diagnosis of canine respiratory coronavirus, canine influenza virus, canine distemper virus and canine parainfluenza virus with a Taqman probe-based multiplex real-time PCR. J Virol Methods 2024; 328:114960. [PMID: 38823586 DOI: 10.1016/j.jviromet.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Canine Infectious Respiratory Disease Complex (CIRDC) is a highly infectious diseases. Canine respiratory coronavirus (CRCoV), Canine influenza virus (CIV), Canine distemper virus (CDV), and Canine parainfluenza virus (CPiV) are crucial pathogens causing CIRDC. Due to the similar clinical symptoms induced by these viruses, differential diagnosis based solely on symptoms can be challenging. In this study, a multiplex real-time PCR assay was developed for detecting the four RNA viruses of CIRDC. Specific primers and probes were designed to target M gene of CRCoV, M gene of CIV, N gene of CDV and NP gene of CPiV. The detection limit is 10 copies/μL for CIV or CRCoV, while the detection limit of CDV or CPiV is 100 copies/μL. Intra-group and inter-group repeatability coefficient of variation (CV) were both less than 2 %. A total of 341 clinical canine samples were analyzed, and the results indicated that the method developed in our study owns a good consistency and better specificity compared with the conventional reverse transcription PCR. This study provides a new method to enable the simultaneous detection of all four pathogens in a single reaction, improving the efficiency for monitoring the prevalence of four viruses in CIRDC, which benefits the control of CIRDC.
Collapse
Affiliation(s)
- Hu Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Haoqi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xuehan Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jiaqi Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
7
|
Wetthasinghe L, Ng HF, Ngeow YF, Chew KS, Lee WS. Navigating the intricacies of RT-qPCR data analysis in gene expression studies. Funct Integr Genomics 2024; 24:115. [PMID: 38910215 DOI: 10.1007/s10142-024-01393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Linah Wetthasinghe
- Dr. Wu Lien-Teh Centre for Research in Communicable Diseases, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, 43000, Malaysia
| | - Hien Fuh Ng
- Dr. Wu Lien-Teh Centre for Research in Communicable Diseases, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, 43000, Malaysia.
| | - Yun Fong Ngeow
- Dr. Wu Lien-Teh Centre for Research in Communicable Diseases, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, 43000, Malaysia
| | - Kee Seang Chew
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Kuala Lumpur, 50603, Malaysia
| | - Way Seah Lee
- Dr. Wu Lien-Teh Centre for Research in Communicable Diseases, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, 43000, Malaysia
| |
Collapse
|
8
|
Kannuri S, Patil R, Mukhida S, Bhaumik S, Gandham N. A closer look at the link between cycle threshold, clinical features and biomarkers: An observational study in COVID-19 patients. J Family Med Prim Care 2024; 13:1983-1989. [PMID: 38948616 PMCID: PMC11213427 DOI: 10.4103/jfmpc.jfmpc_967_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 12/28/2023] [Indexed: 07/02/2024] Open
Abstract
Background Symptoms for severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) appear 2-3 days after exposure to the virus. Being a virus, detection is primarily by polymerase chain reaction as this offers superior sensitivity and specificity. There was a misconception that patients with low cycle threshold (Ct) have severe coronavirus disease (COVID), and for individuals with higher Ct, it is the other way around. The prognosis for COVID was derived from various biomarkers and physicians heavily relied on them. Materials and Methods A cross-sectional study spanning a duration of 2 years was conducted at a tertiary care centre in western India. A total of 201 individuals were included and the correlation between Ct, clinical features and biomarkers was studied. Results In the E-gene, 43.28% had lower Ct values and 40.79% had low Ct values in the RdRp gene. 50% of all patients had diabetes, with 60% being between the ages of 61 and 80. 54.1% of hypertension patients belonged to ages between 61 and 80. 90.54% of COVID-positive individuals had lactose dehydrogenase levels ranging from 440 to 760. 79% of patients had a procalcitonin value of more than one but less than six. 79.1% of patients had an erythrocyte sedimentation rate between 36 and 90. Conclusion Ct value though has a research value; it is a poor prognostic marker when compared to the various biomarkers that have been studied earlier. We cannot conclusively state that all our findings are accurate due to a lack of data but further research into the prognostic value of Ct should be conducted which will help in the ongoing scenario.
Collapse
Affiliation(s)
- Sriram Kannuri
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Rajashri Patil
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Sahjid Mukhida
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Shalini Bhaumik
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Nageswari Gandham
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
9
|
Favacho JDFR, Leite KK, Jacomasso T, Farias AB, Franco Filho LC, Gomes STM, dos Reis HS, Mota GD, Schluga PHDC, Tassi WS, Rampazzo RDCP, West SK, Gaydos CA, da Cunha AJLA, Costa ADT. Validation of a New Duplex Real-Time Polymerase Chain Reaction for Chlamydia trachomatis DNA Detection in Ocular Swab Samples. Diagnostics (Basel) 2024; 14:892. [PMID: 38732307 PMCID: PMC11083659 DOI: 10.3390/diagnostics14090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/13/2024] Open
Abstract
Trachoma is the world-leading infectious cause of preventable blindness and is caused by the bacteria Chlamydia trachomatis. In developing countries, diagnosis is usually based on clinical evaluation. Serological-based tests are cheaper than molecular-based ones, but the latter are more sensitive and specific. The present study developed a new duplex qPCR which concomitantly detects the C. trachomatis cryptic plasmid and the human 18S rRNA gene, with an LOD95% for C. trachomatis DNA of 13.04 genome equivalents per reaction. The new qPCR was tested using 50 samples from an endemic area and 12 from a non-endemic area that were previously characterized using direct immunofluorescence assay (DFA) and clinical evaluation. Among the 50 endemic samples, 3 were found to be positive by clinical evaluation (6%), 18 were found to be positive by DFA (36%), and 48 were found to be positive by qPCR (96%). Next, the new duplex qPCR was validated using 50 samples previously characterized by qPCR. Validation was carried out on a benchtop instrument (ABI7500) or on a portable point-of-care instrument (Q3-Plus), showing 95% specificity and 100% sensitivity. The ubiquitous presence of C. trachomatis DNA in samples from the endemic region confirms that constant monitoring is of paramount importance for the effective measurement of the elimination of trachoma. The newly developed duplex qPCR presented in this study, along with its validation in a portable qPCR system, constitutes important tools toward achieving this goal.
Collapse
Affiliation(s)
- Joana da Felicidade Ribeiro Favacho
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Keren Kariene Leite
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | - Thiago Jacomasso
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | - Aline Burda Farias
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | - Luciano Chaves Franco Filho
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Samara Tatielle Monteiro Gomes
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Herald Souza dos Reis
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Gardene Dourado Mota
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | | | - Walleyd Sami Tassi
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | | | - Sheila Kay West
- Dana Center for Preventative Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Charlotte Ann Gaydos
- International Sexually Transmitted Disease Research Laboratory, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
10
|
Sampad MJN, Saiduzzaman SM, Walker ZJ, Wells TN, Wayment JX, Ong EM, Mdaki SD, Tamhankar MA, Yuzvinsky TD, Patterson JL, Hawkins AR, Schmidt H. Label-free and amplification-free viral RNA quantification from primate biofluids using a trapping-assisted optofluidic nanopore platform. Proc Natl Acad Sci U S A 2024; 121:e2400203121. [PMID: 38598338 PMCID: PMC11032468 DOI: 10.1073/pnas.2400203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.
Collapse
Affiliation(s)
| | - S. M. Saiduzzaman
- School of Engineering, University of California, Santa Cruz, CA95064
| | - Zach J. Walker
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Tanner N. Wells
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Jesse X. Wayment
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Ephraim M. Ong
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | | | | | | | | | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, CA95064
| |
Collapse
|
11
|
Marius M, Fernandez C. Non-Microbiological Mycobacterial Detection Techniques for Quality Control of Biological Products: A Comprehensive Review. Microorganisms 2024; 12:788. [PMID: 38674732 PMCID: PMC11052345 DOI: 10.3390/microorganisms12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacteria can be one of the main contaminants of biological products, and their presence can have serious consequences on patients' health. For this reason, the European Pharmacopoeia mandates the specific testing of biological products for mycobacteria, a critical regulatory requirement aimed at ensuring the safety of these products before they are released to the market. The current pharmacopeial reference, i.e., microbial culture method, cannot ensure an exhaustive detection of mycobacteria due to their growth characteristics. Additionally, the method is time consuming and requires a continuous supply of culture media, posing logistical challenges. Thus, to overcome these issues, pharmaceutical industries need to consider alternative non-microbiological techniques to detect these fastidious, slow-growing contaminating agents. This review provides an overview of alternative methods, which could be applied within a quality control environment for biological products and underlines their advantages and limitations. Nucleic acid amplification techniques or direct measurement of mycobacteria stand out as the most suitable alternatives for mycobacterial testing in biological products.
Collapse
Affiliation(s)
- Marine Marius
- Sanofi, 1541 Ave. Marcel Mérieux, 69280 Marcy l’Etoile, France;
| | | |
Collapse
|
12
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Banerjee R, Ajithkumar P, Keestra N, Smith J, Gimenez G, Rodger EJ, Eccles MR, Antony J, Weeks RJ, Chatterjee A. Targeted DNA Methylation Editing Using an All-in-One System Establishes Paradoxical Activation of EBF3. Cancers (Basel) 2024; 16:898. [PMID: 38473261 DOI: 10.3390/cancers16050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.
Collapse
Affiliation(s)
- Rakesh Banerjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Keestra
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
14
|
Isham IM, Najimudeen SM, Cork SC, Gupta A, Abdul-Careem MF. Comparison of quantitative PCR and digital PCR assays for quantitative detection of infectious bronchitis virus (IBV) genome. J Virol Methods 2024; 324:114859. [PMID: 38061673 DOI: 10.1016/j.jviromet.2023.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The quantitative polymerase chain reaction (qPCR) technique is an extensively used molecular tool for the detection and quantification of viral genome load. However, since the qPCR assay is a relative quantification method that relies on an external calibration curve it has a lower assay precision and sensitivity. The digital PCR (dPCR) technique is a good alternative to the qPCR assay as it offers highly precise and direct quantification of viral genome load in samples. In this study, performance characteristics such as the quantification range, sensitivity, precision, and specificity of the dPCR technique was compared to qPCR technique for the detection and quantification of IBV genome loads in serial dilutions of IBV positive plasmid DNA, and IBV infected chicken tissue and swab samples. The quantification range of the qPCR assay was wider than that of the dPCR assay, however dPCR had a higher sensitivity compared to qPCR. The precision of quantification of DNA in plasmid samples in terms of repeatability and reproducibility of results was higher when using the dPCR assay compared to qPCR assay. The quantification results of IBV genome load in infected samples by the qPCR and dPCR assays displayed a high correlation. Hence, our findings suggest that dPCR could be used in avian virology research for improved precision and sensitivity in detection and quantification of viral genome loads.
Collapse
Affiliation(s)
- Ishara M Isham
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Shahnas M Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Susan C Cork
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ashish Gupta
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
15
|
Pessoa FMCDP, Viana VBDJ, de Oliveira MB, Nogueira BMD, Ribeiro RM, Oliveira DDS, Lopes GS, Vieira RPG, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira FC, Moreira-Nunes CA. Validation of Endogenous Control Genes by Real-Time Quantitative Reverse Transcriptase Polymerase Chain Reaction for Acute Leukemia Gene Expression Studies. Genes (Basel) 2024; 15:151. [PMID: 38397141 PMCID: PMC10887733 DOI: 10.3390/genes15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Reference genes are used as internal reaction controls for gene expression analysis, and for this reason, they are considered reliable and must meet several important criteria. In view of the absence of studies regarding the best reference gene for the analysis of acute leukemia patients, a panel of genes commonly used as endogenous controls was selected from the literature for stability analysis: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Abelson murine leukemia viral oncogene human homolog 1 (ABL), Hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Ribosomal protein lateral stalk subunit P0 (RPLP0), β-actin (ACTB) and TATA box binding protein (TBP). The stability of candidate reference genes was analyzed according to three statistical methods of assessment, namely, NormFinder, GeNorm and R software (version 4.0.3). From this study's analysis, it was possible to identify that the endogenous set composed of ACTB, ABL, TBP and RPLP0 demonstrated good performances and stable expressions between the analyzed groups. In addition to that, the GAPDH and HPRT genes could not be classified as good reference genes, considering that they presented a high standard deviation and great variability between groups, indicating low stability. Given these findings, this study suggests the main endogenous gene set for use as a control/reference for the gene expression in peripheral blood and bone marrow samples from patients with acute leukemias is composed of the ACTB, ABL, TBP and RPLP0 genes. Researchers may choose two to three of these housekeeping genes to perform data normalization.
Collapse
Affiliation(s)
- Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - Vitória Beatriz de Jesus Viana
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Marcelo Braga de Oliveira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Beatriz Maria Dias Nogueira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | | | - Deivide de Sousa Oliveira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
- Department of Hematology, Fortaleza General Hospital (HGF), Fortaleza 60150-160, CE, Brazil
| | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil;
| | | | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Fabiano Cordeiro Moreira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
- Central Unity, Molecular Biology Laboratory, Clementino Fraga Group, Fortaleza 60115-170, CE, Brazil
| |
Collapse
|
16
|
Wainman LM, Sathyanarayana SH, Lefferts JA. Applications of Digital Polymerase Chain Reaction (dPCR) in Molecular and Clinical Testing. J Appl Lab Med 2024; 9:124-137. [PMID: 38167753 DOI: 10.1093/jalm/jfad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Digital polymerase chain reaction (dPCR) is an accurate and sensitive molecular method that can be used in clinical diagnostic, prognostic, and predictive tests. The key component of the dPCR method is the partitioning of a single reaction into many thousands of droplets, nanochannels or other nano- or picoliter-sized reactions. This results in high enough sensitivity to detect rare nucleic acid targets and provides an absolute quantification of target sequences or alleles compared to other PCR-based methods. CONTENT An increasing number of dPCR platforms have been introduced commercially in recent years and more are being developed. These platforms differ in the method of partitioning, degree of automation, and multiplexing capabilities but all can be used in similar ways for sensitive and highly accurate quantification of a variety of nucleic acid targets. Currently, clinical applications of dPCR include oncology, microbiology and infectious disease, genetics, and prenatal/newborn screening. Commercially available tests for clinical applications are being developed for variants with diagnostic, prognostic, and therapeutic significance in specific disease types. SUMMARY The power of dPCR technology relies on the partitioning of the reactions and results in increased sensitivity and accuracy compared to qPCR. More recently, the sensitivity of dPCR has been applied to the detection of known variants in cell-free DNA and circulating tumor DNA. Future clinical applications of dPCR include liquid biopsy, treatment resistance detection, screening for minimal residual disease, and monitoring allograft engraftment in transplanted patients.
Collapse
Affiliation(s)
- Lauren M Wainman
- Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Shivaprasad H Sathyanarayana
- Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Joel A Lefferts
- Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
17
|
Goyal S, Singh P, Sengupta S, Muthukrishnan AB, Jayaraman G. DNA-Aptamer-Based qPCR Using Light-Up Dyes for the Detection of Nucleic Acids. ACS OMEGA 2023; 8:47277-47282. [PMID: 38107963 PMCID: PMC10719997 DOI: 10.1021/acsomega.3c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) is widely used in detection of nucleic acids, but existing methods either lack sequence-specific detection or are costly because they use chemically modified DNA probes. In this work, we apply a DNA aptamer and light-up dye-based chemistry for qPCR for nucleic acid quantification. In contrast to the conventional qPCR, in our method, we observe an exponential decrease in fluorescence upon DNA amplification. The qPCR method we developed produced consistent Ct vs log10 (DNA amount) standard curves, which have a linearfit with R2 value > 0.99. This qPCR technique was validated by quantifying gene targets from Streptococcus zooepidemicus (SzhasB) and Mycobacterium tuberculosis (MtrpoB). We show that our strategy is able to successfully detect DNA at as low as 800 copies/μL. To the best of our knowledge, this is the first study demonstrating the application of light-up dyes and DNA aptamers in qPCR.
Collapse
Affiliation(s)
| | - Prashant Singh
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sudeshna Sengupta
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Anantha Barathi Muthukrishnan
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Guhan Jayaraman
- Department of Biotechnology,
Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
18
|
Uh YR, Kim YM, Kim MJ, Jang CS. Development of real-time PCR-based markers for differentiation of Oplopanax elatus and Aralia cordata in commercial food products. Food Sci Biotechnol 2023; 32:2153-2161. [PMID: 37869529 PMCID: PMC10582000 DOI: 10.1007/s10068-023-01313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 10/24/2023] Open
Abstract
Oplopanax elatus and Aralia cordata, commonly referred to as "Dureub" in Korea, are generally used as medicinal or food raw materials. Although O. elatus, a rare and endangered plant, is typically sold at high prices, the more abundant A. cordata is comparatively inexpensive. Given their common names and morphological root similarities, both plants can easily be confused, thereby providing potential opportunities for fraudulent use in food products. Species-specific molecular markers that can be used for quantitative real-time PCR (qPCR) analysis were developed. Verification of the six primer pairs revealed a correlation coefficient greater than 0.99, with a slope between -3.33 and -3.56. The assay confirmed specificity based on an analysis of 14 non-target plant species and verified its practicality using 10 commercial products with reliability based on a blind test. Thus, qPCR assays can contribute to food safety and protect consumer rights and interests. Supplementary Information The online version of this article contains supplementary material available 10.1007/s10068-023-01313-1.
Collapse
Affiliation(s)
- Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Myeong Jo Kim
- Bioactive Natural Product Chemistry Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
19
|
Srivastava P, Prasad D. Human Norovirus Detection: How Much Are We Prepared? Foodborne Pathog Dis 2023; 20:531-544. [PMID: 37792418 DOI: 10.1089/fpd.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Norovirus (NoV) is known to be the second nonbacterial enteric pathogen after rotavirus that causes acute gastroenteritis. They can be spread from person to person through fecal-oral routes. Infection can lead to severe diarrhea, causing stomach pain, vomiting, and nausea. Rapid detection of NoV can control huge economic and productive losses. Genotyping various emerging NoV strains is important to compare the severity among different strains. Conventional immunological and molecular methods have evolved and contributed to developing detection techniques. Immunological (enzyme-linked immunosorbent assay) and molecular detection (reverse transcriptase polymerase chain reaction [RT-PCR], RT-quantitative PCR, loop-mediated isothermal amplification, nucleic acid sequence-based alignment, recombinase polymerase amplification) methods have been mainly used. The development of biosensors using aptasensor, affinity peptides, nanoparticles, microfluidics, and so on, are currently the most researched topics. The availability of next-generation sequencing technologies has greatly influenced the diagnosis of NoV. The complementation of advanced technologies is helpful in identification of new variants. In this study, techniques that are useful in detecting NoV are discussed. This review has investigated the availability of recent methods used in the detection, present status, and futuristic plan of action in case of outbreak and pandemic.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
20
|
Elwafa RAHA, Bordiny ME, Salama M, Fawzy A, Omar OM. Cyclin D2 gene variance and expression level in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2023; 70:e30678. [PMID: 37731174 DOI: 10.1002/pbc.30678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Cyclin D2 (CCND2) is a crucial player in cell cycle regulation. CCND2 polymorphisms contribute to cancer predisposition. OBJECTIVES To evaluate the association of CCND2 rs3217927 single nucleotide polymorphisms (SNP) and its expression levels with acute lymphoblastic leukemia (ALL) susceptibility in Egyptian children and its potential prognostic role. METHODS The 5' nuclease allelic discrimination assay was used to evaluate the frequency of CCND2 rs3217927 SNP in 80 newly diagnosed children with ALL and 80 age- and sex-matched controls. CCND2 relative expression levels were determined by real-time quantitative polymerase chain reaction. RESULTS The genotype analysis revealed that the GG genotype and G allele were significantly more prevalent among ALL patients than controls (p ˂ .001). Regression analysis demonstrated that Egyptian children carrying only one G allele had about 31-fold increased risk to develop ALL compared to A allele carriers. CCND2 was overexpressed in ALL patients compared to controls (p < .001). The CCND2 overexpression was associated with the GG genotype and G allele (p < .001). Furthermore, G allele was an independent negative prognostic marker for central nervous system (CNS) involvement (odds ratio [OR] = 4.676; 95% confidence interval [CI]: 1.2-18.6), risk stratification (OR = 38; 95% CI: 7.7-188.2), and chemoresistance (OR = 9.864; 95% CI: 5.6-70.3) in ALL patients. CONCLUSIONS G allele of CCND2 rs3217927 SNP might be associated with increased risk for ALL in Egyptian children besides being an independent negative prognostic marker for their risk stratification and therapeutic outcome. CCND2 rs3217927 SNP genotyping might be used to demarcate ALL patients with aggressive disease phenotypes who may be candidate for alternative targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Magdy El Bordiny
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mostafa Salama
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Fawzy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omneya Magdy Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Han X, Beck K, Bürgmann H, Frey B, Stierli B, Frossard A. Synthetic oligonucleotides as quantitative PCR standards for quantifying microbial genes. Front Microbiol 2023; 14:1279041. [PMID: 37942081 PMCID: PMC10627841 DOI: 10.3389/fmicb.2023.1279041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Real-time quantitative PCR (qPCR) has been widely used to quantify gene copy numbers in microbial ecology. Despite its simplicity and straightforwardness, establishing qPCR assays is often impeded by the tedious process of producing qPCR standards by cloning the target DNA into plasmids. Here, we designed double-stranded synthetic DNA fragments from consensus sequences as qPCR standards by aligning microbial gene sequences (10-20 sequences per gene). Efficiency of standards from synthetic DNA was compared with plasmid standards by qPCR assays for different phylogenetic marker and functional genes involved in carbon (C) and nitrogen (N) cycling, tested with DNA extracted from a broad range of soils. Results showed that qPCR standard curves using synthetic DNA performed equally well to those from plasmids for all the genes tested. Furthermore, gene copy numbers from DNA extracted from soils obtained by using synthetic standards or plasmid standards were comparable. Our approach therefore demonstrates that a synthetic DNA fragment as qPCR standard provides comparable sensitivity and reliability to a traditional plasmid standard, while being more time- and cost-efficient.
Collapse
Affiliation(s)
- Xingguo Han
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
22
|
Lai JH, Keum JW, Lee HG, Molaei M, Blair EJ, Li S, Soliman JW, Raol VK, Barker CL, Fodor SPA, Fan HC, Shum EY. New realm of precision multiplexing enabled by massively-parallel single molecule UltraPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561546. [PMID: 37873291 PMCID: PMC10592712 DOI: 10.1101/2023.10.09.561546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
PCR has been a reliable and inexpensive method for nucleic acid detection in the past several decades. In particular, multiplex PCR is a powerful tool to analyze many biomarkers in the same reaction, thus maximizing detection sensitivity and reducing sample usage. However, balancing the amplification kinetics between amplicons and distinguishing them can be challenging, diminishing the broad adoption of high order multiplex PCR panels. Here, we present a new paradigm in PCR amplification and multiplexed detection using UltraPCR. UltraPCR utilizes a simple centrifugation workflow to split a PCR reaction into ∼34 million partitions, forming an optically clear pellet of spatially separated reaction compartments in a PCR tube. After in situ thermocycling, light sheet scanning is used to produce a 3D reconstruction of the fluorescent positive compartments within the pellet. At typical sample DNA concentrations, the magnitude of partitions offered by UltraPCR dictate that the vast majority of target molecules occupy a compartment uniquely. This single molecule realm allows for isolated amplification events, thereby eliminating competition between different targets and generating unambiguous optical signals for detection. Using a 4-color optical setup, we demonstrate that we can incorporate 10 different fluorescent dyes in the same UltraPCR reaction. We further push multiplexing to an unprecedented level by combinatorial labeling with fluorescent dyes - referred to as "comboplex" technology. Using the same 4-color optical setup, we developed a 22-target comboplex panel that can detect all targets simultaneously at high precision. Collectively, UltraPCR has the potential to push PCR applications beyond what is currently available, enabling a new class of precision genomics assays.
Collapse
|
23
|
Agamia NF, Sorror OA, Sayed NM, Ghazala RA, Echy SM, Moussa DH, Melnik BC. Overexpression of hypoxia-inducible factor-1α in hidradenitis suppurativa: the link between deviated immunity and metabolism. Arch Dermatol Res 2023; 315:2107-2118. [PMID: 36961533 PMCID: PMC10366312 DOI: 10.1007/s00403-023-02594-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is the master transcription factor of glycolysis, Th17 cell differentiation and suppression of regulatory T cells. In the skin and serum of patients with psoriasis vulgaris, increased expression of HIF-1α has been reported, whereas HIF-1α expression in the skin and serum of patients with hidradenitis suppurativa (HS) has not yet been studied. The objective of the study is to demonstrate is there a role for HIF-1α in the pathogenesis of hidradenitis suppurativa, and its relation to HS severity. Twenty patients suffering from hidradenitis suppurativa were included in the study. Punch biopsies were taken from lesional skin for the determination of HIF-1α expression by immunohistochemical staining, and HIF-1α gene expression by quantitative reverse transcription real time PCR. Quantification of HIF-1α protein concentration was done by enzyme-linked immunosorbent assay. Twenty socio-demographically cross-matched healthy volunteers served as controls. We found increased serum levels of HIF-1α. Literature-derived evidence indicates that the major clinical triggering factors of HS, obesity, and smoking are associated with hypoxia and enhanced HIF-1α expression. Pro-inflammatory cytokines such as tumor necrosis factor-[Formula: see text] via upregulation of nuclear factor [Formula: see text]B enhance HIF-1α expression. HIF-1α plays an important role for keratinocyte proliferation, especially for keratinocytes of the anagen hair follicle, which requires abundant glycolysis providing sufficient precursors molecules for biosynthetic pathways. Metformin via inhibition of mTORC1 as well as adalimumab attenuate HIF-1α expression, the key mediator between Th17-driven deviated immunity and keratinocyte hyperproliferation. In accordance with psoriasis, our study identifies HS as an HIF-1α-driven inflammatory skin disease and offers a new rationale for the prevention and treatment of HS by targeting HIF-1[Formula: see text] overexpression.
Collapse
Affiliation(s)
- Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Osama Ahmed Sorror
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Naglaa Mohamed Sayed
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rasha Abdelmawla Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Sammar Mohamed Echy
- Department of Clinical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa Helmy Moussa
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Bodo Clemens Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
24
|
Kang HJ, Lee SH, Kim HS, Jung YW, Park HD. Rapid and sensitive detection of gram-negative bacteria using surface-immobilized polymyxin B. PLoS One 2023; 18:e0290579. [PMID: 37639398 PMCID: PMC10461818 DOI: 10.1371/journal.pone.0290579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Although detection of gram-negative bacteria (GNB) in body fluids is important for clinical purpose, traditional gram staining and other recently developed methods have inherent limitations in terms of accuracy, sensitivity, and convenience. To overcome the weakness, this study proposed a method detecting GNB based on specific binding of polymyxin B (PMB) to lipopolysaccharides (LPS) of GNB. Fluorescent microscopy demonstrated that surface immobilized PMB using a silane coupling agent was possible to detect fluorescent signal produced by a single Escherichia coli (a model GNB) cell. Furthermore, the signal was selective enough to differentiate between GNB and gram-positive bacteria. The proposed method could detect three cells per ml within one hour, indicating the method was very sensitive and the sensing was rapid. These results suggest that highly multifold PMB binding on each GNB cell occurred, as millions of LPS are present on cell wall of a GNB cell. Importantly, the principle used in this study was realized in a microfluidic chip for a sample containing E. coli cells suspended in porcine plasma, demonstrating its potential application to practical uses. In conclusion, the proposed method was accurate, sensitive, and convenient for detecting GNB, and could be applied clinically.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| |
Collapse
|
25
|
Agamia NF, El Mulla KF, Alsayed NM, Ghazala RM, El Maksoud REA, Abdelmeniem IM, Talaat IM, Zaki II, Sabah RM, Melnik BC. Isotretinoin treatment upregulates the expression of p53 in the skin and sebaceous glands of patients with acne vulgaris. Arch Dermatol Res 2023; 315:1355-1365. [PMID: 36585988 PMCID: PMC10205870 DOI: 10.1007/s00403-022-02508-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023]
Abstract
The transcriptomic regulation induced by isotretinoin (13-cis retinoic acid) is still a matter of debate as short-term exposures of immortalized sebocytes with isotretinoin produced conflicting results. Based on translational evidence, it has been hypothesized that oral isotretinoin treatment upregulates the expression of the transcription factor p53. Twenty-five patients suffering from acne vulgaris were treated with isotretinoin (0.6 mg/kg body weight) for 6 weeks. Biopsies from back skin were taken before and after isotretinoin treatment for the determination of p53 expression by immunohistochemical staining, quantification of p53 protein concentration by enzyme-linked immunosorbent assay and TP53 gene expression by quantitative reverse transcription real time PCR. Fifteen socio-demographically cross-matched healthy volunteers served as controls. Isotretinoin treatment significantly increased the nuclear expression of p53 in sebaceous glands of treated patients compared to pre-treatment levels and p53 levels of untreated controls. Furthermore, the p53 protein and gene expression significantly increased in the skin after treatment. The magnitude of p53 expression showed an inverse correlation to acne severity score and body mass index. Under clinical conditions, isotretinoin induced the expression of p53, which controls multiple transcription factors involved in the pathogenesis of acne vulgaris including FoxO1, androgen receptor and critical genes involved in the induction of autophagy and apoptosis. Increased p53-FoxO1 signalling enhanced by systemic isotretinoin treatment explains the underlying transcriptomic changes causing sebum suppression but also the adverse effects associated with systemic isotretinoin therapy.
Collapse
Affiliation(s)
- Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Khalid Fawzi El Mulla
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Naglaa Mohamed Alsayed
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rasha Mohamed Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | - Iman Mohamed Abdelmeniem
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Iman Mamdouh Talaat
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Inass Ibrahim Zaki
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Rana Mohamed Sabah
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Bodo Clemens Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49076, Osnabrück, Germany
| |
Collapse
|
26
|
Pérez de Carvasal K, Nicollet L, Smietana M, Morvan F. Stabilization of DNA Duplexes and Hairpins by Charge-Transfer Interactions Using DAN:NDI Pairs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7418-7425. [PMID: 37196178 DOI: 10.1021/acs.langmuir.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Electron-rich 1,5-dialkoxynaphthalene (DAN) and electron-deficient 1,8,4,5-naphthalenetetracarboxylic diimide (NDI) are known to interact through the formation of charge-transfer complexes. The introduction of DAN and NDI into various DNA duplexes and hairpins was investigated by ultraviolet (UV) melting curve analysis. The positioning of the DAN:NDI pair was found to strongly influence the stability of DNA duplex and hairpins. In particular, while the introduction of one DAN/NDI pair in front of each other in the center of a DNA duplex led to a decrease of the thermal stability (ΔTm - 6 °C), the addition of a second pair restored or even increased the stability. In contrast, the introduction of DAN:NDI pairs at the end of a duplex always induced a strong stabilization (ΔTm up to +20 °C). Finally, a DAN:NDI pair positioned in the loop of a hairpin induced a stronger stabilization than a T4 loop (ΔTm + 10 °C). Based on charge-transfer interactions, the strong stabilizations observed allow the preparation of highly stabilized DNA nanostructures opening the way to numerous applications in nanotechnology.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| | - Laura Nicollet
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| | - Michael Smietana
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| | - François Morvan
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| |
Collapse
|
27
|
Zhai S, Yang Y, Wu Y, Li J, Li Y, Wu G, Liang J, Gao H. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta 2023; 257:124318. [PMID: 36796171 DOI: 10.1016/j.talanta.2023.124318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Specific and economical nucleic acid detection is crucial for molecular diagnoses in resource-limited settings. Various facile readout approaches have been developed for nucleic acid detection, but they have limited specificity. Herein, nuclease-dead Cas9 (dCas9)/sgRNA was used as an excellent DNA recognition probe system to develop a visual clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated enzyme-linked immunosorbent assay (ELISA) for specific and sensitive detection of cauliflwer mosaic virus 35s (CaMV35S) promoter in genetically modified (GM) crops. In this work, the CaMV35S promoter was amplified with biotinylated primers, and then precisely bound with dCas9 in the presence of sgRNA. The formed complex was captured by antibody-coated microplate and bound to a streptavidin-labeled horseradish peroxidase probe for the visual detection. Under the optimal conditions, dCas9-ELISA could detect CaMV35s promoter as low as 12.5 copies μL-1. Moreover, the proposed method was capable to distinguish the target sequence with single-base specificity. Coupled with one-step extraction and recombinase polymerase amplification, dCas9-ELISA can identify actual GM rice seeds within 1.5 h from sampling to results without expensive equipment and technical expertise. Therefore, the proposed method offers a specific, sensitive, rapid and cost-effective detection platform for molecular diagnoses.
Collapse
Affiliation(s)
- Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yunjing Li
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
28
|
Chauhan RP, Fogel R, Limson J. Overview of Diagnostic Methods, Disease Prevalence and Transmission of Mpox (Formerly Monkeypox) in Humans and Animal Reservoirs. Microorganisms 2023; 11:1186. [PMID: 37317160 DOI: 10.3390/microorganisms11051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mpox-formerly monkeypox-is a re-emerging zoonotic virus disease, with large numbers of human cases reported during multi-country outbreaks in 2022. The close similarities in clinical symptoms that Mpox shares with many orthopoxvirus (OPXV) diseases make its diagnosis challenging, requiring laboratory testing for confirmation. This review focuses on the diagnostic methods used for Mpox detection in naturally infected humans and animal reservoirs, disease prevalence and transmission, clinical symptoms and signs, and currently known host ranges. Using specific search terms, up to 2 September 2022, we identified 104 relevant original research articles and case reports from NCBI-PubMed and Google Scholar databases for inclusion in the study. Our analyses observed that molecular identification techniques are overwhelmingly being used in current diagnoses, especially real-time PCR (3982/7059 cases; n = 41 studies) and conventional PCR (430/1830 cases; n = 30 studies) approaches being most-frequently-used to diagnose Mpox cases in humans. Additionally, detection of Mpox genomes, using qPCR and/or conventional PCR coupled to genome sequencing methods, offered both reliable detection and epidemiological analyses of evolving Mpox strains; identified the emergence and transmission of a novel clade 'hMPXV-1A' lineage B.1 during 2022 outbreaks globally. While a few current serologic assays, such as ELISA, reported on the detection of OPXV- and Mpox-specific IgG (891/2801 cases; n = 17 studies) and IgM antibodies (241/2688 cases; n = 11 studies), hemagglutination inhibition (HI) detected Mpox antibodies in human samples (88/430 cases; n = 6 studies), most other serologic and immunographic assays used were OPXV-specific. Interestingly, virus isolation (228/1259 cases; n = 24 studies), electron microscopy (216/1226 cases; n = 18 studies), and immunohistochemistry (28/40; n = 7 studies) remain useful methods of Mpox detection in humans in select instances using clinical and tissue samples. In animals, OPXV- and Mpox-DNA and antibodies were detected in various species of nonhuman primates, rodents, shrews, opossums, a dog, and a pig. With evolving transmission dynamics of Mpox, information on reliable and rapid detection methods and clinical symptoms of disease is critical for disease management.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| |
Collapse
|
29
|
Li N, Zhang F. THz-PCR Based on Resonant Coupling between Middle Infrared and DNA Carbonyl Vibrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8224-8231. [PMID: 36724344 DOI: 10.1021/acsami.2c22413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The carbonyl groups of deoxyribonucleotide can resonantly couple with 53 THz middle infrared, which can highly transmit water without ionization-based damage to DNA molecules. Herein, we predict that vibrational coupling with THz irradiation could lower down the hybridization landscape of nucleic acids and thus affect DNA replication. Using polymerase chain reaction (PCR) as a measure, we found that THz shining can reduce the denature temperature of DNA duplexes by about 3 °C, which allows one to conduct PCR at lower temperature, facilitating long-time amplification reaction without losing enzymatic fidelity, i.e., normal PCR should be carried out at denaturing temperature ∼4 °C higher than the melting temperature (Tm), but THz-PCR only requires temperature ∼1 °C higher than Tm due to the nonthermal effect of THz shining. Moreover, the melting time can also be shortened to 1/5 due to the enhanced vibration coupling with 53 THz irradiation. We proposed THz-PCR as an innovated DNA amplification technique with ultrahigh specificity and sensitivity and also successfully demonstrated its advantages in forensic detections.
Collapse
Affiliation(s)
- Na Li
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feng Zhang
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
30
|
An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5. Vet Sci 2023; 10:vetsci10020142. [PMID: 36851445 PMCID: PMC9965950 DOI: 10.3390/vetsci10020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
A duplex real-time quantitative reverse transcription-polymerase chain reaction (dqRT-PCR) assay was successfully developed to simultaneously detect canine parainfluenza virus 5 (CPIV5) and a canine endogenous internal positive control (EIPC) in canine clinical samples. Two sets of primers and probes for the CPIV5 L and canine 16S rRNA genes were included in the dqRT-PCR assay to detect CPIV and monitor invalid results throughout the qRT-PCR process. The developed dqRT-PCR assay specifically detected CPIV5 but no other canine pathogens. Furthermore, 16S rRNA was stably amplified by dqRT-PCR assay in all samples containing canine cellular materials. The assay's sensitivity was determined as below ten RNA copies per reaction, with CPIV5 L gene standard RNA and 1 TCID50/mL with the CPIV5 D008 vaccine strain, which was 10-fold higher than that of the previous HN gene-specific qRT-PCR (HN-qRT-PCR) assays and was equivalent to that of the previous N gene-specific qRT-PCR (N-qRT-PCR) assays, respectively. Moreover, the Ct values of the CPIV5-positive samples obtained using the dqRT-PCR assay were lower than those obtained using the previous HN- and N-qRT-PCR assays, indicating that the diagnostic performance of the dqRT-PCR assay was superior to those of previous HN- and N-qRT-PCR assays. The calculated Cohen's kappa coefficient values (95% confidence interval) between dqRT-PCR and the HN- or N-specific qRT-PCR assays were 0.97 (0.90-1.03) or 1.00 (1.00-1.00), respectively. In conclusion, the newly developed dqRT-PCR assay with high sensitivity, specificity, and reliability will be a promising diagnostic tool for the detection of CPIV5 in clinical samples and useful for etiological and epidemiological studies of CPIV5 infection in dogs.
Collapse
|
31
|
Development of TaqMan quantitative PCR assay for detection of Nocardia seriolae in fish and the environment. J Microbiol Methods 2023; 205:106650. [PMID: 36481430 DOI: 10.1016/j.mimet.2022.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Nocardia seriolae is a gram-positive bacterium that causes nocardiosis, threatening fish farming. Advanced nocardiosis is challenging to control; thus, accurate detection methods of the causal agent in the early disease stage are required. In this study, we developed a TaqMan fluorescence quantitative PCR (qPCR) assay for quantitative detection of N. seriolae in fish tissues and water samples. A pair of highly specific primers and a TaqMan probe were designed based on the N. seriolae 16S23S rRNA internal transcribed spacer (ITS) region. A high correlation coefficient (R2 = 0.998) of the standard curve with a 99.5% efficiency was obtained. The qPCR detection limit of the method was as low as 19.8 copies/μL, 1000 times more sensitive than conventional PCR, and has a good performance in the detection of cultured bacteria (y = -3.750× + 48.075, R2 = 0.974). Even 1.42 CFU/mL N. seriolae collected from 500 mL of natural pond water can be detected. Furthermore, a linear model for the relationship between the log of bacteria load and Cq values in water was established (y = -3.239× + 40.978), and the R2 value was 0.979. This assay was used for accurate N. seriolae detection in fish tissues, water samples, feeds and soils. This study provides a valuable tool for the early detection and control of nocardiosis in aquaculture.
Collapse
|
32
|
Uh YR, Jang CS. Establishing DNA markers to differentiate Agastache rugosa and Pogostemon cablin, which are confusedly used as medicinal herbs, using real-time PCR. Food Sci Biotechnol 2023; 32:239-247. [PMID: 36647523 PMCID: PMC9839904 DOI: 10.1007/s10068-022-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023] Open
Abstract
Agastache rugosa and Pogostemon cablin are used as medicinal herbs and aromatic plants and belong to the family Lamiaceae. Despite differences in composition and physicochemical properties, both plants are frequently sold as the medical substance "Kwakhyang" in some Asian countries. Molecular markers were established to distinguish between the two plants using quantitative real-time PCR. Species-specific primers were designed in the nuclear internal transcribed spacer region of ribosomal DNA and in the chloroplast genes matK, rbcL, and rpoB. Six primer sets were tested, the correlation coefficient was higher than 0.99, and the slope was approximately - 3.36 to - 3.58. Efficiency ranged from 90.13 to 98.52%. The developed real-time PCR assay was validated with 14 off-target species, and its reliability was verified through blind testing of 14 commercial products. The assay developed here may help protect consumer rights, and the designed primers can be used to distinguish between the target species. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01176-y.
Collapse
Affiliation(s)
- Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
33
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
34
|
Bang E, Oh S, Cho HW, Park DH, Chang HE, Park JS, Lee H, Song KH, Kim ES, Kim HB, Suh YH, Park KU. Development of diagnostic tests for pathogen identification and detection of antimicrobial resistance on WHO global priority pathogens using modular real-time nucleic acid amplification test. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00321-9. [PMID: 36646920 DOI: 10.1007/s10123-023-00321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Concerns regarding antimicrobial resistance (AMR) have resulted in the World Health Organization (WHO) designating so-called global priority pathogens (GPPs). However, little discussion has focused on the diagnosis of GPPs. To enable the simultaneous identification of pathogens and AMR, we developed a modular real-time nucleic acid amplification test (MRT-NAAT). METHODS Sequence-specific primers for each modular unit for MRT-NAAT pathogen identification and AMR sets were designed. The composition of the reaction mixture and the real-time PCR program were unified irrespective of primer type so to give MRT-NAAT modularity. Standard strains and clinical isolates were used to evaluate the performance of MRT-NAAT by real-time PCR and melting curve analysis. Probit analysis for the MRT-NAAT pathogen identification set was used to assess the limit of detection (LoD). RESULTS The MRT-NAAT pathogen identification set was made up of 15 modular units 109-199 bp in product size and with a Tms of 75.5-87.5 °C. The LoD was < 15.548 fg/μL, and nine modular units successfully detected the target pathogens. The MRT-NAAT AMR set included 24 modular units 65-785 bp in product size with a Tms of 75.5-87.5 °C; it showed high performance for detecting GPP target genes and variants. CONCLUSIONS MRT-NAAT enables pathogen identification and AMR gene detection and is time-effective. By unifying the reaction settings of each modular unit, the modularity where combinations of primers can be used according to need could be achieved. This would greatly help in reflecting the researcher's need and the AMR status of a certain region while successfully detecting pathogens and AMR genes.
Collapse
Affiliation(s)
- Eunsik Bang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Won Cho
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyunju Lee
- Department of Pediatrics, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
35
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
36
|
Schjeide BMM, Püschel GP. Determining On-Target, Off-Target, and Copy Number Status of Transgenic Events After CRISPR/Cas9 Targeted AAVS1 Safe-Harbor Modification of iPSCs Using Double-Control Quantitative Copy Number PCR. Curr Protoc 2023; 3:e635. [PMID: 36598341 DOI: 10.1002/cpz1.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Double-control quantitative copy number PCR (dc-qcnPCR) is a recently described tool that can be used to quantify donor DNA insertions in genetically modified monoclonal cell lines. In conjunction with an insert-confirmation PCR, the technique can quickly and easily identify clones containing on-target heterozygous or homozygous donor DNA integrations and exclude off-target insertions. The genetic manipulation of immortal cell lines is a versatile tool to elucidate cellular signaling pathways and protein functions. Despite recent advances in the precision of genetic engineering tools such as CRISPR/Cas9, transcription-activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs), it is still essential to verify the accurate insertion of the sequence of interest (donor DNA) into the targeted genomic DNA (gDNA) locus. This precise integration into a genetic safe harbor, and exclusion of the donor DNA from functionally relevant genes, can ensure normal cellular functionality. Current methods to analyze the specificity of donor DNA insertions either are cost-prohibitive or create dependency on manufacturers for assay design and production. The dc-qcnPCR method is a simple, yet powerful, approach that can be prepared and carried out in any laboratory equipped with standard molecular biology supplies. Here we provide step-by-step instructions to prepare and perform the dc-qcnPCR, and its companion insert-confirmation PCR, to determine donor DNA insertion numbers in monoclonal cell lines genetically modified through CRISPR/Cas9. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genetic modification at AAVS1 safe harbor in induced pluripotent stem cells (IMR90-4) using CRISPR/Cas9: from plasmid design to monoclonal expansion Support Protocol 1: Measurement of Gaussia luciferase activity to verify reporter protein functionality Support Protocol 2: Verification of monoclonal expansion using immunofluorescence. Basic Protocol 2: Insert-confirmation PCR Basic Protocol 3: Design and preparation of double-control quantitative copy number PCR reagents and quantification of donor DNA integrations in genetically modified monoclonal cells.
Collapse
Affiliation(s)
- Brit-Maren Michaud Schjeide
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Nutritional Biochemistry, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Gerhard Paul Püschel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
37
|
Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel) 2022; 13:genes13122387. [PMID: 36553654 PMCID: PMC9778061 DOI: 10.3390/genes13122387] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Successful detection of the first SARS-CoV-2 cases using the real-time polymerase chain reaction (real-time PCR) method reflects the power and usefulness of this technique. Real-time PCR is a variation of the PCR assay to allow monitoring of the PCR progress in actual time. PCR itself is a molecular process used to enzymatically synthesize copies in multiple amounts of a selected DNA region for various purposes. Real-time PCR is currently one of the most powerful molecular approaches and is widely used in biological sciences and medicine because it is quantitative, accurate, sensitive, and rapid. Current applications of real-time PCR include gene expression analysis, mutation detection, detection and quantification of pathogens, detection of genetically modified organisms, detection of allergens, monitoring of microbial degradation, species identification, and determination of parasite fitness. The technique has been used as a gold standard for COVID-19 diagnosis. Modifications of the standard real-time PCR methods have also been developed for particular applications. This review aims to provide an overview of the current applications of the real-time PCR technique, including its role in detecting emerging viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
- Correspondence:
| | - Yora Permata Dewi
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| | - Ita Margaretha Nainggolan
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Ungke Antonjaya
- Eijkman Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
38
|
Hatakeyama D, Chikamoto N, Fujimoto K, Kitahashi T, Ito E. Comparison between relative and absolute quantitative real-time PCR applied to single-cell analyses: Transcriptional levels in a key neuron for long-term memory in the pond snail. PLoS One 2022; 17:e0279017. [PMID: 36508476 PMCID: PMC9744327 DOI: 10.1371/journal.pone.0279017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is a powerful method for measuring nucleic acid levels and quantifying mRNA levels, even in single cells. In the present study, we compared the results of single-cell qPCR obtained by different quantification methods (relative and absolute) and different reverse transcription methods. In the experiments, we focused on the cerebral giant cell (CGC), a key neuron required for the acquisition of conditioned taste aversion in the pond snail Lymnaea stagnalis, and examined changes in the mRNA levels of 3 memory-related genes, cAMP-response element binding proteins (LymCREB1 and LymCREB2) and CREB-binding protein (LymCBP), during memory formation. The results obtained by relative quantification showed similar patterns for the 3 genes. For absolute quantification, reverse transcription was performed using 2 different methods: a mixture of oligo d(T) primers and random primers (RT method 1); and gene-specific primers (RT method 2). These methods yielded different results and did not show consistent changes related to conditioning. The mRNA levels in the samples prepared by RT method 2 were up to 3.3 times higher than those in samples prepared by RT method 1. These results suggest that for qPCR of single neurons, the efficacy and validity do not differ between relative and absolute quantification methods, but the reverse transcription step critically influences the results of mRNA quantification.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima City, Japan
- * E-mail: (DH); (EI)
| | | | | | - Takashi Kitahashi
- Kushiro Nature Conservation Office, Ministry of the Environment Government of Japan, Kushiro City, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- * E-mail: (DH); (EI)
| |
Collapse
|
39
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Ramírez-Sanabria M, Martínez-Magaña J, Nicolini-Sánchez H, Guzmán-Sánchez R, Genis-Mendoza AD. [Association between telomere length and cognitive impairment in older adults]. Rev Esp Geriatr Gerontol 2022; 57:320-324. [PMID: 36319501 DOI: 10.1016/j.regg.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Cognitive impairment is a transition stage between normal aging and dementia, the prevalence of last one increases with age; the damage of the functions and physical integrity, places the older adult in a greater susceptibility to get sick. Telomere length is a hallmark of aging to characterize this phenotype, as well as a biomarker that reflects the underlying state of the cell. In this work, the relative length of telomeres in older adults with cognitive impairment was correlated. MATERIAL AND METHODS Observational-analytical study, in samples of adult patients older than 65 years with and without cognitive impairment, in whom the relative length of telomeres was measured. RESULTS Ninety samples of older adults were included in the study and in the association analysis according to multivariate logistic models, cognitive impairment showed almost five times more risk for telomere shortening in relation to the presence of the diagnosis of cognitive impairment (Odds ratio 4.88, p=0.027). CONCLUSIONS When correlating the relative length of telomeres in older adults diagnosed with cognitive impairment, this association was confirmed for shorter.
Collapse
Affiliation(s)
- Martha Ramírez-Sanabria
- Alta Especialidad en Medicina Genómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Humberto Nicolini-Sánchez
- Alta Especialidad en Medicina Genómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Rafael Guzmán-Sánchez
- Alta Especialidad en Medicina Genómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Alma Delia Genis-Mendoza
- Hospital Psiquiátrico Innfantil Dr. Juan N. Navarro, Servicios de Atención Psiquiétrica, Secretaría de Salud, Ciudad de México, México.
| |
Collapse
|
41
|
Miglietta L, Xu K, Chhaya P, Kreitmann L, Hill-Cawthorne K, Bolt F, Holmes A, Georgiou P, Rodriguez-Manzano J. Adaptive Filtering Framework to Remove Nonspecific and Low-Efficiency Reactions in Multiplex Digital PCR Based on Sigmoidal Trends. Anal Chem 2022; 94:14159-14168. [PMID: 36190816 PMCID: PMC9583074 DOI: 10.1021/acs.analchem.2c01883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
Real-time digital polymerase chain reaction (qdPCR) coupled with machine learning (ML) methods has shown the potential to unlock scientific breakthroughs, particularly in the field of molecular diagnostics for infectious diseases. One promising application of this emerging field explores single fluorescent channel PCR multiplex by extracting target-specific kinetic and thermodynamic information contained in amplification curves, also known as data-driven multiplexing. However, accurate target classification is compromised by the presence of undesired amplification events and not ideal reaction conditions. Therefore, here, we proposed a novel framework to identify and filter out nonspecific and low-efficient reactions from qdPCR data using outlier detection algorithms purely based on sigmoidal trends of amplification curves. As a proof-of-concept, this framework is implemented to improve the classification performance of the recently reported data-driven multiplexing method called amplification curve analysis (ACA), using available published data where the ACA is demonstrated to screen carbapenemase-producing organisms in clinical isolates. Furthermore, we developed a novel strategy, named adaptive mapping filter (AMF), to adjust the percentage of outliers removed according to the number of positive counts in qdPCR. From an overall total of 152,000 amplification events, 116,222 positive amplification reactions were evaluated before and after filtering by comparing against melting peak distribution, proving that abnormal amplification curves (outliers) are linked to shifted melting distribution or decreased PCR efficiency. The ACA was applied to assess classification performance before and after AMF, showing an improved sensitivity of 1.2% when using inliers compared to a decrement of 19.6% when using outliers (p-value < 0.0001), removing 53.5% of all wrong melting curves based only on the amplification shape. This work explores the correlation between the kinetics of amplification curves and the thermodynamics of melting curves, and it demonstrates that filtering out nonspecific or low-efficient reactions can significantly improve the classification accuracy for cutting-edge multiplexing methodologies.
Collapse
Affiliation(s)
- Luca Miglietta
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Ke Xu
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Priya Chhaya
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Louis Kreitmann
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Kerri Hill-Cawthorne
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Frances Bolt
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Alison Holmes
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| | - Pantelis Georgiou
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, LondonSW7 2AZ, U.K.
| | - Jesus Rodriguez-Manzano
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, LondonW12 0NN, U.K.
| |
Collapse
|
42
|
Potential protective effects of chrysin against immunotoxicity induced by diazinon. Sci Rep 2022; 12:15578. [PMID: 36114367 PMCID: PMC9481545 DOI: 10.1038/s41598-022-20010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acute intoxication with diazinon (DZN) as a pesticide causes mortality and morbidity annually. This study shows the impact of sub-acute toxicity of DZN 20 mg/kg and the protective activities of chrysin (CH) as a flavone under the flavonoids family (12.5, 25 and 50 mg/kg) were assessed on BALB/c mouse immune system. The changes in morphological and functional properties of the immune system on thymus, spleen and liver histopathology, sub-populations of T lymphocytes, cytokines levels, transcription factors, complement function, phagocytosis, specific and total antibody productions were considered. The histopathological effects of DZN on the spleen and thymus were not significant, but the liver was damaged remarkably. In the presence of CH, the toxic effect of DZN is suppressed. DZN significantly decreased the number of whole blood TCD4+, TCD8+ and NK cells and suppressed the phagocytosis, delayed-type hypersensitivity (DTH) responses to sheep red blood cell (SRBC). Furthermore, it suppressed specific anti-SRBC-Ab, total IgG and IgM production, T-bet expression, and IFN-γ production. In contrast, DZN did not significantly affect complement function and the number of NK cells, TCD4+ and TCD8+ splenocytes. However, it potentiated the expression of GATA-3, ROR-γt and FOXP3 gene expression and consequently produced IL-4, IL-10, IL-17 and TGF-β in whole blood. CH not only significantly increased the variables mentioned above at 12.5, 25 and 50 mg/kg but also could overcome the toxic effects of DZN on whole blood lymphocyte sub-populations and specific and total Ab production in 25 and 50 mg/kg concentrations, phagocytosis and DTH responses in 50 mg/kg, and modulation of the transcription factors and cytokine production, mainly in 25 and 50 mg/kg. In conclusion, DZN in sub-acute doses could remarkably deteriorate immune responses. However, CH can overcome the toxic effects of DZN on the immune components and functions of the immune system.
Collapse
|
43
|
Qassim SH, Hasan MR, Tang P, Chemaitelly H, Ayoub HH, Yassine HM, Al-Khatib HA, Smatti MK, Abdul-Rahim HF, Nasrallah GK, Al-Kuwari MG, Al-Khal A, Coyle P, Gillani I, Kaleeckal AH, Shaik RM, Latif AN, Al-Kuwari E, Jeremijenko A, Butt AA, Bertollini R, Al-Romaihi HE, Al-Thani MH, Abu-Raddad LJ. Effects of SARS-CoV-2 Alpha, Beta, and Delta variants, age, vaccination, and prior infection on infectiousness of SARS-CoV-2 infections. Front Immunol 2022; 13:984784. [PMID: 36177014 PMCID: PMC9513583 DOI: 10.3389/fimmu.2022.984784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
In 2021, Qatar experienced considerable incidence of SARS-CoV-2 infection that was dominated sequentially by the Alpha, Beta, and Delta variants. Using the cycle threshold (Ct) value of an RT-qPCR-positive test to proxy the inverse of infectiousness, we investigated infectiousness of SARS-CoV-2 infections by variant, age, sex, vaccination status, prior infection status, and reason for testing in a random sample of 18,355 RT-qPCR-genotyped infections. Regression analyses were conducted to estimate associations with the Ct value of RT-qPCR-positive tests. Compared to Beta infections, Alpha and Delta infections demonstrated 2.56 higher Ct cycles (95% CI: 2.35-2.78), and 4.92 fewer cycles (95% CI: 4.67- 5.16), respectively. The Ct value declined gradually with age and was especially high for children <10 years of age, signifying lower infectiousness in small children. Children <10 years of age had 2.18 higher Ct cycles (95% CI: 1.88-2.48) than those 10-19 years of age. Compared to unvaccinated individuals, the Ct value was higher among individuals who had received one or two vaccine doses, but the Ct value decreased gradually with time since the second-dose vaccination. Ct value was 2.07 cycles higher (95% CI: 1.42-2.72) for those with a prior infection than those without prior infection. The Ct value was lowest among individuals tested because of symptoms and was highest among individuals tested as a travel requirement. Delta was substantially more infectious than Beta. Prior immunity, whether due to vaccination or prior infection, is associated with lower infectiousness of breakthrough infections, but infectiousness increases gradually with time since the second-dose vaccination.
Collapse
Affiliation(s)
- Suelen H. Qassim
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Hiam Chemaitelly
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Houssein H. Ayoub
- Mathematics Program, Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hebah A. Al-Khatib
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maria K. Smatti
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hanan F. Abdul-Rahim
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | - Peter Coyle
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Hamad Medical Corporation, Doha, Qatar
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast, United Kingdom
| | | | | | | | | | | | | | - Adeel A. Butt
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | | | | | | - Laith J. Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- *Correspondence: Laith J. Abu-Raddad,
| |
Collapse
|
44
|
Wang K, Li B, Guo Y, Wu Y, Li Y, Wu W. An integrated digital PCR system with high universality and low cost for nucleic acid detection. Front Bioeng Biotechnol 2022; 10:947895. [PMID: 36061433 PMCID: PMC9437218 DOI: 10.3389/fbioe.2022.947895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Digital PCR is the most advanced PCR technology. However, due to the high price of the digital PCR analysis instrument, this powerful nucleic acid detection technology is still difficult to be popularized in the general biochemistry laboratory. Moreover, one of the biggest disadvantages of commercial digital PCR systems is the poor versatility of reagents: each instrument can only be used for a few customized kits. Herein, we built a low-cost digital PCR system. The system only relies on low-cost traditional flat-panel PCR equipment to provide temperature conditions for commercial dPCR chips, and the self-made fluorescence detection system is designed and optically optimized to meet a wide range of reagent requirements. More importantly, our system not only has a low cost (<8000 US dollars) but also has a much higher universality for nucleic acid detection reagents than the traditional commercial digital PCR system. In this study, several samples were tested. The genes used in the experiment were plasmids containing UPE-1a fragment, TP53 reference DNA, hepatitis B virus DNA, leukemia sample, SARS-COV-2 DNA, and SARS-COV-2 RNA. Under the condition that DNA can be amplified normally, the function of the dPCR system can be realized with simpler and low-price equipment. Some DNA cannot be detected by using the commercial dPCR system because of the special formula when it is configured as the reaction solution, but these DNA fluorescence signals can be clearly detected by our system, and the concentration can be calculated. Our system is more applicable than the commercial dPCR system to form a new dPCR system that is smaller and more widely applicable than commercially available machinery.
Collapse
Affiliation(s)
- Kangning Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Bin Li
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Yu Guo
- School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yan Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenming Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Wenming Wu,
| |
Collapse
|
45
|
Ma J, Wang J, Wang Q, Shang L, Zhao Y, Zhang G, Ma Q, Hong S, Gu C. Physiological and transcriptional responses to heat stress and functional analyses of PsHSPs in tree peony ( Paeonia suffruticosa). FRONTIERS IN PLANT SCIENCE 2022; 13:926900. [PMID: 36035676 PMCID: PMC9403832 DOI: 10.3389/fpls.2022.926900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a traditional Chinese flower that is not resistant to high temperatures, and the frequent sunburn during summer limits its normal growth. The lack of understanding of the molecular mechanisms in tree peony has greatly restricted the improvement of novel heat-tolerant varieties. Therefore, we treated tree peony cultivar "Yuhong" (P. suffruticosa "Yuhong") at normal (25°C) and high temperatures (40°C) and sequenced the transcriptomes, to investigate the molecular responsive mechanisms to heat stress. By comparing the transcriptomes, a total of 7,673 differentially expressed genes (DEGs) were detected comprising 4,220 upregulated and 3,453 downregulated genes. Functional annotation showed that the DEGs were mainly related to the metabolic process, cells and binding, carbon metabolism, and endoplasmic reticulum protein processing. qRT-PCR revealed that three sHSP genes (PsHSP17.8, PsHSP21, and PsHSP27.4) were upregulated in the response of tree peony to heat stress. Tissue quantification of the transgenic lines (Arabidopsis thaliana) showed that all three genes were most highly expressed in the leaves. The survival rates of transgenic lines (PsHSP17.8, PsHSP21, and PsHSP27.4) restored to normal growth after high-temperature treatment were 43, 36, and 31%, respectively. In addition, the activity of superoxide dismutase, accumulation of free proline, and chlorophyll level was higher than those of the wild-type lines, while the malondialdehyde content and conductivity were lower, and the membrane lipid peroxidation reaction of the wild-type plant was more intense. Our research found several processes and pathways related to heat resistance in tree peony including metabolic process, single-organism process, phenylpropane biosynthesis pathway, and endoplasmic reticulum protein synthesis pathway. PsHSP17.8, PsHSP21, and PsHSP27.4 improved heat tolerance by increasing SOD activity and proline content. These findings can provide genetic resources for understanding the heat-resistance response of tree peony and benefit future germplasm innovation.
Collapse
Affiliation(s)
- Jin Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Qun Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Linxue Shang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guozhe Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingqing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Sidan Hong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Cuihua Gu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
46
|
Srinivasaraghavan VN, Zafar F, Schüle B. Gene Expression Analysis in Stem Cell-derived Cortical Neuronal Cultures Using Multi-well SYBR Green Quantitative PCR Arrays. Bio Protoc 2022; 12:e4476. [PMID: 35978575 PMCID: PMC9350924 DOI: 10.21769/bioprotoc.4476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
To optimize differentiation protocols for stem cell-based in vitro modeling applications, it is essential to assess the change in gene expression during the differentiation process. This allows controlling its differentiation efficiency into the target cell types. While RNA transcriptomics provides detail at a larger scale, timing and cost are prohibitive to include such analyses in the optimization process. In contrast, expression analysis of individual genes is cumbersome and lengthy. Here, we developed a versatile and cost-efficient SYBR Green array of 27 markers along with two housekeeping genes to quickly screen for differentiation efficiency of human induced pluripotent stem cells (iPSCs) into excitatory cortical neurons. We first identified relevant pluripotency, neuroprogenitor, and neuronal markers for the array by literature search, and designed primers with a product size of 80-120 bp length, an annealing temperature of 60°C, and minimal predicted secondary structures. We spotted combined forward and reverse primers on 96-well plates and dried them out overnight. These plates can be prepared in advance in batches and stored at room temperature until use. Next, we added the SYBR Green master mix and complementary DNA (cDNA) to the plate in triplicates, ran quantitative PCR (qPCR) on a Quantstudio 6 Flex, and analyzed results with QuantStudio software. We compared the expression of genes for pluripotency, neuroprogenitor cells, cortical neurons, and synaptic markers in a 96-well format at four different time points during the cortical differentiation. We found a sharp reduction of pluripotency genes within the first three days of pre-differentiation and a steady increase of neuronal markers and synaptic markers over time. In summary, we built a gene expression array that is customizable, fast, medium-throughput, and cost-efficient, ideally suited for optimization of differentiation protocols for stem cell-based in vitro modeling.
Collapse
Affiliation(s)
| | - Faria Zafar
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
,
*For correspondence:
| |
Collapse
|
47
|
Zhang Y, Wang Y, Xu L, Lou C, Ouyang Q, Qian L. Paired dCas9 design as a nucleic acid detection platform for pathogenic strains. Methods 2022; 203:70-77. [PMID: 34090973 DOI: 10.1016/j.ymeth.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
The wide application of molecular beacon probes in specific DNA detection, especially in the fast prototyping of pathogen DNA detection kits in point-of-care diagnostics, has been hindered by the nonflexible choice of target sequences and the unstable fluorophore output. We developed an in vitro DNA detection system consisting of a pair of dCas9 proteins linked to split halves of luciferase, named the Paired dCas9 (PC) reporter. Co-localization of the reporter pair to a ~46 bp target sequence defined by two single guide RNAs (sgRNAs) activated luciferase which subsequently generated highly intensified luminescent signals. Combined with an array design and statistical analyses, the PC reporter system could be programmed to access sequence information across the entire genome of the pathogenic Mycobacterium tuberculosis H37Rv strain. These findings suggest great potential for the PC reporter in effective and affordable in vitro nucleic acid detection technologies. In this article we highlighted the systems design from our previous researchworkon the PC reporter (Zhang et al, 2015)with a focuson methodology.
Collapse
Affiliation(s)
- Yihao Zhang
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Team for 2015 International Genetically Engineered Machine Competition (iGEM 2015), Beijing 100871, China
| | - Yu Wang
- Peking University Team for 2015 International Genetically Engineered Machine Competition (iGEM 2015), Beijing 100871, China
| | - Luze Xu
- Peking University Team for 2015 International Genetically Engineered Machine Competition (iGEM 2015), Beijing 100871, China
| | - Chunbo Lou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Ouyang
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China; The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Long Qian
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
CRISPR-Cas system and its use in the diagnosis of infectious diseases. Microbiol Res 2022; 263:127100. [PMID: 35849921 DOI: 10.1016/j.micres.2022.127100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Rapid and accurate diagnostic methods for detecting pathogens are needed for effective management and treatment of infectious diseases. The conventional pathogen detection approach based on culture is considered the gold standard method, but needs several days to corroborate its results. Using nucleic acids from pathogens as detection targets has a considerable advantage in overcoming these time-consuming issues. The development of several molecular techniques has started to change the landscape of infectious disease diagnosis. However, these require expensive reagents, equipment, and sophisticated infrastructure, as well as highly trained workers. In this context, it is necessary to identify new diagnostic strategies to overcome these issues. Recently, CRISPR/Cas based diagnosis has revolutionized the area of molecular diagnostics of pathogenic diseases. In this review, we have discussed the different classes of CRISPR-Cas systems and their functions, and then focused on recent advances in CRISPR-based diagnosis technologies and the perspective of using this as a potential biosensing platform to detect infectious disease.
Collapse
|
49
|
Jiang W, Chen L, Wang J, Shao X, Jiang M, Chen Z, Wang J, Huang Y, Fei P. Open-top light-sheet imaging of CLEAR emulsion for high-throughput loss-free analysis of massive fluorescent droplets. Biomed Phys Eng Express 2022; 8. [PMID: 35767965 DOI: 10.1088/2057-1976/ac7d0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Digital droplet PCR (ddPCR) is classified as the third-generation PCR technology that enables absolute quantitative detection of nucleic acid molecules and has become an increasingly powerful tool for clinic diagnosis. We previously established a CLEAR-dPCR technique based on the combination of CLEAR droplets generated by micro-centrifuge-based microtubule arrays (MiCA) andinsitu3D readout by light-sheet fluorescence imaging. This CLEAR-dPCR technique attains very high readout speed and dynamic range. Meanwhile, it is free from sample loss and contamination, showing its advantages over commercial d-PCR technologies. However, a conventional orthogonal light-sheet imaging setup in CLEAR d-PCR cannot image multiple centrifuge tubes, thereby limiting its widespread application to large-scale, high-speed dd-PCR assays. Herein, we propose an in-parallel 3D dd-PCR readout technique based on an open-top light-sheet microscopy setup. This approach can continuously scan multiple centrifuge tubes which contain CLEAR emulsions with highly diverse concentrations, and thus further boost the scale and throughput of our 3D dd-PCR technique.
Collapse
Affiliation(s)
- Wen Jiang
- School of Optical and Electronic Information , Huazhong University of Science and Technology, E417, Wuhan, Hubei, 430074, CHINA
| | - Longbiao Chen
- School of Optical and Electronic Information , Huazhong University of Science and Technology, E417, Wuhan, Hubei, 430074, CHINA
| | - Jie Wang
- Huazhong University of Science and Technology, E417, School of Optical and Electronic Information, Wuhan, Hubei, 430074, CHINA
| | - Xinyang Shao
- Peking-Tsinghua Center for Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing, Beijing, 100871, CHINA
| | - Mengcheng Jiang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Biomedical Pioneering Innovation Center (BIOPIC), Beijing, Beijing, 100871, CHINA
| | - Zitian Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Biomedical Pioneering Innovation Center (BIOPIC), Beijing, Beijing, 100871, CHINA
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, School of Life Sciences, Beijing, Beijing, 100084, CHINA
| | - Yanyi Huang
- College of Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, College of Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Beijing, 100871, CHINA
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, E417, Wuhan, 430074, CHINA
| |
Collapse
|
50
|
Jun SW, Ahn YH. Terahertz thermal curve analysis for label-free identification of pathogens. Nat Commun 2022; 13:3470. [PMID: 35710797 PMCID: PMC9203813 DOI: 10.1038/s41467-022-31137-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
In this study, we perform a thermal curve analysis with terahertz (THz) metamaterials to develop a label-free identification tool for pathogens such as bacteria and yeasts. The resonant frequency of the metasensor coated with a bacterial layer changes as a function of temperature; this provides a unique fingerprint specific to the individual microbial species without the use of fluorescent dyes and antibodies. Differential thermal curves obtained from the temperature-dependent resonance exhibit the peaks consistent with bacterial phases, such as growth, thermal inactivation, DNA denaturation, and cell wall destruction. In addition, we can distinguish gram-negative bacteria from gram-positive bacteria which show strong peaks in the temperature range of cell wall destruction. Finally, we perform THz melting curve analysis on the mixture of bacterial species in which the pathogenic bacteria are successfully distinguished from each other, which is essential for practical clinical and environmental applications such as in blood culture. A label-free sensing method has been developed for identifying hazardous pathogens based on their intrinsic properties. This was possible by interrogating the temperature-dependent dielectric constant of the microbes in the far-infrared range.
Collapse
Affiliation(s)
- S W Jun
- Department of Physics, Ajou University, Suwon, 16499, Korea.,Department of Energy Systems Research, Ajou University, Suwon, 16499, Korea
| | - Y H Ahn
- Department of Physics, Ajou University, Suwon, 16499, Korea. .,Department of Energy Systems Research, Ajou University, Suwon, 16499, Korea.
| |
Collapse
|