1
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
2
|
Li Y, Zhu L, Chen P, Wang Y, Yang G, Zhou G, Li L, Feng R, Qiu Y, Han J, Chen B, He Y, Zeng Z, Chen M, Zhang S. MALAT1 Maintains the Intestinal Mucosal Homeostasis in Crohn's Disease via the miR-146b-5p-CLDN11/NUMB Pathway. J Crohns Colitis 2021; 15:1542-1557. [PMID: 33677577 DOI: 10.1093/ecco-jcc/jjab040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal homeostasis disorder is critical for developing Crohn's disease [CD]. Maintaining mucosal barrier integrity is essential for intestinal homeostasis, preventing intestinal injury and complications. Among the remarkably altered long non-coding RNAs [lncRNAs] in CD, we aimed to investigate whether metastasis-associated lung adenocarcinoma transcript 1 [MALAT1] modulated CD and consequent disruption of intestinal homeostasis. METHODS Microarray analyses on intestinal mucosa of CD patients and controls were performed to identify dysregulated lncRNAs. MALAT1 expression was investigated via qRT-PCR and its distribution in intestinal tissues was detected using BaseScope. Intestines from MALAT1 knockout mice with colitis were investigated using histological, molecular, and biochemical approaches. Effects of intestinal epithelial cells, transfected with MALAT1 lentiviruses and Smart Silencer, on monolayer permeability and apical junction complex [AJC] proteins were analysed. MiR-146b-5p was confirmed as a critical MALAT1 mediator in cells transfected with miR-146b-5p mimic/inhibitor and in colitis mice administered agomir-146b-5p/antagomir-146b-5p. Interaction between MALAT1 and miR-146b-5p was predicted via bioinformatics and validated using Dual-luciferase reporter assay and Ago2-RIP. RESULTS MALAT1 was aberrantly downregulated in the intestine mucosa of CD patients and mice with experimental colitis. MALAT1 knockout mice were hypersensitive to DSS-induced experimental colitis. MALAT1 regulated the intestinal mucosal barrier and regained intestinal homeostasis by sequestering miR-146b-5p and maintaining the expression of the AJC proteins NUMB and CLDN11. CONCLUSIONS Downregulation of MALAT1 contributed to the pathogenesis of CD by disrupting AJC. Thus, a specific MALAT1-miR-146b-5p-NUMB/CLDN11 pathway that plays a vital role in maintaining intestinal mucosal homeostasis may serve as a novel target for CD treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liguo Zhu
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Peng Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Wang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guang Yang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gaoshi Zhou
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Li
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Han
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
3
|
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int J Mol Sci 2019; 20:E2756. [PMID: 31195621 PMCID: PMC6600153 DOI: 10.3390/ijms20112756] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.
Collapse
Affiliation(s)
- Amanda C Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Danzer C, Eckhardt K, Schmidt A, Fankhauser N, Ribrioux S, Wollscheid B, Müller L, Schiess R, Züllig R, Lehmann R, Spinas G, Aebersold R, Krek W. Comprehensive description of the N-glycoproteome of mouse pancreatic β-cells and human islets. J Proteome Res 2012; 11:1598-608. [PMID: 22148984 DOI: 10.1021/pr2007895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell surface N-glycoproteins provide a key interface of cells to their environment and therapeutic entry points for drug and biomarker discovery. Their comprehensive description denotes therefore a formidable challenge. The β-cells of the pancreas play a crucial role in blood glucose homeostasis, and disruption of their function contributes to diabetes. By combining cell surface and whole cell capturing technologies with high-throughput quantitative proteomic analysis, we report on the identification of a total of 956 unique N-glycoproteins from mouse MIN6 β-cells and human islets. Three-hundred-forty-nine of these proteins encompass potential surface N-glycoproteins and include orphan G-protein-coupled receptors, novel proteases, receptor protein kinases, and phosphatases. Interestingly, stimulation of MIN6 β-cells with glucose and the hormone GLP1, known stimulators of insulin secretion, causes significant changes in surface N-glycoproteome expression. Taken together, this β-cell N-glycoproteome resource provides a comprehensive view on the composition of β-cell surface proteins and expands the scope of signaling systems potentially involved in mediating responses of β-cells to various forms of (patho)physiologic stress and the extent of dynamic remodeling of surface N-glycoprotein expression associated with metabolic and hormonal stimulation. Moreover, it provides a foundation for the development of diabetes medicines that target or are derived from the β-cell surface N-glycoproteome.
Collapse
Affiliation(s)
- Carsten Danzer
- Institute of Cell Biology, ETH Zurich , CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Steinhart AH, Tolomiczenko G. IBD 2009: emerging research frontiers on the path to a cure. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2010; 24:557-65. [PMID: 21152461 PMCID: PMC2948766 DOI: 10.1155/2010/795780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 01/20/2023]
Abstract
The Crohn's and Colitis Foundation of Canada (CCFC) hosted a research symposium in April 2009. The current article presents short synopses of the presentations given at that symposium. Invitees included CCFC-funded clinician-scientists and researchers, research administrators and international leaders in inflammatory bowel disease research. Research challenges were outlined while acknowledging advances made in several domains relevant to informing the search for cures. Following the scientific presentations, discussions endorsed current activities of the CCFC and supported the creation of a new pediatric inflammatory bowel disease initiative.
Collapse
Affiliation(s)
- A Hillary Steinhart
- Mount Sinai Hospital, Toronto, Ontario
- University of Southern California, Los Angeles, California, USA
| | - G Tolomiczenko
- University of Southern California, Los Angeles, California, USA
| |
Collapse
|