1
|
Casmil IC, Jin J, Won EJ, Huang C, Liao S, Cha-Molstad H, Blakney AK. The advent of clinical self-amplifying RNA vaccines. Mol Ther 2025:S1525-0016(25)00269-2. [PMID: 40186353 DOI: 10.1016/j.ymthe.2025.03.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Self-amplifying RNA (saRNA) technology is an emerging platform for vaccine development, offering significant advantages over conventional mRNA vaccines. By enabling intracellular amplification of RNA, saRNA facilitates robust antigen expression at lower doses, thereby enhancing both immunogenicity and cost-effectiveness. This review examines the latest advancements in saRNA vaccine development, highlighting its applications in combating infectious diseases. This includes viral pathogens such as SARS-CoV-2, influenza, and emerging zoonotic threats. We discuss the design and optimization of saRNA vectors to maximize antigen expression while minimizing adverse immune responses. Recent studies demonstrating the safety, efficacy, and scalability of saRNA-based vaccines in clinical settings are also discussed. We address challenges related to delivery systems, stability, and manufacturing, along with novel strategies being developed to mitigate these challenges. As the global demand for rapid, flexible, and scalable vaccine platforms grows, saRNA presents a promising solution with enhanced potency and durability. This review emphasizes the transformative potential of saRNA vaccines to shape the future of immunization strategies, particularly in response to pandemics and other global health threats.
Collapse
Affiliation(s)
- Irafasha C Casmil
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Jongwoo Jin
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea; Advanced Bioconvergence Department, KRIBB School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun-Jeong Won
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Cynthia Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Suiyang Liao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Hyunjoo Cha-Molstad
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea; Advanced Bioconvergence Department, KRIBB School, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
2
|
Uddin MN, Roni MA. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel) 2021; 9:1033. [PMID: 34579270 PMCID: PMC8473088 DOI: 10.3390/vaccines9091033] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
In December 2019, a new and highly pathogenic coronavirus emerged-coronavirus disease 2019 (COVID-19), a disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), quickly spread throughout the world. In response to this global pandemic, a few vaccines were allowed for emergency use, beginning in November 2020, of which the mRNA-based vaccines by Moderna (Moderna, Cambridge, MA, USA) and BioNTech (BioTech, Mainz, Germany)/Pfizer (Pfizer, New York, NY, USA) have been identified as the most effective ones. The mRNA platform allowed rapid development of vaccines, but their global use is limited by ultracold storage requirements. Most resource-poor countries do not have cold chain storage to execute mass vaccination. Therefore, determining strategies to increase stability of mRNA-based vaccines in relatively higher temperatures can be a game changer to address the current global pandemic and upcoming new waves. In this review, we summarized the current research strategies to enhance stability of the RNA vaccine delivery system.
Collapse
Affiliation(s)
| | - Monzurul A. Roni
- College of Medicine, University of Illinois, Peoria, IL 61605, USA
| |
Collapse
|
3
|
Scaglione A, Opp S, Hurtado A, Lin Z, Pampeno C, Noval MG, Thannickal SA, Stapleford KA, Meruelo D. Combination of a Sindbis-SARS-CoV-2 Spike Vaccine and αOX40 Antibody Elicits Protective Immunity Against SARS-CoV-2 Induced Disease and Potentiates Long-Term SARS-CoV-2-Specific Humoral and T-Cell Immunity. Front Immunol 2021; 12:719077. [PMID: 34394127 PMCID: PMC8359677 DOI: 10.3389/fimmu.2021.719077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world's population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical, and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles, and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response, which can be used as a new candidate to combat SARS-CoV-2. Given the T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.
Collapse
Affiliation(s)
- Antonella Scaglione
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Silvana Opp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Alicia Hurtado
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ziyan Lin
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Christine Pampeno
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Daniel Meruelo
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Scaglione A, Opp S, Hurtado A, Lin Z, Pampeno C, Noval MG, Thannickal SA, Stapleford KA, Meruelo D. Combination of a Sindbis-SARS-CoV-2 spike vaccine and αOX40 antibody elicits protective immunity against SARS-CoV-2 induced disease and potentiates long-term SARS-CoV-2-specific humoral and T-cell immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.28.446009. [PMID: 34075383 PMCID: PMC8168399 DOI: 10.1101/2021.05.28.446009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world's population at record speeds. However, there is still demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles and metabolic analysis indicate a reprogramming of T-cells in vaccinated mice. Activated T-cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response that can be used as a new candidate to combat SARS-CoV-2. Given the strong T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as, serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.
Collapse
Affiliation(s)
- Antonella Scaglione
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Silvana Opp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alicia Hurtado
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ziyan Lin
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Pampeno
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics 2020; 12:E102. [PMID: 32013049 PMCID: PMC7076378 DOI: 10.3390/pharmaceutics12020102] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
In the past few years, there has been increasing focus on the use of messenger RNA (mRNA) as a new therapeutic modality. Current clinical efforts encompassing mRNA-based drugs are directed toward infectious disease vaccines, cancer immunotherapies, therapeutic protein replacement therapies, and treatment of genetic diseases. However, challenges that impede the successful translation of these molecules into drugs are that (i) mRNA is a very large molecule, (ii) it is intrinsically unstable and prone to degradation by nucleases, and (iii) it activates the immune system. Although some of these challenges have been partially solved by means of chemical modification of the mRNA, intracellular delivery of mRNA still represents a major hurdle. The clinical translation of mRNA-based therapeutics requires delivery technologies that can ensure stabilization of mRNA under physiological conditions. Here, we (i) review opportunities and challenges in the delivery of mRNA-based therapeutics with a focus on non-viral delivery systems, (ii) present the clinical status of mRNA vaccines, and (iii) highlight perspectives on the future of this promising new type of medicine.
Collapse
Affiliation(s)
| | | | | | | | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Semliki Forest Virus replicon particles production in serum-free medium BHK-21 cell cultures and their use to express different proteins. Cytotechnology 2019; 71:949-962. [PMID: 31422494 DOI: 10.1007/s10616-019-00337-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
The production of biopharmaceuticals as vaccines in serum-free media results in reduced risk of contamination and simpler downstream processing. The production of enveloped viruses and viral vectors such as Semliki Forest Virus (SFV) typically requires lipids that are provided by supplementation with animal serum, so production under serum-free conditions is challenging. In this work, the capacity to deliver genetic material of SFV-viral replicon particles (SFV-VRPs) produced in BHK-21 cells adapted to serum-free medium (BHK/SFM) was evaluated. Three transgenes were evaluated: GFP used as a model protein, while hepatitis C virus nonstructural protein 3 protease domain (HCV-NS3p) and rabies virus glycoprotein (RVGP) were selected based on their distinct nature (enzyme and glycoprotein, respectively). BHK/SFM cells produced a sevenfold higher number of SFV-VRPs, as determined by qRT-PCR. These particles showed similar capacities of infecting BHK/FBS or BHK/SFM cells. GFP expression was evaluated by flow cytometry, HCV-NS3p activity by enzymatic assay, and RVGP expression by ELISA and Western Blot. Expression analysis revealed higher levels of GFP and HCV-NS3p in BHK/SFM, while the levels of RVGP were similar for BHK/SFM and BHK/FBS. In conclusion, the BHK/SFM cells showed increased SFV-VRP production yields, without affecting vector infectivity or heterologous gene expression, hence validating the use of BHK/SFM for industrial applications.
Collapse
|
7
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
8
|
Oncolytic Alphaviruses in Cancer Immunotherapy. Vaccines (Basel) 2017; 5:vaccines5020009. [PMID: 28417936 PMCID: PMC5492006 DOI: 10.3390/vaccines5020009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses show specific targeting and killing of tumor cells and therefore provide attractive assets for cancer immunotherapy. In parallel to oncolytic viral vectors based on adenoviruses and herpes simplex viruses, oncolytic RNA viruses and particularly alphaviruses have been evaluated as delivery vehicles. Immunization studies in experimental rodent models for various cancers including glioblastoma, hematologic, hepatocellular, colon, cervix, and lung cancer as well as melanoma have been conducted with naturally occurring oncolytic alphavirus strains such as M1 and Sindbis AR339. Moreover, animals were vaccinated with engineered oncolytic replication-deficient and -competent Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus vectors expressing various antigens. Vaccinations elicited strong antibody responses and resulted in tumor growth inhibition, tumor regression and even complete tumor eradication. Vaccination also led to prolonged survival in several animal models. Furthermore, preclinical evaluation demonstrated both prophylactic and therapeutic efficacy of oncolytic alphavirus administration. Clinical trials in humans have mainly been limited to safety studies so far.
Collapse
|
9
|
Abstract
Viral vectors have frequently been applied in gene therapy with the final goal of treating various diseases in the areas of neurology, neurodegeneration, metabolic disease, and cancer. Vectors have been engineered based on AAV, adenoviruses, alphaviruses, herpes simplex viruses, lentiviruses, and retroviruses. Some vectors are suitable for short-term episomal transgene expression, whereas others are integrated into the host cell genome to provide long-term expression. Additionally, hybrid vectors with favorable features from different viruses have been developed. Therapeutic genes of choice have typically been toxic genes such as thymidine kinase, pro-apoptotic genes like Bax, and immunostimulatory genes (for instance, interleukin-12). A large number of animal studies have demonstrated proof of concept of viral gene therapy. Many types of viral vectors have been employed in more than 700 clinical trials that have been carried out or are currently in progress.
Collapse
Affiliation(s)
- Kenneth Lundstrom
- Regulon Inc., Chemin des Croisettes 22, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
10
|
Abstract
Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus.
Collapse
|
11
|
Alphaviruses in gene therapy. Viruses 2015; 7:2321-33. [PMID: 25961488 PMCID: PMC4452908 DOI: 10.3390/v7052321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Alphavirus vectors present an attractive approach for gene therapy applications due to the rapid and simple recombinant virus particle production and their broad range of mammalian host cell transduction. Mainly three types of alphavirus vectors, namely naked RNA, recombinant particles and DNA/RNA layered vectors, have been subjected to preclinical studies with the goal of achieving prophylactic or therapeutic efficacy, particularly in oncology. In this context, immunization with alphavirus vectors has provided protection against challenges with tumor cells. Moreover, alphavirus intratumoral and systemic delivery has demonstrated substantial tumor regression and significant prolonged survival rates in various animal tumor models. Recent discoveries of the strong association of RNA interference and disease have accelerated gene therapy based approaches, where alphavirus-based gene delivery can play an important role.
Collapse
|
12
|
Alphavirus-based vaccines. Viruses 2014; 6:2392-415. [PMID: 24937089 PMCID: PMC4074933 DOI: 10.3390/v6062392] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.
Collapse
|
13
|
Zhang L, Wang Y, Xiao Y, Wang Y, Dong J, Gao K, Gao Y, Wang X, Zhang W, Xu Y, Yan J, Yu J. Enhancement of antitumor immunity using a DNA-based replicon vaccine derived from Semliki Forest virus. PLoS One 2014; 9:e90551. [PMID: 24608380 PMCID: PMC3946523 DOI: 10.1371/journal.pone.0090551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/02/2014] [Indexed: 01/28/2023] Open
Abstract
A DNA-based replicon vaccine derived from Semliki Forest virus, PSVK-shFcG-GM/B7.1 (Fig. 1a) was designed for tumor immunotherapy as previously constructed. The expression of the fusion tumor antigen (survivin and hCGβ-CTP37) and adjuvant molecular protein (Granulocyte-Macrophage Colony-Stimulating Factor/ GM-CSF/B7.1) genes was confirmed by Immunofluorescence assay in vitro, and immunohistochemistry assay in vivo. In this paper, the immunological effect of this vaccine was determined using immunological assays as well as animal models. The results showed that this DNA vaccine induced both humoral and cellular immune responses in C57BL/6 mice after immunization, as evaluated by the ratio of CD4+/CD8+ cells and the release of IFN-γ. Furthermore, the vaccination of C57BL/6 mice with PSVK-shFcG-GM/B7.1 significantly delayed the in vivo growth of tumors in animal models (survivin+ and hCGβ+ murine melanoma, B16) when compared to vaccination with the empty vector or the other control constructs (Fig. 1b). These data indicate that this type of replicative DNA vaccine could be developed as a promising approach for tumor immunotherapy. Meanwhile, these results provide a basis for further study in vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Collapse
Affiliation(s)
- Liang Zhang
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - Yue Wang
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, China
| | - Yi Xiao
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
- Department of Urology, First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Yu Wang
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - JinKai Dong
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - Kun Gao
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - Yan Gao
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - Xi Wang
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - Wei Zhang
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - YuanJi Xu
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - JinQi Yan
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
| | - JiYun Yu
- Beijing Institute of Basic Medical Sciences, Haidian district, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Sánchez-Puig JM, Lorenzo MM, Blasco R. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles. PLoS One 2013; 8:e75574. [PMID: 24130722 PMCID: PMC3793997 DOI: 10.1371/journal.pone.0075574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.
Collapse
Affiliation(s)
- Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - María M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| |
Collapse
|
15
|
Ratnik K, Viru L, Merits A. Control of the rescue and replication of Semliki Forest virus recombinants by the insertion of miRNA target sequences. PLoS One 2013; 8:e75802. [PMID: 24098728 PMCID: PMC3786945 DOI: 10.1371/journal.pone.0075802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/18/2013] [Indexed: 12/23/2022] Open
Abstract
Due to their broad cell- and tissue-tropism, alphavirus-based replication-competent vectors are of particular interest for anti-cancer therapy. These properties may, however, be potentially hazardous unless the virus infection is controlled. While the RNA genome of alphaviruses precludes the standard control techniques, host miRNAs can be used to down-regulate viral replication. In this study, target sites from ubiquitous miRNAs and those of miRNAs under-represented in cervical cancer cells were inserted into replication-competent DNA/RNA layered vectors of Semliki Forest virus. It was found that in order to achieve the most efficient suppression of recombinant virus rescue, the introduced target sequences must be fully complementary to those of the corresponding miRNAs. Target sites of ubiquitous miRNAs, introduced into the 3' untranslated region of the viral vector, profoundly reduced the rescue of recombinant viruses. Insertion of the same miRNA targets into coding region of the viral vector was approximately 300-fold less effective. Viruses carrying these miRNAs were genetically unstable and rapidly lost the target sequences. This process was delayed, but not completely prevented, by miRNA inhibitors. Target sites of miRNA under-represented in cervical cancer cells had much smaller but still significant effects on recombinant virus rescue in cervical cancer-derived HeLa cells. Over-expression of miR-214, one of these miRNAs, reduced replication of the targeted virus. Though the majority of rescued viruses maintained the introduced miRNA target sequences, genomes with deletions of these sequences were also detected. Thus, the low-level repression of rescue and replication of targeted virus in HeLa cells was still sufficient to cause genetic instability.
Collapse
Affiliation(s)
- Kaspar Ratnik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
16
|
Mooney AJ, Tompkins SM. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses. Future Virol 2013; 8:25-41. [PMID: 23440999 PMCID: PMC3579652 DOI: 10.2217/fvl.12.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches.
Collapse
Affiliation(s)
- Alaina J Mooney
- Department of Infectious Diseases, University of Georgia, 111 Carlton St, Athens, GA 30602, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, 111 Carlton St, Athens, GA 30602, USA
| |
Collapse
|
17
|
Niedre-Otomere B, Bogdanova A, Skrastina D, Zajakina A, Bruvere R, Ose V, Gerlich WH, Garoff H, Pumpens P, Glebe D, Kozlovska T. Recombinant Semliki Forest virus vectors encoding hepatitis B virus small surface and pre-S1 antigens induce broadly reactive neutralizing antibodies. J Viral Hepat 2012; 19:664-73. [PMID: 22863271 DOI: 10.1111/j.1365-2893.2012.01594.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most hepatitis B virus (HBV) vaccines consist of viral small surface (S) protein subtype adw2 expressed in yeast cells. In spite of good efficacy, HBV-genotype and subtype differences, escape mutants and insufficient Th1 activation remain potential problems. To address these problems, we generated recombinant Semliki Forest virus (rSFV) vectors encoding S protein, subtype adw2 or ayw2, or a fragment of the large surface protein, amino acids 1-48 of the pre-S1 domain, fused to S (pre-S1.1-48/S). The antigen loop in S protein and the selected pre-S1 sequences are known targets of neutralizing antibodies. BALB/c mice were immunized intravenously with 10(7) rSFV particles and 10(8) rSFV particles 3 weeks later. Antibodies induced by rSFV encoding S proteins reacted preferentially with subtype determinants of yeast-derived S antigen but equally well with patient-derived S antigen. Immunization with rSFV encoding pre-S1.1-48/S resulted in formation of pre-S1- and S-specific immunoglobulin G (IgG), while immunization with the isogenic mutant without S start codon induced pre-S1 antibodies only. Neutralizing antibodies were determined by mixing with plasma-derived HBV/ayw2 and subsequent inoculation of susceptible primary hepatocyte cultures from Tupaia belangeri. S/adw2 antisera neutralized HBV/ayw2 as effectively as antisera raised with S/ayw2. The pre-S1 antibodies also completely neutralized HBV infectivity. The IgG1/IgG2a ratios ranged from 0.28 to 0.88 in the four immunized groups and were lowest for the pre-S1.1-48/S vector, indicating the strongest Th1 response. This vector type may induce subtype-independent and S-escape-resistant neutralizing antibodies against HBV.
Collapse
Affiliation(s)
- B Niedre-Otomere
- Biomedical Research and Study Centre, University of Latvia, Riga, Latvia, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Geisbert TW, Bausch DG, Feldmann H. Prospects for immunisation against Marburg and Ebola viruses. Rev Med Virol 2010; 20:344-57. [PMID: 20658513 PMCID: PMC3394174 DOI: 10.1002/rmv.661] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For more than 30 years the filoviruses, Marburg virus and Ebola virus, have been associated with periodic outbreaks of hemorrhagic fever that produce severe and often fatal disease. The filoviruses are endemic primarily in resource-poor regions in Central Africa and are also potential agents of bioterrorism. Although no vaccines or antiviral drugs for Marburg or Ebola are currently available, remarkable progress has been made over the last decade in developing candidate preventive vaccines against filoviruses in nonhuman primate models. Due to the generally remote locations of filovirus outbreaks, a single-injection vaccine is desirable. Among the prospective vaccines that have shown efficacy in nonhuman primate models of filoviral hemorrhagic fever, two candidates, one based on a replication-defective adenovirus serotype 5 and the other on a recombinant VSV (rVSV), were shown to provide complete protection to nonhuman primates when administered as a single injection. The rVSV-based vaccine has also shown utility when administered for postexposure prophylaxis against filovirus infections. A VSV-based Ebola vaccine was recently used to manage a potential laboratory exposure.
Collapse
Affiliation(s)
- Thomas W Geisbert
- Galveston National Laboratory1 and Department of Microbiology and Immunology2, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA.
| | | | | |
Collapse
|
19
|
Alphavirus vectors for cancer therapy. Virus Res 2010; 153:179-96. [PMID: 20692305 DOI: 10.1016/j.virusres.2010.07.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/23/2022]
Abstract
Alphaviruses contain a single strand RNA genome that can be easily modified to express heterologous genes at very high levels in a broad variety of cells, including tumor cells. Alphavirus vectors can be used as viral particles containing a packaged vector RNA, or directly as nucleic acids in the form of RNA or DNA. In the latter case alphavirus RNA is cloned within a DNA vector downstream of a eukaryotic promoter. Expression mediated by these vectors is generally transient due to the induction of apoptosis. The high expression levels, induction of apoptosis, and activation of type I IFN response are the key features that have made alphavirus vectors very attractive for cancer treatment and vaccination. Alphavirus vectors have been successfully used as vaccines to induce protective and therapeutic immune responses against many tumor-associated antigens in animal models of mastocytoma, melanoma, mammary, prostate, and virally induced tumors. Alphavirus vectors have also shown a high antitumoral efficacy by expressing antitumoral molecules in tumor cells, which include cytokines, antiangiogenic factors or toxic proteins. In these studies induction of apoptosis in tumor cells contributed to the antitumoral efficacy by the release of tumor antigens that can be uptaken by antigen presenting cells, enhancing immune responses against tumors. The potential use of alphaviruses as oncolytic agents has also been evaluated for avirulent strains of Semliki Forest virus and Sindbis virus. The fact that this latter virus has a natural tropism for tumor cells has led to many studies in which this vector was able to reach metastatic tumors when administered systemically. Other "artificial" strategies to increase the tropism of alphavirus for tumors have also been evaluated and will be discussed.
Collapse
|
20
|
Avian influenza pandemic preparedness: developing prepandemic and pandemic vaccines against a moving target. Expert Rev Mol Med 2010; 12:e14. [PMID: 20426889 DOI: 10.1017/s1462399410001432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unprecedented global spread of highly pathogenic avian H5N1 influenza viruses within the past ten years and their extreme lethality to poultry and humans has underscored their potential to cause an influenza pandemic. Combating the threat of an impending H5N1 influenza pandemic will require a combination of pharmaceutical and nonpharmaceutical intervention strategies. The emergence of the H1N1 pandemic in 2009 emphasised the unpredictable nature of a pandemic influenza. Undoubtedly, vaccines offer the most viable means to combat a pandemic threat. Current egg-based influenza vaccine manufacturing strategies are unlikely to be able to cater to the huge, rapid global demand because of the anticipated scarcity of embryonated eggs in an avian influenza pandemic and other factors associated with the vaccine production process. Therefore, alternative, egg-independent vaccine manufacturing strategies should be evaluated to supplement the traditional egg-derived influenza vaccine manufacturing. Furthermore, evaluation of dose-sparing strategies that offer protection with a reduced antigen dose will be critical for pandemic influenza preparedness. Development of new antiviral therapeutics and other, nonpharmaceutical intervention strategies will further supplement pandemic preparedness. This review highlights the current status of egg-dependent and egg-independent strategies against an avian influenza pandemic.
Collapse
|
21
|
Pan Y, Zhao Q, Fang L, Luo R, Chen H, Xiao S. Efficient gene delivery into mammalian cells by recombinant baculovirus containing a hybrid cytomegalovirus promoter/Semliki Forest virus replicon. J Gene Med 2010; 11:1030-8. [PMID: 19757479 DOI: 10.1002/jgm.1390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Baculovirus, which is widely utilized as an excellent tool for the production of recombinant protein in insect cells, has recently emerged as a novel and attractive gene delivery vehicle for mammalian cells. Alphavirus, such as Semliki Forest virus (SFV), has also received considerable attention for use as expression vectors because of its self-replicating property. In the present study, we investigated the characterization of recombinant baculovirus incorporating a hybrid cytomegalovirus (CMV) promoter/SFV replicon. METHODS Recombinant baculovirus containing the hybrid CMV promoter/SFV replicon was constructed. Using enhanced green fluorescence protein (EGFP) as the reporter gene, gene delivery efficiencies and the ability to express heterogenous protein in mammalian cells were evaluated. Optimal transduction conditions, including transduction temperature, time and dose, were also investigated. RESULTS The obtained recombinant baculovirus, Bac-CMV/SFV-EGFP, exhibited high transduction efficiency and high-level expression of reporter protein in mammalian cells. Furthermore, this recombinant baculovirus could induce apoptosis in mammalian cells in the course of transduction, as demonstrated by the observed DNA laddering patterns and increased caspase-3 activity. CONCLUSIONS The developed baculovirus vector has a high transduction efficiency and the ability to mediate foreign gene expression in mammalian cells. Taken together with its pro-apoptotic properties, this baculovirus vector may provide an alternative tool for vaccine development.
Collapse
Affiliation(s)
- Yongfei Pan
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
22
|
Pandey A, Singh N, Sambhara S, Mittal SK. Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. HUMAN VACCINES 2010; 6:178-88. [PMID: 19875936 PMCID: PMC2888842 DOI: 10.4161/hv.6.2.9899] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of a highly pathogenic H5N1 influenza virus in Hong Kong in 1997 and the subsequent appearance of other H5N1 strains and their spread to several countries in southeast Asia, Africa, the Middle East and Europe has evoked fear of a global influenza pandemic. Vaccines offer the best hope to combat the threat of an influenza pandemic. However, the global demand for a pandemic vaccine cannot be fulfilled by the current egg-based vaccine manufacturing strategies, thus creating a need to explore alternative technologies for vaccine production and delivery. Several egg-independent vaccine approaches such as cell culture-derived whole virus or subvirion vaccines, recombinant protein-based vaccines, virus-like particle (VLP) vaccines, DNA vaccines and viral vector-based vaccines are currently being investigated and appear promising both in preclinical and clinical studies. The present review will highlight the various egg-independent alternative vaccine approaches for pandemic influenza.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Correspondence: Suresh K. Mittal, Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA, Tel: 765-496-2894, Fax: 765-494-9830, , Suryaprakash Sambhara, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA, Tel: 404-639-3800, Fax: 404-639-5180,
| |
Collapse
|
23
|
Acute infection with venezuelan equine encephalitis virus replicon particles catalyzes a systemic antiviral state and protects from lethal virus challenge. J Virol 2009; 83:12432-42. [PMID: 19793821 DOI: 10.1128/jvi.00564-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The host innate immune response provides a critical first line of defense against invading pathogens, inducing an antiviral state to impede the spread of infection. While numerous studies have documented antiviral responses within actively infected tissues, few have described the earliest innate response induced systemically by infection. Here, utilizing Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) to limit infection to the initially infected cells in vivo, a rapid activation of the antiviral response was demonstrated not only within the murine draining lymph node, where replication was confined, but also within distal tissues. In the liver and brain, expression of interferon-stimulated genes was detected by 1 to 3 h following VRP footpad inoculation, reaching peak expression of >100-fold over that in mock-infected animals. Moreover, mice receiving a VRP footpad inoculation 6, 12, or 24 h prior to an otherwise lethal VEE footpad challenge were completely protected from death, including a drastic reduction in challenge virus titers. VRP pretreatment also provided protection from intranasal VEE challenge and extended the average survival time following intracranial challenge. Signaling through the interferon receptor was necessary for antiviral gene induction and protection from VEE challenge. However, VRP pretreatment failed to protect mice from a heterologous, lethal challenge with vesicular stomatitis virus, yet conferred protection following challenge with influenza virus. Collectively, these results document a rapid modulation of the host innate response within hours of infection, capable of rapidly alerting the entire animal to pathogen invasion and leading to protection from viral disease.
Collapse
|
24
|
Lundstrom K. Alphaviruses in gene therapy. Viruses 2009; 1:13-25. [PMID: 21994535 PMCID: PMC3185459 DOI: 10.3390/v1010013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan Equine Encephalitis (VEE) virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.
Collapse
|
25
|
Abstract
Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.
Collapse
|
26
|
Thompson JM, Whitmore AC, Staats HF, Johnston RE. Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen. Vaccine 2008; 26:4267-75. [PMID: 18582997 DOI: 10.1016/j.vaccine.2008.05.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 01/03/2023]
Abstract
Alphavirus replicon particles induce strong antibody and CD8+ T cell responses to expressed antigens in numerous experimental systems. We have recently demonstrated that Venezuelan equine encephalitis virus replicon particles (VRP) possess adjuvant activity for systemic and mucosal antibody responses. In this report, we demonstrate that VRP induced an increased and balanced serum IgG subtype response to co-delivered antigen, with simultaneous induction of antigen-specific IgG1 and IgG2a antibodies, and increased both systemic and mucosal antigen-specific CD8+ T cell responses, as measured by an IFN-gamma ELISPOT assay. Additionally, VRP further increased antigen-specific T cell immunity in an additive fashion following co-delivery with the TLR ligand, CpG DNA. VRP infection led to recruitment of CD8+ T cells into the mucosal compartment, possibly utilizing the mucosal homing receptor, as this integrin was upregulated on CD8+ T cells in the draining lymph node of VRP-infected animals, where VRP-infected dendritic cells reside. This newly recognized ability of VRP to mediate increased T cell response towards co-delivered antigen provides the potential to both define the molecular basis of alphavirus-induced immunity, and improve alphavirus-based vaccines.
Collapse
Affiliation(s)
- Joseph M Thompson
- Department of Microbiology and Immunology, Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599, United States
| | | | | | | |
Collapse
|
27
|
Casales E, Rodriguez-Madoz JR, Ruiz-Guillen M, Razquin N, Cuevas Y, Prieto J, Smerdou C. Development of a new noncytopathic Semliki Forest virus vector providing high expression levels and stability. Virology 2008; 376:242-51. [PMID: 18442838 DOI: 10.1016/j.virol.2008.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Alphavirus vectors express high levels of recombinant proteins in mammalian cells, but their cytopathic nature makes this expression transient. In order to generate a Semliki Forest virus (SFV) noncytopathic vector we introduced mutations previously described to turn Sindbis virus noncytopathic into a conserved position in an SFV vector expressing LacZ. Interestingly, mutant P718T in replicase nsp2 subunit was able to replicate in only a small percentage of BHK cells, producing beta-gal-expressing colonies without selection. Puromycin N-acetyl-transferase (pac) gene was used to replace LacZ in this mutant allowing selection of an SFV noncytopathic replicon containing a second mutation in nsp2 nuclear localization signal (R649H). This latter mutation did not confer a noncytopathic phenotype by itself and did not alter nsp2 nuclear translocation. Replicase synthesis was diminished in the SFV double mutant, leading to genomic and subgenomic RNA levels that were 125-fold and 66-fold lower than in wild-type vector, respectively. Interestingly, this mutant expressed beta-gal levels similar to parental vector. By coexpressing pac and LacZ from independent subgenomic promoters this vector was able to generate stable cell lines maintaining high expression levels during at least 10 passages, indicating that it could be used as a powerful system for protein production in mammalian cells.
Collapse
Affiliation(s)
- Erkuden Casales
- Division of Gene Therapy, School of Medicine, Center for Applied Medical Research (CIMA),University of Navarra, Av. Pio XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Durso RJ, Andjelic S, Gardner JP, Margitich DJ, Donovan GP, Arrigale RR, Wang X, Maughan MF, Talarico TL, Olmsted RA, Heston WDW, Maddon PJ, Olson WC. A Novel Alphavirus Vaccine Encoding Prostate-Specific Membrane Antigen Elicits Potent Cellular and Humoral Immune Responses. Clin Cancer Res 2007; 13:3999-4008. [PMID: 17606734 DOI: 10.1158/1078-0432.ccr-06-2202] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) is an attractive target for active immunotherapy. Alphavirus vaccines have shown promise in eliciting immunity to tumor antigens. This study investigated the immunogenicity of alphavirus vaccine replicon particles (VRP) that encode PSMA (PSMA-VRP). EXPERIMENTAL DESIGN Cells were infected with PSMA-VRP and evaluated for PSMA expression and folate hydrolase activity. Mice were immunized s.c. with PSMA-VRP or purified PSMA protein. Sera, splenocytes, and purified T cells were evaluated for the magnitude, durability, and epitope specificity of the anti-PSMA response. Antibodies were measured by flow cytometry, and cellular responses were measured by IFN-gamma enzyme-linked immunospot and chromium release assays. Cellular responses in BALB/c and C57BL/6 mice were mapped using overlapping 15-mer PSMA peptides. A Good Laboratory Practice-compliant toxicology study was conducted in rabbits. RESULTS PSMA-VRP directed high-level expression of active PSMA. Robust T-cell and B-cell responses were elicited by a single injection of 2 x 10(5) infectious units, and responses were boosted following repeat immunizations. Anti-PSMA responses were detected following three immunizations with 10(2) infectious units and increased with increasing dose. PSMA-VRP was more immunogenic than adjuvanted PSMA protein. Responses to PSMA-VRP were characterized by Th-1 cytokines, potent CTL activity, and IgG2a/IgG2b antibodies. T-cell responses in BALB/c and C57BL/6 mice were directed toward different PSMA peptides. Immunogenic doses of PSMA-VRP were well tolerated in mice and rabbits. CONCLUSIONS PSMA-VRP elicited potent cellular and humoral immunity in mice, and specific anti-PSMA responses were boosted on repeat dosing. PSMA-VRP represents a promising approach for immunotherapy of prostate cancer.
Collapse
Affiliation(s)
- Robert J Durso
- Progenics Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL. Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol 2007; 20:88-104. [PMID: 17425424 DOI: 10.1089/vim.2006.0090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) consist of heterogeneous phenotypic populations and have diverse immunostimulatory functions dependent on both lineage and functional phenotype, but as exceptionally potent antigen-presenting cells, they are targets for generating effective antigen-specific immune responses. A promising replicon particle vector derived from Venezuelan equine encephalitis virus (VEE) has been reported to transduce murine footpad DCs. However, the receptive DC subset, the degree of restriction for this tropism, and the extent of conservation between rodents and humans have not been well characterized. Using fresh peripheral blood DCs, mononuclear cells, monocyte-derived macrophages, and monocyte-derived DCs, our results demonstrate conservation of VEE replicon particle (VRP) tropism for DCs between humans and rodents. We observed that a subset of immature myeloid DCs is the target population, and that VRP-transduced immature DCs retain intact functional capacity, for example, the ability to resist the cytopathic effects of VRP transduction and the capacity to acquire the mature phenotype. These studies support the demonstration of selective VRP tropism for human DCs and provide further insight into the biology of the VRP vector, its parent virus, and human DCs.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Molecular Biology and Biochemistry, School of Medicine, School of Biological Sciences, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. This review highlights various antigen-delivery systems, particularly viral vectors, and assesses the underlying technologies in light of their use against AIDS and malaria. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live, recombinant vectors may combine the induction of broad, strong and persistent immune responses with acceptable safety profiles.
Collapse
|
31
|
Santos K, Simon DAL, Conway E, Bowers WJ, Mitra S, Foster TH, Lugade A, Lord EM, Federoff HJ, Dewhurst S, Frelinger JG. Spatial and temporal expression of herpes simplex virus type 1 amplicon-encoded genes: implications for their use as immunization vectors. Hum Gene Ther 2007; 18:93-105. [PMID: 17298238 DOI: 10.1089/hum.2006.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is great interest in developing new immunization vectors. Helper virus-free herpes amplicons, plasmid-based vectors that encode no viral gene products and have an extremely large coding capacity, are attractive viral vaccine candidates for expressing recombinant proteins in vivo for immunization. Earlier studies in mice, using amplicons encoding the gp120 protein of human immunodeficiency virus (HIV), resulted in strikingly robust cellular immune responses as measured by cytotoxicity and interferon gamma enzyme-linked immunospot assays. To begin to understand how such vectors function in vivo to generate an immune response, we used amplicons encoding reporter constructs including green fluorescent protein (GFP) and luciferase to examine the duration of expression after administration to mice. Luciferase expression, measured with the IVIS system from Xenogen/Caliper Life Sciences (Hopkinton, MA) and by enzymatic assays of tissue extracts, revealed that expression after injection of the HSVluc amplicons peaked earlier than 24 hr after injection into mice. HSVegfp injection resulted in peak accumulation of GFP 24 hr after administration in vivo. Thus, both reporter genes revealed a rather rapid and robust expression pattern of short duration. The short period of expression appears in part to be due to gene silencing. Examination of the cells transduced by amplicons encoding GFP and human B7.1 suggested that the amplicons transduce a variety of cells, including professional antigen-presenting cells. From this and previous work, we conclude that amplicons may engender a potent immune response by directly transducing dendritic cells as well as by cross-priming of antigen produced by other transduced host cells.
Collapse
Affiliation(s)
- Kathlyn Santos
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Marburg (MARV) and Ebola viruses (EBOV) emerged from the rainforests of Central Africa more than 30 years ago causing outbreaks of severe and, usually, fatal hemorrhagic fever. EBOV has garnered the lion's share of the attention, fueled by the higher frequency of EBOV outbreaks, high mortality rates and importation into the USA, documented in such popular works as the best-selling novel 'The Hot Zone'. However, recent large outbreaks of hundreds of cases of MARV infection in the Democratic Republic of the Congo and Angola with case fatalities approaching 90% dramatically highlight its lethal potential. Although no vaccines or antiviral drugs for MARV are currently available, remarkable progress has been made over the last few years in developing potential countermeasures against MARV in nonhuman primate models. In particular, a vaccine based on attenuated recombinant vesicular stomatitis virus was recently shown to have both preventive and postexposure efficacy.
Collapse
Affiliation(s)
- Daniel G Bausch
- Department of Tropical Medicine, SL-17, Tulane School of Public Health and Tropical Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | |
Collapse
|
33
|
Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 2006; 58:931-47. [PMID: 17030074 DOI: 10.1016/j.addr.2006.05.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/10/2006] [Indexed: 12/11/2022]
Abstract
To date cancer vaccines have yet to show efficacy in a phase III trial. However, the clinical benefit seen with monoclonal antibody mediated therapies (e.g., Herceptin) has provided proof of principle that immune responses directed against tumour-associated antigens could have therapeutic potential. The failure of past cancer vaccine trials is likely due to several factors including the inappropriate choice of tumour antigen, use of an unoptimised antigen delivery system or vaccination schedule or selection of the wrong patient group. Any one of these variables could potentially result in the induction of an immune response of insufficient magnitude to deliver clinical benefit. Live recombinant viral vaccines have been used in the development of cancer immunotherapy approaches for the past 10 years. Though such vectors are self-adjuvanted and offer the ability to express multiple tumour-associated antigens (TAAs) along with an array of immune co-factors, arguably, they have yet to demonstrate convincing efficacy in pivotal clinical trials. However, in recent years, more coordinated studies have revealed mechanisms to optimise current vectors and have lead to the development of new advantageous vector systems. In this review, we highlight that live recombinant viral vectors provide a versatile and effective antigen delivery system and describe the optimal properties of an effective viral vector. Additionally, we discuss the advantages and disadvantages of the panel of recombinant viral systems currently available to cancer vaccinologists and how they can work in synergy in heterologous prime boost protocols and with other treatment modalities.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (U.K.) Ltd., Oxford Science Park, Oxford, OX4 4GA U.K
| | | | | |
Collapse
|
34
|
Chikkanna-Gowda CP, Sheahan BJ, Fleeton MN, Atkins GJ. Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Ther 2006; 12:1253-63. [PMID: 15944731 DOI: 10.1038/sj.gt.3302561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Semliki Forest virus (SFV) vector is an RNA-based suicide expression vector that has been used experimentally for tumour therapy. Recently, a new enhanced vector pSFV10-E has been developed that expresses foreign genes at levels up to 10 times higher than the original vector. Interleukin-12 (IL-12), an immunomodulatory cytokine, plays a key role in the induction of T-helper1 responses. The two IL-12 gene subunits were cloned from mouse splenocytes and inserted into the pSFV10-E and pSFV10 (non-enhanced) vectors. Both constructs expressed and secreted biologically active murine IL-12. Administration of high titre rSFV10-E-IL12 particles intratumourally to treat implanted K-BALB tumours in BALB/c mice demonstrated complete tumour regression in comparison to control or rSFV10-IL12 treated groups. High titre rSFV10-E-IL12 particles were also effective in the CT26 tumour model. Histological and immunohistochemical studies revealed tumour necrosis in addition to aggressive influx of CD4+ and CD8+ T cells and other immune cells. Furthermore, inhibition of primary tumour growth and lung metastases of a metastatic (4T1) tumour model indicated the potential of high titres of rSFV10-E-IL12 particles as an efficient antitumour therapeutic agent.
Collapse
Affiliation(s)
- C P Chikkanna-Gowda
- Department of Microbiology, Moyne Institute, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
35
|
Abstract
The broad host cell range and high expression levels of transgenes are features that have made alphaviruses attractive for gene expression studies and gene therapy applications. Particularly, Semliki Forest virus vectors have been applied for large-scale production of recombinant membrane proteins for drug screening purposes and structural biology studies. The high preference of expression in neuronal cells has led to many applications of alphavirus vectors in neuroscience. Studies on localization and transport of recombinant proteins as well as electrophysiological recording have become feasible in primary cultures of neurons and hippocampal slice cultures. Alphaviruses have frequently been used as vaccine vectors for expression of antigens against viruses and tumors. Administration of recombinant viral particles, DNA plasmids or in vitro transcribed RNA has resulted in protection against challenges against lethal viruses and tumors in rodent and primate models. Intratumoral injections of alphavirus vectors expressing reporter and immunostimulatory genes have led to significant tumor regression in mouse models. Modifications of the viral envelope structure have generated targeted Sindbis virus vectors. Astonishingly, conventional Sindbis vectors have demonstrated tumor-specific targeting in animal models due to the high density of laminin receptors on cancer cells. Moreover, encaspulation of Semliki Forest virus vectors in liposomes has provided a means of achieving tumor targeting and protection against the host immune response. Much attention has also been given to the engineering of novel mutant alphavirus vectors with properties such as reduced cytotoxicity, prolonged duration of transgene expression and improved survival of host cells.
Collapse
Affiliation(s)
- K Lundstrom
- Regulon Inc./BioXtal, Epalinges, Switzerland
| |
Collapse
|
36
|
Pappas CL, Tzeng WP, Frey TK. Evaluation of cis-acting elements in the rubella virus subgenomic RNA that play a role in its translation. Arch Virol 2005; 151:327-46. [PMID: 16172842 DOI: 10.1007/s00705-005-0614-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
The subgenomic (SG) mRNA of rubella virus (RUB) contains the structural protein open reading frame (SP-ORF) that is translated to produce the three virion structural proteins: capsid (C) and glycoproteins E2 and E1. RUB expression vectors have been developed that express heterologous genes from the SG RNA, including replicons which replace the SP-ORF with a heterologous gene, and these expression vectors are candidate vaccine vectors. In the related alphaviruses, translational enhancing elements have been identified in both the 5' untranslated region (UTR) of the SG RNA and the N-terminal region of the C gene. To optimize expression from RUB vectors, both the 5'UTR of the SG RNA and the C gene were surveyed for translational enhancing elements using both plasmids and replicons expressing reporter genes from the SG RNA. In replicons, the entire 5'UTR was necessary for translation; interestingly, when plasmids were used the 5'UTR was dispensable for optimal translation. The RUB C gene contains a predicted long stem-loop starting 62 nts downstream from the initiation codon (SLL) that has a structure and stability similar to SL's found in the C genes of two alphaviruses, Sindbis virus (SIN) and Semliki Forest virus, that have been shown to enhance translation of the SG RNA in infected cells. However, a series of fusions of various lengths of the N-terminus of the RUB C protein with reporter genes showed that the SLL had an attenuating effect on translation that was overcome by mutagenesis that destabilized the SLL or by adding downstream sequences of the C gene to the fusion. Thus, for optimal expression efficiency from RUB expression vectors, only the 5'UTR of the SG RNA is required. Further investigation of the differing effects of the SLL on RUB and alphavirus SG RNA translation revealed that the SIN and RUB SLLs could enhance translation when expressed from a SIN cytopathic replicon, but not when expressed from a plasmid, a RUB replicon, or a SIN noncytopathic replicon. Thus, the SLL only functions in a "cytopathic environment" in which cell translation has been altered.
Collapse
Affiliation(s)
- C L Pappas
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
37
|
Wang X, Wang JP, Rao XM, Price JE, Zhou HS, Lachman LB. Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice. Breast Cancer Res 2005; 7:R580-8. [PMID: 16168101 PMCID: PMC1242122 DOI: 10.1186/bcr1199] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/05/2005] [Accepted: 04/21/2005] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.
Collapse
MESH Headings
- Animals
- Cancer Vaccines
- Cell Line, Tumor
- Female
- Genes, erbB-2/immunology
- Immunization, Secondary
- Interferon-gamma/biosynthesis
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/prevention & control
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Sindbis Virus/immunology
- Spleen/immunology
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program in Immunology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jian-Ping Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao-Mei Rao
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Janet E Price
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heshan S Zhou
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Lawrence B Lachman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program in Immunology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
38
|
Tscharke DC, Suhrbier A. From mice to humans – murine intelligence for human CD8+T cell vaccine design. Expert Opin Biol Ther 2005; 5:263-71. [PMID: 15757387 DOI: 10.1517/14712598.5.2.263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There has been considerable progress in the design of vaccines capable of safely and effectively inducing CD8(+) T cells for prophylaxis and treatment of chronic infectious diseases and cancer. Much of what is known about CD8(+) T cell-mediated immunity has come from pioneering work in mice; this broad overview discusses recent work in mouse systems where lessons may be drawn for human vaccine development. The areas highlighted include antivector immunity, immunodominance, dendritic cell biology and targeting, the role of Toll-like receptors and their exploitation by novel adjuvants, the role of CD4(+) T cell help, regulatory T cells and, finally, some comments on the different requirements of prophylactic versus therapeutic vaccines.
Collapse
Affiliation(s)
- David C Tscharke
- Queensland Institute of Medical Research, EBVBiology, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| | | |
Collapse
|
39
|
Gehrke R, Heinz FX, Davis NL, Mandl CW. Heterologous gene expression by infectious and replicon vectors derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. J Gen Virol 2005; 86:1045-1053. [PMID: 15784898 DOI: 10.1099/vir.0.80677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The flavivirus tick-borne encephaltis virus (TBEV) was established as a vector system for heterologous gene expression. The variable region of the genomic 3′ non-coding region was replaced by an expression cassette consisting of the reporter gene enhanced green fluorescent protein (EGFP) under the translational control of an internal ribosomal entry site element, both in the context of an infectious virus genome and of a replicon lacking the genes of the surface proteins prM/M and E. The expression level and the stability of expression were measured by fluorescence-activated cell-sorting analysis and compared to an established alphavirus replicon vector derived from Venezuelan equine encephaltis virus (VEEV), expressing EGFP under the control of its natural subgenomic promoter. On the first day, the alphavirus replicon exhibited an approximately 180-fold higher expression level than the flavivirus replicon, but this difference decreased to about 20- and 10-fold on days 2 and 3, respectively. Four to six days post-transfection, foreign gene expression by the VEEV replicon vanished almost completely, due to extensive cell killing. In contrast, in the case of the TBEV replicon, the percentage of positive cells and the amount of EGFP expression exhibited only a moderate decline over a time period of almost 4 weeks. The infectious TBEV vector expressed less EGFP than the TBEV replicon at all times. Significant expression from the infectious vector was maintained for four cell-culture passages. The results indicate that the VEEV vector is superior with respect to achieving high expression levels, but the TBEV system may be advantageous for applications that require a moderate, but more enduring, gene expression.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Nancy L Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian W Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|
40
|
Chen M, Barnfield C, Näslund TI, Fleeton MN, Liljeström P. MyD88 expression is required for efficient cross-presentation of viral antigens from infected cells. J Virol 2005; 79:2964-72. [PMID: 15709016 PMCID: PMC548467 DOI: 10.1128/jvi.79.5.2964-2972.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While virus-infected dendritic cells (DCs) in certain instances have the capacity to activate naive T cells by direct priming, cross-priming by DCs via the uptake of antigens from infected cells has lately been recognized as another important pathway for the induction of antiviral immunity. During cross-priming, danger and stranger signals play important roles in modulating immune responses. Analogous to what has been shown for other microbial infections, virally infected cells may contain several pathogen-associated molecular patterns that are recognized by Toll-like receptors (TLRs). We analyzed whether the efficient presentation of antigens derived from infected cells requires the usage of MyD88, which is a common adaptor molecule used by all TLRs. For this study, we used murine DCs that were wild type or deficient in MyD88 expression and fibroblasts that were infected with an alphavirus replicon to answer this question. Our results show that when DCs are directly infected, they are able to activate antigen-specific CD8(+) T cells in a MyD88-independent manner. In contrast, a strict requirement of MyD88 for cross-priming was observed when virally infected cells were used as a source of antigen in vitro and in vivo. This indicates that the effects of innate immunity stimulation via the MyD88 pathway control the efficiency of cross-presentation, but not direct presentation or DC maturation, and have important implications in the development of cytotoxic T lymphocyte responses against alphaviral replicon infections.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigen Presentation
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Viral/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Female
- Fibroblasts/immunology
- Fibroblasts/virology
- In Vitro Techniques
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Ovalbumin/immunology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Semliki forest virus/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Margaret Chen
- Department of Vaccine Research, Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Rosenthal KL. Recombinant Live Viral Vectors as Vaccines for Mucosal Immunity. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Abstract
Myeloid and plasmacytoid dendritic cells, a family of professional antigen presenting cells, are crucial in generating and maintaining anti-viral immunity. Many viruses have evolved to avoid, subvert, and even counterattack them. In this article, we focus on the tuning of innate and adaptive responses induced by human dendritic cells, and on the inhibition of their functions by viruses of medical significance. A constant "tug of war" goes on between dendritic cells and viruses and a main dendritic cell countermeasure is cross-presentation/priming.
Collapse
Affiliation(s)
- Marie Larsson
- NYU School of Medicine, 550 First Avenue, MSB507, New York, NY 10016, USA
| | | | | |
Collapse
|
43
|
Tabrizi CA, Walcher P, Mayr UB, Stiedl T, Binder M, McGrath J, Lubitz W. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004; 15:530-7. [PMID: 15560979 DOI: 10.1016/j.copbio.2004.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the exponential rate of discovery of new antigens and DNA vaccines resulting from modern molecular biology and proteomics, the lack of effective delivery technology is a major limiting factor in their application. The bacterial ghost system represents a platform technology for antigen, nucleic acid and drug delivery. Bacterial ghosts have significant advantages over other engineered biological delivery particles, owing to their intrinsic cellular and tissue tropic abilities, ease of production and the fact that they can be stored and processed without the need for refrigeration. These particles have found both veterinary and medical applications for the vaccination and treatment of tumors and various infectious diseases.
Collapse
Affiliation(s)
- Chakameh Azimpour Tabrizi
- Institute of Microbiology and Genetics, Section Microbiology and Biotechnology, University of Vienna, Althanstrasse 14, UZAII, 2B 522, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang X, Wang JP, Maughan MF, Lachman LB. Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis. Breast Cancer Res 2004; 7:R145-55. [PMID: 15642163 PMCID: PMC1064108 DOI: 10.1186/bcr962] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/09/2004] [Accepted: 10/13/2004] [Indexed: 11/24/2022] Open
Abstract
Introduction Overexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective. Methods Virus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model. Results VRP-neu prevented or significantly inhibited the growth of HER2/neu-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-neu completely prevented tumor formation in and death of MMTV-c-neu transgenic mice, and resulted in high levels of neu-specific CD8+ T lymphocytes and serum IgG. Conclusion On the basis of these findings, clinical testing of this vaccine in patients with HER2/neu+ breast cancer is warranted.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jian-Ping Wang
- Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Lawrence B Lachman
- Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center, Houston, Texas, USA
| |
Collapse
|
45
|
Cole GT, Xue JM, Okeke CN, Tarcha EJ, Basrur V, Schaller RA, Herr RA, Yu JJ, Hung CY. A vaccine against coccidioidomycosis is justified and attainable. Med Mycol 2004; 42:189-216. [PMID: 15283234 DOI: 10.1080/13693780410001687349] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coccidioides is a fungal pathogen of humans which can cause a life-threatening respiratory disease in immunocompetent individuals. Recurrent epidemics of coccidioidal infections in Southwestern United States has raised the specter of awareness of this soil-borne microbe, particularly among residents of Arizona and Southern California, and has galvanized research efforts to develop a human vaccine against coccidioidomycosis. In this review, we discuss the rationale for such a vaccine, examine the features of host innate and acquired immune response to Coccidioides infection, describe strategies used to identify and evaluate vaccine candidates, and provide an update on progress toward development of a vaccine against this endemic pathogen.
Collapse
Affiliation(s)
- G T Cole
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Suhrbier A, La Linn M. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 2004; 16:374-9. [PMID: 15201600 DOI: 10.1097/01.bor.0000130537.76808.26] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Arthritogenic alphaviruses are globally distributed mosquito-borne RNA viruses causing epidemics of polyarthritis/arthralgia, with disease emerging or reemerging and increasingly being reported in travelers. This article summarizes the current knowledge of these diseases, focusing on recent developments in the understanding of Ross River virus disease. RECENT FINDINGS Alphaviral arthritides have often been blamed for protracted chronic illnesses. However, validated quality-of-life questionnaires and exhaustive searches for differential diagnoses showed that Ross River virus disease, although severe at onset, progressively resolved over 3 to 6 months. Many patients did experience long-term disease lasting more than 12 months, but in nearly all cases this was due to other conditions, primarily unrelated rheumatic conditions or depression. There is no indication that alphaviral arthritides predispose to other conditions; thus, patients whose Ross River virus disease has actually resolved may be underdiagnosed for other conditions. Ross River virus polyarthritis probably arises from inflammation associated with productive viral infections in synovial macrophages, which persist despite neutralizing antibodies and antiviral cytokine responses. Persistence may be facilitated by downregulation of cytokine responses by virus-antibody complexes binding to Fc receptors and induction of interleukin-10. How virus escapes neutralizing antibodies remains unclear but may involve phagocytosis of apoptotic virus-infected cells and infection of the phagocyte via the phagosome. SUMMARY Diagnosis of alphaviral arthritides is complicated by nonspecific symptoms and the lack of commercial serodiagnostic kits, except for Ross River and Barmah Forest virus infections in Australia. Differential diagnoses should be actively pursued, especially if symptoms persist. Treatment with nonsteroidal anti-inflammatory drugs appears largely effective, with no evidence of long-term sequelae or relapse.
Collapse
Affiliation(s)
- Andreas Suhrbier
- Queensland Institute of Medical Research, Australian Centre for International & Tropical Health & Nutrition, Brisbane, Australia.
| | | |
Collapse
|
47
|
Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2004; 2:471-86. [PMID: 14529313 DOI: 10.1177/153303460300200513] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy as part of modern molecular medicine holds great promise for the treatment of both acute and chronic diseases and has the potential to bring a revolutionary era to cancer treatment. Gene therapy has been named the medicine of the future. For the past 10 years various viral and non-viral vectors have been engineered for improved gene and drug delivery. Although various diseases have been targeted, cancer therapy has been addressed to a large extent because of the straight forward approach. Delivery of toxic or immunostimulatory genes by viral and non-viral vectors has been investigated and encouraging results have been obtained in animal models. A large number of clinical trials have been conducted with some highly promising outcome. We propose that combinations of viruses with liposomes or polymers will solve the problem of systemic viral delivery and tumor targeting, bringing a revolution in molecular medicine and in applications of gene therapy in humans.
Collapse
Affiliation(s)
- Kenneth Lundstrom
- Regulon Inc./BioXtal, Chemin des Croisettes 22, CH-1066, Epalinges, Swizerland.
| | | |
Collapse
|