1
|
Zheng Q, He M, Mao Z, Huang Y, Li X, Long L, Guo M, Zou D. Advancing the Fight Against Cervical Cancer: The Promise of Therapeutic HPV Vaccines. Vaccines (Basel) 2025; 13:92. [PMID: 39852871 PMCID: PMC11768687 DOI: 10.3390/vaccines13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Human papillomavirus (HPV) is a major global health issue and is recognized as the leading cause of cervical cancer. While prophylactic vaccination programs have led to substantial reductions in both HPV infection rates and cervical cancer incidence, considerable burdens of HPV-related diseases persist, particularly in developing countries with inadequate vaccine coverage and uptake. The development of therapeutic vaccines for HPV represents an emerging strategy that has the potential to bolster the fight against cervical cancer. Unlike current prophylactic vaccines designed to prevent new infections, therapeutic vaccines aim to eradicate or treat existing HPV infections, as well as HPV-associated precancers and cancers. This review focuses on clinical studies involving therapeutic HPV vaccines for cervical cancer, specifically in three key areas: the treatment of cervical intraepithelial neoplasia; the treatment of cervical cancer in combination with or without chemotherapy, radiotherapy, or immune checkpoint inhibitors; and the role of prophylaxis following completion of treatment. Currently, there are no approved therapeutic HPV vaccines worldwide; however, active progress is being made in clinical research and development using multiple platforms such as peptides, proteins, DNA, RNA, bacterial vectors, viral vectors, and cell-based, each offering relative advantages and limitations for delivering HPV antigens and generating targeted immune responses. We outline preferred vaccine parameters, including indications, target populations, safety considerations, efficacy considerations, and immunization strategies. Lastly, we emphasize that therapeutic vaccines for HPV that are currently under development could be an important new tool in fighting against cervical cancer.
Collapse
Affiliation(s)
- Qian Zheng
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Misi He
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zejia Mao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
| | - Yue Huang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
| | - Xiuying Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
| | - Ling Long
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Mingfang Guo
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
| | - Dongling Zou
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Peng S, Fan D, Tu HF, Cheng M, Arend RC, Levinson K, Tao J, Roden RBS, Hung CF, Wu TC. Improved efficacy of therapeutic HPV DNA vaccine using intramuscular injection with electroporation compared to conventional needle and needle-free jet injector methods. Cell Biosci 2024; 14:154. [PMID: 39722048 DOI: 10.1186/s13578-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND We have previously developed a candidate therapeutic HPV DNA vaccine (pBI-11) encoding mycobacteria heat shock protein 70 linked to HPV16/18 E6/E7 proteins for the control of advanced HPV-associated oropharyngeal cancer (NCT05799144). While naked DNA vaccines are readily produced, stable, and well tolerated, their potency is limited by the delivery efficiency. Here we compared three different IM delivery strategies, including intramuscular (IM) injection, either with a needle alone or with electroporation at the injection site, and a needle-free injection system (NFIS), for their ability to elicit gene expression and to improve the potency of pBI-11 DNA vaccine. RESULTS We found that electroporation after IM injection significantly increases gene expression from a luciferase-encoding DNA construct compared to IM injection alone or NFIS. We also showed that single administration of pBI-11 DNA via electroporation-mediated delivery generates the greatest increase in HPV antigen-specific CD8 + T cell-mediated immune responses, resulting in the most potent antitumor effect compared to the other two methods. We further compared the response to three repeat immunizations via each of these different methods. We found that electroporation-mediated delivery of pBI-11 DNA generates the greatest HPV antigen-specific CD8 + T cell immune responses and therapeutic antitumor effects compared to the other two methods. Monitoring of mouse behaviors and body weight, and necropsy indicated that electroporation-mediated delivery of clinical grade pBI-11 DNA vaccine was well-tolerated and presented no evident local or systemic toxicity. CONCLUSIONS These findings provide rationale for clinical testing of pBI-11 DNA vaccine delivered by electroporation for the control of HPV16/18-associated infections and/or cancers.
Collapse
Affiliation(s)
- Shiwen Peng
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, USA
| | - Kimberly Levinson
- Department of Oncology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins University, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA.
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins University, CRB II Room 307, 1550 Orleans St, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wang R, Huang H, Yu C, Li X, Wang Y, Xie L. Current status and future directions for the development of human papillomavirus vaccines. Front Immunol 2024; 15:1362770. [PMID: 38983849 PMCID: PMC11231394 DOI: 10.3389/fimmu.2024.1362770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The development of human papillomavirus (HPV) vaccines has made substantive progress, as represented by the approval of five prophylactic vaccines since 2006. Generally, the deployment of prophylactic HPV vaccines is effective in preventing newly acquired infections and incidences of HPV-related malignancies. However, there is still a long way to go regarding the prevention of all HPV infections and the eradication of established HPV infections, as well as the subsequent progression to cancer. Optimizing prophylactic HPV vaccines by incorporating L1 proteins from more HPV subtypes, exploring adjuvants that reinforce cellular immune responses to eradicate HPV-infected cells, and developing therapeutic HPV vaccines used either alone or in combination with other cancer therapeutic modalities might bring about a new era getting closer to the vision to get rid of HPV infection and related diseases. Herein, we summarize strategies for the development of HPV vaccines, both prophylactic and therapeutic, with an emphasis on the selection of antigens and adjuvants, as well as implications for vaccine efficacy based on preclinical studies and clinical trials. Additionally, we outline current cutting-edge insights on formulation strategies, dosing schedules, and age expansion among HPV vaccine recipients, which might play important roles in addressing barriers to vaccine uptake, such as vaccine hesitancy and vaccine availability.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Hongpeng Huang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Li M, Liu L, Li X, Li J, Zhao C, Zhao Y, Zhang X, He P, Wu X, Jiang S, Wang X, Zhang X, Wei L. Lipid Nanoparticles Outperform Electroporation in Delivering Therapeutic HPV DNA Vaccines. Vaccines (Basel) 2024; 12:666. [PMID: 38932395 PMCID: PMC11209142 DOI: 10.3390/vaccines12060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Therapeutic HPV vaccines that induce potent HPV-specific cellular immunity and eliminate pre-existing infections remain elusive. Among various candidates under development, those based on DNA constructs are considered promising because of their safety profile, stability, and efficacy. However, the use of electroporation (EP) as a main delivery method for such vaccines is notorious for adverse effects like pain and potentially irreversible muscle damage. Moreover, the requirement for specialized equipment adds to the complexity and cost of clinical applications. As an alternative to EP, lipid nanoparticles (LNPs) that are already commercially available for delivering mRNA and siRNA vaccines are likely to be feasible. Here, we have compared three intramuscular delivery systems in a preclinical setting. In terms of HPV-specific cellular immune responses, mice receiving therapeutic HPV DNA vaccines encapsulated with LNP demonstrated superior outcomes when compared to EP administration, while the naked plasmid vaccine showed negligible responses, as expected. In addition, SM-102 LNP M exhibited the most promising results in delivering candidate DNA vaccines. Thus, LNP proves to be a feasible delivery method in vivo, offering improved immunogenicity over traditional approaches.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (M.L.); (J.L.); (C.Z.); (Y.Z.)
| | - Lei Liu
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Xiaoli Li
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Jingran Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (M.L.); (J.L.); (C.Z.); (Y.Z.)
| | - Chao Zhao
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (M.L.); (J.L.); (C.Z.); (Y.Z.)
| | - Yun Zhao
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (M.L.); (J.L.); (C.Z.); (Y.Z.)
| | - Xiaopeng Zhang
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Panpan He
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Xiaoyu Wu
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Siwen Jiang
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Xingxing Wang
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Xiujun Zhang
- Aeonvital Institute of Clinical and Translational Immunology (AICTI), Beijing 102600, China; (L.L.); (X.L.); (X.Z.); (P.H.); (X.W.); (S.J.); (X.W.)
| | - Lihui Wei
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (M.L.); (J.L.); (C.Z.); (Y.Z.)
| |
Collapse
|
5
|
Hernández-Silva CD, Ramírez de Arellano A, Pereira-Suárez AL, Ramírez-López IG. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses 2024; 16:327. [PMID: 38543693 PMCID: PMC10974876 DOI: 10.3390/v16030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 05/23/2024] Open
Abstract
Cervical cancer is primarily caused by Human Papillomavirus (HPV) infection and remains a significant public health concern, particularly in Latin American regions. This comprehensive narrative review addresses the relationship between Human Papillomavirus (HPV) and cervical cancer, focusing on Latin American women. It explores molecular and immunological aspects of HPV infection, its role in cervical cancer development, and the epidemiology in this region, highlighting the prevalence and diversity of HPV genotypes. The impact of vaccination initiatives on cervical cancer rates in Latin America is critically evaluated. The advent of HPV vaccines has presented a significant tool in combating the burden of this malignancy, with notable successes observed in various countries, the latter due to their impact on immune responses. The review synthesizes current knowledge, emphasizes the importance of continued research and strategies for cervical cancer prevention, and underscores the need for ongoing efforts in this field.
Collapse
Affiliation(s)
- Christian David Hernández-Silva
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (C.D.H.-S.); (A.L.P.-S.)
| | - Adrián Ramírez de Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (C.D.H.-S.); (A.L.P.-S.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Inocencia Guadalupe Ramírez-López
- Departamento de Ciencias de La Salud, CUValles, Universidad de Guadalajara, Guadalajara-Ameca Rd Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
6
|
O’Hara MP, Yanamandra AV, Sastry KJ. Immunity from NK Cell Subsets Is Important for Vaccine-Mediated Protection in HPV+ Cancers. Vaccines (Basel) 2024; 12:206. [PMID: 38400189 PMCID: PMC10892709 DOI: 10.3390/vaccines12020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are associated with genital and oral cancers, and the incidence of HPV+ head and neck squamous cell cancers is fast increasing in the USA and worldwide. Survival rates for patients with locally advanced disease are poor after standard-of-care chemoradiation treatment. Identifying the antitumor host immune mediators important for treatment response and designing strategies to promote them are essential. We reported earlier that in a syngeneic immunocompetent preclinical HPV tumor mouse model, intranasal immunization with an HPV peptide therapeutic vaccine containing the combination of aGalCer and CpG-ODN adjuvants (TVAC) promoted clearance of HPV vaginal tumors via induction of a strong cytotoxic T cell response. However, TVAC was insufficient in the clearance of HPV oral tumors. To overcome this deficiency, we tested substituting aGalCer with a clinically relevant adjuvant QS21 (TVQC) and observed sustained, complete regression of over 70% of oral and 80% of vaginal HPV tumors. The TVQC-mediated protection in the oral tumor model correlated with not only strong total and HPV-antigen-specific CD8 T cells, but also natural killer dendritic cells (NKDCs), a novel subset of NK cells expressing the DC marker CD11c. Notably, we observed induction of significantly higher overall innate NK effector responses by TVQC relative to TVAC. Furthermore, in mice treated with TVQC, the frequencies of total and functional CD11c+ NK cell populations were significantly higher than the CD11c- subset, highlighting the importance of the contributions of NKDCs to the vaccine response. These results emphasize the importance of NK-mediated innate immune effector responses in total antitumor immunity to treat HPV+ cancers.
Collapse
Affiliation(s)
- Madison P. O’Hara
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.P.O.); (A.V.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ananta V. Yanamandra
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.P.O.); (A.V.Y.)
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.P.O.); (A.V.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Pratiwi SE, Ysrafil Y, Mardhia M, Mahyarudin M, Ilmiawan MI, Trianto HF, Liana DF, Amia Y. A novel therapeutic multiepitope vaccine based on oncoprotein E6 and E7 of HPV 16 and 18: An in silico approach. BIOIMPACTS : BI 2024; 14:27846. [PMID: 39296802 PMCID: PMC11406424 DOI: 10.34172/bi.2024.27846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2024]
Abstract
Introduction The current vaccine strategies to prevent cervical cancer are effective only for individuals unexposed to HPV, lacking therapeutic effects against pre-existing infections. Multiepitope vaccines, using an immunoinformatic approach, are promising against tumors and viral infections because of their high specificity, safety, and stability, as well as the cheap cost of development. Methods This study employed computer-based immunoinformatic analysis to design therapeutic multiepitope vaccines against cervical cancer using oncoproteins E6 and E7 of HPV 16 and 18. Several immunoinformatic tools were applied to analyze potential vaccine constructs capable of stimulating immune responses against both oncoproteins. Results The constructed vaccine exhibited antigenic, immunogenic, nonallergenic, nontoxic, stable, and soluble characteristics. Additionally, it effectively interacted with TLR2 and TLR4, showing high binding capacity. Computational analysis indicated the vaccine could induce immune responses through the elevation of cytokine levels after the third injection, antibody production, activation of memory B and T cells, and promotion of increased dendritic cell counts. Conclusion The novel multiepitope vaccine based on E6 and E7 presented as a promising candidate for combating HPV infections and associated cervical cancer. Further in vitro and in vivo studies were essential to validate the efficacy and safety of the vaccine.
Collapse
Affiliation(s)
- Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Ysrafil Ysrafil
- Department of Pharmacology, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya, Indonesia
| | - Mardhia Mardhia
- Department of Microbiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Mahyarudin Mahyarudin
- Department of Microbiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Muhammad Inam Ilmiawan
- Department of Biology and Pathobiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Heru Fajar Trianto
- Department of Biology and Pathobiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Delima Fajar Liana
- Department of Microbiology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| | - Yuri Amia
- Medical School, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia
| |
Collapse
|
8
|
Huang X, Huo L, Xiao B, Ouyang Y, Chen F, Li J, Zheng X, Wei D, Wu Y, Zhang R, Cao X, Kang T, Gao Y. Activating STING/TBK1 suppresses tumor growth via degrading HPV16/18 E7 oncoproteins in cervical cancer. Cell Death Differ 2024; 31:78-89. [PMID: 38007552 PMCID: PMC10781763 DOI: 10.1038/s41418-023-01242-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Cervical cancer is the most common gynecologic cancer, etiologically related to persistent infection of human papillomavirus (HPV). Both the host innate immunity system and the invading HPV have developed sophisticated and effective mechanisms to counteract each other. As a central innate immune sensing signaling adaptor, stimulator of interferon genes (STING) plays a pivotal role in antiviral and antitumor immunity, while viral oncoproteins E7, especially from HPV16/18, are responsible for cell proliferation in cervical cancer, and can inhibit the activity of STING as reported. In this report, we find that activation of STING-TBK1 (TANK-binding kinase 1) promotes the ubiquitin-proteasome degradation of E7 oncoproteins to suppress cervical cancer growth. Mechanistically, TBK1 is able to phosphorylate HPV16/18 E7 oncoproteins at Ser71/Ser78, promoting the ubiquitination and degradation of E7 oncoproteins by E3 ligase HUWE1. Functionally, activated STING inhibits cervical cancer cell proliferation via down-regulating E7 oncoproteins in a TBK1-dependent manner and potentially synergizes with radiation to achieve better effects for antitumor. Furthermore, either genetically or pharmacologically activation of STING-TBK1 suppresses cervical cancer growth in mice, which is independent on its innate immune defense. In conclusion, our findings represent a new layer of the host innate immune defense against oncovirus and provide that activating STING/TBK1 could be a promising strategy to treat patients with HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Xiaodan Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Beibei Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yi Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Foping Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Junyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xinping Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| |
Collapse
|
9
|
Vemula S, Bonala S, Vadde NK, Natu JZ, Basha R, Vadde R, Ahmad S. Drug resistance and immunotherapy in gynecologic cancers. Life Sci 2023; 332:122104. [PMID: 37730109 DOI: 10.1016/j.lfs.2023.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Gynecologic malignancies (GMs) are relatively less focused cancers by oncologists and researchers. The five-year survival rate of patients with GMs remained almost the same during the last decade. The development of drug resistance GMs makes it even more challenging to tackle due to tumor heterogeneity, genomic instability, viral/non-viral antigens, and etiological tumor origin. A precision medicine approach, including gene therapies, is under testing to restore tumor responsiveness to therapeutics and immunotherapy. With more data being uncovered, immunotherapy is emerging as a viable alternative for achieving promising results. This review highlights the drug resistance mechanisms and immunotherapeutic approaches to managing GMs better. The approval of immune therapeutic drugs in recent years shifted this notion. It provided hope for researchers, clinicians, and patients with GMs to experience the anti-cancer benefits of these therapies.
Collapse
Affiliation(s)
| | | | | | - Jay Z Natu
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Raasil Basha
- Department of Biology-Environmental Health, Missouri Southern State University, Joplin, MO, USA
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India.
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL, USA.
| |
Collapse
|
10
|
Yadav A, Yadav S, Alam MA. Immunotherapies landscape and associated inhibitors for the treatment of cervical cancer. Med Oncol 2023; 40:328. [PMID: 37815596 DOI: 10.1007/s12032-023-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Cervical cancer ranks as the fourth most common form of cancer worldwide. There is a large number of situations that may be examined in the developing world. The risk of contracting HPV (Human Papillomavirus) due to poor sanitation and sexual activity is mostly to blame for the disease's alarming rate of expansion. Immunotherapy is widely regarded as one of the most effective medicines available. The immunotherapy used to treat cervical cancer cells relies on inhibitors that block the immune checkpoint. The poly adenosine diphosphate ribose polymer inhibited cervical cancer cells by activating both the programmed death 1 (PD-1) and programmed death ligand 1 (CTLA-1) checkpoints, a strategy that has been shown to have impressive effects. Yet, immunotherapy directed towards tumors that have already been invaded by lymphocytes leaves a positive imprint on the healing process. Immunotherapy is used in conjunction with other treatments, including chemotherapy and radiation, to provide faster and more effective outcomes. In this combination therapy, several medications such as Pembrolizumab, Durvalumab, Atezolizumab, and so on are employed in clinical trials. Recent developments and future predictions suggest that vaccinations will soon be developed with the dual goal of reducing the patient's susceptibility to illness while simultaneously strengthening their immune system. Many clinical and preclinical studies are now investigating the effectiveness of immunotherapy in slowing the progression of cervical cancer. The field of immunotherapy is expected to witness more progress toward improving outcomes. Immunotherapies landscape and associated inhibitors for the treatment of Cervical Cancer.
Collapse
Affiliation(s)
- Agrima Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No. 2, Sector 17-A, Yamuna Expressway, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India.
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
11
|
Sadr-Momtaz S, Aftabi M, Behboudi E, Naderi M, Hashemzadeh-Omran A, Moradi A. NSP4 as adjuvant for immunogenicity and design of effective therapeutic HPV16 E6/E7/L1 DNA vaccine in tumor-bearing and healthy C57BL/6 mice. BMC Res Notes 2023; 16:164. [PMID: 37550734 PMCID: PMC10408056 DOI: 10.1186/s13104-023-06445-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
INTRODUCTION In humans, approximately 5% of all cancers are attributable to HPV infection. Prophylactic vaccines can inhibit viral migration and persistence. However, further studies are still required to develop such treatments. To achieve this goal, we designed a therapeutic HPV DNA vaccine encoding a construct of E6/E7/L1 and used NSP4 antigen as an adjuvant to assess the efficiency of this construct in generating antigen-specific antitumor immune responses. MATERIALS AND METHODS Sixty female C57BL/6 mice (6-8 weeks old) were purchased from the Institute Pasteur of Iran. Through a subcutaneous (s.c) injection of a suspension of 100 µl PBS containing 106 TC-1 cells/mouse in the back side, 30 of them became cancerous, while 30 of them were healthy control mice. To amplify E6/E7/L1-pcDNA3 and NSP4-pcDNA3, the competent cells of DH5α and to generate a tumor, TC-1 cell line was used. Mice were then immunized with the HPV DNA vaccine. Cell proliferation was assessed by MTT assay. Finally, cytokine responses (IL-4, IL-12, IFN- γ) were measured in the supernatant of mice spleen cells. RESULT Mice receiving the NSP4/E6-E7-L1 vaccine had the highest stimulatory index compared to other groups, although it was not statistically significant. Interleukin 4/12 and IFN-γ production were significantly higher in E6-E7-L1 / NSP4 group and E6-E7-L1 group compared to other groups (P < 0.05). Among different groups, E6/E7/L1 + NSP4 group was able to slow down the tumor growth process, but it was not significant (p > 0.05). Among the aforementioned cytokines, IFN-γ and IL-12 are among the cytokines that stimulate the Th1 pathway and IL-4 cytokine stimulates the Th2 pathway and B lymphocytes. CONCLUSION Our data revealed that the present vaccine can reduce tumor size, and cytokine measurement showed that it stimulates innate and acquired immune responses, thus it can be a therapeutic vaccine in the tumor-bearing mice model.
Collapse
Affiliation(s)
- Sahar Sadr-Momtaz
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Aftabi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Emad Behboudi
- Department of Basic Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Malihe Naderi
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Abdolvahab Moradi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
12
|
Jones AC, Brown KH, Guan T, Smith LA, Formslag CR, Farjado ED, Bai Q, Luechtefeld HD, Wakefield MR, Dong L, Fang Y. The past, present, and future of immunotherapy for endometrial adenocarcinoma. Med Oncol 2023; 40:186. [PMID: 37219649 DOI: 10.1007/s12032-023-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Incidences of endometrial adenocarcinoma are increasing in the USA with poor prognosis for patients with advanced disease. The current treatment standard is surgery including total hysterectomy and bilateral oophorectomy with surgical staging and adjunct treatment, such as chemotherapy or radiation. However, these methods do not present as an effective treatment option for poorly differentiated advanced cancers. Advancements in immunotherapy now offer a new approach for various types of cancer and specifically show promise in the treatment of endometrial adenocarcinoma. This review summarizes immunotherapeutic treatment options relevant to endometrial adenocarcinoma, such as immune checkpoint blockades, bispecific T-cell engager antibodies, vaccinations, and adoptive cell transfer. This study could be helpful for clinicians to identify treatment options more suitable for women with late-stage endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Anna C Jones
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Karah H Brown
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Tianyun Guan
- Department of Obstetrics and Gynecology, The Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Luke A Smith
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Cole R Formslag
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Emerson D Farjado
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Harrison D Luechtefeld
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Lijun Dong
- Department of Obstetrics and Gynecology, The Nanhua Hospital Affiliated to Nanhua University, Hengyang, China.
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
13
|
Yu Y, Liu Y, Li Y, Yang X, Han M, Fan Q. Construction of a CCL20-centered circadian-signature based prognostic model in cervical cancer. Cancer Cell Int 2023; 23:92. [PMID: 37183243 PMCID: PMC10184429 DOI: 10.1186/s12935-023-02926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Rather low vaccination rates for Human papillomavirus (HPV) and pre-existing cervical cancer patients with limited therapeutic strategies ask for more precise prognostic model development. On the other side, the clinical significance of circadian clock signatures in cervical cancer lacks investigation. METHODS Subtypes classification based upon eight circadian clock core genes were implemented in TCGA-CESC through k-means clustering methods. Afterwards, KEGG, GO and GSEA analysis were conducted upon differentially expressed genes (DEGs) between high and low-risk groups, and tumor microenvironment (TME) investigation by CIBERSORT and ESTIMATE. Furthermore, a prognostic model was developed by cox and lasso regression methods, and verified in GSE44001 by time-dependent receiver-operating characteristic curve (ROC) analysis. Lastly, FISH and IHC were used for validation of CCL20 expression in patients' specimens and U14 subcutaneous tumor models were built for TME composition. RESULTS We successfully classified cervical patients into high-risk and low-risk groups based upon circadian-oscillation-signatures. Afterwards, we built a prognostic risk model composed of GJB2, CCL20 and KRT24 with excellent predictive value on patients' overall survival (OS). We then proposed metabolism unbalance, especially for glycolysis, and immune related pathways to be major enriched signatures between the high-risk and low-risk groups. Then, we proposed an 'immune-desert'-like suppressive myeloid cells infiltration pattern in high-risk group TME and verified its resistance to immunotherapies. Finally, CCL20 was proved positively correlated with real-world patients' stages and induced significant less CD8+ T cells and more M2 macrophages infiltration in mouse model. CONCLUSIONS We unraveled a prognostic risk model based upon circadian oscillation and verified its solidity. Specifically, we unveiled distinct TME immune signatures in high-risk groups.
Collapse
Affiliation(s)
- Yuchong Yu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Liu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Li
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Han
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiong Fan
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Riepler L, Frommelt LS, Wilmschen-Tober S, Mbuya W, Held K, Volland A, von Laer D, Geldmacher C, Kimpel J. Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model. J Mol Biol 2023; 435:168096. [PMID: 37086948 DOI: 10.1016/j.jmb.2023.168096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Collapse
Affiliation(s)
- Lydia Riepler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Laura-Sophie Frommelt
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sarah Wilmschen-Tober
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Wilbert Mbuya
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU, 80802 Munich, Germany; National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU, 80802 Munich, Germany; German Center for Infection Research (DZIF), Partner site Munich, 80802 Munich, Germany
| | - André Volland
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dorothee von Laer
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU, 80802 Munich, Germany; German Center for Infection Research (DZIF), Partner site Munich, 80802 Munich, Germany
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Chen F, Shen L, Wang Y, Chen Y, Pan X, Liang H, Yu H. Signatures of immune cell infiltration for predicting immune escape and immunotherapy in cervical cancer. Aging (Albany NY) 2023; 15:1685-1698. [PMID: 36917087 PMCID: PMC10042703 DOI: 10.18632/aging.204583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
The cervical cancer tumor microenvironment is a diverse and complex ecosystem. Tumor-immune cell infiltration (ICI) may influence immune escape and immunotherapeutic responses. However, the relationship between immune cell infiltrations, immune escape, and immunotherapy in cervical cancer has not been fully clarified. Here, Principal component analysis (PCA) and Tumor immune dysfunction and exclusion (TIDE) were applied to calculate individual ICI scores and probabilities of immune escape, respectively. Through the IMvigor210 and the Cancer Immunome Atlas (TCIA) datasets, we validated the different responses to immunotherapy in two subgroups of patients. Furthermore, therapeutic benefits of different patients were predicted by the pRRophetic package. We found that patients with high ICI scores were prone to immune escape due to the activated JAK-STAT signaling pathway, along with lower CD8+ T cells. High ICI scores patients could benefit more from anti-PD-L1 immunotherapy, and individuals with low scores may be better candidates for the anti-CTLA-4 treatment. Combinations of immunotherapies with targeted inhibitors may improve clinical efficacy and reduce the risk of tumor recurrence. The ICI model not only helps us enhance the cognition of immune escape, but also guides the application of immunotherapy in cervical cancer patients.
Collapse
Affiliation(s)
- Fuxing Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Lingzhi Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Ying Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Yaping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Xuejiao Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Hui Liang
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Hu Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| |
Collapse
|
16
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
17
|
Kousar K, Ahmad T, Naseer F, Kakar S, Anjum S. Review Article: Immune Landscape and Immunotherapy Options in Cervical Carcinoma. Cancers (Basel) 2022; 14:4458. [PMID: 36139618 PMCID: PMC9496890 DOI: 10.3390/cancers14184458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Carcinoma of the cervix is one of the most common cancers that claims women's lives every year. Despite preventive HPV vaccines and conventional cancer treatments, approximately 273,000 women succumb to cervical carcinoma every year. Immune system perturbations help malignant cells in immune evasion, tumor establishment, invasion, and metastasis. An insight into immune system players that promote or suppress cervical cancer is important for the development of more targeted therapies with the fewest side effects. Immunotherapy has emerged as the most compliant approach to target cancer because it utilizes a natural course of action to stimulate the immune system against cancer cells. The major immunotherapy approaches for cervical carcinoma include monoclonal antibodies, immune checkpoint blockade therapy, adoptive cell transfer therapies, and oncolytic viruses. In October 2021 the FDA approved pembrolizumab in combination with chemotherapy or bevacizumab as a first-line treatment for cervical cancer. A recent breakthrough has been made in the cancer immunotherapy regimen in which a monoclonal antibody dostarlimab was able to completely cure all colorectal cancer patients, with disease-free progression after 6 months and counting. This creates hope that immunotherapy may prove to be the final nail in the coffin of this centuries-long prevalent disease of "cancer".
Collapse
Affiliation(s)
- Kousain Kousar
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad 44000, Pakistan
| | - Salik Kakar
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- School of Health Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
18
|
Bhattacharjee R, Kumar L, Dhasmana A, Mitra T, Dey A, Malik S, Kim B, Gundamaraju R. Governing HPV-related carcinoma using vaccines: Bottlenecks and breakthroughs. Front Oncol 2022; 12:977933. [PMID: 36176419 PMCID: PMC9513379 DOI: 10.3389/fonc.2022.977933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV) contributes to sexually transmitted infection, which is primarily associated with pre-cancerous and cancerous lesions in both men and women and is among the neglected cancerous infections in the world. At global level, two-, four-, and nine-valent pure L1 protein encompassed vaccines in targeting high-risk HPV strains using recombinant DNA technology are available. Therapeutic vaccines are produced by early and late oncoproteins that impart superior cell immunity to preventive vaccines that are under investigation. In the current review, we have not only discussed the clinical significance and importance of both preventive and therapeutic vaccines but also highlighted their dosage and mode of administration. This review is novel in its way and will pave the way for researchers to address the challenges posed by HPV-based vaccines at the present time.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Tamoghni Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Bonglee Kim, ; Rohit Gundamaraju,
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- *Correspondence: Bonglee Kim, ; Rohit Gundamaraju,
| |
Collapse
|
19
|
|
20
|
Patrick L, Bakeera-Kitaka S, Rujumba J, Malande OO. Encouraging improvement in HPV vaccination coverage among adolescent girls in Kampala, Uganda. PLoS One 2022; 17:e0269655. [PMID: 35679304 PMCID: PMC9182299 DOI: 10.1371/journal.pone.0269655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction WHO recommends vaccination against HPV for girls before sexual debut. Uganda started HPV vaccination in 2008 as pilot programs in 2 districts, followed by national roll out in 2015. Despite the availability of vaccines against human papillomavirus (HPV) in Uganda in the period covered by the study, there was reported low HPV vaccine uptake and completion especially of the second dose in Uganda; with little information available on timely completion of HPV vaccine and the associated factors in Uganda. This study was therefore done to determine the HPV vaccine dose 2 completion and describe the possible factors associated with timely HPV vaccine completion and non-completion among girls of age 9–14 years attending the adolescent clinic at Mulago hospital. Methods A retrospective mixed methods study was conducted in Mulago National Referral hospital adolescent clinic. Data were mainly collected through review of charts and folders for clinic attendance by eligible girls and focus group discussions with eligible girls that completed the 2 doses of HPV vaccine on recommended/scheduled time. Results Out of the 201 girls studied, 87 girls (43.3%) had timely completion of the HPV vaccination. Knowledge about HPV infection and HPV vaccine benefits, positive peer influence and healthcare worker recommendation to get vaccinated at health facility level positively influenced timely completion of HPV vaccine. Among barriers to completion of HPV vaccine identified were: inadequate information about HPV infection and HPV vaccine, concerns about HPV vaccine efficacy and safety, unclear communication with adolescents/caregivers from healthcare workers and -stock out of the HPV vaccine. Conclusion Timely completion of the second dose of HPV vaccine among girls attending the adolescent clinic of Mulago hospital was low (at 43.3%) but higher when compared to earlier published reports. Interventions around improved social mobilization, enhanced outreach and static vaccination approach and education of eligible girls on HPV vaccination can help increase vaccine uptake.
Collapse
Affiliation(s)
- Lydia Patrick
- Department of Paediatrics & Child Health, Makerere University, Kampala, Uganda
| | | | - Joseph Rujumba
- Department of Paediatrics & Child Health, Makerere University, Kampala, Uganda
| | - Oliver Ombeva Malande
- Department of Paediatrics & Child Health, Makerere University, Kampala, Uganda
- Administration Department, East Africa Centre for Vaccines and Immunization (ECAVI), Kampala, Uganda
- Department of Public Health Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Department of Paediatrics & Child Health, Egerton University, Nakuru, Kenya
- * E-mail:
| |
Collapse
|
21
|
Khairkhah N, Bolhassani A, Najafipour R. Current and future direction in treatment of HPV-related cervical disease. J Mol Med (Berl) 2022; 100:829-845. [PMID: 35478255 PMCID: PMC9045016 DOI: 10.1007/s00109-022-02199-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted virus in the world. About 70% of cervical cancers are caused by the most oncogenic HPV genotypes of 16 and 18. Since available prophylactic vaccines do not induce immunity in those with established HPV infections, the development of therapeutic HPV vaccines using E6 and E7 oncogenes, or both as the target antigens remains essential. Also, knocking out the E6 and E7 oncogenes in host genome by genome-editing CRISPR/Cas system can result in tumor growth suppression. These methods have shown promising results in both preclinical and clinical trials and can be used for controlling the progression of HPV-related cervical diseases. This comprehensive review will detail the current treatment of HPV-related cervical precancerous and cancerous diseases. We also reviewed the future direction of treatment including different kinds of therapeutic methods and vaccines, genome-editing CRISPR/Cas system being studied in clinical trials. Although the progress in the development of therapeutic HPV vaccine has been slow, encouraging results from recent trials showed vaccine-induced regression in high-grade CIN lesions. CRISPR/Cas genome-editing system is also a promising strategy for HPV cancer therapy. However, its safety and specificity need to be optimized before it is used in clinical setting.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
22
|
Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, Upadhye VJ, Iqbal D, Almojam S, Roychoudhury S, Ojha S, Ruokolainen J, Jha NK, Kesari KK. Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Crit Rev Oncol Hematol 2022; 174:103675. [DOI: 10.1016/j.critrevonc.2022.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
|
23
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
24
|
Turbeville HR, Toni TA, Allen C. Immune Landscape and Role of Immunotherapy in Treatment of HPV-Associated Head and Neck Squamous Cell Carcinoma (HNSCC). CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-021-00384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Virus against virus: strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer. Acta Pharmacol Sin 2021; 42:1981-1990. [PMID: 33633364 PMCID: PMC8633276 DOI: 10.1038/s41401-021-00616-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/17/2021] [Indexed: 01/31/2023] Open
Abstract
Although most human papillomavirus (HPV) infections are harmless, persistent infection with high-risk types of HPV is known to be the leading cause of cervical cancer. Following the infection of the epithelium and integration into the host genome, the oncogenic proteins E6 and E7 disrupt cell cycle control by inducing p53 and retinoblastoma (Rb) degradation. Despite the FDA approval of prophylactic vaccines, there are still issues with cervical cancer treatment; thus, many therapeutic approaches have been developed to date. Due to strong immunogenicity, a high capacity for packaging foreign DNA, safety, and the ability to infect a myriad of cells, adenoviruses have drawn attention of researchers. Adenovirus vectors have been used for different purposes, including as oncolytic agents to kill cancer cells, carrier for RNA interference to block oncoproteins expression, vaccines for eliciting immune responses, especially in cytotoxic T lymphocytes (CTLs), and gene therapy vehicles for restoring p53 and Rb function.
Collapse
|
27
|
Vaccine-Based Immunotherapy for Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13236041. [PMID: 34885150 PMCID: PMC8656843 DOI: 10.3390/cancers13236041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Therapeutic vaccines are given to patients with cancer, as opposed to prophylactic vaccines given to a healthy population. The challenge for therapeutic oncological vaccines is to stimulate an immune T cell response against endogenous (or derived) antigens that is sufficiently potent to induce cytotoxic activity and broad enough to take tumor heterogeneity into account. The purpose of this article is to provide an updated review of the prophylactic and therapeutic vaccines that target viral or non-viral antigens, particularly in head and neck cancers. Abstract In 2019, the FDA approved pembrolizumab, a monoclonal antibody targeting PD-1, for the first-line treatment of recurrent or metastatic head and neck cancers, despite only a limited number of patients benefiting from the treatment. Promising effects of therapeutic vaccination led the FDA to approve the use of the first therapeutic vaccine in prostate cancer in 2010. Research in the field of therapeutic vaccination, including possible synergistic effects with anti-PD(L)1 treatments, is evolving each year, and many vaccines are in pre-clinical and clinical studies. The aim of this review article is to discuss vaccines as a new therapeutic strategy, particularly in the field of head and neck cancers. Different vaccination technologies are discussed, as well as the results of the first clinical trials in HPV-positive, HPV-negative, and EBV-induced head and neck cancers.
Collapse
|
28
|
Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennasser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel J, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, O’Keefe B, Oksman‐Caldentey K, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1901-1920. [PMID: 34182608 PMCID: PMC8486245 DOI: 10.1111/pbi.13657] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.
Collapse
Affiliation(s)
- Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Amaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennasser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andera Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes.F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sathish Kumar Ramalingam
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen. A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keefe
- Molecular Targets ProgramCenter for Cancer Research, National Cancer Institute, and Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer Institute, NIHFrederickMDUSA
| | | | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Julio C. M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
29
|
Tseng SH, Liu L, Peng S, Kim J, Ferrall L, Hung CF, Wu TC. Control of Spontaneous HPV16 E6/E7 Expressing Oral Cancer in HLA-A2 (AAD) Transgenic Mice with Therapeutic HPV DNA Vaccine. J Biomed Sci 2021; 28:63. [PMID: 34517865 PMCID: PMC8436567 DOI: 10.1186/s12929-021-00759-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human Papillomavirus type 16 (HPV16) has been associated with a subset of head and neck cancers. Two HPV encoded oncogenic proteins, E6 and E7, are important for the malignant progression of HPV-associated cancers. A spontaneous HPV16 E6/E7-expressing oral tumor model in human HLA-A2 (AAD) transgenic mice will be important for the development of therapeutic HPV vaccines for the control of HPV-associated head and neck cancers. METHODS In the current studies, we characterized the HLA-A2 restricted HPV16 E7-specific CD8 + T cell mediated immune responses in the HLA-A2 (AAD) transgenic mice using a therapeutic naked DNA vaccine encoding calreticulin (CRT) linked to a mutated E7(N53S). We also employed oncogenic DNA plasmids that encoded HPV16E6/E7/Luc, NRasG12V, and sleeping beauty transposase for the transfection into the submucosal of oral cavity of the transgenic mice with electroporation to create a spontaneous oral tumor. Furthermore, we characterized the therapeutic antitumor effects of CRT/E7(N53S) DNA vaccine using the spontaneous HPV16 E6/E7-expressing oral tumor model in HLA-A2 (AAD) transgenic mice. RESULTS We found that CRT/E7(N53S) DNA vaccine primarily generated human HPV16 E7 peptide (aa11-20) specific CD8 + T cells, as compared to the wild-type CRT/E7 vaccine, which primarily generated murine H-2Db restricted E7 peptide (aa49-57) specific CD8 + T cell responses. We also observed transfection of the oncogenic DNA plasmids with electroporation generated spontaneous oral tumor in all of the injected mice. Additionally, treatment with CRT/E7(N53S) DNA vaccine intramuscularly followed by electroporation resulted in significant antitumor effects against the spontaneous HPV16 E6/E7-expressing oral tumors in HLA-A2 (AAD) transgenic mice. CONCLUSIONS Taken together, the data indicated that the combination of HPV16 E6/E7-expressing DNA, NRasG12V DNA and DNA encoding sleeping beauty transposase is able to generate spontaneous oral tumor in HLA-A2 (AAD) transgenic mice, which can be successfully controlled by treatment with CRT/E7(N53S) DNA vaccine. The translational potential of our studies are discussed.
Collapse
Affiliation(s)
- Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA
| | - Li Liu
- Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA
| | - Jinhwi Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu, Gyeonggi-do, 11765, Republic of Korea
| | - Louise Ferrall
- Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Department of Oncology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Department of Obstetrics and Gynecology, CRB II, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Departments of Pathology, Oncology, and Obstetrics and Gynecology, The Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans St, Baltimore, MD, 21231, USA.
| | - T -C Wu
- Department of Pathology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Department of Oncology, Johns Hopkins University, CRB II, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Department of Obstetrics and Gynecology, CRB II, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Department of Molecular Microbiology and Immunology, CRB II, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, USA. .,Departments of Pathology, Oncology, Obstetrics and Gynecology, and Molecular Microbiology and Immunology, The Johns Hopkins Medical Institutions, CRB II Room 309, 1550 Orleans St, Baltimore, MD, 21231, USA.
| |
Collapse
|
30
|
Abstract
Owing to the presence of known tumor-specific viral antigens, human papillomavirus (HPV)-associated cancers are well suited for treatment with immunotherapy designed to unleash, amplify or replace the T cell arm of the adaptive immune system. Immune checkpoint blockade designed to unleash existing T cell immunity is currently Food and Drug Administration approved for certain HPV-associated cancers. More specific immunotherapies such as therapeutic vaccines and T cell receptor-engineered cellular therapy are currently in clinical development. Such therapies may offer more specific immune activation against viral tumor antigens and decrease the risk of immune-related adverse events. Current and planned clinical study of these treatments will determine their utility in the treatment of patients with newly diagnosed advanced stage or relapsed HPV-associated cancer.
Collapse
Affiliation(s)
- Maxwell Y Lee
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
31
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. In Silico Design and Immunological Studies of Two Novel Multiepitope DNA-Based Vaccine Candidates Against High-Risk Human Papillomaviruses. Mol Biotechnol 2021; 63:1192-1222. [PMID: 34308516 DOI: 10.1007/s12033-021-00374-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPV)-16 and 18 are the most prevalent types associated with cervical cancer. HPV L1 and L2 capsid proteins and E7 oncoprotein play crucial roles in HPV-related diseases. Hence, these proteins were proposed as target antigens for preventive and therapeutic vaccines. In this study, two multiepitope DNA-based HPV vaccine candidates were designed using in silico analysis including the immunogenic and conserved epitopes of HPV16/18 L1, L2 and E7 proteins (the L1-L2-E7 fusion DNA), and of heat shock protein 70 (HSP70) linked to the L1-L2-E7 DNA construct (the HSP70-L1-L2-E7 fusion DNA). Next, the expression of the L1-L2-E7 and HSP70-L1-L2-E7 multiepitope DNA constructs was evaluated in a mammalian cell line. Finally, immunological responses and antitumor effects of the DNA constructs were investigated in C57BL/6 mice. Our data indicated high expression rates of the designed multiepitope L1-L2-E7 DNA (~ 56.16%) and HSP70-L1-L2-E7 DNA (~ 80.45%) constructs in vitro. The linkage of HSP70 epitopes to the L1-L2-E7 DNA construct significantly increased the gene expression. Moreover, the HSP70-L1-L2-E7 DNA construct could significantly increase immune responses toward Th1 response and CTL activity, and induce stronger antitumor effects in mouse model. Thus, the designed HSP70-L1-L2-E7 DNA construct represents promising results for development of HPV DNA vaccine candidates.
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
33
|
Soheili M, Keyvani H, Soheili M, Nasseri S. Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers. Med J Islam Repub Iran 2021; 35:65. [PMID: 34277502 PMCID: PMC8278030 DOI: 10.47176/mjiri.35.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Human papillomavirus (HPV) infection is considered as the most common viral sexually transmitted infection worldwide. This poses an increasingly interdisciplinary medical challenge. Since there is vast scattered information in databases about HPV and the correlated diseases, we decided to collect useful data so that the experts can get a more comprehensive view of HPV. Methods: In this article, HPV-associated diseases, prevalence, prevention, and new treatments are discussed. The retrieved articles reporting the latest data about the required information for our review were selected through searching in Web of Science, Scopus, Medline (PubMed), EMBASE, Cochrane Library, Ovid, and CINHAL with language limitations of English and German. Results: There are 2 groups of HPVs: (1) low-risk HPV types that can lead to genital warts, and (2) high-risk HPV types that are involved in HPV-associated oncogenesis. About 70% of all sexually active women are infected and most of these infections heal within many weeks or months. In the case of HPV-persistence, a risk of preneoplasia or carcinoma exists. These types of viruses are responsible for the existence of genitoanal, gastrointestinal, urinary tract, and head and neck tumors. There is still no definite successful treatment. The detection of HPV-related condylomata occurs macroscopically in women and men, and the diagnosis of the precursors of cervical carcinoma in women is possible by Pap smear. Conclusion: For extragenital manifestations, there is no structured early detection program. Meanwhile, studies on HPV vaccines confirm that they should be used for the primary prevention of HPV-dependent diseases. However, we need more research to find out the real advantages and disadvantages of vaccines.
Collapse
Affiliation(s)
- Maryam Soheili
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Hossein Keyvani
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Soheili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Human Revivification Society of Congress 60, Tehran, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
34
|
Song Z, Cui Y, Li Q, Deng J, Ding X, He J, Liu Y, Ju Z, Fang L. The genetic variability, phylogeny and functional significance of E6, E7 and LCR in human papillomavirus type 52 isolates in Sichuan, China. Virol J 2021; 18:94. [PMID: 33941222 PMCID: PMC8091156 DOI: 10.1186/s12985-021-01565-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Variations in human papillomavirus (HPV) E6 and E7 have been shown to be closely related to the persistence of the virus and the occurrence and development of cervical cancer. Long control region (LCR) of HPV has been shown multiple functions on regulating viral transcription. In recent years, there have been reports on E6/E7/LCR of HPV-16 and HPV-58, but there are few studies on HPV-52, especially for LCR. In this study, we focused on gene polymorphism of the HPV-52 E6/E7/LCR sequences, assessed the effects of variations on the immune recognition of viral E6 and E7 antigens, predicted the effect of LCR variations on transcription factor binding sites and provided more basic date for further study of E6/E7/LCR in Chengdu, China. Methods LCR/E6/E7 of the HPV-52 were amplified and sequenced to do polymorphic and phylogenetic analysis. Sequences were aligned with the reference sequence by MEGA 7.0 to identify SNP. A neighbor-joining phylogenetic tree was constructed by MEGA 7.0, followed by the secondary structure prediction of the related proteins using PSIPRED 4.0. The selection pressure of E6 and E7 coding regions were estimated by Bayes empirical Bayes analysis of PAML 4.9. The HLA class-I and II binding peptides were predicted by the Immune Epitope Database server. The B cell epitopes were predicted by ABCpred server. Transcription factor binding sites in LCR were predicted by JASPAR database. Results 50 SNP sites (6 in E6, 10 in E7, 34 in LCR) were found. From the most variable to the least variable, the nucleotide variations were LCR > E7 > E6. Two deletions were found between the nucleotide sites 7387–7391 (TTATG) and 7698–7700 (CTT) in all samples. A deletion was found between the nucleotide sites 7287–7288 (TG) in 97.56% (40/41) of the samples. The combinations of all the SNP sites and deletions resulted in 12 unique sequences. As shown in the neighbor-joining phylogenetic tree, except for one belonging to sub-lineage C2, others sequences clustered into sub-lineage B2. No positive selection was observed in E6 and E7. 8 non-synonymous amino acid substitutions (including E3Q and K93R in the E6, and T37I, S52D, Y59D, H61Y, D64N and L99R in the E7) were potential affecting multiple putative epitopes for both CD4+ and CD8+ T-cells and B-cells. A7168G was the most variable site (100%) and the binding sites for transcription factor VAX1 in LCR. In addition, the prediction results showed that LCR had the high probability binding sites for transcription factors SOX9, FOS, RAX, HOXA5, VAX1 and SRY. Conclusion This study provides basic data for understanding the relation among E6/E7/LCR mutations, lineages and carcinogenesis. Furthermore, it provides an insight into the intrinsic geographical relatedness and biological differences of the HPV-52 variants, and contributes to further research on the HPV-52 therapeutic vaccine development. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01565-5.
Collapse
Affiliation(s)
- Zhilin Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yanru Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Junhang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Xianping Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. .,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China.
| | - Jiaoyu He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yiran Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhuang Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Liyuan Fang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
35
|
Ferrall L, Lin KY, Roden RBS, Hung CF, Wu TC. Cervical Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2021; 27:4953-4973. [PMID: 33888488 DOI: 10.1158/1078-0432.ccr-20-2833] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
It is a sad fact that despite being almost completely preventable through human papillomavirus (HPV) vaccination and screening, cervical cancer remains the fourth most common cancer to affect women worldwide. Persistent high-risk HPV (hrHPV) infection is the primary etiologic factor for cervical cancer. Upward of 70% of cases are driven by HPV types 16 and 18, with a dozen other hrHPVs associated with the remainder of cases. Current standard-of-care treatments include radiotherapy, chemotherapy, and/or surgical resection. However, they have significant side effects and limited efficacy against advanced disease. There are a few treatment options for recurrent or metastatic cases. Immunotherapy offers new hope, as demonstrated by the recent approval of programmed cell death protein 1-blocking antibody for recurrent or metastatic disease. This might be augmented by combination with antigen-specific immunotherapy approaches, such as vaccines or adoptive cell transfer, to enhance the host cellular immune response targeting HPV-positive cancer cells. As cervical cancer progresses, it can foster an immunosuppressive microenvironment and counteract host anticancer immunity. Thus, approaches to reverse suppressive immune environments and bolster effector T-cell functioning are likely to enhance the success of such cervical cancer immunotherapy. The success of nonspecific immunostimulants like imiquimod against genital warts also suggest the possibility of utilizing these immunotherapeutic strategies in cervical cancer prevention to treat precursor lesions (cervical intraepithelial neoplasia) and persistent hrHPV infections against which the licensed prophylactic HPV vaccines have no efficacy. Here, we review the progress and challenges in the development of immunotherapeutic approaches for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Louise Ferrall
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland
| | - Ken Y Lin
- Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
36
|
Pellom ST, Smalley Rumfield C, Morillon YM, Roller N, Poppe LK, Brough DE, Sabzevari H, Schlom J, Jochems C. Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight 2021; 6:141912. [PMID: 33651712 PMCID: PMC8119209 DOI: 10.1172/jci.insight.141912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
There are approximately 44,000 cases of human papillomavirus-associated (HPV-associated) cancer each year in the United States, most commonly caused by HPV types 16 and 18. Prophylactic vaccines successfully prevent healthy people from acquiring HPV infections via HPV-specific antibodies. In order to treat established HPV-associated malignancies, however, new therapies are necessary. Multiple recombinant gorilla adenovirus HPV vaccine constructs were evaluated in NSG-β2m-/- peripheral blood mononuclear cell-humanized mice bearing SiHa, a human HPV16+ cervical tumor, and/or in the syngeneic HPV16+ TC-1 model. PRGN-2009 is a therapeutic gorilla adenovirus HPV vaccine containing multiple cytotoxic T cell epitopes of the viral oncoproteins HPV 16/18 E6 and E7, including T cell enhancer agonist epitopes. PRGN-2009 treatment reduced tumor volume and increased CD8+ and CD4+ T cells in the tumor microenvironment of humanized mice bearing the human cervical tumor SiHa. PRGN-2009 monotherapy in the syngeneic TC-1 model also reduced tumor volumes and weights, generated high levels of HPV16 E6-specific T cells, and increased multifunctional CD8+ and CD4+ T cells in the tumor microenvironment. These studies provide the first evaluation to our knowledge of a therapeutic gorilla adenovirus HPV vaccine, PRGN-2009, showing promising preclinical antitumor efficacy and induction of HPV-specific T cells, along with the rationale for its evaluation in clinical trials.
Collapse
Affiliation(s)
- Samuel T. Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Y. Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lisa K. Poppe
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Dai H, Han J, Lichtfouse E. Smarter cures to combat COVID-19 and future pathogens: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:2759-2771. [PMID: 33824633 PMCID: PMC8017513 DOI: 10.1007/s10311-021-01224-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/12/2021] [Indexed: 05/06/2023]
Abstract
Prevention is better than cure. A milestone of the anthropocene is the emergence of a series of epidemics and pandemics often characterized by the transmission of a pathogen from animals to human in the past two decades. In particular, the coronavirus disease 2019 (COVID-19) has made a profound impact on emergency responding and policy-making in a public health crisis. Classical solutions for controlling the virus, such as travel restrictions, lockdowns, repurposed drugs and vaccines, are socially unpopular and medically limited by the fast mutation and adaptation of the virus. This is exacerbated by microbial resistance to therapeutic drugs and the slowness of vaccine development. In other words, microbial pathogens are somehow 'smarter' and faster than us, thus calling for more intelligent cures to combat future pandemics. Here, we compare therapeutics for COVID-19 such as synthetic drugs, vaccines, antibodies and phages. We present the strength and limitations of antibiotic and antiviral drugs, vaccines, and antibody-based therapeutics. We describe smarter, cheaper and preventive cures such as bacteriophages, food medicine using probiotics and prebiotics, sports, healthy diet, music, yoga, Tai Chi, dance, reading, knitting, cooking and outdoor activities. Some of these preventive cures have been intuitively developed since thousands of years ago, as illustrated by the fascinating similarity of the Chinese characters for 'music' and 'herbal medicine.'
Collapse
Affiliation(s)
- Han Dai
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille University, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
38
|
Chandra J, Teoh SM, Kuo P, Tolley L, Bashaw AA, Tuong ZK, Liu Y, Chen Z, Wells JW, Yu C, Frazer IH, Yu M. Manganese-Doped Silica-Based Nanoparticles Promote the Efficacy of Antigen-Specific Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2021; 206:987-998. [PMID: 33504616 DOI: 10.4049/jimmunol.2000355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Prophylactic human papillomavirus (HPV) vaccines are commercially available for prevention of infection with cancerogenic HPV genotypes but are not able to combat pre-existing HPV-associated disease. In this study, we designed a nanomaterial-based therapeutic HPV vaccine, comprising manganese (Mn4+)-doped silica nanoparticles (Mn4+-SNPs) and the viral neoantigen peptide GF001 derived from the HPV16 E7 oncoprotein. We show in mice that Mn4+-SNPs act as self-adjuvants by activating the inflammatory signaling pathway via generation of reactive oxygen species, resulting in immune cell recruitment to the immunization site and dendritic cell maturation. Mn4+-SNPs further serve as Ag carriers by facilitating endo/lysosomal escape via depletion of protons in acidic endocytic compartments and subsequent Ag delivery to the cytosol for cross-presentation. The Mn4+-SNPs+GF001 nanovaccine induced strong E7-specific CD8+ T cell responses, leading to remission of established murine HPV16 E7-expressing solid TC-1 tumors and E7-expressing transgenic skin grafts. This vaccine construct offers a simple and general strategy for therapeutic HPV and potentially other cancer vaccines.
Collapse
Affiliation(s)
- Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Lynn Tolley
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Abate Assefa Bashaw
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Zewen Kelvin Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - Zibin Chen
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia;
| | - Meihua Yu
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia; .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; and
| |
Collapse
|
39
|
Duan F, Chen J, Yao H, Wang Y, Jia Y, Ling Z, Feng Y, Pan Z, Yin Y, Jiao X. Enhanced therapeutic efficacy of Listeria-based cancer vaccine with codon-optimized HPV16 E7. Hum Vaccin Immunother 2021; 17:1568-1577. [PMID: 33449866 DOI: 10.1080/21645515.2020.1839291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cervical cancer is a leading cause of high mortality in women in developing countries and has a serious impact on women's health. Human papilloma virus (HPV) prophylactic vaccines have been produced and may hold promise for reducing the incidence of cervical cancer. However, the limitations of current HPV vaccine strategies make the development of HPV therapeutic vaccines particularly important for the treatment of HPV related lesions. Our previous work has demonstrated that LM4Δhly::E7 was safe and effective in inducing antitumor effect by antigen-specific cellular immune responses and direct killing of tumor cell on a cervical cancer model. In this study, the codon usage effect of a novel Listeria-based cervical cancer vaccine LM4Δhly::E7-1, was evaluated for effects of codon-optimized E7 expression, cellular immune response and therapeutic efficacy in a tumor-bearing murine model. Our data demonstrated that up-regulated expression of E7 was strikingly elevated by codon usage optimization, and thus induced significantly higher Th1-biased immunity, lymphocyte proliferation, and strong specific CTL activity ex-vivo compared with LM4Δhly::E7-treated mice. Furthermore, LM4Δhly::E7-1 enhanced a remarkable therapeutic effect in establishing tumors. Taken together, our results suggest that codon usage optimization is an important consideration in constructing live bacterial-vectored vaccines and is required for promoting effective T cell responses.
Collapse
Affiliation(s)
- Feifei Duan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jiaqi Chen
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yuting Wang
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yanyan Jia
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhiting Ling
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Youwei Feng
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin'An Jiao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
40
|
Dong Z, Hu R, Du Y, Tan L, Li L, Du J, Bai L, Ma Y, Cui H. Immunodiagnosis and Immunotherapeutics Based on Human Papillomavirus for HPV-Induced Cancers. Front Immunol 2021; 11:586796. [PMID: 33488587 PMCID: PMC7820759 DOI: 10.3389/fimmu.2020.586796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infection with human papillomavirus (HPV) is one of the main causes of malignant neoplasms, especially cervical, anogenital, and oropharyngeal cancers. Although we have developed preventive vaccines that can protect from HPV infection, there are still many new cases of HPV-related cancers worldwide. Early diagnosis and therapy are therefore important for the treatment of these diseases. As HPVs are the major contributors to these cancers, it is reasonable to develop reagents, kits, or devices to detect and eliminate HPVs for early diagnosis and therapeutics. Immunological methods are precise strategies that are promising for the accurate detection and blockade of HPVs. During the last decades, the mechanism of how HPVs induce neoplasms has been extensively elucidated, and several oncogenic HPV early proteins, including E5, E6, and E7, have been shown to be positively related to the oncogenesis and malignancy of HPV-induced cancers. These oncoproteins are promising biomarkers for diagnosis and as targets for the therapeutics of HPV-related cancers. Importantly, many specific monoclonal antibodies (mAbs), or newly designed antibody mimics, as well as new immunological kits, devices, and reagents have been developed for both the immunodiagnosis and immunotherapeutics of HPV-induced cancers. In the current review, we summarize the research progress in the immunodiagnosis and immunotherapeutics based on HPV for HPV-induced cancers. In particular, we depict the most promising serological methods for the detection of HPV infection and several therapeutical immunotherapeutics based on HPV, using immunological tools, including native mAbs, radio-labelled mAbs, affitoxins (affibody-linked toxins), intracellular single-chain antibodies (scFvs), nanobodies, therapeutical vaccines, and T-cell-based therapies. Our review aims to provide new clues for researchers to develop novel strategies and methods for the diagnosis and treatment of HPV-induced tumors.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yan Du
- Department of Ultrasound, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of Immunology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Juan Du
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longchang Bai
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yingkang Ma
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
41
|
Franconi R, Massa S, Paolini F, Vici P, Venuti A. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers. Cancers (Basel) 2020; 12:cancers12113101. [PMID: 33114220 PMCID: PMC7690868 DOI: 10.3390/cancers12113101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary DNA vaccination represents a useful approach for human papillomavirus (HPV) cancer therapy. The therapeutic potential of plant-based natural compounds for control of HPV- associated cancers has been also widely explored. Genetic vaccines for HPV-associated tumors that include plant protein-encoding gene sequences, used alone or in combinations with plant metabolites, are being investigated but are still in their infancy. Main focus of this paper is to provide an overview of the current state of novel therapeutic strategies employing genetic vaccines along with plant-derived compounds and genes. We highlight the importance of multimodality treatment regimen such as combining immunotherapy with plant-derived agents. Abstract Antigen-specific immunotherapy and, in particular, DNA vaccination provides an established approach for tackling human papillomavirus (HPV) cancers at different stages. DNA vaccines are stable and have a cost-effective production. Their intrinsic low immunogenicity has been improved by several strategies with some success, including fusion of HPV antigens with plant gene sequences. Another approach for the control of HPV cancers is the use of natural immunomodulatory agents like those derived from plants, that are able to interfere in carcinogenesis by modulating many different cellular pathways and, in some instances, to reduce chemo- and radiotherapy resistance of tumors. Indeed, plant-derived compounds represent, in many cases, an abundantly available, cost-effective source of molecules that can be either harvested directly in nature or obtained from plant cell cultures. In this review, an overview of the most relevant data reported in literature on the use of plant natural compounds and genetic vaccines that include plant-derived sequences against HPV tumors is provided. The purpose is also to highlight the still under-explored potential of multimodal treatments implying DNA vaccination along with plant-derived agents.
Collapse
Affiliation(s)
- Rosella Franconi
- Division of Health Protection Technology, Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Silvia Massa
- Division of Biotechnology and Agroindustry, Department for Sustainability, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Francesca Paolini
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Patrizia Vici
- Division of Medical Oncology B, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Venuti
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
42
|
Juhlin CC, Falhammar H, Kjellman M, Åhlén J, Welin S, Calissendorff J. Highly proliferative anal neuroendocrine carcinoma: molecular and clinical features of a rare, recurrent case in complete remission. BMC Gastroenterol 2020; 20:290. [PMID: 32854635 PMCID: PMC7457256 DOI: 10.1186/s12876-020-01433-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Poorly differentiated anal neuroendocrine carcinomas (ANECs) are rare lesions with poor prognosis, and the molecular etiology is only partially understood. CASE PRESENTATION At our institution, we have treated and followed a patient with such a rare ANEC. He had primarily surgery followed by three rounds of repeated surgery for loco-regional recurrences. He also received three different combinations of chemotherapy and external beam radiation. At last follow-up 13 years since the primary diagnosis, the patient had been in complete remission for nine years. The patient's medical files were re-examined, including laboratory, radiology and clinical examinations. Histopathology was re-assessed, and expanded immunohistochemistry was performed from tissue specimens from the four surgical procedures. In addition, the molecular genetic status was evaluated through next-generation sequencing. The initial tumor was consistent with a 59 mm small cell neuroendocrine cancer with a Ki-67 index of 80%. Regional lymph node metastases were evident, and immunohistochemistry supported a neuroendocrine origin. A PCR screening detected human papilloma virus type 45 DNA (high-risk subtype), and focused next-generation sequencing found a missense mutation in the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene. In tissues representing subsequent recurrences, the Chromogranin A expression was lost, and the Ki-67 index increased to 90%. CONCLUSIONS For the first time, we report the detection of HPV45 in a case of ANEC. To our belief, PIK3CA mutations have also not been previously demonstrated in this tumor entity. In highly malignant ANECs, cure can in rare cases be achieved. Although speculative, expression of HPV45 and/or the PIK3CA mutation may have contributed to the favorable outcome.
Collapse
Affiliation(s)
- Carl Christofer Juhlin
- Department of Oncology-Pathology, BioClinicum J6:20, Karolinska Institutet, Stockholm, Solna, Sweden. .,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| | - Henrik Falhammar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Kjellman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Åhlén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Welin
- Institution of Medical Sciences, Uppsala Akademiska Hospital, Uppsala, Sweden.,Department of Endocrine Oncology, Uppsala Akademiska Hospital, Uppsala, Sweden
| | - Jan Calissendorff
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat Commun 2020; 11:1137. [PMID: 32111835 PMCID: PMC7048819 DOI: 10.1038/s41467-020-14821-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
The interaction between immune cells and phosphatidylserine (PS) molecules exposed on the surface of apoptotic-tumor bodies, such as those induced by chemotherapies, contributes to the formation of an immunosuppressive tumor microenvironment (TME). Annexin A5 (AnxA5) binds with high affinity to PS externalized by apoptotic cells, thereby hindering their interaction with immune cells. Here, we show that AnxA5 administration rescue the immunosuppressive state of the TME induced by chemotherapy. Due to the preferential homing of AnxA5 to the TME enriched with PS+ tumor cells, we demonstrate in vivo that fusing tumor-antigen peptide to AnxA5 significantly enhances its immunogenicity and antitumor efficacy when administered after chemotherapy. Also, the therapeutic antitumor effect of an AnxA5-peptide fusion can be further enhanced by administration of other immune checkpoint inhibitors. Our findings support the administration of AnxA5 following chemotherapy as a promising immune checkpoint inhibitor for cancer treatment. AnnexinV has been shown to bind phosphatidylserine expressed by chemotherapy-induced apoptotic cells increasing their immunogeneicity. Here, the authors demonstrate in a preclinical tumor model that fusing tumor-antigen peptide to Annexin V enhances its efficacy when administered after chemotherapy and with other immune checkpoint inhibitors.
Collapse
|
44
|
Martin-Gomez L, Giuliano AR, Fulp WJ, Caudell J, Echevarria M, Sirak B, Abrahamsen M, Isaacs-Soriano KA, Hernandez-Prera JC, Wenig BM, Vorwald K, McMullen CP, Wadsworth JT, Slebos RJ, Chung CH. Human Papillomavirus Genotype Detection in Oral Gargle Samples Among Men With Newly Diagnosed Oropharyngeal Squamous Cell Carcinoma. JAMA Otolaryngol Head Neck Surg 2020; 145:460-466. [PMID: 30920604 DOI: 10.1001/jamaoto.2019.0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance The most common cause of oropharyngeal squamous cell carcinoma is human papillomavirus (HPV) infection, and currently the standard of care to determine the HPV infection status in this type of carcinoma is to use p16 immunohistochemistry as a surrogate marker of high-risk HPV infection. Although p16 immunohistochemistry is limited by the inability to determine the specific HPV genotypes, oral gargle samples may be a readily available source of HPV DNA for genotyping. Objective To determine the specific HPV genotypes present in both oral gargle samples and tumor specimens. Design, Setting, and Participants This prospective, biomarker cohort study conducted at a single specialized cancer hospital in Florida screened approximately 800 potentially eligible participants from May 2014 through October 2017. To be eligible for participation, patients had to meet all of the following criteria: 18 years of age or older, male sex, newly diagnosed as having stage I to IV cancer of the oropharynx, a squamous cell carcinoma diagnosis, treatment naive or at least 4 weeks after chemoradiation or surgical treatment of other diseases, fully understand the study procedures and risks involved, and voluntarily agree to participate by signing an informed consent statement. Main Outcomes and Measures Detection rate of HPV infection and HPV genotypes in oral gargle samples and tumor specimens. Results A cohort of 204 male participants with newly diagnosed oropharyngeal squamous cell carcinoma was assessed in this prospective collection of comprehensive clinical data and oral gargle samples. Most study participants (190 [93.1%]) were white and ever smokers (114, 55.9%), with a median age of 61 years (range, 35-87 years). The HPV infection status could be assessed in 203 of 204 participants (99.5%) using oral gargle samples: 35 samples (17.2%) were negative for HPV infection, whereas 168 samples (82.8%) were positive for HPV infection. The detection rate of HPV genotypes was 93.0% in tumor specimens (160 specimens) and 82.8% (168 samples) in oral gargle samples. The oral gargle samples frequently had low-risk HPV genotypes that were not detected in tumors, but these low-risk genotypes were always a coinfection with high-risk genotypes. Conclusions and Relevance Oral gargle samples can be used to detect the majority of clinically relevant HPV genotypes found in oropharyngeal squamous cell carcinoma, but the interpretation of HPV detected in these samples should be assessed with caution for general cancer risk assessment given that sensitive assays can concomitantly detect low-risk genotypes.
Collapse
Affiliation(s)
- Laura Martin-Gomez
- Center for Immunization and Infection Research in Cancer, Tampa, Florida
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Tampa, Florida
| | - William J Fulp
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Jimmy Caudell
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | - Bradley Sirak
- Center for Immunization and Infection Research in Cancer, Tampa, Florida
| | - Martha Abrahamsen
- Center for Immunization and Infection Research in Cancer, Tampa, Florida
| | | | | | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Kathryn Vorwald
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Caitlin P McMullen
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - J Trad Wadsworth
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Robbert J Slebos
- Center for Immunization and Infection Research in Cancer, Tampa, Florida.,Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Christine H Chung
- Center for Immunization and Infection Research in Cancer, Tampa, Florida.,Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
45
|
Cohen AC, Roane BM, Leath CA. Novel Therapeutics for Recurrent Cervical Cancer: Moving Towards Personalized Therapy. Drugs 2020; 80:217-227. [PMID: 31939072 PMCID: PMC7033025 DOI: 10.1007/s40265-019-01249-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While screening programs and HPV vaccination have decreased the incidence of cervical cancer, still over 13,000 cases occur in the USA annually. Early-stage cervical cancer has an excellent long-term prognosis, with 5-year survival for localized disease being > 90%. Survival decreases markedly for both locally advanced and metastatic disease, and both are associated with a higher risk of recurrence. Few effective treatment options exist for persistent, recurrent, or metastatic cervical cancer. In 2014, the anti-VEGF antibody bevacizumab was approved in combination with chemotherapy based on the results of the Phase III GOG-240 study. As the majority of cervical cancers have a viral etiology, which impairs the immune system, immunotherapy using checkpoint inhibitors and other agents, appears to be a promising approach. In June 2018, the US FDA approved the anti-PD1 antibody pembrolizumab for recurrent or metastatic cervical cancer with PD-L1 expression that progressed after one or more lines of chemotherapy. Another anti-PD1 antibody, cemiplimab also shows potential in this setting, either as monotherapy or combined with radiotherapy, and it is currently being evaluated in a Phase III trial. Additional checkpoint inhibitors including nivolumab, durvalumab, atezolizumab, and camrelizumab are in different stages of clinical development for the disease. Finally, an additional targeted approach being pursued involves PARP inhibitors (rucaparib and olaparib are both in Phase II) based on earlier study results.
Collapse
Affiliation(s)
- Alexander C Cohen
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon M Roane
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Charles A Leath
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA.
| |
Collapse
|
46
|
Vahabpour R, Basimi P, Roohvand F, Asadi H, Irani GM, Zabihollahi R, Bolhassani A. Anti-viral Effects of Superpositively Charged Mutant of Green Fluorescent Protein. Protein Pept Lett 2020; 26:930-939. [PMID: 31441722 DOI: 10.2174/0929866526666190823145916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/14/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Supercharged GFP proteins were known as effective carriers for delivery of macromolecules into eukaryotic cells as well as fluorescent fusion tags for in vitro and in vivo detection. OBJECTIVE Herein, anti-viral effects of +36 GFP and its anti-tumor effects were studied in vitro and in vivo, respectively. METHODS We evaluated anti-HIV, anti-HSV, and anti-HCV effects of +36 GFP in vitro using ELISA, and real time PCR as common techniques for their detection, respectively. Moreover, we assessed the role of +36 GFP for eliciting HPV-related anti-tumor effects in mice due to the lack of HPV replication in vitro. RESULTS Our data showed that +36 GFP efficiently enter the cells and augment the transfection rate of HPV16E7 antigen, as well. Furthermore, +36 GFP significantly reduced HCV, HIV and HSV replication up to 75%, 49% and 43% in HCV-infected Huh7.5 cells, HIV-infected Hela cells and HSV-infected Vero cells, respectively. On the other hand, mice immunization with +36 GFP complexed with HPV16 E7 antigen (+36GFP + E7) or fused to HPV16 E7 antigen (+36GFP-E7) elicited a higher Th1 cellular immune response with the predominant IgG2a, IgG2b, IFN-γ and Granzyme B levels than those induced by other groups. These regimens protected mice against TC- 1 tumor challenge (~ 67%) compared to E7 protein alone (~ 33%). These data suggested that +36 GFP can act as an anti-viral agent at certain dose due to its high efficiency in cell penetration in vitro and in vivo. CONCLUSION Generally, +36 GFP targets viral replication in vitro as well as helps to suppress the growth of HPV-related tumors in vivo.
Collapse
Affiliation(s)
- Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Asadi
- Deputy of Research, Technology and Education, Research Section, Pasteur Institute of Iran, Tehran, Iran
| | - Gholnaz M Irani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
47
|
Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020; 10:3116. [PMID: 32038557 PMCID: PMC6985034 DOI: 10.3389/fmicb.2019.03116] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023] Open
Abstract
Human papillomavirus (HPV)-induced cervical cancer is a major health issue among women from the poorly/under-developed sectors of the world. It accounts for a high-mortality rate because of its late diagnosis and poor prognosis. Initial establishment and subsequent progression of this form of cancer are completely dependent on two major oncogenes E6 and E7, which are expressed constitutively leading to tumorigenesis. Thus, manipulation of these genes represents the most successful form of cervical cancer therapy. In the present article, information on structural, functional, and clinical dimensions of E6 and E7 activity has been reviewed. The genome organization and protein structure of E6 and E7 have been discussed followed by their mechanism to establish the six major cancer hallmarks in cervical tissues for tumor propagation. The later section of this review article deals with the different modes of therapeutics, which functions by deregulating E6 and E7 activity. Since E6 and E7 are the biomarkers of a cervical cancer cell and are the ones driving the cancer progression, therapeutic approaches targeting E6 and E7 have been proved to be highly efficient in terms of focused removal of abnormally propagating malignant cells. Therapeutics including different forms of vaccines to advanced genome editing techniques, which suppress E6 and E7 activity, have been found to successfully bring down the population of cervical cancer cells infected with HPV. T-cell mediated immunotherapy is another upcoming successful form of treatment to eradicate HPV-infected tumorigenic cells. Additionally, therapeutics using natural compounds from plants or other natural repositories, i.e., phytotherapeutic approaches have also been reviewed here, which prove their anticancer potential through E6 and E7 inhibitory effects. Thus, E6 and E7 repression through any of these methods is a significant approach toward cervical cancer therapy, described in details in this review along with an insight into the signaling pathways and molecular mechanistic of E6 and E7 action.
Collapse
Affiliation(s)
| | - Rita Kundu
- Cell Biology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| |
Collapse
|
48
|
Ivancic R, Iqbal H, deSilva B, Pan Q, Matrka L. Immunological tolerance of low-risk HPV in recurrent respiratory papillomatosis. Clin Exp Immunol 2019; 199:131-142. [PMID: 31628850 DOI: 10.1111/cei.13387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is characterized by benign exophytic lesions of the respiratory tract caused by the human papillomavirus (HPV), in particular low-risk HPV6 and HPV11. Aggressiveness varies greatly among patients. Surgical excision is the current standard of care for RRP, with adjuvant therapy used when surgery cannot control disease recurrence. Numerous adjuvant therapies have been used to control RRP with some success, but none are curative. Current literature supports a polarization of the adaptive immune response to a T helper type 2 (Th2)-like or T regulatory phenotype, driven by a complex interplay between innate immunity, adaptive immunity and HPV6/11 proteins. Additionally, certain immunogenetic polymorphisms can predispose individuals to an HPV6/11-tolerant microenvironment. As a result, immunomodulatory efforts are being made to restore the host immune system to a more balanced T cell phenotype and clear viral infection. Literature has shown exciting evidence for the role of HPV vaccination with Gardasil or Gardasil-9 as both primary prevention, by decreasing incidence through childhood vaccinations, and secondary prevention, by treating active RRP disease. Multi-institution randomized clinical trials are needed to better assess their efficacy as treatment for active disease. Interestingly, a DNA vaccine has recently shown in-vitro success in generating a more robust CD8+ T cell response. Furthermore, clinical trials for programmed death 1 (PD-1) inhibitors are under investigation for RRP management. Molecular insights into RRP, in particular the interplay between RRP and the immune system, are needed to advance our understanding of this disease and may lead to the identification of immunomodulatory agents to better manage RRP.
Collapse
Affiliation(s)
- R Ivancic
- College of Medicine, The Ohio State University, OH, USA
| | - H Iqbal
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - B deSilva
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Q Pan
- Case Comprehensive Cancer Center, Cleveland, OH
| | - L Matrka
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
49
|
Li S, Zhang Q, Bai H, Huang W, Shu C, Ye C, Sun W, Ma Y. Self-Assembled Nanofibers Elicit Potent HPV16 E7-Specific Cellular Immunity And Abolish Established TC-1 Graft Tumor. Int J Nanomedicine 2019; 14:8209-8219. [PMID: 31632028 PMCID: PMC6794571 DOI: 10.2147/ijn.s214525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/11/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Vaccines are one of the most promising strategies for immunotherapy of HPV associated tumors; however, they generally lack significant clinical efficacy at present. This inefficacy might be due to inefficient generation of anti-tumor cellular immune responses. PURPOSE This study aimed to assess the potential of using self-assembled nanofibers as a new vaccine platform to elicit potent HPV antigen - specific anti-tumor immunity. METHODS A HPV16 E744-62 peptide was chemically appended to the N terminus of self-assembling peptide Q11. The nanofibers were prepared and used to immunize mice through a preventive or therapeutic strategy in a TC-1 graft tumor model. RESULTS Preventive immunization with nanofibers almost completely suppressed the growth of primarily grafted TC-1 tumors and even a re-challenge of tumor cells after a six-week rest. Therapeutic immunization significantly increased the levels of effector Th1 cells, CTLs and the cytokines IFN-γ and TNF-α in E7 peptide-stimulated splenocytes, and the immunization reduced Th2, MDSC and IL-4 contents compared to the controls. The nanofiber immunization significantly suppressed the growth of established tumors and achieved 66.7% and 50% tumor-free in mice carrying 2-3 mm tumors and even larger tumors with a diameter of 5-6 mm respectively. In addition, the nanofibers were more efficient than the corresponding unassembled peptides for the treatment of established larger size tumors. CONCLUSION The results indicated that self-assembling nanofibers could elicit robust HPV antigen -specific anti-tumor cellular immunity and are a potent antigen delivery system for HPV related tumor vaccines.
Collapse
Affiliation(s)
- Sijin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Qishu Zhang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Congyan Shu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Chao Ye
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Wenjia Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, People’s Republic of China
- Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease, Kunming, People’s Republic of China
| |
Collapse
|
50
|
Schneede P, Schlenker B. [Human papillomavirus and penile cancer : Thinking about measures for prevention]. Urologe A 2019; 57:413-417. [PMID: 29484460 DOI: 10.1007/s00120-018-0597-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two major pathways of penile carcinogenesis are known: human papillomavirus (HPV)-induced penile cancer and HPV-negative cancers associated with chronic dermatoses. Therefore, modern measures for prevention of penile cancer may for example include prophylactic HPV vaccination. The resulting B‑cell-mediated immunity to HPV capsid proteins is effective protection against future HPV infections. Contrarily when treating existing HPV infections or HPV-associated cancers an antigen-specific T‑cell immunity is necessary. To date, screening and treatment of precancerous lesions to prevent penile cancer are not established in the German health care program and the highly expected therapeutic HPV vaccines are still on the horizon. In this article, we focus on possible strategies to prevent HPV-related penile cancer on different levels of carcinogenesis.
Collapse
Affiliation(s)
- P Schneede
- Urologische Klinik, Klinikum Memmingen, Bismarckstraße 23, 87700, Memmingen, Deutschland.
| | - B Schlenker
- Klinikum der Universität München, Großhadern, München, Deutschland
| |
Collapse
|