1
|
Colombatti Olivieri MA, Cuerda MX, Moyano RD, Gravisaco MJ, Pinedo MFA, Delgado FO, Calamante G, Mundo S, de la Paz Santangelo M, Romano MI, Alonso MN, Del Medico Zajac MP. Superior protection against paratuberculosis by a heterologous prime-boost immunization in a murine model. Vaccine 2024; 42:126055. [PMID: 38880691 DOI: 10.1016/j.vaccine.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.
Collapse
MESH Headings
- Animals
- Mycobacterium avium subsp. paratuberculosis/immunology
- Immunization, Secondary/methods
- Mice
- Paratuberculosis/prevention & control
- Paratuberculosis/immunology
- Immunoglobulin G/blood
- Cytokines/metabolism
- Female
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Mice, Inbred BALB C
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Immunity, Cellular/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
Collapse
Affiliation(s)
| | - María Ximena Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Roberto Damián Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Fiorella Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de La Plata, Chascomús, Buenos Aires 7130, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiologia Veterinaria (IPV), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Silvia Mundo
- Cátedra de Inmunología de la Facultad de Ciencias Veterinarias - Universidad de Buenos Aires, Ciudad de Buenos Aires 1427, Argentina
| | - María de la Paz Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Isabel Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina.
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| |
Collapse
|
2
|
Lybeck K, Tollefsen S, Mikkelsen H, Sjurseth SK, Lundegaard C, Aagaard C, Olsen I, Jungersen G. Selection of vaccine-candidate peptides from Mycobacterium avium subsp. paratuberculosis by in silico prediction, in vitro T-cell line proliferation, and in vivo immunogenicity. Front Immunol 2024; 15:1297955. [PMID: 38352876 PMCID: PMC10861761 DOI: 10.3389/fimmu.2024.1297955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is a global concern in modern livestock production worldwide. The available vaccines against paratuberculosis do not offer optimal protection and interfere with the diagnosis of bovine tuberculosis. The aim of this study was to identify immunogenic MAP-specific peptides that do not interfere with the diagnosis of bovine tuberculosis. Initially, 119 peptides were selected by either (1) identifying unique MAP peptides that were predicted to bind to bovine major histocompatibility complex class II (MHC-predicted peptides) or (2) selecting hydrophobic peptides unique to MAP within proteins previously shown to be immunogenic (hydrophobic peptides). Subsequent testing of peptide-specific CD4+ T-cell lines from MAP-infected, adult goats vaccinated with peptides in cationic liposome adjuvant pointed to 23 peptides as being most immunogenic. These peptides were included in a second vaccine trial where three groups of eight healthy goat kids were vaccinated with 14 MHC-predicted peptides, nine hydrophobic peptides, or no peptides in o/w emulsion adjuvant. The majority of the MHC-predicted (93%) and hydrophobic peptides (67%) induced interferon-gamma (IFN-γ) responses in at least one animal. Similarly, 86% of the MHC-predicted and 89% of the hydrophobic peptides induced antibody responses in at least one goat. The immunization of eight healthy heifers with all 119 peptides formulated in emulsion adjuvant identified more peptides as immunogenic, as peptide specific IFN-γ and antibody responses in at least one heifer was found toward 84% and 24% of the peptides, respectively. No peptide-induced reactivity was found with commercial ELISAs for detecting antibodies against Mycobacterium bovis or MAP or when performing tuberculin skin testing for bovine tuberculosis. The vaccinated animals experienced adverse reactions at the injection site; thus, it is recommend that future studies make improvements to the vaccine formulation. In conclusion, immunogenic MAP-specific peptides that appeared promising for use in a vaccine against paratuberculosis without interfering with surveillance and trade tests for bovine tuberculosis were identified by in silico analysis and ex vivo generation of CD4+ T-cell lines and validated by the immunization of goats and cattle. Future studies should test different peptide combinations in challenge trials to determine their protective effect and identify the most MHC-promiscuous vaccine candidates.
Collapse
Affiliation(s)
- Kari Lybeck
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Stig Tollefsen
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Heidi Mikkelsen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Claus Lundegaard
- Department of Systems Biology, Centre for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ingrid Olsen
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Gregers Jungersen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Criado M, Reyes LE, Marín JFG, Gutiérrez-Expósito D, Zapico D, Espinosa J, Pérez V. Adjuvants influence the immune cell populations present at the injection site granuloma induced by whole-cell inactivated paratuberculosis vaccines in sheep. Front Vet Sci 2024; 11:1284902. [PMID: 38352038 PMCID: PMC10861745 DOI: 10.3389/fvets.2024.1284902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Vaccination is the most effective tool for paratuberculosis control. Currently, available vaccines prevent the progression of clinical disease in most animals but do not fully protect them against infection and induce the formation of an injection site granuloma. The precise mechanisms that operate in response to vaccination and granuloma development, as well as the effect that adjuvants could trigger, have not been fully investigated. Therefore, this study aimed to investigate the injection site granulomas induced by two inactivated paratuberculosis vaccines, which differ in the adjuvant employed. Two groups of 45-day-old lambs were immunized with two commercially available vaccines-one (n = 4) with Gudair® and the other (n = 4) with Silirum®. A third group (n = 4) was not vaccinated and served as control. The peripheral humoral response was assessed throughout the study by a commercial anti-Mycobacterium avium subspecies paratuberculosis (Map) antibody indirect ELISA, and the cellular immune response was assessed similarly by the IFN-γ release and comparative intradermal tests. The injection site granulomas were measured during the experiment and sampled at 75 days post-vaccination (dpv) when the animals were euthanized. The tissue damage, antigen and adjuvant distribution, and the presence and amount of immune cells were then determined and assessed by immunohistochemical methods. Antibodies against Map antigens; a general macrophage marker (Iba1), M1 (iNOS), and M2 (CD204) macrophages; T (CD3), B (CD20), and γδ T lymphocytes, proteins MHC-II and NRAMP1, and cytokines IL-4, IL-10, TNF, and IFN-γ were employed. Silirum® elicited a stronger peripheral cellular immune response than Gudair®, while the latter induced larger granulomas and more tissue damage at the site of injection. Additionally, adjuvant and Map antigen distribution throughout the granulomatous inflammatory infiltrate, as well as the NRAMP1 cell expression, which is linked to antigen phagocytosis, were highly irregular. In Silirum® induced granulomas, a higher number of MHC-II and TNF-expressing cells and a lower number of M2 macrophages suggested an improved antigen presentation, which could be due to the better antigen distribution and reduced tissue damage induced by this vaccine.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Luis E. Reyes
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan F. García Marín
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - David Zapico
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| |
Collapse
|
4
|
Moezzi MS, Derakhshandeh A, Hemmatzadeh F. Immunoinformatics analysis of candidate proteins for controlling bovine paratuberculosis. PLoS One 2022; 17:e0277751. [PMID: 36409703 PMCID: PMC9678287 DOI: 10.1371/journal.pone.0277751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Paratuberculosis is debilitating chronic enteritis usually characterized by diarrhea, decreased milk production, and progressive cachexia. Mycobacterium avium subspecies paratuberculosis (MAP) causes significant economic losses by affecting dairy herds globally. Development of protective vaccines is considered as one of the most effective controlling measures for MAP infections. In the current study, hydrophilic parts of MAP2191 and FAP-P proteins as two vaccine candidates were analyzed using immunoinformatics approaches. METHODS After selecting the most hydrophilic parts of MAP2191 and FAP-P, helper and cytotoxic T-cell epitopes of ht-MAP2191 and ht-FAP-P were identified. The immunogenic, toxicity and physicochemical properties were assessed. Secondary structures of these proteins were predicted, and their tertiary structures were modeled, refined, and validated. Linear and conformational epitopes of corresponding B-cells were recognized. Then ht-MAP2191 and ht-FAP-P epitopes were employed for molecular docking simulations. RESULTS The results indicated that ht-MAP2191 and ht-FAP-P were immunogenic, non-allergenic, and non-toxic and possess potent T-cell and B-cell epitopes. Eventually, these protein constructs were docked favorably against TLR4. CONCLUSION According to the findings, ht-MAP2191 and ht-FAP-P could be effective protein-based vaccine candidates for paratuberculosis. It should be noted that to examine their efficacy, further in vitro and in vivo experiments are underway.
Collapse
Affiliation(s)
- Maryam Sadat Moezzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- * E-mail:
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Arteche-Villasol N, Gutiérrez-Expósito D, Elguezabal N, Sevilla IA, Vallejo R, Espinosa J, Ferreras MDC, Benavides J, Pérez V. Influence of Heterologous and Homologous Vaccines, and Their Components, on the Host Immune Response and Protection Against Experimental Caprine Paratuberculosis. Front Vet Sci 2022; 8:744568. [PMID: 35071374 PMCID: PMC8767014 DOI: 10.3389/fvets.2021.744568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
Vaccination against paratuberculosis, a chronic disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map), has been considered as the most effective control method. However, protection is incomplete, and the mechanisms operating in the response of the animals to vaccination are not fully understood. Therefore, this study analyzed the immune response and the effects on protection against Map infection, elicited by paratuberculosis (Silirum®) and tuberculosis (heat-inactivated M. bovis [HIMB]) vaccines and their components in a caprine experimental model. Fifty goat kids were divided into 10 groups (n = 5) according to their vaccination (Silirum®, HIMB and nonvaccinated), immunization (inactivated bacteria or adjuvant), and/or infection. Oral challenge with Map was performed 45 days postvaccination/immunization (dpv), and animals were euthanized at 190 dpv. Peripheral immune response and proportion of lymphocyte subpopulations were assessed monthly by enzyme-linked immunosorbent assay and flow cytometry analysis, respectively. Local immune response, proportion of tissue lymphocyte subpopulations, Map detection (polymerase chain reaction), and histological examination were conducted in gut-associated lymphoid tissues. All infected groups developed paratuberculosis granulomatous lesions despite vaccination or immunization. The Silirum® and HIMB-vaccinated groups showed a considerable lesion reduction consistent with a significant peripheral cellular and humoral immune response. Besides, a lower number of granulomas were observed in groups immunized with inactivated bacteria and adjuvants in comparison to nonvaccinated and infected group. However, despite not being significant, this reduction was even higher in adjuvant immunized groups, which developed milder granulomatous lesion with no detectable peripheral immune responses associated with immunization. No changes in the peripheral and local proportion of lymphocyte subsets or local immune response were detected in relation to either vaccination/immunization or infection. Despite that paratuberculosis and tuberculosis vaccination showed a partial and cross-protection against Map infection, respectively, only histological examination could assess the progression of infection in these animals. In addition, the pattern observed in the reduction of the lesions in adjuvant immunized groups suggests the possible involvement of a nonspecific immune response that reduces the development of granulomatous lesions.
Collapse
Affiliation(s)
- Noive Arteche-Villasol
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Iker A Sevilla
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Raquel Vallejo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| | - María Del Carmen Ferreras
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain
| |
Collapse
|
6
|
Evaluation of a virulent strain of Mycobacterium avium subsp. Paratuberculosis used as a heat-killed vaccine. Vaccine 2021; 39:7401-7412. [PMID: 34774361 DOI: 10.1016/j.vaccine.2021.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022]
Abstract
Bovine paratuberculosis is one of the most important chronic infectious diseases in livestock. This disease is difficult to control because of its inefficient management (test and cull strategy and inadequate biosecurity). Thus, the development of an effective vaccine is essential. In this study, we evaluated a local virulent strain (6611) of Mycobacterium avium subsp. paratuberculosis as an inactivated vaccine in comparison with the Silirum vaccine in mouse model and cattle. Regarding the mice model, only the groups vaccinated with 6611 showed lower colony forming unit (CFU) counts with a lower lesion score in the liver in comparison to the control group at 6 and 12 weeks post-challenge (wpc). The immune response was predominantly humoral (IgG1), although both vaccinated groups presented a cellular response with IFNγ production as well, but the 6611 group had also significant production of IL-2, IL-6, IL-17a, TNF, and IL-10. In cattle, the 6611 vaccinated group was the only one that maintained significant antibody values at the end of the trial, with significant production of IgG2 and IFNγ. No PPDb reactor was detected in the vaccinated animals, according to the intradermal caudal fold tuberculin test. Our results indicate that the 6611 local strain protected mice from challenge with a virulent strain, by inducing a humoral and cellular immune response. In the bovine, the natural host, the evaluated vaccine also induced humoral and cellular immune responses, with higher levels of CD4 + CD25+ and CD8 + CD25+ T cells populations than the commercial vaccine. Despite the encouraging results obtained in this study, an experimental challenge trial in cattle is mandatory to evaluate the efficacy of our candidate vaccine in the main host.
Collapse
|
7
|
Arteche-Villasol N, Gutiérrez-Expósito D, Vallejo R, Espinosa J, Elguezabal N, Ladero-Auñon I, Royo M, Del Carmen Ferreras M, Benavides J, Pérez V. Early response of monocyte-derived macrophages from vaccinated and non-vaccinated goats against in vitro infection with Mycobacterium avium subsp. paratuberculosis. Vet Res 2021; 52:69. [PMID: 33980310 PMCID: PMC8117269 DOI: 10.1186/s13567-021-00940-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Paratuberculosis is a disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map). Vaccination is the most cost-effective control method. However, despite the fact that macrophages are the main target cells for this pathogen, the precise mechanisms behind the response of the macrophage to Map infection and how it is modified by vaccination are yet poorly understood. The aim of this study was to investigate the effect of Silirum® vaccination in the early immune response of caprine monocyte-derived macrophages (CaMØs). Peripheral blood mononuclear cells (PBMCs) were obtained from vaccinated and non-vaccinated goats, cultured in vitro until differentiation to macrophages and infected with Map. After a 24 h incubation, Map viability and DNA were assessed in culture by viable colony count and real time quantitative polymerase chain reaction (qPCR). In addition, Map phagocytosis and expression of IL-10, IL-12, IFN-γ, TNF-α, IL-17A, IL-1β, iNOS, IL-6 and MIP-1β were also evaluated through immunofluorescence labelling and reverse transcriptase qPCR (RT-qPCR), respectively. A significant reduction of Map viability was observed in both supernatants (P < 0.05) and CaMØs (P < 0.001) from the vaccinated group. Similarly, the percentage of infected CaMØs and the number of internalized Map by CaMØs (P < 0.0001) was higher in the vaccinated group. Finally, iNOS (P < 0.01) and IL-10 were significantly up-regulated in CaMØs from vaccinated goats, whereas only MIP-1β was up-regulated in non-vaccinated animals (P < 0.05). These results show that vaccination modifies the immune response of CaMØs, suggesting that the phagocytosis and microbiocidal activity of macrophages against Map is enhanced after vaccination.
Collapse
Affiliation(s)
- Noive Arteche-Villasol
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain.
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain
| | - Raquel Vallejo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain
| | - Jose Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, Derio, 48169, Bizkaia, Spain
| | - Iraia Ladero-Auñon
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, Derio, 48169, Bizkaia, Spain
| | - Marcos Royo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain
| | - María Del Carmen Ferreras
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-ULE),, Finca Marzanas-Grulleros, 24346, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007, León, Spain
| |
Collapse
|
8
|
Gupta SK, Parlane NA, Luo D, Rehm BHA, Heiser A, Buddle BM, Wedlock DN. Self-assembled particulate vaccine elicits strong immune responses and reduces Mycobacterium avium subsp. paratuberculosis infection in mice. Sci Rep 2020; 10:22289. [PMID: 33339863 PMCID: PMC7749150 DOI: 10.1038/s41598-020-79407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhoea, weight loss, and eventual death in ruminants. Commercially available vaccines provide only partial protection against MAP infection and can compromise the use of bovine tuberculosis diagnostic tests. Here, we report the development of a protein-particle-based vaccine containing MAP antigens Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786 as a fusion ('MAP fusion protein particle'). The fusion antigen displayed on protein particles was identified using mass spectrometry. Surface exposure and accessibility of the fusion antigen was confirmed by flow cytometry and ELISA. The MAP fusion protein particle vaccine induced strong antigen-specific T-cell immune responses in mice, as indicated by increased cytokine (IFN-γ and IL-17A) and costimulatory signals (CD40 and CD86) in these animals. Following MAP-challenge, a significant reduction in bacterial burden was observed in multiple organs of the mice vaccinated with the MAP fusion protein particle vaccine compared with the PBS group. The reduction in severity of MAP infection conferred by the MAP fusion protein particle vaccine was similar to that of Silirum and recombinant protein vaccines. Overall, the results provide evidence that MAP antigens can be engineered as a protein particulate vaccine capable of inducing immunity against MAP infection. This utility offers an attractive platform for production of low-cost particulate vaccines against other intracellular pathogens.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - Natalie A Parlane
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Dongwen Luo
- Bioinformatics and Statistics, AgResearch, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, Australia
| | - Axel Heiser
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Bryce M Buddle
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - D Neil Wedlock
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
9
|
Ugochukwu AI, Phillips PWB, Ochieng’ BJ. Driving Adoption and Commercialization of Subunit Vaccines for Bovine Tuberculosis and Johne's Disease: Policy Choices and Implications for Food Security. Vaccines (Basel) 2020; 8:vaccines8040667. [PMID: 33182334 PMCID: PMC7711889 DOI: 10.3390/vaccines8040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Infectious animal diseases, such as Johne's disease (JD) caused by Mycobacterium avium paratuberculosis (MAP) and bovine tuberculosis (bTB) caused by Mycobacterium bovis, have been a challenge to the livestock industry globally, impacting negatively on animal, human and environmental health, and overall food security. Despite several industry-led and government initiatives and programs aimed at preventing and reducing losses associated with JD and bTB outbreaks, JD has remained endemic in many parts of the world while there have been incidental outbreaks of bTB. While several studies focus on sustainable intensification of food (crop) production as a critical solution to food insecurity, following the existential interconnection between animals, humans and the environment recognized by one health, we frame food security through the lens of animal disease prevention and control, given the importance of livestock products to human health and livelihood. Vaccination has been a popular strategy successfully used in controlling other infectious diseases. The paper focuses on an alternate strategy of two subunit vaccines with companion diagnostics targeted at individual pathogens to attain satisfactory immunological responses for JD and bTB. We examine gaps in vaccine policies, commercialization, and potential strategies that would strengthen animal disease prevention and enhance food security. The potential of public-private partnership in strengthening private sector participation in effective animal disease control and health delivery and the implications for global food security are discussed.
Collapse
|
10
|
Luo L, De Buck J. Inducing cellular immune responses with a marked Mycobacterium avium subsp. paratuberculosis strain in dairy calves. Vet Microbiol 2020; 244:108665. [PMID: 32402345 DOI: 10.1016/j.vetmic.2020.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a chronic granulomatous enteritis with a high global prevalence in dairy cattle. This disease causes significant economic loss in the dairy industry and has been challenging to control, as current diagnostic assays are low in sensitivity and specificity, and previously developed vaccines do not prevent infection and face regulatory concerns due to interference with bovine tuberculosis diagnostics. To remediate this issue, positive and negative immune markers were created in a MAP strain as a step towards a vaccine capable of differentiating infected from vaccinated animals (DIVA). A gene coding for an immunogenic protein (MAP1693c) in the MAP genome was replaced with a library of epitope-tagged immunogenic genes (pepA) via a stable allelic exchange method. These markers were evaluated in a calf infection trial, where Holstein-Friesian dairy calves were inoculated at two weeks of age with either the marked strain or the parent strain, or remained uninfected controls. Cellular immune responses to the markers were measured using an interferon gamma release assay (IGRA). There were no MAP1693c marker-specific differences in cellular immune responses between infection groups. A scrambled version of the HA (human influenza hemagglutinin) epitope, but not the actual HA epitope, induced a significant IFN-γ response in marker-infected calves compared to WT-infected and uninfected groups at 4.5 months post-inoculation. This scrambled HA epitope thus holds potential as a diagnostic tool as part of a DIVA vaccine for Johne's disease.
Collapse
Affiliation(s)
- Lucy Luo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Gupta S, Singh SV, Singh M, Chaubey KK, Karthik K, Bhatia AK, Kumar N, Dhama K. Vaccine approaches for the 'therapeutic management' of Mycobacterium avium subspecies paratuberculosis infection in domestic livestock. Vet Q 2020; 39:143-152. [PMID: 31524561 PMCID: PMC6831026 DOI: 10.1080/01652176.2019.1667042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High endemicity of Johne’s disease (JD) in herds adversely affects heavy milk yielding breeds by reducing the per animal productivity and ‘productive life-span’. This review evaluates different vaccines used for its control and summarizes the benefits of ‘global vaccine’ in the four major domestic livestock species, namely goat, sheep, buffalo and cattle. Vaccines developed by using ‘native strains’ revealed both 'therapeutic' and preventive effects in domestic livestock. The 'therapeutic' role of vaccine in animals suffering from clinical JD turned out to be valuable in some cases by reversing the disease process and animals returning back to health and production. Good herd management, improved hygiene, ‘test and cull’ methodology, proper disposal of animal excreta and monitoring of MAP bio-load were also regarded as crucial in the 'therapeutic' management of JD. Vaccine approaches have been widely adopted in JD control programs and may be considered as a valuable adjunct in order to utilize huge populations of otherwise un-productive livestock. It has been shown that vaccination was the preeminent strategy to control JD, because it yielded approximately 3–4 times better benefit-to-cost ratios than other strategies. Internationally, 146 vaccine trials/studies have been conducted in different countries for the control of JD and have shown remarkable reduction in its national prevalence. It is concluded that for JD, there cannot be global vaccines or diagnostic kits as solutions have to come from locally prevalent strains of MAP. Despite some limitations, vaccines might still be an effective strategy to reduce or eradicate JD.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Shoor Vir Singh
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Manju Singh
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | | | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University , Chennai , Tamil Nadu , India
| | - A K Bhatia
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Naveen Kumar
- Veterinary Type Culture Collection, NRC on Equines, Indian Council of Agricultural Research , Hisar , Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Izatnagar, Bareilly , Uttar Pradesh , India
| |
Collapse
|
12
|
Begg DJ, Dhungyel O, Naddi A, Dhand NK, Plain KM, de Silva K, Purdie AC, Whittington RJ. The immunogenicity and tissue reactivity of Mycobacterium avium subsp paratuberculosis inactivated whole cell vaccine is dependent on the adjuvant used. Heliyon 2019; 5:e01911. [PMID: 31249894 PMCID: PMC6584770 DOI: 10.1016/j.heliyon.2019.e01911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 11/23/2022] Open
Abstract
Johne's disease (JD) is a chronic enteritis caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current commercial vaccines are effective in reducing the occurrence of clinical disease although vaccinated animals can still become infected and transmit MAP. Many vaccinated sheep develop severe injection site lesions. In this study a range of adjuvants (MontanideTM ISA 50V, ISA 50V2, ISA 61VG, ISA 70 M VG, ISA 71 VG, ISA 201 VG and Gel 01 PR) formulated with heat-killed MAP were tested to determine the incidence of injection site lesions and the types of immune profiles generated in sheep. All the novel formulations produced fewer injection site lesions than a commercial vaccine (Gudair®). The immune profiles of the sheep differed between treatment groups, with the strength of the antibody and cell mediated immune responses being dependant on the adjuvant used. One of the novel vaccines resulted in a reduced IFN-γ immune response when a second “booster” dose was administered. These findings have significance for JD vaccine development because it may be possible to uncouple protective immunity from excessive tissue reactivity, and apparently poorly immunogenic antigens may be re-examined to determine if an appropriate immune profile can be established using different adjuvants. It may also be possible to formulate vaccines that produce targeted immunological profiles suited to protection against other pathogens, i.e. those for which a bias towards cellular or humoral immunity would be advantageous based on understanding of pathogenesis.
Collapse
Affiliation(s)
- D J Begg
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - O Dhungyel
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - A Naddi
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - N K Dhand
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - K M Plain
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - K de Silva
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - A C Purdie
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - R J Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| |
Collapse
|
13
|
Roy Á, Infantes-Lorenzo JA, Blázquez JC, Venteo Á, Mayoral FJ, Domínguez M, Moreno I, Romero B, de Juan L, Grau A, Domínguez L, Bezos J. Temporal analysis of the interference caused by paratuberculosis vaccination on the tuberculosis diagnostic tests in goats. Prev Vet Med 2018; 156:68-75. [DOI: 10.1016/j.prevetmed.2018.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
|
14
|
Eraghi V, Derakhshandeh A, Hosseini A, Motamedi-Boroojeni A. In silico design and expression of a novel fusion protein of HBHA and high antigenic region of FAP-P of Mycobacterium avium subsp. paratuberculosis in Pichia pastoris. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2017; 6:161-168. [PMID: 29417085 PMCID: PMC5762988 DOI: 10.22099/mbrc.2017.26522.1286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants and there has been a shift in the public health approach to MAP and human diseases like Crohn's disease. The prevention of infection by MAP in ruminants is thought to deter the high impact of economic losses in the level of dairy industry and possible spreading of this pathogen in dairy products. The present study was done to investigate the construction and expression of the soluble form of a novel fusion protein, consisting of Heparin-binding hemagglutinin (HBHA) and high antigenic region of Fibronectin Attachment Protein-P (FAP-P), in order to introduce as a Th1 inducer subunit vaccine against MAP. HBHA is a mycobacterial adhesin and it has been demonstrated that a HBHA-specific IFN-γ response, in latent M. tuberculosis infection, depends on the methylation of the antigen. Further, FAP-P induces Th1 polarization. Because methylation of HBHA was not performed in E. coli, Pichia pastoris was chosen as the host. The desired fusion protein had a similar 3D structure to that of HBHA with its native form and post-translational methylation in C-terminal. Hence, the uptake of the purified fusion protein will be done by M cells because of HBHA, and cell-mediated immunity will be induced because of both antigens. Eventually, successful construction and expression of the newly-designed chimeric protein under the mentioned conditions is reported in this article.
Collapse
Affiliation(s)
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | |
Collapse
|
15
|
Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten VPMG, Bannantine JP, Keefe GP, Kelton DF, Wells SJ, Whittington RJ, Mackintosh CG, Manning EJ, Weber MF, Heuer C, Forde TL, Ritter C, Roche S, Corbett CS, Wolf R, Griebel PJ, Kastelic JP, De Buck J. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis 2017; 65 Suppl 1:125-148. [PMID: 28941207 DOI: 10.1111/tbed.12723] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/17/2022]
Abstract
In the last decades, many regional and country-wide control programmes for Johne's disease (JD) were developed due to associated economic losses, or because of a possible association with Crohn's disease. These control programmes were often not successful, partly because management protocols were not followed, including the introduction of infected replacement cattle, because tests to identify infected animals were unreliable, and uptake by farmers was not high enough because of a perceived low return on investment. In the absence of a cure or effective commercial vaccines, control of JD is currently primarily based on herd management strategies to avoid infection of cattle and restrict within-farm and farm-to-farm transmission. Although JD control programmes have been implemented in most developed countries, lessons learned from JD prevention and control programmes are underreported. Also, JD control programmes are typically evaluated in a limited number of herds and the duration of the study is less than 5 year, making it difficult to adequately assess the efficacy of control programmes. In this manuscript, we identify the most important gaps in knowledge hampering JD prevention and control programmes, including vaccination and diagnostics. Secondly, we discuss directions that research should take to address those knowledge gaps.
Collapse
Affiliation(s)
- H W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - K Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S S Nielsen
- University of Copenhagen, Copenhagen, Denmark
| | - A P Koets
- Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Wageningen, The Netherlands
| | - V P M G Rutten
- Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | | | - G P Keefe
- University of Prince Edward Island, Charlottetown, Canada
| | | | - S J Wells
- University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - M F Weber
- GD Animal Health, Deventer, The Netherlands
| | - C Heuer
- Massey University, Palmerston North, New Zealand
| | | | - C Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S Roche
- University of Guelph, Guelph, Canada
| | - C S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - R Wolf
- Amt der Steiermärkischen Landesregierung, Graz, Austria
| | | | - J P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Park HT, Yoo HS. Development of vaccines to Mycobacterium avium subsp. paratuberculosis infection. Clin Exp Vaccine Res 2016; 5:108-16. [PMID: 27489800 PMCID: PMC4969274 DOI: 10.7774/cevr.2016.5.2.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
Abstract
Johne's disease or paratuberculosis is a chronic debilitating disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease causes significant economic losses in livestock industries worldwide. There are no effective control measures to eradicate the disease because there are no appropriate diagnostic methods to detect subclinically infected animals. Therefore, it is very difficult to control the disease using only test and cull strategies. Vaccination against paratuberculosis has been considered as an alternative strategy to control the disease when combined with management interventions. Understanding host-pathogen interactions is extremely important to development of vaccines. It has long been known that Th1-mediated cellular immune responses are play a crucial role in protection against MAP infection. However, recent studies suggested that innate immune responses are more closely related to protective effects than adaptive immunity. Based on this understanding, several attempts have been made to develop vaccines against paratuberculosis. A variety of ideas for designing novel vaccines have emerged, and the tests of the efficacy of these vaccines are conducted constantly. However, no effective vaccines are commercially available. In this study, studies of the development of vaccines for MAP were reviewed and summarized.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea.; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
17
|
Chaubey KK, Gupta RD, Gupta S, Singh SV, Bhatia AK, Jayaraman S, Kumar N, Goel A, Rathore AS, Sahzad, Sohal JS, Stephen BJ, Singh M, Goyal M, Dhama K, Derakhshandeh A. Trends and advances in the diagnosis and control of paratuberculosis in domestic livestock. Vet Q 2016; 36:203-227. [PMID: 27356470 DOI: 10.1080/01652176.2016.1196508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Paratuberculosis (pTB) is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP) in a wide variety of domestic and wild animals. Control of pTB is difficult due to the lack of sensitive, efficacious and cost-effective diagnostics and marker vaccines. Microscopy, culture, and PCR have been used for the screening of MAP infection in animals for quite a long time. Besides, giving variable sensitivity and specificity, these tests have not been considered ideal for large-scale screening of domestic livestock. Serological tests like ELISA easily detects anti-MAP antibodies. However, it cannot differentiate between the vaccinated and infected animals. Nanotechnology-based diagnostic tests are underway to improve the sensitivity and specificity. Newer generation diagnostic tests based on recombinant MAP secretory proteins would open new paradigm for the differentiation between infected and vaccinated animals and for early detection of the infection. Due to higher seroreactivity of secretory proteins vis-à-vis cellular proteins, the secretory proteins may be used as marker vaccine, which may aid in the control of pTB infection in animals. Secretory proteins can be potentially used to develop future diagnostics, surveillance and monitoring of the disease progression in animals and the marker vaccine for the control and eradication of pTB.
Collapse
Affiliation(s)
- Kundan Kumar Chaubey
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India.,b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Rinkoo Devi Gupta
- c Department of Life sciences and Biotechnology , South Asian University , New Delhi , India
| | - Saurabh Gupta
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India.,b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Shoor Vir Singh
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Ashok Kumar Bhatia
- b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Sujata Jayaraman
- d Amity Institutes of Microbial Technology , Amity University , Jaipur , India
| | - Naveen Kumar
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Anjana Goel
- b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Abhishek Singh Rathore
- c Department of Life sciences and Biotechnology , South Asian University , New Delhi , India
| | - Sahzad
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Jagdip Singh Sohal
- d Amity Institutes of Microbial Technology , Amity University , Jaipur , India
| | - Bjorn John Stephen
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Manju Singh
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Manish Goyal
- e Division of Parasitology , Central Drug Research Institute , Lucknow , India
| | - Kuldeep Dhama
- f Pathology Division , Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Abdollah Derakhshandeh
- g Department of Pathobiology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
18
|
Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci Rep 2016; 6:24964. [PMID: 27102525 PMCID: PMC4840452 DOI: 10.1038/srep24964] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
The molecular regulatory mechanisms of host responses to Mycobacterium avium subsp. paratuberculosis (MAP) infection during the early subclinical stage are still not clear. In this study, surgically isolated ileal segments in newborn calves (n = 5) were used to establish in vivo MAP infection adjacent to an uninfected control intestinal compartment. RNA-Seq was used to profile the whole transcriptome (mRNAs) and the microRNAome (miRNAs) of ileal tissues collected at one-month post-infection. The most related function of the differentially expressed mRNAs between infected and uninfected tissues was “proliferation of endothelial cells”, indicating that MAP infection may lead to the over-proliferation of endothelial cells. In addition, 46.2% of detected mRNAs displayed alternative splicing events. The pre-mRNA of two genes related to macrophage maturation (monocyte to macrophage differentiation-associated) and lysosome function (adenosine deaminase) showed differential alternative splicing events, suggesting that specific changes in the pre-mRNA splicing sites may be a mechanism by which MAP escapes host immune responses. Moreover, 9 miRNAs were differentially expressed after MAP infection. The integrated analysis of microRNAome and transcriptome revealed that these miRNAs might regulate host responses to MAP infection, such as “proliferation of endothelial cells” (bta-miR-196 b), “bacteria recognition” (bta-miR-146 b), and “regulation of the inflammatory response” (bta-miR-146 b).
Collapse
|
19
|
Li Z, You Q, Ossa F, Mead P, Quinton M, Karrow NA. Assessment of yeast Saccharomyces cerevisiae component binding to Mycobacterium avium subspecies paratuberculosis using bovine epithelial cells. BMC Vet Res 2016; 12:42. [PMID: 26932223 PMCID: PMC4774140 DOI: 10.1186/s12917-016-0665-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
Background Since yeast Saccharomyces cerevisiae and its components are being used for the prevention and treatment of enteric diseases in different species, they may also be useful for preventing Johne’s disease, a chronic inflammatory bowel disease of ruminants caused by Mycobacterium avium spp. paratuberculosis (MAP). This study aimed to identify potential yeast derivatives that may be used to help prevent MAP infection. The adherence of mCherry-labeled MAP to bovine mammary epithelial cell line (MAC-T cells) and bovine primary epithelial cells (BECs) co-cultured with yeast cell wall components (CWCs) from four different yeast strains (A, B, C and D) and two forms of dead yeast from strain A was investigated. Results The CWCs from all four yeast strains and the other two forms of dead yeast from strain A reduced MAP adhesion to MAC-T cells and BECs in a concentration-dependent manner after 6-h of exposure, with the dead yeast having the greatest effect. Conclusions The following in vitro binding studies suggest that dead yeast and its’ CWCs may be useful for reducing risk of MAP infection.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| | - Qiumei You
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| | | | - Philip Mead
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| | - Margaret Quinton
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
20
|
Fernández M, Delgado L, Sevilla IA, Fuertes M, Castaño P, Royo M, Ferreras MC, Benavides J, Pérez V. Virulence attenuation of a Mycobacterium avium subspecies paratuberculosis S-type strain prepared from intestinal mucosa after bacterial culture. Evaluation in an experimental ovine model. Res Vet Sci 2015; 99:180-7. [DOI: 10.1016/j.rvsc.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/19/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
21
|
McNees AL, Markesich D, Zayyani NR, Graham DY. Mycobacterium paratuberculosis as a cause of Crohn's disease. Expert Rev Gastroenterol Hepatol 2015; 9:1523-34. [PMID: 26474349 PMCID: PMC4894645 DOI: 10.1586/17474124.2015.1093931] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Crohn's disease is a chronic inflammatory bowel disease of unknown cause, affecting approximately 1.4 million North American people. Due to the similarities between Crohn's disease and Johne's disease, a chronic enteritis in ruminant animals caused by Mycobacterium avium paratuberculosis (MAP) infection, MAP has long been considered to be a potential cause of Crohn's disease. MAP is an obligate intracellular pathogen that cannot replicate outside of animal hosts. MAP is widespread in dairy cattle and because of environmental contamination and resistance to pasteurization and chlorination, humans are frequently exposed through contamination of food and water. MAP can be cultured from the peripheral mononuclear cells from 50-100% of patients with Crohn's disease, and less frequently from healthy individuals. Association does not prove causation. We discuss the current data regarding MAP as a potential cause of Crohn's disease and outline what data will be required to firmly prove or disprove the hypothesis.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Najah R. Zayyani
- Bahrain Gastroenterology and Hepatology Center at Bahrain Specialist Hospital, Manama, Kingdom of Bahrain
| | - David Y. Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center, and Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
22
|
de Silva K, M Plain K, J Begg D, C Purdie A, J Whittington R. CD4⁺ T-cells, γδ T-cells and B-cells are associated with lack of vaccine protection in Mycobacterium avium subspecies paratuberculosis infection. Vaccine 2014; 33:149-55. [PMID: 25444806 DOI: 10.1016/j.vaccine.2014.10.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
Vaccination is one of the strategies used to control the spread of Mycobacterium avium subspecies paratuberculosis (MAP) infection in livestock. Gudair(®) is a widely-used vaccine in sheep and goats and is the only vaccine approved for use in sheep in Australia and New Zealand. This vaccine reduces mortality due to MAP-infection by up to 90% but some sheep remain infectious by shedding MAP in faeces, despite vaccination. In this study, using an experimental infection model in sheep, our aim was to assess differences in immune parameters between vaccinated MAP-exposed sheep in which the vaccine was effective compared to those in which it failed to protect against infection. We assessed immune parameters such as MAP-specific IFNγ, IL-10 and lymphocyte proliferative responses and serum antibody levels. At the end of the trial, 72% of non-vaccinated sheep and 24% of vaccinated sheep were infected, as defined by the detection of viable MAP in intestinal tissues when the trial was terminated at 49 weeks post exposure. There were significant differences in the proliferation of CD4(+), B and γδ T-cells over time in vaccinated sheep in which the vaccine failed to protect against infection compared to the non-infected vaccinated sheep. There were no significant differences in the IFNγ response or serum antibody levels between the vaccinated infected and vaccinated non-infected sheep. These results emphasise the importance of specific lymphocyte subsets in protecting against MAP-infection, especially in vaccinated sheep, and that immune parameters other than the commonly used IFNγ and antibody tests are required when assessing vaccine efficacy.
Collapse
Affiliation(s)
- Kumudika de Silva
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia.
| | - Karren M Plain
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Douglas J Begg
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Auriol C Purdie
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Richard J Whittington
- Faculty of Veterinary Science, University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| |
Collapse
|
23
|
Bull TJ, Vrettou C, Linedale R, McGuinnes C, Strain S, McNair J, Gilbert SC, Hope JC. Immunity, safety and protection of an Adenovirus 5 prime--Modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves. Vet Res 2014; 45:112. [PMID: 25480162 PMCID: PMC4258034 DOI: 10.1186/s13567-014-0112-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/10/2014] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost effective control measure for Johne’s disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.
Collapse
Affiliation(s)
- Tim J Bull
- Institute of Infection and Immunity, St, George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnston CD, Bannantine JP, Govender R, Endersen L, Pletzer D, Weingart H, Coffey A, O'Mahony J, Sleator RD. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius. Front Cell Infect Microbiol 2014; 4:120. [PMID: 25237653 PMCID: PMC4154528 DOI: 10.3389/fcimb.2014.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/15/2014] [Indexed: 01/03/2023] Open
Abstract
It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.
Collapse
Affiliation(s)
| | - John P Bannantine
- United States Department of Agriculture - Agricultural Research Service, National Animal Disease Center Ames, IA, USA
| | - Rodney Govender
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Lorraine Endersen
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Daniel Pletzer
- School of Engineering and Science, Jacobs University Bremen Bremen, Germany
| | - Helge Weingart
- School of Engineering and Science, Jacobs University Bremen Bremen, Germany
| | - Aidan Coffey
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Jim O'Mahony
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Roy D Sleator
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| |
Collapse
|
25
|
Gurung RB, Purdie AC, Whittington RJ, Begg DJ. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol 2014; 4:93. [PMID: 25077074 PMCID: PMC4100217 DOI: 10.3389/fcimb.2014.00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022] Open
Abstract
Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate.
Collapse
Affiliation(s)
- Ratna B Gurung
- Faculty of Veterinary Science, The University of Sydney Camden, NSW, Australia
| | - Auriol C Purdie
- Faculty of Veterinary Science, The University of Sydney Camden, NSW, Australia
| | | | - Douglas J Begg
- Faculty of Veterinary Science, The University of Sydney Camden, NSW, Australia
| |
Collapse
|
26
|
Begum J, Das P, Lingaraju MC, Ranjanna S, Irungbam K, Mohan A, Syam R. Evaluation of efficacy of saponin and freund's incomplete adjuvanted paratuberculosis vaccine in murine model. Vet World 2014. [DOI: 10.14202/vetworld.2014.528-535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Lamont EA, Talaat AM, Coussens PM, Bannantine JP, Grohn YT, Katani R, Li LL, Kapur V, Sreevatsan S. Screening of Mycobacterium avium subsp. paratuberculosis mutants for attenuation in a bovine monocyte-derived macrophage model. Front Cell Infect Microbiol 2014; 4:87. [PMID: 25072030 PMCID: PMC4075333 DOI: 10.3389/fcimb.2014.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
Vaccination remains a major tool for prevention and progression of Johne's disease, a chronic enteritis of ruminants worldwide. Currently there is only one licensed vaccine within the United States and two vaccines licensed internationally against Johne's disease. All licensed vaccines reduce fecal shedding of Mycobacterium avium subsp. paratuberculosis (MAP) and delay disease progression. However, there are no available vaccines that prevent disease onset. A joint effort by the Johne's Disease Integrated Program (JDIP), a USDA-funded consortium, and USDA—APHIS/VS sought to identify transposon insertion mutant strains as vaccine candidates in part of a three phase study. The focus of the Phase I study was to evaluate MAP mutant attenuation in a well-defined in vitro bovine monocyte-derived macrophage (MDM) model. Attenuation was determined by colony forming unit (CFUs) counts and slope estimates. Based on CFU counts alone, the MDM model did not identify any mutant that significantly differed from the wild-type control, MAP K-10. Slope estimates using mixed models approach identified six mutants as being attenuated. These were enrolled in protection studies involving murine and baby goat vaccination-challenge models. MDM based approach identified trends in attenuation but this did not correlate with protection in a natural host model. These results suggest the need for alternative strategies for Johne's disease vaccine candidate screening and evaluation.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, University of Minnesota St. Paul, MN, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin Madison, WI, USA
| | - Paul M Coussens
- Department of Animal Sciences, Michigan State University East Lansing, MI, USA
| | - John P Bannantine
- Agricultural Research Service, National Animal Disease Center, United States Department of Agriculture Ames, IA, USA
| | - Yrjo T Grohn
- College of Veterinary Medicine, Population Medicine and Diagnostic Sciences, Cornell University Ithaca, NY, USA
| | - Robab Katani
- Department Veterinary and Biomedical Sciences, Penn State University State College, PA, USA
| | - Ling-ling Li
- Department Veterinary and Biomedical Sciences, Penn State University State College, PA, USA
| | - Vivek Kapur
- Department Veterinary and Biomedical Sciences, Penn State University State College, PA, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota St. Paul, MN, USA ; Department of Veterinary Biomedical Sciences, University of Minnesota St. Paul, MN, USA
| |
Collapse
|
28
|
Arsenault RJ, Maattanen P, Daigle J, Potter A, Griebel P, Napper S. From mouth to macrophage: mechanisms of innate immune subversion by Mycobacterium avium subsp. paratuberculosis. Vet Res 2014; 45:54. [PMID: 24885748 PMCID: PMC4046017 DOI: 10.1186/1297-9716-45-54] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
Johne’s disease (JD) is a chronic enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP). The high economic cost and potential zoonotic threat of JD have driven efforts to develop tools and approaches to effectively manage this disease within livestock herds. Efforts to control JD through traditional animal management practices are complicated by MAP’s ability to cause long-term environmental contamination as well as difficulties associated with diagnosis of JD in the pre-clinical stages. As such, there is particular emphasis on the development of an effective vaccine. This is a daunting challenge, in large part due to MAP’s ability to subvert protective host immune responses. Accordingly, there is a priority to understand MAP’s interaction with the bovine host: this may inform rational targets and approaches for therapeutic intervention. Here we review the early host defenses encountered by MAP and the strategies employed by the pathogen to avert or subvert these responses, during the critical period between ingestion and the establishment of persistent infection in macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Napper
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
29
|
Kumar A, Singh S, Srivastava A, Gangwar N, Singh P, Gupta S, Chaubey K, Tiwari R, Chakrabort S, Dhama K. Comparative Evaluation of ‘Indigenous’ and Commercial Vaccines in Double Challenge Model for the Control of Caprine Paratuberculosis in India. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.169.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
|
31
|
Plattner BL, Huffman E, Jones DE, Hostetter JM. T lymphocyte responses during early enteric Mycobacterium avium subspecies paratuberculosis infection in cattle. Vet Immunol Immunopathol 2014; 157:12-9. [DOI: 10.1016/j.vetimm.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
|
32
|
Knust B, Patton E, Ribeiro-Lima J, Bohn JJ, Wells SJ. Evaluation of the effects of a killed whole-cell vaccine against Mycobacterium avium subsp paratuberculosis in 3 herds of dairy cattle with natural exposure to the organism. J Am Vet Med Assoc 2013; 242:663-9. [PMID: 23402414 DOI: 10.2460/javma.242.5.663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate effects of vaccination with a killed whole-cell vaccine against Mycobacterium avium subsp paratuberculosis (MAP) on fecal shedding of the organism, development of clinical paratuberculosis (Johne's disease [JD]), milk production, measures of reproduction, and within-herd longevity of dairy cattle naturally exposed to MAP. DESIGN Controlled clinical trial. ANIMALS 200 vaccinated and 195 unvaccinated (control) dairy cows from 3 herds in Wisconsin. PROCEDURES Every other heifer calf born in each herd received the MAP vaccine; 162 vaccinates and 145 controls that had ≥ 1 lactation were included in analyses. Bacteriologic culture of fecal samples for MAP was performed annually for 7 years; results were confirmed via histologic methods and PCR assay. Production records and culture results were evaluated to determine effects of vaccination on variables of interest in study cows. Annual whole-herd prevalence of MAP shedding in feces was also determined. RESULTS Vaccinates had a significantly lower hazard of testing positive for MAP via culture of fecal samples than did controls over time (hazard ratio, 0.57; 95% confidence interval, 0.34 to 0.97). Fewer vaccinates developed clinical JD than did controls (n = 6 and 12, respectively), but these differences were nonsignificant. Overall within-herd longevity, total milk production, and calving-to-conception intervals were similar between vaccinates and controls. In all herds, prevalence of MAP shedding in feces decreased over time. CONCLUSIONS AND CLINICAL RELEVANCE Vaccination with a killed whole-cell MAP vaccine appeared to be an effective tool as part of a program to control the spread of JD in dairy cattle.
Collapse
Affiliation(s)
- Barbara Knust
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
33
|
Cell-mediated and humoral immune responses after immunization of calves with a recombinant multiantigenic Mycobacterium avium subsp. paratuberculosis subunit vaccine at different ages. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:551-8. [PMID: 23389934 DOI: 10.1128/cvi.05574-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neonates and juvenile ruminants are very susceptible to paratuberculosis infection. This is likely due to a high degree of exposure from their dams and an immature immune system. To test the influence of age on vaccine-induced responses, a cocktail of recombinant Mycobacterium avium subsp. paratuberculosis proteins (MAP0217, MAP1508, MAP3701c, MAP3783, and MAP1609c/Ag85B) was formulated in a cationic liposome adjuvant (CAF01) and used to vaccinate animals of different ages. Male jersey calves were divided into three groups that were vaccinated at 2, 8, or 16 weeks of age and boosted twice at weeks 4 and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster vaccination with no or only a minor effect from the second booster. However, significant differences were observed in the immunogenicity levels of the different proteins, and it appears that the older age group produced a more consistent IFN-γ response. In contrast, the humoral immune response is seemingly independent of vaccination age as we found no difference in the IgG1 responses when we compared the three vaccination groups. Combined, our results suggest that an appropriate age of vaccination should be considered in vaccination protocols and that there is a possible interference of vaccine-induced immune responses with weaning (week 8).
Collapse
|
34
|
Bull TJ, Schock A, Sharp JM, Greene M, McKendrick IJ, Sales J, Linedale R, Stevenson K. Genomic variations associated with attenuation in Mycobacterium avium subsp. paratuberculosis vaccine strains. BMC Microbiol 2013; 13:11. [PMID: 23339684 PMCID: PMC3599157 DOI: 10.1186/1471-2180-13-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium avium subspecies paratuberculosis (MAP) whole cell vaccines have been widely used tools in the control of Johne's disease in animals despite being unable to provide complete protection. Current vaccine strains derive from stocks created many decades ago; however their genotypes, underlying mechanisms and relative degree of their attenuation are largely unknown. RESULTS Using mouse virulence studies we confirm that MAP vaccine strains 316 F, II and 2e have diverse but clearly attenuated survival and persistence characteristics compared with wild type strains. Using a pan genomic microarray we characterise the genomic variations in a panel of vaccine strains sourced from stocks spanning over 40 years of maintenance. We describe multiple genomic variations specific for individual vaccine stocks in both deletion (26-32 Kbp) and tandem duplicated (11-40 Kbp) large variable genomic islands and insertion sequence copy numbers. We show individual differences suitable for diagnostic differentiation between vaccine and wild type genotypes and provide evidence for functionality of some of the deleted MAP-specific genes and their possible relation to attenuation. CONCLUSIONS This study shows how culture environments have influenced MAP genome diversity resulting in large tandem genomic duplications, deletions and transposable element activity. In combination with classical selective systematic subculture this has led to fixation of specific MAP genomic alterations in some vaccine strain lineages which link the resulting attenuated phenotypes with deficiencies in high reactive oxygen species handling.
Collapse
Affiliation(s)
- Tim J Bull
- St, George's University of London Medical School, SW17 0RE, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Host responses to persistent Mycobacterium avium subspecies paratuberculosis infection in surgically isolated bovine ileal segments. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:156-65. [PMID: 23221000 DOI: 10.1128/cvi.00496-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A lack of appropriate disease models has limited our understanding of the pathogenesis of persistent enteric infections with Mycobacterium avium subsp. paratuberculosis. A model was developed for the controlled delivery of a defined dose of M. avium subsp. paratuberculosis to surgically isolated ileal segments in newborn calves. The stable intestinal segments enabled the characterization of host responses to persistent M. avium subsp. paratuberculosis infections after a 9-month period, including an analysis of local mucosal immune responses relative to an adjacent uninfected intestinal compartment. M. avium subsp. paratuberculosis remained localized at the initial site of intestinal infection and was not detected by PCR in the mesenteric lymph node. M. avium subsp. paratuberculosis-specific T cell proliferative responses included both CD4 and γδ T cell receptor (γδTcR) T cell responses in the draining mesenteric lymph node. The levels of CD8(+) and γδTcR(+) T cells increased significantly (P < 0.05) in the lamina propria, and M. avium subsp. paratuberculosis-specific tumor necrosis factor alpha (TNF-α) and gamma interferon secretion by lamina propria leukocytes was also significantly (P < 0.05) increased. There was a significant (P < 0.05) accumulation of macrophages and dendritic cells (DCs) in the lamina propria, but the expression of mucosal toll-like receptors 1 through 10 was not significantly changed by M. avium subsp. paratuberculosis infection. In conclusion, surgically isolated ileal segments provided a model system for the establishment of a persistent and localized enteric M. avium subsp. paratuberculosis infection in cattle and facilitated the analysis of M. avium subsp. paratuberculosis-specific changes in mucosal leukocyte phenotype and function. The accumulation of DC subpopulations in the lamina propria suggests that further investigation of mucosal DCs may provide insight into host responses to M. avium subsp. paratuberculosis infection and improve vaccine strategies to prevent M. avium subsp. paratuberculosis infection.
Collapse
|
36
|
Lu Z, Schukken YH, Smith RL, Mitchell RM, Gröhn YT. Impact of imperfect Mycobacterium avium subsp. paratuberculosis vaccines in dairy herds: a mathematical modeling approach. Prev Vet Med 2012; 108:148-58. [PMID: 22921715 DOI: 10.1016/j.prevetmed.2012.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate the potential impacts of imperfect Mycobacterium avium subsp. paratuberculosis (MAP) vaccines on the dynamics of MAP infection in US dairy herds using a mathematical modeling approach. Vaccine-based control programs have been implemented to reduce the prevalence of MAP infection in some dairy herds; however, MAP vaccines are imperfect. Vaccines can provide partial protection for susceptible calves, reduce the infectiousness of animals shedding MAP, lengthen the latent period of infected animals, slow the progression from low shedding to high shedding in infectious animals, and reduce clinical disease. To quantitatively study the impacts of imperfect MAP vaccines, we developed a deterministic multi-group vaccination model and performed global sensitivity analyses. Our results explain why MAP vaccination might have a beneficial, negligible, or detrimental effect in the reduction of prevalence and show that vaccines that are beneficial to individual animals may not be useful for a herd-level control plan. The study suggests that high efficacy vaccines that are aimed at reducing the susceptibility of the host are the most effective in controlling MAP transmission. This work indicates that MAP vaccination should be integrated into a comprehensive control program that includes test-and-cull intervention and improved calf rearing management.
Collapse
Affiliation(s)
- Zhao Lu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
37
|
Cho J, Tauer LW, Schukken YH, Gómez MI, Smith RL, Lu Z, Grohn YT. Economic analysis of Mycobacterium avium subspecies paratuberculosis vaccines in dairy herds. J Dairy Sci 2012; 95:1855-72. [PMID: 22459833 DOI: 10.3168/jds.2011-4787] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/10/2011] [Indexed: 11/19/2022]
Abstract
Johne's disease, or paratuberculosis, is a chronic infectious enteric disease of ruminants, caused by infection with Mycobacterium avium ssp. paratuberculosis (MAP). Given the absence of a fail-safe method of prevention or a cure, Johne's disease can inflict significant economic loss on the US dairy industry, with an estimated annual cost of over $200 million. Currently available MAP control strategies include management measures to improve hygiene, culling MAP serologic- or fecal-positive adult cows, and vaccination. Although the 2 first control strategies have been reported to be effective in reducing the incidence of MAP infection, the changes in herd management needed to conduct these control strategies require significant effort on the part of the dairy producer. On the other hand, vaccination is relatively simple to apply and requires minor changes in herd management. Despite these advantages, only 5% of US dairy operations use vaccination to control MAP. This low level of adoption of this technology is due to limited information on its cost-effectiveness and efficacy and some important inherent drawbacks associated with current MAP vaccines. This study investigates the epidemiological effect and economic values of MAP vaccines in various stages of development. We create scenarios for the potential epidemiological effects of MAP vaccines, and then estimate economically justifiable monetary values at which vaccines become economically beneficial to dairy producers such that a net present value (NPV) of a farm's net cash flow can be higher than the NPV of a farm using no control or alternative nonvaccine controls. Any vaccination with either low or high efficacy considered in this study yielded a higher NPV compared with a no MAP control. Moreover, high-efficacy vaccines generated an even higher NPV compared with alternative controls, making vaccination economically attractive. Two high-efficacy vaccines were particularly effective in MAP control and NPV maximization. One was a high-efficacy vaccine that reduced susceptibility to MAP infection. The other was a high-efficacy vaccine that had multiple efficacies on the dynamics of MAP infection and disease progress. Only one high-efficacy vaccine, in which the vaccine is targeted at reducing MAP shedding and the number of clinical cases, was not economically beneficial to dairy producers compared with an alternative nonvaccine control, when herds were highly infected with MAP.
Collapse
Affiliation(s)
- J Cho
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Roupie V, Viart S, Leroy B, Romano M, Trinchero N, Govaerts M, Letesson JJ, Wattiez R, Huygen K. Immunogenicity of eight Mycobacterium avium subsp. paratuberculosis specific antigens in DNA vaccinated and Map infected mice. Vet Immunol Immunopathol 2012; 145:74-85. [DOI: 10.1016/j.vetimm.2011.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 01/10/2023]
|
39
|
|
40
|
Bastida F, Juste RA. Paratuberculosis control: a review with a focus on vaccination. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2011; 9:8. [PMID: 22035107 PMCID: PMC3222599 DOI: 10.1186/1476-8518-9-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/31/2011] [Indexed: 12/29/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) infection causes in ruminants a regional chronic enteritis that is increasingly being recognized as a significant problem affecting animal health, farming and the food industry due to the high prevalence of the disease and to recent research data strengthening the link between the pathogen and human inflammatory bowel disease (IBD). Control of the infection through hygiene-management measures and test and culling of positive animals has to date not produced the expected results and thus a new focus on vaccination against this pathogen is necessary. This review summarizes all vaccination studies of cattle, sheep or goats reporting production, epidemiological or pathogenetic effects of vaccination published before January 2010 and that provide data amenable to statistical analyses. The meta analysis run on the selected data, allowed us to conclude that most studies included in this review reported that vaccination against MAP is a valuable tool in reducing microbial contamination risks of this pathogen and reducing or delaying production losses and pathogenetic effects but also that it did not fully prevent infection. However, the majority of MAP vaccines were very similar and rudimentary and thus there is room for improvement in vaccine types and formulations.
Collapse
Affiliation(s)
- Felix Bastida
- NEIKER-Tecnalia, Department of Animal Health, Berreaga 1, 48160 Derio, Bizkaia, Spain.
| | | |
Collapse
|
41
|
Lybeck KR, Storset AK, Djønne B, Valheim M, Olsen I. Faecal shedding detected earlier than immune responses in goats naturally infected with Mycobacterium avium subsp. paratuberculosis. Res Vet Sci 2011; 91:32-39. [DOI: 10.1016/j.rvsc.2010.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/07/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
|
42
|
Over K, Crandall PG, O'Bryan CA, Ricke SC. Current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne's disease, and Crohn's disease: a review. Crit Rev Microbiol 2011; 37:141-56. [PMID: 21254832 DOI: 10.3109/1040841x.2010.532480] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes the disease of cattle, Johne's. The economic impact of this disease includes early culling of infected cattle, reduced milk yield, and weight loss of cattle sold for slaughter. There is a possible link between MAP and Crohn's disease, a human inflammatory bowel disease. MAP is also a potential human food borne pathogen because it survives current pasteurization treatments. We review the current knowledge of MAP, Johne's disease and Crohn's disease and note directions for future work with this organism including rapid and economical detection, effective management plans and preventative measures.
Collapse
Affiliation(s)
- Ken Over
- Center for Food Safety and Food Science Department, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA
| | | | | | | |
Collapse
|
43
|
Watkins C, Schock A, May L, Denham S, Sales J, Welch L, Sharp JM, Stevenson K. Assessing virulence of vaccine strains of Mycobacterium avium subspecies paratuberculosis in a calf model. Vet Microbiol 2010; 146:63-9. [DOI: 10.1016/j.vetmic.2010.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 12/01/2022]
|
44
|
The application of food safety interventions in primary production of beef and lamb: A review. Int J Food Microbiol 2010; 141 Suppl 1:S43-52. [DOI: 10.1016/j.ijfoodmicro.2009.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/07/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
|
45
|
White CI, Birtles RJ, Wigley P, Jones PH. Mycobacterium avium subspecies paratuberculosis in free-living amoebae isolated from fields not used for grazing. Vet Rec 2010; 166:401-2. [PMID: 20348470 DOI: 10.1136/vr.b4797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- C I White
- Faculty of Veterinary Science, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire CH64 7TE
| | | | | | | |
Collapse
|
46
|
Gene expression profiling of PBMCs from Holstein and Jersey cows sub-clinically infected with Mycobacterium avium ssp. paratuberculosis. Vet Immunol Immunopathol 2010; 137:1-11. [PMID: 20447698 DOI: 10.1016/j.vetimm.2010.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/23/2010] [Indexed: 01/24/2023]
Abstract
Infection of calves with intracellular Mycobacterium avium ssp. paratuberculosis (MAP) commonly results in a granulomatous, chronic inflammatory bowel disease known as Johne's disease. The asymptomatic stage of this infection can persist for the entire production life of an adult cow, resulting in reduced performance and premature culling, as well as transmission of MAP to progeny and herd-mates. It has been previously shown that the gene expression profiles of peripheral blood mononuclear cells (PBMCs) of healthy cows, and those chronically infected with MAP are inherently different, and that these changes may be indicative of disease progression. Since resistance to MAP infection is a heritable trait, and has been proposed to differ amongst domestic dairy cattle breeds, the objective of the present study was to compare gene expression profiles of PBMCs from healthy adult Holstein and Jersey cows to those considered to be sub-clinically infected with MAP, as indicated by serum ELISA. Microarray analysis using a platform containing more than 10,000 probes and ontological analysis identified differences in gene expression between a) healthy and infected cows, including genes involved in the inflammatory response, and calcium binding, and b) infected Holsteins and Jerseys, including genes involved in the immune response, and antigen processing and presentation. These results suggest a mixed pro- and anti-inflammatory phenotype of PBMCs from MAP-infected as compared to healthy control animals, and inherently different levels of immune and inflammatory-related gene expression between MAP-infected Holsteins and Jerseys.
Collapse
|
47
|
Comparative age-related responses to serological and faecal tests directed to Mycobacterium avium paratuberculosis (Map) in French dairy goats. Small Rumin Res 2009. [DOI: 10.1016/j.smallrumres.2009.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Johnston C, Coffey A, O' Mahony J, Sleator RD. Development of a novel oral vaccine against Mycobacterium avium paratuberculosis and Johne disease: a patho-biotechnological approach. Bioeng Bugs 2009; 1:155-63. [PMID: 21326921 DOI: 10.4161/bbug.1.3.10408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/07/2009] [Accepted: 10/23/2009] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne disease, a granulomatous enteritis of cattle and other domesticated and wild ruminant species. Johne disease is prevalent worldwide and has a significant impact on the global agricultural economy. Current vaccines against Johne are insufficient in stemming its spread, and associated side-effects prevent their widespread use in control programs. Effective and safe vaccine strategies are needed. The main purpose of this paper is to propose and evaluate the development of a novel oral subunit-vaccine using a patho-biotechnological approach. This novel strategy, which harnesses patho-genetic elements from the intracellular pathogen Listeria monocytogenes, may provide a realistic route towards developing an effective next generation subunit vaccine against Johne disease and paratuberculosis.
Collapse
Affiliation(s)
- C Johnston
- Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Mycobacterium avium ssp. paratuberculosis is the causative agent of Johen's disease. This infection of the small intestine is a global problem in the livestock industry. Bacterial shedding by infected but subclinical animals, and transmission via the fecal or intrauterine route and through colostrum and/or milk, make containment and eradication of this disease highly problematic. Current vaccine strategies are ineffective and no effective therapy is available. OBJECTIVE Within the broader scope of therapeutic uses of recombinant heat-shock protein 70 (HSP70), the present article evaluates the claim of patent WO08040691. CONCLUSION The patent under comment here covers the ability of recombinant Mycobacterium avium ssp. paratuberculsis (MAP) HSP70, when administered in conjunction with an adjuvant, to result in a significant reduction in bacterial shedding in cattle infected with MAP. Furthermore, its administration does not mask diagnostic assays, allowing clinical diagnosis to be maintained.
Collapse
Affiliation(s)
- J R Keeble
- Scientist Biotherapeutics Group, NIBSC, South Mimms, UK
| | | |
Collapse
|
50
|
Hermon-Taylor J. Mycobacterium avium subspecies paratuberculosis, Crohn's disease and the Doomsday scenario. Gut Pathog 2009; 1:15. [PMID: 19602288 PMCID: PMC2718892 DOI: 10.1186/1757-4749-1-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/14/2009] [Indexed: 12/24/2022] Open
Abstract
Johne's disease is chronic inflammation of the intestine caused by Mycobacterium avium subspecies paratuberculosis. Infection and disease are mainly in domestic livestock but can affect many species including primates. Johne's is a new disease which emerged at the turn of the 19th and 20th centuries and principally involved Europe and North America. It has since spread to former low incidence regions to become a global problem. Crohn's disease is a chronic inflammation of the intestine in humans which emerged in Europe and North America mid 20th century and increased to become a major healthcare problem. It has now spread to former low incidence regions. Infected animals shed Mycobacterium avium subspecies paratuberculosis in milk and into the environment. Human populations are widely exposed. Outcomes maybe influenced by microbial phenotype. Exposure to extracellular forms of these pathogens may confer some natural protection; exposure to intracellular forms which have passaged through milk macrophages or environmental protists may pose a greater threat to humans particularly individuals with an inherited or acquired susceptibility. Hot spots of human disease such as in Winnipeg which sits on rock at the junction of two rivers may result from local exposure to high levels of waterborne pathogens brought down from farmland. When appropriate methods are used most people with Crohn's disease are found to be infected. There are no data which demonstrate that these pathogens are harmless to humans. An overwhelming balance of probability and Public health risk favours the conclusion that Mycobacterium avium subspecies paratuberculosis is also pathogenic for people. A two tier co-operative pathogenic mechanism is proposed in Crohn's disease. Intracellular infection with the primary pathogen widely distributed throughout the gut causes an immune dysregulation and a specific chronic enteric neuropathy with loss of mucosal integrity. Segments of gross inflammatory disease result from the perturbed neuroimmune response to penetration into the gut wall of secondary pathogens from the lumen. These include both normal gut organisms and educated members of the enteric microbiome such as more aggressive E. coli. More new diseases may arise from failure to apply a range of remedial measures to this longstanding zoonotic problem.
Collapse
Affiliation(s)
- John Hermon-Taylor
- Division of Nutritional Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|