1
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
2
|
Ross BS, Lofgren LA, Ashare A, Stajich JE, Cramer RA. Aspergillus fumigatus In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence. mBio 2021; 12:e0215321. [PMID: 34465017 PMCID: PMC8406193 DOI: 10.1128/mbio.02153-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of Aspergillus fumigatus colonization in individuals with cystic fibrosis (CF) and subsequent fungal persistence in the lung is increasingly recognized. However, there is no consensus for clinical management of A. fumigatus in CF individuals, due largely to uncertainty surrounding A. fumigatus CF pathogenesis and virulence mechanisms. To address this gap in knowledge, a longitudinal series of A. fumigatus isolates from an individual with CF were collected over 4.5 years. Isolate genotypes were defined with whole-genome sequencing that revealed both transitory and persistent A. fumigatus in the lung. Persistent lineage isolates grew most readily in a low-oxygen culture environment, and conidia were more sensitive to oxidative stress-inducing conditions than those from nonpersistent isolates. Closely related persistent isolates harbored a unique allele of the high-osmolarity glycerol (HOG) pathway mitogen-activated protein kinase kinase, Pbs2 (pbs2C2). Data suggest this novel pbs2C2 allele arose in vivo and is necessary for the fungal response to osmotic stress in a low-oxygen environment through hyperactivation of the HOG (SakA) signaling pathway. Hyperactivation of the HOG pathway through pbs2C2 comes at the cost of decreased conidial stress resistance in the presence of atmospheric oxygen levels. These novel findings shed light on pathoadaptive mechanisms of A. fumigatus in CF, lay the foundation for identifying persistent A. fumigatus isolates that may require antifungal therapy, and highlight considerations for successful culture of persistent Aspergillus CF isolates. IMPORTANCE Aspergillus fumigatus infection causes a spectrum of clinical manifestations. For individuals with cystic fibrosis (CF), allergic bronchopulmonary aspergillosis (ABPA) is an established complication, but there is a growing appreciation for A. fumigatus airway persistence in CF disease progression. There currently is little consensus for clinical management of A. fumigatus long-term culture positivity in CF. A better understanding of A. fumigatus pathogenesis mechanisms in CF is expected to yield insights into when antifungal therapies are warranted. Here, a 4.5-year longitudinal collection of A. fumigatus isolates from a patient with CF identified a persistent lineage that harbors a unique allele of the Pbs2 mitogen-activated protein kinase kinase (MAPKK) necessary for unique CF-relevant stress phenotypes. Importantly for A. fumigatus CF patient diagnostics, this allele provides increased fitness under CF lung-like conditions at a cost of reduced in vitro growth under standard laboratory conditions. These data illustrate a molecular mechanism for A. fumigatus CF lung persistence with implications for diagnostics and antifungal therapy.
Collapse
Affiliation(s)
- Brandon S. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
4
|
Jin Y, Zhou J, Zhou J, Hu M, Zhang Q, Kong N, Ren H, Liang L, Yue J. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol Direct 2020; 15:6. [PMID: 32131884 PMCID: PMC7057466 DOI: 10.1186/s13062-020-0258-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Accurate classification of different Burkholderia cepacia complex (BCC) species is essential for therapy, prognosis assessment and research. The taxonomic status of BCC remains problematic and an improved knowledge about the classification of BCC is in particular needed. Methods We compared phylogenetic trees of BCC based on 16S rRNA, recA, hisA and MLSA (multilocus sequence analysis). Using the available whole genome sequences of BCC, we inferred a species tree based on estimated single-copy orthologous genes and demarcated species of BCC using dDDH/ANI clustering. Results We showed that 16S rRNA, recA, hisA and MLSA have limited resolutions in the taxonomic study of closely related bacteria such as BCC. Our estimated species tree and dDDH/ANI clustering clearly separated 116 BCC strains into 36 clusters. With the appropriate reclassification of misidentified strains, these clusters corresponded to 22 known species as well as 14 putative novel species. Conclusions This is the first large-scale and systematic study of the taxonomic status of the BCC and could contribute to further insights into BCC taxonomy. Our study suggested that conjunctive use of core phylogeny based on single-copy orthologous genes, as well as pangenome-based dDDH/ANI clustering would provide a preferable framework for demarcating closely related species. Reviewer This article was reviewed by Dr. Xianwen Ren.
Collapse
Affiliation(s)
- Yuan Jin
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Jianglin Zhou
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Jing Zhou
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Mingda Hu
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Qi Zhang
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China
| | - Na Kong
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.,Anhui University, Hefei, 230039, Anhui, China
| | - Hongguang Ren
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.
| | - Long Liang
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,Anhui University, Hefei, 230039, Anhui, China.
| | - Junjie Yue
- Beijing Institute of Biotechnology, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China. .,State Key Laboratory of Pathogen and Biosecurity, No. 20, DongDaJie Street, Fengtai, Beijing, 100071, China.
| |
Collapse
|
5
|
Bouso JM, Planet PJ. Complete nontuberculous mycobacteria whole genomes using an optimized DNA extraction protocol for long-read sequencing. BMC Genomics 2019; 20:793. [PMID: 31666009 PMCID: PMC6822416 DOI: 10.1186/s12864-019-6134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Nontuberculous mycobacteria (NTM) are a major cause of pulmonary and systemic disease in at-risk populations. Gaps in knowledge about transmission patterns, evolution, and pathogenicity during infection have prompted a recent surge in genomic NTM research. Increased availability and affordability of whole genome sequencing (WGS) techniques provide new opportunities to sequence and construct complete bacterial genomes faster and at a lower cost. However, extracting large quantities of pure genomic DNA is particularly challenging with NTM due to its slow growth and recalcitrant cell wall. Here we report a DNA extraction protocol that is optimized for long-read WGS of NTM, yielding large quantities of highly pure DNA with no additional clean-up steps. Results Our DNA extraction method was compared to 6 other methods with variations in timing of mechanical disruption and enzymatic digestion of the cell wall, quantity of matrix material, and reagents used in extraction and precipitation. We tested our optimized method on 38 clinical isolates from the M. avium and M. abscessus complexes, which yielded optimal quality and quantity measurements for Oxford Nanopore Technologies sequencing. We also present the efficient completion of circularized M. avium subspecies hominissuis genomes using our extraction technique and the long-read sequencing MinION platform, including the identification of a novel plasmid. Conclusions Our optimized extraction protocol and assembly pipeline was both sufficient and efficient for genome closure. We expect that our finely-tuned extraction method will prove to be a valuable tool in long-read sequencing and completion of mycobacterial genomes going forward. Utilization of comprehensive, long-read based approaches will advance the understanding evolution and pathogenicity of NTM infections.
Collapse
Affiliation(s)
- Jennifer M Bouso
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Planet
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| |
Collapse
|
6
|
Lee AHY, Flibotte S, Sinha S, Paiero A, Ehrlich RL, Balashov S, Ehrlich GD, Zlosnik JEA, Mell JC, Nislow C. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs. Genome Res 2017; 27:650-662. [PMID: 28325850 PMCID: PMC5378182 DOI: 10.1101/gr.213363.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/16/2017] [Indexed: 11/24/2022]
Abstract
Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures—including immune responses and therapeutic interventions—shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2–20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.
Collapse
Affiliation(s)
- Amy Huei-Yi Lee
- Department of Microbiology and Immunology.,Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stephane Flibotte
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adrianna Paiero
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Rachel L Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Genomics Core Facility, Clinical and Translational Research Institute, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infection Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Sergey Balashov
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Genomics Core Facility, Clinical and Translational Research Institute, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infection Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Genomics Core Facility, Clinical and Translational Research Institute, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infection Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - James E A Zlosnik
- Centre for Preventing and Understanding Infection in Children, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Genomics Core Facility, Clinical and Translational Research Institute, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.,Center for Genomic Sciences, Institute for Molecular Medicine and Infection Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
7
|
Moreira AS, Mil-Homens D, Sousa SA, Coutinho CP, Pinto-de-Oliveira A, Ramos CG, Dos Santos SC, Fialho AM, Leitão JH, Sá-Correia I. Variation of Burkholderia cenocepacia virulence potential during cystic fibrosis chronic lung infection. Virulence 2016; 8:782-796. [PMID: 27652671 DOI: 10.1080/21505594.2016.1237334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During long-term lung infection in cystic fibrosis (CF) patients, Burkholderia cenocepacia faces multiple selective pressures in this highly stressful and fluctuating environment. As a consequence, the initial infecting strain undergoes genetic changes that result in the diversification of genotypes and phenotypes. Whether this clonal expansion influences the pathogenic potential is unclear. The virulence potential of 39 sequential B. cenocepacia (recA lineage IIIA) isolates, corresponding to 3 different clones retrieved from 3 chronically infected CF patients was compared in this study using the non-mammalian infection hosts Galleria mellonella and Caenorhabditis elegans. The isolates used in this retrospective study were picked randomly from selective agar plates as part of a CF Center routine, from the onset of infection until patients' death after 3.5 and 7.5 y or the more recent isolation date after 12.5 y of chronic infection. The infection models proved useful to assess virulence potential diversification, but for some isolates the relative values diverged in C. elegans and G. mellonella. Results also reinforce the concept of the occurrence of clonal diversification and co-existence of multiple phenotypes within the CF lungs, also with respect to pathogenicity. No clear trend of decrease (or increase) of the virulence potential throughout long-term infection was found but there is an apparent tendency for a clone/patient-dependent decrease of virulence when the G. mellonella model was used. The sole avirulent variant in both infection hosts was found to lack the small third replicon previously associated to virulence. Although possible, the in vivo loss of this nonessential megaplasmid was found to be a rare event (1 among a total of 64 isolates examined).
Collapse
Affiliation(s)
- Ana S Moreira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Dalila Mil-Homens
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sílvia A Sousa
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Carla P Coutinho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Ana Pinto-de-Oliveira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Christian G Ramos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra C Dos Santos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Arsénio M Fialho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Jorge H Leitão
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Isabel Sá-Correia
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
8
|
Molina L, Udaondo Z, Duque E, Fernández M, Bernal P, Roca A, de la Torre J, Ramos JL. Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS One 2016; 11:e0147478. [PMID: 26820467 PMCID: PMC4731212 DOI: 10.1371/journal.pone.0147478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host’s immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- * E-mail:
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Estrella Duque
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Matilde Fernández
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Patricia Bernal
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Imperial College London, South Kensington Campus, London, United Kingdom
| | - Amalia Roca
- Bio-Iliberis R&D, C/ Capileira 7, 18210 Peligros, Granada, Spain
| | - Jesús de la Torre
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Juan Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| |
Collapse
|