1
|
Valik JK, Giske CG, Hasan B, Gozalo-Margüello M, Martínez-Martínez L, Premru MM, Martinčič Ž, Beović B, Maraki S, Zacharioudaki M, Kofteridis D, McCarthy K, Paterson D, Cueto MD, Morales I, Leibovici L, Babich T, Granath F, Rodríguez-Baño J, Oliver A, Yahav D, Nauclér P. Genomic virulence markers are associated with severe outcomes in patients with Pseudomonas aeruginosa bloodstream infection. COMMUNICATIONS MEDICINE 2024; 4:264. [PMID: 39663376 PMCID: PMC11634891 DOI: 10.1038/s43856-024-00696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) bloodstream infection (BSI) is a common healthcare-associated complication linked to antimicrobial resistance and high mortality. Ongoing clinical trials are exploring novel anti-virulence agents, yet studies on how bacterial virulence affects PA infection outcomes is conflicting and data from real-world clinical populations is limited. METHODS We studied a multicentre cohort of 773 adult patients with PA BSI consecutively collected during 7-years from sites in Europe and Australia. Comprehensive clinical data and whole-genome sequencing of all bacterial strains were obtained. RESULTS Based on the virulence genotype, we identify several virulence clusters, each showing varying proportions of multidrug-resistant phenotypes. Genes tied to biofilm synthesis and epidemic clones ST175 and ST235 are associated with mortality, while the type III secretion system is associated with septic shock. Adding genomic biomarkers to machine learning models based on clinical data indicates improved prediction of severe outcomes in PA BSI patients. CONCLUSIONS These findings suggest that virulence markers provide prognostic information with potential applications in guiding adjuvant sepsis treatments.
Collapse
Affiliation(s)
- John Karlsson Valik
- Department of Medicine, Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Christian G Giske
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Badrul Hasan
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mónica Gozalo-Margüello
- Service of Microbiology. Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cantabria, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00068), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Martínez-Martínez
- Unit of Microbiology, University Hospital Reina Sofía, Córdoba, Spain
- Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Žiga Martinčič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Bojana Beović
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sofia Maraki
- Department of Internal Medicine, University Hospital of Heraklion, Crete, Greece
| | - Maria Zacharioudaki
- Department of Internal Medicine, University Hospital of Heraklion, Crete, Greece
| | - Diamantis Kofteridis
- Department of Internal Medicine, University Hospital of Heraklion, Crete, Greece
| | - Kate McCarthy
- Pathology Queensland, Royal Brisbane and Woman's Hospital, Brisbane, QLD, Australia
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - David Paterson
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Marina de Cueto
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Hospital Universitario Virgen Macarena / Departamentos de Medicina y Microbiología, Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Morales
- Servicio de Urgencias, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Leonard Leibovici
- Research Authority, Rabin Medical Center, Beilinson hospital, Petah-Tiqva, Israel
| | - Tanya Babich
- Research Authority, Rabin Medical Center, Beilinson hospital, Petah-Tiqva, Israel
| | - Fredrik Granath
- Department of Medicine, Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Hospital Universitario Virgen Macarena / Departamentos de Medicina y Microbiología, Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Dafna Yahav
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Pontus Nauclér
- Department of Medicine, Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Alimoghadam S, Eslami A, Alimoghadam R, Bahrami Mianrood I, Azizmohammad Looha M, Khodadadi S, Shokouhi S, Alavi Darazam I. The frequency of AmpC overproduction, OprD downregulation and OprM efflux pump expression in Pseudomonas aeruginosa: A comprehensive meta-analysis. J Glob Antimicrob Resist 2024; 39:159-169. [PMID: 39303871 DOI: 10.1016/j.jgar.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a major opportunistic pathogen responsible for a wide range of infections. The emergence of antibiotic resistance in this pathogen poses a significant public health challenge. This study aims to conduct a comprehensive meta-analysis of studies conducted in Iran to determine the frequency of key antibiotic resistance mechanisms in Pseudomonas aeruginosa and their association with multidrug-resistant and extensively drug-resistant strains or pandrug-resistant strains. METHODS Systematic database searches encompassing literature up to June 2023 were undertaken. The selected studies centered on OprD downregulation, efflux pump (mexAB-OprM, mexXY-OprM) expression, and AmpC overproduction. Extracted data were synthesised in a meta-analysis for pooled frequency determination of each resistance mechanism. RESULTS In total, 24 studies were included. OprD downregulation exhibited a pooled frequency of 61%. Efflux pump component frequency ranged from 48% to 77.5%. AmpC overproduction was identified in 29.1% of isolates. Polymyxin B and colistin demonstrated lower antibiotic resistance rates, with pooled frequency of 1% and 1.6%, respectively. Conversely, resistance to other antibiotics ranged widely, with pooled frequency spanning 38.4% to 98.2%. CONCLUSIONS This study underscores the concerning frequency of diverse antibiotic resistance mechanisms in Pseudomonas aeruginosa strains from Iran. Concurrent OprD downregulation, mexAB, mexXY, OprM expression, and AmpC overproduction highlight the urgent need for stringent infection control and prudent antibiotic usage to curb the dissemination of these resistant strains. PROSPERO CRD42022379311.
Collapse
Affiliation(s)
- Shaya Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arvin Eslami
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rojina Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ibrahim Bahrami Mianrood
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sanaz Khodadadi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shervin Shokouhi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Masuda S, Imamura Y, Jinushi R, Kimura K, Ryozawa S, Koizumi K. Navigating antibiotic therapy in acute cholangitis: Best practices and new insights. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024. [PMID: 39537571 DOI: 10.1002/jhbp.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Globally, antibiotic resistance is linked to increased morbidity, mortality, and healthcare costs, which necessitates further research on optimal antibiotic usage. Acute cholangitis (AC), a common cause of community-acquired bacteremia, often requires antimicrobial therapy. Therefore, studying the appropriate use of antibiotics for AC is considered crucial for suppressing the emergence of resistant bacteria and reducing adverse antibiotic-associated events. The Tokyo Guidelines 2018 (TG18) recommend 4-7 days of antibiotics post-biliary drainage. However, this lacks strong evidence and is based primarily on various evidence and expert opinions. Recent retrospective studies advocate for a shorter 1-3-day antibiotic course for AC, thereby prompting a need to reassess the treatment duration to balance therapeutic efficacy and minimize resistance and adverse effects. Choosing the appropriate duration and antibiotics based on susceptibility to pathogens causing cholangitis is important. Awareness of local resistance patterns and understanding patients' risks of resistant pathogens are prerequisite for effective treatment. We must explore the applicability of these guidelines in specific scenarios such as severe AC, positive blood cultures, fever, or hilar biliary obstructions due to malignancy. This comprehensive review considers both the duration and type of antibiotics and aims to enhance treatment outcomes while reducing the risk of resistant bacterial infections.
Collapse
Affiliation(s)
- Sakue Masuda
- Department of Gastroenterology, Medicine Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yoshinori Imamura
- Cancer Care Promotion Center, University of Fukui Hospital, Fukui, Japan
| | - Ryuhei Jinushi
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Karen Kimura
- Department of Gastroenterology, Medicine Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shomei Ryozawa
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kazuya Koizumi
- Department of Gastroenterology, Medicine Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
4
|
Ndikubwimana I, Gahamanyi N, Bwanakweli T, Uwayo HD, Habimana G, Rogo T. Case Report: Pan-Drug Resistant Pseudomonas aeruginosa from a Child with an Infected Burn Wound at the University Teaching Hospital of Kigali, Rwanda. Infect Drug Resist 2024; 17:4637-4642. [PMID: 39469095 PMCID: PMC11516630 DOI: 10.2147/idr.s486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Background Pseudomonas aeruginosa is a significant cause of morbidity and mortality in intensive care units, and is prevalent in nosocomial infections and cystic fibrosis. The increasing rates of antimicrobial resistance (AMR) complicate the treatment of P. aeruginosa infections, especially because of the multidrug resistance (MDR), extensively drug-resistant (XDR), and pan-drug resistant (PDR) strains. Case Presentation We report the case of a 4-year-old male with severe burns covering 45% of his body surface who developed nosocomial PDR P. aeruginosa infection at the University Teaching Hospital of Kigali (CHUK) in Rwanda. A wound culture yielded a PDR P. aeruginosa isolate that was resistant to all the tested antimicrobials, with intermediate resistance to colistin. However, the patient improved with a combination of ceftazidime and amikacin following cessation of fever and successful skin grafting. The patient was discharged on day 95. Conclusion P. aeruginosa is a common hospital-acquired pathogen that is particularly challenging to treat, owing to its antimicrobial resistance profile and biofilm production. Antibiotic-resistant strains are a significant public health threat, especially in pediatric burn units. This case underscores the critical need to strengthen infection prevention and control measures together with robust antimicrobial stewardship programs. Molecular characterization of this PDR strain will yield further details regarding its virulence and genotyping.
Collapse
Affiliation(s)
- Innocent Ndikubwimana
- Pediatric Department, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Noel Gahamanyi
- National Reference Laboratory, Rwanda Biomedical Centre, Kigali, Rwanda
- Biology Department, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | | | | | - Gaspard Habimana
- Pediatric Department, Kigali University Teaching Hospital, Kigali, Rwanda
| | - Tanya Rogo
- Pediatric Infectious Diseases, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
5
|
Karalliu E, Chung KY, MacKinnon B, Haile B, Beczkowski PM, Barrs VR, Elsohaby I, Nekouei O. Risk factors for antimicrobial-resistant Enterobacterales in dogs: a systematic review. Front Vet Sci 2024; 11:1447707. [PMID: 39439826 PMCID: PMC11493919 DOI: 10.3389/fvets.2024.1447707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Identifying risk factors associated with the carriage of antimicrobial-resistant (AMR) bacteria in dogs is crucial to understanding their epidemiology and for developing and refining targeted control measures. However, relevant data is scattered and conflicting findings have been reported. This systematic review aimed to compile risk factors associated with the carriage of AMR-Enterobacterales in dogs worldwide and to identify relevant knowledge gaps for directing future research. A systematic review was conducted according to PRISMA guidelines, searching PubMed, CABi, and Scopus databases for studies reporting risk factors for acquiring AMR-Enterobacterales in dogs. After screening peer-reviewed, English-language studies by title/abstract, eligible studies were subjected to a full-text assessment, data extraction, risk-of-bias assessment, and qualitative synthesis. In the initial search, 774 articles were identified, including 274 duplicates. After screening by title/abstract, 77 articles were subjected to full-text review, from which 40 were eventually selected for data extraction, including 29 cross-sectional, six cohort, and five case-control studies. The most frequently investigated risk factors for AMR-Enterobacterales carriage in dogs were antimicrobial use (28 of 40), age (24), sex (22), hospitalization (19), and feeding raw diet (14). Of these, antimicrobial use was the most common risk factor significantly associated with AMR-Enterobacterales (19/28), followed by raw diet (9/14) and hospitalization (8/19). Our synthesis emphasized the importance of increasing awareness regarding the prudent use of critically important antimicrobials (CIAs), such as fluoroquinolones, in companion animal practices, strengthening infection prevention and control procedures in veterinary clinics and hospitals and educating caregivers about the potential risks of feeding raw diets in order to reduce the burden of AMR-bacteria in dogs.
Collapse
Affiliation(s)
- Esa Karalliu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai Yeung Chung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brett MacKinnon
- Department of Veterinary Clinical Sciences, Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Belete Haile
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pawel M. Beczkowski
- Department of Veterinary Clinical Sciences, Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Gómez-Zorrilla S, Becerra-Aparicio F, Sendra E, Zamorano L, Grau I, Pintado V, Padilla B, Benito N, Boix-Palop L, Fariñas MC, Peñaranda M, Gamallo MR, Martinez JA, Morte-Romea E, Del Pozo JL, López Montesinos I, Durán-Jordà X, Ponz R, Cotarelo M, Cantón R, Oliver A, Ruiz-Garbajosa P, Horcajada JP. Risk factors and clinical impact of multidrug resistance in healthcare-associated bacteraemic urinary tract infections: a post-hoc analysis of a multicentre prospective cohort in Spain. J Hosp Infect 2024; 151:173-185. [PMID: 38945399 DOI: 10.1016/j.jhin.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The global burden associated with antimicrobial resistance is of increasing concern. AIM To evaluate risk factors associated with multidrug-resistant (MDR) infection and its clinical impact in a cohort of patients with healthcare-associated bacteraemic urinary tract infections (BUTIs). METHODS This was a prospective, multicentre, post-hoc analysis of patients with healthcare-associated-BUTI (ITUBRAS-2). The primary outcome was MDR profile. Secondary outcomes were clinical response (at 48-72 h and at hospital discharge) and length of hospital stay from onset of BUTI. Logistic regression was used to evaluate variables associated with MDR profile and clinical response. Length of hospital stay was evaluated using multivariate median regression. FINDINGS In all, 443 episodes were included, of which 271 (61.17%) were classified as expressing an MDR profile. In univariate analysis, MDR profile was associated with E. coli episodes (odds ratio (OR): 3.13; 95% confidence interval (CI): 2.11-4.69, P < 0.001) and the extensively drug-resistant (XDR) pattern with P. aeruginosa aetiology (7.84; 2.37-25.95; P = 0.001). MDR was independently associated with prior use of fluoroquinolones (adjusted OR: 2.43; 95% CI: 1.25-4.69), cephalosporins (2.14; 1.35-3.41), and imipenem or meropenem (2.08; 1.03-4.20) but not with prior ertapenem. In terms of outcomes, MDR profile was not associated with lower frequency of clinical cure, but was associated with longer hospital stay. CONCLUSION MDR profile was independently associated with prior use of fluoroquinolones, cephalosporins, imipenem, and meropenem, but not with prior ertapenem. MDR-BUTI episodes were not associated with worse clinical cure, although they were independently associated with longer duration of hospital stay.
Collapse
Affiliation(s)
- S Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - F Becerra-Aparicio
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain
| | - E Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - L Zamorano
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Service, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - I Grau
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - V Pintado
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - B Padilla
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - N Benito
- Infectious Diseases Service, Hospital de la Santa Creui Sant Pau - Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Boix-Palop
- Infectious Diseases Service, Hospital Mutua de Terrassa, Barcelona, Spain
| | - M C Fariñas
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - M Peñaranda
- Infectious Diseases Service, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - M R Gamallo
- Infectious Diseases Service, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - J A Martinez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Hospital Clinic, Barcelona, Spain
| | - E Morte-Romea
- Infectious Diseases Service, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, Spain
| | - J L Del Pozo
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - I López Montesinos
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - X Durán-Jordà
- Methodology and Biostatistics Support Unit, Hospital del Mar Research Institute, Barcelona, Spain
| | - R Ponz
- MSD Spain, Medical Department, Madrid, Spain
| | - M Cotarelo
- MSD Spain, Medical Department, Madrid, Spain
| | - R Cantón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain
| | - A Oliver
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Service, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - P Ruiz-Garbajosa
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain
| | - J P Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
8
|
Zheng G, Cai J, Deng H, Yang H, Xiong W, Chen E, Bai H, He J. Development of a risk prediction model for subsequent infection after colonization with carbapenem-resistant Enterobacterales: a retrospective cohort study. Antimicrob Resist Infect Control 2024; 13:46. [PMID: 38659068 PMCID: PMC11044304 DOI: 10.1186/s13756-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/31/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Colonization of carbapenem-resistant Enterobacterale (CRE) is considered as one of vital preconditions for infection, with corresponding high morbidity and mortality. It is important to construct a reliable prediction model for those CRE carriers with high risk of infection. METHODS A retrospective cohort study was conducted in two Chinese tertiary hospitals for patients with CRE colonization from 2011 to 2021. Univariable analysis and the Fine-Gray sub-distribution hazard model were utilized to identify potential predictors for CRE-colonized infection, while death was the competing event. A nomogram was established to predict 30-day and 60-day risk of CRE-colonized infection. RESULTS 879 eligible patients were enrolled in our study and divided into training (n = 761) and validation (n = 118) group, respectively. There were 196 (25.8%) patients suffered from subsequent CRE infection. The median duration of subsequent infection after identification of CRE colonization was 20 (interquartile range [IQR], 14-32) days. Multisite colonization, polymicrobial colonization, catheterization and receiving albumin after colonization, concomitant respiratory diseases, receiving carbapenems and antimicrobial combination therapy before CRE colonization within 90 days were included in final model. Model discrimination and calibration were acceptable for predicting the probability of 60-day CRE-colonized infection in both training (area under the curve [AUC], 74.7) and validation dataset (AUC, 81.1). Decision-curve analysis revealed a significantly better net benefit in current model. Our prediction model is freely available online at https://ken-zheng.shinyapps.io/PredictingModelofCREcolonizedInfection/ . CONCLUSIONS Our nomogram has a good predictive performance and could contribute to early identification of CRE carriers with a high-risk of subsequent infection, although external validation would be required.
Collapse
Affiliation(s)
- Guanhao Zheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Jiaqi Cai
- Department of Clinical Laboratory, Kunshan Hospital, Nanjing University of Chinese Medicine, Kunshan, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Han Deng
- Department of International Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haoyu Yang
- Department of Pharmacy, Handan First Hospital, Handan, China
| | - Wenling Xiong
- Department of Infection Management, Chongqing University Cancer Hospital, Chongqing, China
| | - Erzhen Chen
- Department of Emergency Intensive Care Unit, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China.
| | - Juan He
- Department of Pharmacy, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
10
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
11
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
12
|
Chowdhury G, Das B, Kumar S, Pant A, Mukherjee P, Ghosh D, Koley H, Miyoshi SI, Okamoto K, Paul A, Dutta S, Ramamurthy T, Mukhopadyay AK. Genomic insights into extensively drug-resistant Pseudomonas aeruginosa isolated from a diarrhea case in Kolkata, India. Future Microbiol 2023; 18:173-186. [PMID: 36916516 DOI: 10.2217/fmb-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: To characterize extensively drug-resistant Pseudomonas aeruginosa from a patient with diarrhea. Materials & methods: Antimicrobial susceptibility was tested by the disk diffusion method. The P. aeruginosa genome was sequenced to identify virulence, antibiotic resistance and prophages encoding genes. Results: P. aeruginosa had a wide spectrum of resistance to antibiotics. Genomic analysis of P. aeruginosa revealed 76 genes associated with antimicrobial resistance, xenobiotic degradation and the type three secretion system. Conclusion: This is the first report on diarrhea associated with P. aeruginosa. Since no other organism was identified, the authors assume that the patient had dysbiosis due to antibiotic exposure, leading to antibiotic-associated diarrhea. The in vivo toxicity expressed by the pathogen may be associated with T3SS.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India.,Collaborative Research Center of Okayama University for Infectious Diseases, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Bhabatosh Das
- Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Shakti Kumar
- Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Archana Pant
- Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Debjani Ghosh
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Center of Okayama University for Infectious Diseases, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India.,Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Alapan Paul
- Department of Medicine, Nil Ratan Sircar Medical College & Hospital, Kolkata, 700014, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India.,Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Asish K Mukhopadyay
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| |
Collapse
|
13
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
14
|
Phage phiZ98: a novel tri-segmented dsRNA cystovirus for controlling Pseudomonas strains with defective lipopolysaccharides in foods. Food Res Int 2022; 162:112197. [DOI: 10.1016/j.foodres.2022.112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
15
|
Comparative Analysis of Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11111511. [PMID: 36358167 PMCID: PMC9686592 DOI: 10.3390/antibiotics11111511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
The objective was to compare clinical characteristics, outcomes, and economic differences in complicated urinary tract infections (cUTI) caused by extensively drug-resistant Pseudomonas aeruginosa (XDR P. aeruginosa) and extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-K. pneumoniae). A retrospective study was conducted at a tertiary care hospital. Patients with XDR P. aeruginosa and ESBL-K. pneumoniae cUTIs were compared. The primary outcome was clinical failure at day 7 and at the end of treatment (EOT). Secondary outcomes: 30- and 90-day mortality, microbiological eradication, and economic cost. Two-hundred and one episodes were included, of which 24.8% were bloodstream infections. Patients with XDR P. aeruginosa cUTI more frequently received inappropriate empirical therapy (p < 0.001). Nephrotoxicity due to antibiotics was only observed in the XDR P. aeruginosa group (26.7%). ESBL-K. pneumoniae cUTI was associated with worse eradication rates, higher recurrence, and higher infection-related readmission. In multivariate analysis, XDR P. aeruginosa was independently associated with clinical failure on day 7 of treatment (OR 4.34, 95% CI 1.71−11.04) but not at EOT, or with mortality. Regarding hospital resource consumption, no significant differences were observed between groups. XDR P. aeruginosa cUTI was associated with worse early clinical cures and more antibiotic side effects than ESBL-K. pneumoniae infections. However, no differences in mortality or in hospitalization costs were observed.
Collapse
|
16
|
Dhanasekara CS, Marschke B, Morris E, Kahathuduwa CN, Dissanaike S. Regional Variations in Microbiology and Outcomes of Necrotizing Soft Tissue Infections: A Systematic Review and Meta-Analysis. Surg Infect (Larchmt) 2022; 23:634-644. [PMID: 35904966 DOI: 10.1089/sur.2022.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Frequency, microbiology, and outcomes of necrotizing soft tissue infections (NSTIs) could vary across the United States because of differences in locoregional and environmental factors. We synthesized the literature from across the regions of the United States on NSTIs in a systematic review/meta-analysis. Methods: PubMed, ProQuest, Scopus, and Web of Science databases were systematically searched and screened. DerSimonian-Laird random-effects meta-analyses were performed using 'meta' package in R to determine pooled prevalences. Meta-regression analyses examined moderator effects of risk factors. Results: Twenty-seven studies (2,242 total patients) were included. Pooled prevalences of polymicrobial and monomicrobial infections were 52.2% and 39.9%, respectively. The prevalence of monomicrobial NSTIs increased over the last two decades (p = 0.018), whereas polymicrobial infections declined (p = 0.003). Meta-regression analysis showed that most polymicrobial NSTIs were Fournier gangrene (p < 0.001), whereas monomicrobial NSTIs mostly affected extremities (p < 0.001). Staphylococcus aureus was the most common organism isolated (predominantly in the South), followed by Bacteroides spp. (predominately in the East) and Streptococcus pyogenes. Methicillin-resistant Staphylococcus aureus (MRSA) accounted for 11.9% of NSTIs, mainly in the South. The overall mortality rate was 17.8% and declined over last two decades (p < 0.001), with the lowest rate reported in the last decade at 13% without any regional differences. Conclusions: Advancement in the management of NSTIs may have contributed to the observed decline in NSTI-related mortality in the United States. However, the proportion of monomicrobial NSTIs seems to be increasing, possibly because of increased comorbidities affecting extremities. Causative organisms varied by region. Multi-center observational studies are warranted to confirm our observations.
Collapse
Affiliation(s)
- Chathurika S Dhanasekara
- Department of Surgery, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Brianna Marschke
- Department of Surgery, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Erin Morris
- Department of Surgery, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Chanaka N Kahathuduwa
- Department of Psychiatry, School of Medicine, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Laboratory Sciences and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Sharmila Dissanaike
- Department of Surgery, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
17
|
Leus IV, Weeks JW, Bonifay V, Shen Y, Yang L, Cooper CJ, Nash D, Duerfeldt AS, Smith JC, Parks JM, Rybenkov VV, Zgurskaya HI. Property space mapping of Pseudomonas aeruginosa permeability to small molecules. Sci Rep 2022; 12:8220. [PMID: 35581346 PMCID: PMC9114115 DOI: 10.1038/s41598-022-12376-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 02/03/2023] Open
Abstract
Two membrane cell envelopes act as selective permeability barriers in Gram-negative bacteria, protecting cells against antibiotics and other small molecules. Significant efforts are being directed toward understanding how small molecules permeate these barriers. In this study, we developed an approach to analyze the permeation of compounds into Gram-negative bacteria and applied it to Pseudomonas aeruginosa, an important human pathogen notorious for resistance to multiple antibiotics. The approach uses mass spectrometric measurements of accumulation of a library of structurally diverse compounds in four isogenic strains of P. aeruginosa with varied permeability barriers. We further developed a machine learning algorithm that generates a deterministic classification model with minimal synonymity between the descriptors. This model predicted good permeators into P. aeruginosa with an accuracy of 89% and precision above 58%. The good permeators are broadly distributed in the property space and can be mapped to six distinct regions representing diverse chemical scaffolds. We posit that this approach can be used for more detailed mapping of the property space and for rational design of compounds with high Gram-negative permeability.
Collapse
Affiliation(s)
- Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Jon W Weeks
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Vincent Bonifay
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Yue Shen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Liang Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Connor J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Dinesh Nash
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN, 55414, USA
| | - Jeremy C Smith
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
18
|
Bakht M, Alizadeh SA, Rahimi S, Kazemzadeh Anari R, Rostamani M, Javadi A, Peymani A, Marashi SMA, Nikkhahi F. Phenotype and genetic determination of resistance to common disinfectants among biofilm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran. BMC Microbiol 2022; 22:124. [PMID: 35525944 PMCID: PMC9078005 DOI: 10.1186/s12866-022-02524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a common pathogen in Hospitalized patients, and its various resistance mechanisms contribute to patient morbidity and mortality. The main aims of the present study were to assess the susceptibility of biofilm-producing and non-producing P. aeruginosa isolates to the five commonly used Hospital disinfectants, to evaluate the synergistic effect of selected disinfectants and Ethylene-diamine-tetra acetic acid (EDTA), and the effect of exposure to sub-inhibitory concentrations of Sodium hypochlorite on antimicrobial susceptibility test. RESULTS The results showed that sodium hypochlorite 5% and Ethanol 70% were the most and least effective disinfectants against P. aeruginosa, respectively. The addition of EDTA significantly increased the effectiveness of the selected disinfectants. The changes in the antibiotic-resistance profiles after exposure to sub-inhibitory concentrations of disinfectants were observed for different classes of antibiotics (Carbapenems, Aminoglycosides, Cephalosporins, Fluoroquinolones). As well as near the all isolates harbored efflux pump genes and 117 (97.5%) of isolates produced biofilm. CONCLUSION In the current study, the mixture of disinfectant and EDTA were the most suitable selection to disinfect Hospital surfaces and instruments. Also, it was clear that exposure to sub-inhibitory concentrations of Sodium hypochlorite results in resistance to some antibiotics in P. aeruginosa species. Strong and intermediate biofilm formers belonged to MDR/XDR strains. Future studies should include more complex microbial communities residing in the Hospitals, and more disinfectants use in Hospitals.
Collapse
Affiliation(s)
- Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Rahimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Raana Kazemzadeh Anari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Rostamani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Community Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
19
|
Wendel AF, Malecki M, Mattner F, Xanthopoulou K, Wille J, Seifert H, Higgins PG. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac057. [PMID: 35611260 PMCID: PMC9122648 DOI: 10.1093/jacamr/dlac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives To describe the propensity of carbapenem-resistant Pseudomonas aeruginosa to spread within a hospital critical care setting. Methods The study was conducted in a 700-bed tertiary centre in Cologne, Germany. P. aeruginosa resistant to piperacillin, ceftazidime, cefepime, imipenem, meropenem and ciprofloxacin, isolated from clinical and screening specimens from four critical care units from 2015 to 2020 were analysed. Genotyping was carried out by WGS (Illumina and MinION). MLST, core genome MLST (cgMLST) and resistome analysis was performed and merged with epidemiological data. Results Fifty-five out of 79 non-duplicate P. aeruginosa isolates were available, of which 20 were carbapenemase producers as follows: blaVIM-1 (n = 1), blaVIM-2 (n = 17), blaVIM-4 (n = 1), and blaNDM-1/blaGES-5 (n = 1). Forty-two of 55 isolates were hospital-acquired. cgMLST revealed three clusters: Cluster 1 (n = 15, ST111, blaVIM-2, recovered between 2015 and 2020); Cluster 2 (n = 4, ST970, carbapenemase negative); and Cluster 3 (n = 2, ST357, carbapenemase negative). The blaVIM-2 gene of Cluster 1 was integrated on the chromosome in a class 1 integron (type In59). Using conventional epidemiology, we were only able to confirm two patient-to-patient transmissions and one room-to-patient transmission on three different ICUs within Cluster 1. Isolates from Cluster 2 represented an outbreak occurring in 2019. Conclusions These data give insight into the epidemiology of carbapenem-resistant P. aeruginosa. Transmission dynamics differed between carbapenemase- and non-carbapenemase-producing isolates. A continuous acquisition of clonally related ST111 VIM-2 P. aeruginosa, being the main carbapenemase-producing strain, was observed over the whole study period, as well as an overall higher genomic diversity among non-carbapenemase-producing P. aeruginosa.
Collapse
Affiliation(s)
- Andreas F. Wendel
- Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Cologne, Germany
- Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Corresponding author. E-mail: ; @AndyFW; @docpolski
| | - Monika Malecki
- Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Cologne, Germany
- Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Frauke Mattner
- Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Cologne, Germany
- Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
20
|
Ali A, Ahmad K, Rahat S, Ahmad I. Genetic diversity and molecular analysis of metallo beta lactamases among imipenem resistant clinical isolates of Pseudomonas aeruginosa from Peshawar, Pakistan. Pak J Med Sci 2021; 37:1865-1870. [PMID: 34912409 PMCID: PMC8613024 DOI: 10.12669/pjms.37.7.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Pseudomonas aeruginosa is an opportunistic pathogen with remarkable adaptation ability to thrive in diverse environmental conditions. This study aimed at phenotypic and molecular analysis of metallo beta lactamases (blaIMP, blaVIM, blaNDM-1 and blaSPM-1) and genetic diversity analysis among imipenem resistant clinical isolates of Pseudomonas aeruginosa. Methods This study was conducted from May 2017 to June 2018. The study included 187 Pseudomonas aeruginosa isolates collected from different clinical specimens from Peshawar, Pakistan. The isolates were analyzed for resistance to imipenem. Combined disc test (CDT) was then performed for phenotypic detection of metallo beta lactamases among imipenem resistant isolates of Pseudomonas aeruginosa. Molecular detection of metallo beta lactamases genes i.e. blaIMP, blaVIM, blaNDM-1 and blaSPM-1 was analyzed through polymerase chain reaction. Genetic diversity was determined through RAPD-PCR. Results MBL production was observed in 76% (n=19) isolates. The occurrence of MBL genes blaIMP, blaNDM-1 and blaVIM was 68% (n=17), 48% (n=12), and 4% (n=1) respectively. The blaSPM-1 gene was not detected. High genetic diversity was observed in current study. Out of 182 isolates 171 isolates showed different RAPD profiles (93.95% polymorphism); 160 were unique RAPD strains and based on similarity coefficient ≥ 80%, 22 isolates were clustered into 11 distinct clones. Conclusion A high prevalence of blaIMP and blaNDM-1 among imipenem resistant isolates of Pseudomonas aeruginosa is alarming that calls for proper control and prevention strategies. RAPD technique was found to be a good genotyping technique when limited resources are available.
Collapse
Affiliation(s)
- Amjad Ali
- Amjad Ali, PhD. Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Kafeel Ahmad
- Kafeel Ahmad, PhD. Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Shaista Rahat
- Shaista Rahat, PhD Scholar. Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Israr Ahmad
- Israr Ahmad, PhD. Pakistan Health Research Council, Khyber Medical College, Peshawar, Pakistan
| |
Collapse
|
21
|
Masuda S, Koizumi K, Uojima H, Kimura K, Nishino T, Tasaki J, Ichita C, Sasaki A. Effect of Antibiotic Resistance of Pathogens on Initial Antibiotic Therapy for Patients With Cholangitis. Cureus 2021; 13:e18449. [PMID: 34650837 PMCID: PMC8487445 DOI: 10.7759/cureus.18449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Considering that pathogens resistant to initial antibiotic therapies for cholangitis can affect mortality rates, appropriate initial empiric antibiotic therapy is important. However, evidence regarding the influence of pathogens resistant to initial antibiotics in patients with cholangitis who have undergone early endoscopic retrograde cholangiopancreatography (ERCP) is limited, and the conditions in several cases can improve with early ERCP even when pathogens resistant to initial antibiotics are detected on time. Therefore, this study aimed to assess the influence of pathogens resistant to initial antibiotics on the course of cholangitis in patients undergoing early ERCP. Materials and methods Patients (n=266) with positive blood or bile culture results treated with early ERCP were divided into those with cultures that were resistant to the initial antibiotics (antibiotic-resistant group; n=66; 24.8%) and those with cultures that were sensitive to the initial antibiotics (antibiotic-sensitive group; n=200; 75.2%). The duration of hospitalization, in-hospital mortality rates due to cholangitis, rates of increased disease severity, and complications during hospitalization were studied. Results Enterococcus, Enterobacter, Citrobacter, and Pseudomonas species showed high resistance to several antibiotics. No significant between-group differences were found in the duration of hospitalization, in-hospital mortality rates due to cholangitis, and rates of increased disease severity. However, the rate of post-ERCP cholecystitis was significantly higher in the antibiotic-resistant group than in the antibiotic-sensitive group (p=0.0245). Conclusions Even if the initial antibiotics were ineffective, the rate of fatal outcomes did not increase among patients with cholangitis who had undergone early ERCP. However, when initial antibiotics were ineffective, the frequency of post-ERCP cholecystitis increased even after early bile duct decompression.
Collapse
Affiliation(s)
- Sakue Masuda
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Kazuya Koizumi
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Haruki Uojima
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Karen Kimura
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Takashi Nishino
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Junichi Tasaki
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Chikamasa Ichita
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Akiko Sasaki
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kanagawa, JPN
| |
Collapse
|
22
|
Rada AM, De La Cadena E, Agudelo CA, Pallares C, Restrepo E, Correa A, Villegas MV, Capataz C. Genetic Diversity of Multidrug-Resistant Pseudomonas aeruginosa Isolates Carrying bla VIM-2 and bla KPC-2 Genes That Spread on Different Genetic Environment in Colombia. Front Microbiol 2021; 12:663020. [PMID: 34512563 PMCID: PMC8432936 DOI: 10.3389/fmicb.2021.663020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen with an increase in the frequency of infections caused by multidrug resistant (MDR) and extensively drug resistant (XDR) strains, limiting the available therapeutic options. The most troublesome resistance is the acquisition and production of carbapenemases such as Verona integron-encoded metallo-β-lactamases (VIM), the most frequent and widespread, and the Klebsiella pneumoniae carbapenemases (KPC), which has continuously spread in the last decade. Its dissemination is linked to their location on mobile genetic elements (MGEs). In Colombia, VIM and KPC have been increasing in its frequency showing major successful dissemination. In this article, we molecularly characterized and analyzed the genetic context of bla VIM and bla KPC in carbapenem-resistant P. aeruginosa (CRPA) isolates from infected and colonized patients in two tertiary-care hospitals, one in Medellín and the other in a municipality close to Medellín, both areas with high carbapenemase endemicity in Colombia (2013-2015). Using whole-genome sequencing (WGS), we identified a remarkable variety of genetic backgrounds in these MDR P. aeruginosa isolates carrying bla KPC- 2 and bla VIM- 2. There were a diversity of class 1 integron and variations in the gene cassettes associated to bla VIM- 2, as well as a possible event of spread of bla KPC- 2 mediated by a plasmid that contained part of Tn4401b in one infection case. The dissemination of bla VIM- 2 and bla KPC- 2 in P. aeruginosa in this area in Colombia has been strongly influenced by successful international clones, carrying these genes and additional determinants of resistance on MGEs, accompanied by gene rearrangement under an antimicrobial selection pressure. These findings emphasize the need to implement control strategies based on rational antibiotic use.
Collapse
Affiliation(s)
- Ana M Rada
- Department of Microbiology and Parasitology, Bacteria and Cancer Group, Universidad de Antioquia, Medellín, Colombia.,Faculad de Ciencias de la Salud, Biociencias Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | - Elsa De La Cadena
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Carlos A Agudelo
- Clinica Universitaria Bolivariana, Medellín, Colombia.,School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Christian Pallares
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Eliana Restrepo
- Department of Microbiology and Parasitology, Bacteria and Cancer Group, Universidad de Antioquia, Medellín, Colombia
| | - Adriana Correa
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - María V Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
23
|
Dhanasekara CS, Marschke B, Morris E, Kahathuduwa CN, Dissanaike S. Global patterns of necrotizing soft tissue infections: A systematic review and meta-analysis. Surgery 2021; 170:1718-1726. [PMID: 34362585 DOI: 10.1016/j.surg.2021.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Frequency, microbiology, and outcomes of necrotizing soft tissue infections vary based on locoregional and environmental factors; however, there has been no global survey of these patterns. We performed a systematic review/meta-analysis on published reports of necrotizing soft tissue infections from across the globe. METHODS Peer-reviewed empirical studies examining rates of polymicrobial and monomicrobial necrotizing soft tissue infections with microbial isolation and overall mortality rate were extracted along with geographic location using PubMed, Scopus, ProQuest, and Web of Science. Random-effects meta-analyses and sensitivity analyses were performed, adjusting for publication bias. Meta-regression analyses examined moderator effects of risk factors. RESULTS One hundred and five studies (8,718 total patients) were included. Pooled prevalence of polymicrobial and monomicrobial infections were 53% and 37.9%, respectively. Truncal necrotizing soft tissue infections were commonly polymicrobial (P < .001), whereas monomicrobial infections prevailed in extremities (P = .008). Global prevalence of monomicrobial necrotizing soft tissue infections was observed to increase by 1.1% annually (P = .003). Staphylococcus aureus was the most common organism globally and in North America, Asia, the Middle East, and Africa, followed by Streptococcus pyogenes and Escherichia coli. Methicillin-resistant S. aureus accounted for 16% of necrotizing soft tissue infections globally. Overall mortality was 23.1%, observed to decline globally over the last decade (P = .020). No regional differences were noted for mortality. CONCLUSION Although polymicrobial infections remain predominant worldwide, the incidence of monomicrobial infections is increasing. The observed decline in necrotizing soft tissue infection-related mortality is encouraging and may reflect advances in management, despite major variations in available healthcare resources globally.
Collapse
Affiliation(s)
| | - Brianna Marschke
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, TX
| | - Erin Morris
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, TX
| | - Chanaka N Kahathuduwa
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX; Department of Laboratory Sciences and Primary Care, School of Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Sharmila Dissanaike
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, TX.
| |
Collapse
|
24
|
Ansari MA, Kalam A, Al-Sehemi AG, Alomary MN, AlYahya S, Aziz MK, Srivastava S, Alghamdi S, Akhtar S, Almalki HD, Adil SF, Khan M, Hatshan MR. Counteraction of Biofilm Formation and Antimicrobial Potential of Terminalia catappa Functionalized Silver Nanoparticles against Candida albicans and Multidrug-Resistant Gram-Negative and Gram-Positive Bacteria. Antibiotics (Basel) 2021; 10:725. [PMID: 34208591 PMCID: PMC8234839 DOI: 10.3390/antibiotics10060725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms not only protect bacteria and Candida species from antibiotics, but they also promote the emergence of drug-resistant strains, making eradication more challenging. As a result, novel antimicrobial agents to counteract biofilm formation are desperately needed. In this study, Terminalia catappa leaf extract (TCE) was used to optimize the TCE-capped silver nanoparticles (TCE-AgNPs) via a one-pot single-step method. Varied concentrations of TCE have yielded different sized AgNPs. The physico-chemical characterization of TCE-AgNPs using UV-Vis, SEM, TEM, FTIR, and Raman spectroscopy have confirmed the formation of nanostructures, their shape and size and plausible role of TCE bio-active compounds, most likely involved in the synthesis as well as stabilization of NPs, respectively. TCE-AgNPs have been tested for antibiofilm and antimicrobial activity against multidrug-resistant Pseudomonas aeruginosa (MDR-PA), methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans using various microbiological protocols. TCE-Ag-NPs-3 significantly inhibits biofilm formation of MDR-PA, MRSA, and C. albicans by 73.7, 69.56, and 63.63%, respectively, at a concentration of 7.8 µg/mL, as determined by crystal violet microtiter assay. Furthermore, SEM micrograph shows that TCE-AgNPs significantly inhibit the colonization and adherence of biofilm forming cells; individual cells with loss of cell wall and membrane integrity were also observed, suggesting that the biofilm architecture and EPS matrix were severely damaged. Moreover, TEM and SEM images showed that TCE-AgNPs brutally damaged the cell wall and membranes of MDR-PA, MRSA, and C. albicans. Additionally, extreme ultrastructural changes such as deformation, disintegration, and separation of cell wall and membrane from the cells, have also been observed, indicating significant loss of membrane and cell wall integrity, which eventually led to cell death. Overall, the research revealed a simple, environmentally friendly, and low-cost method for producing colloidal TCE-AgNPs with promising applications in advanced clinical settings against broad-spectrum biofilm-forming antibiotic-resistant bacteria and candida strains.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abul Kalam
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.N.A.); (S.A.)
| | - Sami AlYahya
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (M.N.A.); (S.A.)
| | - Mohammad Kashif Aziz
- Department of Chemistry, Faculty of Science, University of Allahabad, Allahabad 211001, Uttar Pradesh, India; (M.K.A.); (S.S.)
| | - Shekhar Srivastava
- Department of Chemistry, Faculty of Science, University of Allahabad, Allahabad 211001, Uttar Pradesh, India; (M.K.A.); (S.S.)
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24231, Saudi Arabia;
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Hussain D. Almalki
- Department of Chemistry, University College in Al-Qunfudah, Umm Al-Qura University, Makkah Al-Mukarramah 1109, Saudi Arabia;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (M.R.H.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (M.R.H.)
| |
Collapse
|
25
|
Abstract
Lichen has a great medicinal value and represents the symbiotic relationship between fungi and algae or cyanobacteria. The genus Usnea longissima (Parmeliaceae), is a fruticose lichen with numerous biological activities like antimicrobial, antifungal and inhibitory activities for plant and human pathogens. Taxonomically it is well distinguished by pale greenish to yellowish-green colour and pendulous thallus with dense branches usually emerging from the main stem. Its fungal partner releases an extracellular compound called Usnic acid, a derivative of Dibenzofuran which is a naturally occurring secondary metabolite. In the present work, antimicrobial activities of Usnea longissimi are explored in various extraction solvents. The crude extracts were prepared in methanol, ethanol, ethyl acetate, acetone and different concentrations (2.5,5,10,15,20mg/ml) followed by the determination of its antimicrobial activity against various microbes viz. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Fusarium oxysporum using agar well diffusion process. The maximum zone of inhibition was observed in the 15 mg/ml methanolic extract for Escherichia coli(34 mm), 10 mg/ml methanolic extract for Staphylococcus aureus (30 mm), 10 mg/ml ethyl acetate for Pseudomonas aeruginosa (16 mm) and 0.5 mg/ml ethanolic extract for Fusariumoxysporium (14 mm). Usnea longissimi have shown significant antibacterial and antifungal activity that encourage us to explore novel antimicrobial components within lichen biodiversity. These lichens further can be used as food supplements to cure various human diseases.
Collapse
|
26
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
27
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
28
|
Mutair AA, Alhumaid S, Alawi ZA, Zaidi ARZ, Alzahrani AJ, Al-Tawfiq JA, Al-Shammari H, Rabaan AA, Khojah O, Al-Omari A. Five-year resistance trends in pathogens causing healthcare-associated infections at a multi-hospital healthcare system in Saudi Arabia, 2015-2019. J Glob Antimicrob Resist 2021; 25:142-150. [PMID: 33762211 DOI: 10.1016/j.jgar.2021.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Awareness of antimicrobial resistance (AMR) patterns in a given healthcare setting is important to inform the selection of appropriate antimicrobial therapy to reduce the further rise and spread of AMR as well as the rate of healthcare-associated infections (HAIs) and multidrug-resistant (MDR) organisms. We aimed to describe resistance patterns to several antimicrobial agents in pathogens causing HAIs isolated from patients using data gathered at three private tertiary-care hospitals in Saudi Arabia. METHODS Data on trends in AMR among bacteria causing HAIs and MDR events in children and adults at three private hospitals were collected retrospectively (2015-2019) using surveillance data. RESULTS Over the 5-year period, 29 393 pathogens caused 17 539 HAIs in 15 259 patients. Approximately 57.3% of patients were female and the mean age was 38.4 ± 16.8 years (81.4% adults, 18.6% children). Gram-negative pathogens were four times more likely to cause HAIs compared with Gram-positive bacteria (79.3% vs. 20.7%). Ranking of causative pathogens in decreasing order was Escherichia coli (42.2%), Klebsiella spp. (16.8%) and Staphylococcus aureus (13.9%). Acinetobacter spp. were the only pathogens to decrease significantly (7% reduction; P = 0.033). The most common resistant pathogens were extended-spectrum cephalosporin-resistant E. coli (37.1%), extended-spectrum cephalosporin-resistant Klebsiella (27.8%), carbapenem-non-susceptible Acinetobacter spp. (19.5%), carbapenem-non-susceptible Pseudomonas aeruginosa (19.2%) and methicillin-resistant S. aureus (18.6%). CONCLUSION National collaboration is required by prompt feedback to local authorities to tackle regional differences in AMR. This can help plan timely containment interventions to stop and contain microbial threats and swiftly assess their impact.
Collapse
Affiliation(s)
- Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia; College of Nursing, Princess Nora University, Riyadh, Saudi Arabia; School of Nursing, University of Wollongong, Australia.
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-ahsa Health Cluster, Ministry of Health, Al-ahsa, Saudi Arabia
| | - Zainab Al Alawi
- Department of Pediatrics, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdul Rehman Z Zaidi
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed J Alzahrani
- Department of Pathology, College of Medicine, Al-Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine and Infection Control Unit, Quality and Patient Safety, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haifa Al-Shammari
- Department of Histopathology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostics Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Osamah Khojah
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Laboratory Services, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - Awad Al-Omari
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Antipseudomonal β-Lactams Resistance in Iran. Int J Microbiol 2020; 2020:8818315. [PMID: 33488724 PMCID: PMC7803146 DOI: 10.1155/2020/8818315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Over the last years, the mortality rate of Pseudomonas aeruginosa, which is one of the major reasons for severe infections, has been significantly increasing. This bacterium is highly resistant to many antibiotics, especially carbapenems, thanks to its complicated mechanism by which it can acquire exogenous genes. The purpose of this research is to have a review of empirical studies surveying the P. aeruginosa resistance to beta-lactams in Iran in order to investigate the most reliable methods by which the incidence of P. aeruginosa infections can be decreased and controlled. We performed a systematic review of all articles published from 2008 until 2018. Studies which did not address P. aeruginosa resistance to beta-lactams were excluded from the analysis. Studies with less than 10 cases were also excluded. Studies with more than ten cases, which did not have repetitive information, were taken into account for the final selection; 133 out of 893 articles were chosen. The resistance rate of P. aeruginosa among the articles was as follows: more than 72% of studies revealed >50% level of resistance to cefepime, followed by aztreonam (53.2%), ceftazidime (61%), piperacillin/tazobactam (54.5%), meropenem (48.3%), and imipenem (42.4%). The selection of empiric antipseudomonal antibiotics is absolutely uncertain and hazardous, and the risk of clinical failure may be more among cephalosporins and piperacillin-tazobactam as well as aztreonam. The results of this study illustrate that the methods enabling clinics to identify the bacterium resistance pattern and its genetic basis and to have the opportunity of empiric therapies through access to updated local data of antimicrobial susceptibility pattern are the most effective methods. However, the widespread usage of these approaches undoubtedly needs reliable molecular and nucleic acid-based devices, which are both affordable and available.
Collapse
|
30
|
Butler JA, Slate AJ, Todd DB, Airton D, Hardman M, Hickey NA, Scott K, Venkatraman PD. A traditional Ugandan Ficus natalensis bark cloth exhibits antimicrobial activity against methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2020; 131:2-10. [PMID: 33247525 DOI: 10.1111/jam.14945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022]
Abstract
AIMS Surgical site, soft tissue and wound infections are some of the most prominent causes of healthcare-associated infections (HCAIs). Developing novel antimicrobial textiles and wound dressings may help alleviate the risk of developing HCAIs. We aimed to determine the antimicrobial efficacy of natural Ugandan bark cloth derived exclusively from the Ficus natalensis tree. METHODS AND RESULTS Antimicrobial contact and disc diffusion assays, coupled with time-kill kinetic assays, demonstrated that bark cloth inhibited the growth of a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strain and acted as a bactericidal agent causing a seven-log reduction in bacterial viability. Scanning electron microscopy was used to reveal morphological changes in the bacterial cell ultrastructure when exposed to bark cloth, which supported a proposed mechanism of antimicrobial activity. CONCLUSIONS The observed antimicrobial properties, combined with the physical characteristics elicited by bark cloth, suggest this product is ideally suited for wound and other skin care applications. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report where a whole bark cloth product made by traditional methods has been employed as an antimicrobial fabric against MRSA. Bark cloth is a highly sustainable and renewable product and this study presents a major advance in the search for natural fabrics which could be deployed for healthcare applications.
Collapse
Affiliation(s)
- J A Butler
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - A J Slate
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - D B Todd
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - D Airton
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - M Hardman
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - N A Hickey
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - K Scott
- Istituto Marangoni, London, UK
| | - P D Venkatraman
- School of Fashion, Faculty of Arts and Humanities, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
31
|
Combination antimicrobial therapy in Pseudomonas aeruginosa bacteremia. Eur J Pediatr 2020; 179:1997-1998. [PMID: 32700233 DOI: 10.1007/s00431-020-03748-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
|
32
|
Bartolo M, Zucchella C, Aabid H, Valoriani B, Mancuso M, Intiso D. Healthcare-Associated Infections in Subjects With Severe Acquired Brain Injury: The Effect of Microbial Colonization on the Functional Outcome. Data From a Multicenter Observational Study. Front Neurol 2020; 11:563275. [PMID: 33240197 PMCID: PMC7683713 DOI: 10.3389/fneur.2020.563275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Hospital-acquired infections (HAIs) and microbial colonization are a worldwide serious threat for human health. Neurological patients with infections who undergo rehabilitation have a significantly poor recovery. The effect of microbial colonization on the functional outcome in severe acquired brain injury (sABI) subjects is still unclear. Aim: The aim of this multicenter observational study was to describe the clinical impact of HAIs and colonization on the functional outcome of sABI subjects admitted to inpatient neurorehabilitation. Methods: Patients were assigned to three groups: infected (INF), not infected (noINF), and colonized (COL). The Glasgow Coma Scale (GCS), the Rancho Los Amigos Levels of Cognitive Functioning Scale, Disability Rating Scale, and modified Barthel Index (mBI) assessments were performed both at admission and discharge. Results: Two hundred sixty-five (92 female/173 male) patients were enrolled: 134 were assigned to INF, 63 to COL, and 68 to noINF. In the INF group, 231 culture specimens were found positive for bloodstream (44.2%), respiratory tract (25.5%), urinary tract (18.6%), gastrointestinal tract (8.3%), skin (3%), and cerebrospinal fluid (0.4%) infections. After rehabilitation, all groups showed a significant improvement in all assessment tests, except for the noINF group that did not show any improvement in GCS. Both noINF and COL groups showed a significantly higher gain in mBI than the INF group (p = 0.000). The COL group showed a significantly higher gain than the noINF group in GCS (p = 0.001). A significantly lower improvement was detected in the INF group than the COL and noINF groups. The rate of patients who needed functional isolation was higher in the INF group than the COL group. Length of stay (LOS) (in days) was 56 ± 50.7, 88.3 ± 55, and 101.3 ± 73.6 for noINF, INF, and COL groups, respectively. The number of deaths in the INF group was significantly higher (24.6%) than the noINF group (7.4%) (p = 0.005) and comparable to the COL group (19%). Conclusion: Colonized sABI patients obtained a similar functional outcome to that of subjects who had no infections, even if they needed a significantly higher LOS.
Collapse
Affiliation(s)
- Michelangelo Bartolo
- Neurorehabilitation Unit, Department of Rehabilitation, HABILITA Zingonia, Bergamo, Italy
| | | | - Hend Aabid
- Neurorehabilitation Unit, Department of Rehabilitation, HABILITA Zingonia, Bergamo, Italy
| | - Beatrice Valoriani
- Medicine Unit, Ospedali Riuniti della Valdichiana, Presidio di Nottola, Siena, Italy
| | - Mauro Mancuso
- Tuscany Rehabilitation Clinic, Arezzo, Italy.,Physical and Rehabilitative Medicine Unit, NHS-USL Toscana Sud Est, Grosseto, Italy
| | - Domenico Intiso
- Unit of Neurorehabilitation and Rehabilitation Medicine, Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza, " Foggia, Italy
| |
Collapse
|
33
|
The microbiota protects against Pseudomonas aeruginosa pneumonia via γδ T cell-neutrophil axis in mice. Microbes Infect 2020; 22:294-302. [DOI: 10.1016/j.micinf.2020.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
|
34
|
Zaragoza R, Vidal-Cortés P, Aguilar G, Borges M, Diaz E, Ferrer R, Maseda E, Nieto M, Nuvials FX, Ramirez P, Rodriguez A, Soriano C, Veganzones J, Martín-Loeches I. Update of the treatment of nosocomial pneumonia in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:383. [PMID: 32600375 PMCID: PMC7322703 DOI: 10.1186/s13054-020-03091-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
In accordance with the recommendations of, amongst others, the Surviving Sepsis Campaign and the recently published European treatment guidelines for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), in the event of a patient with such infections, empirical antibiotic treatment must be appropriate and administered as early as possible. The aim of this manuscript is to update treatment protocols by reviewing recently published studies on the treatment of nosocomial pneumonia in the critically ill patients that require invasive respiratory support and patients with HAP from hospital wards that require invasive mechanical ventilation. An interdisciplinary group of experts, comprising specialists in anaesthesia and resuscitation and in intensive care medicine, updated the epidemiology and antimicrobial resistance and established clinical management priorities based on patients' risk factors. Implementation of rapid diagnostic microbiological techniques available and the new antibiotics recently added to the therapeutic arsenal has been reviewed and updated. After analysis of the categories outlined, some recommendations were suggested, and an algorithm to update empirical and targeted treatment in critically ill patients has also been designed. These aspects are key to improve VAP outcomes because of the severity of patients and possible acquisition of multidrug-resistant organisms (MDROs).
Collapse
Affiliation(s)
- Rafael Zaragoza
- Critical Care Department, Hospital Universitario Dr. Peset, Valencia, Spain. .,Fundación Micellium, Valencia, Spain.
| | | | - Gerardo Aguilar
- SICU, Hospital Clínico Universitario Valencia, Valencia, Spain
| | - Marcio Borges
- Fundación Micellium, Valencia, Spain.,ICU, Hospital Universitario Son Llázter, Palma de Mallorca, Spain
| | - Emili Diaz
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Critical Care Department, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain.,CIBERES Ciber de Enfermedades Respiratorias, Madrid, Spain
| | | | - Emilio Maseda
- Fundación Micellium, Valencia, Spain.,SICU, Hospital Universitario La Paz, Madrid, Spain
| | - Mercedes Nieto
- ICU, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Paula Ramirez
- ICU, Hospital Universitari I Politecnic La Fe, Valencia, Spain
| | | | - Cruz Soriano
- ICU, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Ignacio Martín-Loeches
- ICU, Trinity Centre for Health Science HRB-Wellcome Trust, St James's Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Otero-Asman JR, Quesada JM, Jim KK, Ocampo-Sosa A, Civantos C, Bitter W, Llamas MA. The extracytoplasmic function sigma factor σ VreI is active during infection and contributes to phosphate starvation-induced virulence of Pseudomonas aeruginosa. Sci Rep 2020; 10:3139. [PMID: 32081993 PMCID: PMC7035377 DOI: 10.1038/s41598-020-60197-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The extracytoplasmic function sigma factor σVreI of the human pathogen Pseudomonas aeruginosa promotes transcription of potential virulence determinants, including secretion systems and secreted proteins. Its activity is modulated by the VreR anti-σ factor that inhibits the binding of σVreI to the RNA polymerase in the absence of a (still unknown) inducing signal. The vreI-vreR genes are expressed under inorganic phosphate (Pi) starvation, a physiological condition often encountered in the host that increases P. aeruginosa pathogenicity. However, whether or not σVreI is active in vivo during infection and contributes to the Pi starvation-induced virulence of this pathogen has not been analyzed yet. Using zebrafish embryos and a human alveolar basal epithelial cell line as P. aeruginosa hosts, we demonstrate in this work that σVreI is active during infection and that lack of σVreI considerably reduces the Pi starvation-induced virulence of this pathogen. Surprisingly, lack of the σVreI inhibitor, the VreR anti-σ factor, also diminishes the virulence of P. aeruginosa. By transcriptomic analyses we show that VreR modulates gene expression not only in a σVreI-dependent but also in a σVreI-independent manner. This includes potential virulence determinants and transcriptional regulators that could be responsible for the reduced virulence of the ΔvreR mutant.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Kin K Jim
- Department of Medical Microbiology and Infection Control, Amsterdam University medical centers, location VU University, Amsterdam, The Netherlands
| | - Alain Ocampo-Sosa
- Service of Microbiology, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Sanitaria Valdecilla, Santander, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University medical centers, location VU University, Amsterdam, The Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
36
|
Rubio-Gómez JM, Santiago CM, Udaondo Z, Garitaonaindia MT, Krell T, Ramos JL, Daddaoua A. Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Front Microbiol 2020; 11:202. [PMID: 32153524 PMCID: PMC7044273 DOI: 10.3389/fmicb.2020.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous gram-negative opportunistic human pathogen which is not considered part of the human commensal gut microbiota. However, depletion of the intestinal microbiota (Dysbiosis) following antibiotic treatment facilitates the colonization of the intestinal tract by Multidrug-Resistant P. aeruginosa. One possible strategy is based on the use of functional foods with prebiotic activity. The bifidogenic effect of the prebiotic inulin and its hydrolyzed form (fructooligosaccharide: FOS) is well established since they promote the growth of specific beneficial (probiotic) gut bacteria such as bifidobacteria. Previous studies of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 have shown that inulin and to a greater extent FOS reduce growth and biofilm formation, which was found to be due to a decrease in motility and exotoxin secretion. However, the transcriptional basis for these phenotypic alterations remains unclear. To address this question we conducted RNA-sequence analysis. Changes in the transcript level induced by inulin and FOS were similar, but a set of transcript levels were increased in response to inulin and reduced in the presence of FOS. In the presence of inulin or FOS, 260 and 217 transcript levels, respectively, were altered compared to the control to which no polysaccharide was added. Importantly, changes in transcript levels of 57 and 83 genes were found to be specific for either inulin or FOS, respectively, indicating that both compounds trigger different changes. Gene pathway analyses of differentially expressed genes (DEG) revealed a specific FOS-mediated reduction in transcript levels of genes that participate in several canonical pathways involved in metabolism and growth, motility, biofilm formation, β-lactamase resistance, and in the modulation of type III and VI secretion systems; results that have been partially verified by real time quantitative PCR measurements. Moreover, we have identified a genomic island formed by a cluster of 15 genes, encoding uncharacterized proteins, which were repressed in the presence of FOS. The analysis of isogenic mutants has shown that genes of this genomic island encode proteins involved in growth, biofilm formation and motility. These results indicate that FOS selectively modulates bacterial pathogenicity by interfering with different signaling pathways.
Collapse
Affiliation(s)
- José Manuel Rubio-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Molina Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga, Málaga, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mireia Tena Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
37
|
Theelen MJP, Wilson WD, Byrne BA, Edman JM, Kass PH, Mughini-Gras L, Magdesian KG. Differences in isolation rate and antimicrobial susceptibility of bacteria isolated from foals with sepsis at admission and after ≥48 hours of hospitalization. J Vet Intern Med 2020; 34:955-963. [PMID: 32022351 PMCID: PMC7096636 DOI: 10.1111/jvim.15692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Background Antimicrobial treatment protocols for foals with sepsis that do not improve clinically often are adjusted based on bacteriological and antimicrobial susceptibility testing results from samples collected at hospital admission. Objectives To evaluate whether hospitalization for ≥48 hours affects bacteriological and antimicrobial susceptibility testing results. Animals Two‐hundred sixty‐seven foals <30 days of age admitted to a neonatal intensive care unit and diagnosed with sepsis. Methods Medical records were reviewed retrospectively to identify foals with sepsis and positive bacteriological cultures. Results from samples collected at hospital admission were compared to those collected ≥48 hours after admission. Logistic regression for clustered data and exact logistic regression were used for statistical analysis. Results Three‐hundred fifty‐three unique bacterial isolates were obtained from 231 foals at hospital admission and 92 unique bacterial isolates were obtained from 57 foals after ≥48 hours of hospitalization. Relative isolation frequency after ≥48 hours of hospitalization increased for Acinetobacter spp., 0.6% versus 3.3% (odds ratio [OR], 7.63; 95% confidence interval [CI], 1.28‐45.45); Enterococcus spp., 4.8% versus 19.6% (OR, 5.37; 95% CI, 2.64‐10.90); Klebsiella spp., 5.1% versus 10.9% (OR, 2.27; 95% CI, 1.05‐4.89); Pseudomonas spp., 3.0% versus 7.6% (OR, 3.49; 95% CI, 3.49‐240.50); and Serratia spp., 3.0% versus 5.4% (OR, 20.23; 95% CI, 2.20‐186.14). Bacteria isolated after ≥48 hours of hospitalization were less susceptible to all tested antimicrobial drugs, except for imipenem. Conclusions and Clinical Importance Decreased antimicrobial susceptibility of bacteria isolated after ≥48 hours of hospitalization provides a rationale for repeated bacteriological culture and susceptibility testing in hospitalized foals with sepsis.
Collapse
Affiliation(s)
- Mathijs J P Theelen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Infectious Diseases and Immunity, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - W David Wilson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California
| | - Barbara A Byrne
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California
| | - Judy M Edman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California
| | - Philip H Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California
| | - Lapo Mughini-Gras
- Department of Infectious Diseases and Immunity, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - K Gary Magdesian
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
38
|
Schäfer E, Malecki M, Tellez-Castillo CJ, Pfennigwerth N, Marlinghaus L, Higgins PG, Mattner F, Wendel AF. Molecular surveillance of carbapenemase-producing Pseudomonas aeruginosa at three medical centres in Cologne, Germany. Antimicrob Resist Infect Control 2019; 8:208. [PMID: 31893042 PMCID: PMC6937969 DOI: 10.1186/s13756-019-0665-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background Pseudomonas aeruginosa is a common pathogen causing hospital-acquired infections. Carbapenem resistance in P. aeruginosa is either mediated via a combination of efflux pumps, AmpC overexpression, and porin loss, or through an acquired carbapenemase. Carbapenemase-producing P. aeruginosa (CPPA) strains are known to cause outbreaks and harbour a reservoir of mobile antibiotic resistance genes, however, few molecular surveillance data is available. The aim of this study was to analyse the prevalence and epidemiology of CPPA in three German medical centres from 2015 to 2017. Methods Identification and susceptibility testing were performed with VITEK 2 system. P. aeruginosa non-susceptible to piperacillin, ceftazidime, cefepime, imipenem, meropenem and ciprofloxacin (4MRGN according to the German classification guideline) isolated from 2015 to 2017 were analysed. A two-step algorithm to detect carbapenemases was performed: phenotypic tests (EDTA- and cloxacillin-combined disk tests) followed by PCR, Sanger sequencing, and eventually whole genome sequencing. CPPA isolates were further genotyped by RAPD and PFGE. In-hospital transmission was investigated using conventional epidemiology. Results Sixty two P. aeruginosa isolates were available for further analysis, of which 21 were CPPA as follows: blaVIM-1 (n = 2), blaVIM-2 (n = 17), blaNDM-1/blaGES-5 (n = 1) and the newly described blaIMP-82 (n = 1). CPPA were mostly hospital-acquired (71.4%) and isolated on intensive care units (66.7%). All (except one) were from the tertiary care centre. PFGE typing revealed one large cluster of VIM-2-producing CPPA containing 13 isolates. However, using conventional epidemiology, we were only able to confirm three patient-to-patient transmissions, and one room-to-patient transmission, on several intensive care units. Conclusions These data give insight into the epidemiology of CPPA in three centres in Germany over a period of 3 years. Carbapenemases are a relevant resistance mechanism in 4MRGN-P. aeruginosa, illustrated by genetically related VIM-2-producing strains that seem to be endemic in this region. Our data suggest that infection control measures should especially focus on controlling transmission on the ICU and support the need for a local molecular surveillance system.
Collapse
Affiliation(s)
- Elena Schäfer
- 1Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Strasse 200, 51109 Cologne, Germany
| | - Monika Malecki
- 1Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Strasse 200, 51109 Cologne, Germany
| | - Carlos J Tellez-Castillo
- Department of Clinical Microbiology, MVZ synlab Leverkusen GmbH, Site Köln-Merheim, Cologne, Germany
| | - Niels Pfennigwerth
- 3Department of Medical Microbiology, National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Ruhr-University Bochum, Bochum, Germany
| | - Lennart Marlinghaus
- 3Department of Medical Microbiology, National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Ruhr-University Bochum, Bochum, Germany
| | - Paul G Higgins
- 4Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, and German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Frauke Mattner
- 1Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Strasse 200, 51109 Cologne, Germany
| | - Andreas F Wendel
- 1Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Strasse 200, 51109 Cologne, Germany
| |
Collapse
|
39
|
Buhl M, Kästle C, Geyer A, Autenrieth IB, Peter S, Willmann M. Molecular Evolution of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa Strains From Patients and Hospital Environment in a Prolonged Outbreak. Front Microbiol 2019; 10:1742. [PMID: 31440214 PMCID: PMC6694792 DOI: 10.3389/fmicb.2019.01742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/15/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to elucidate a prolonged outbreak of extensively drug-resistant (XDR) Pseudomonas aeruginosa, at two adjacent hospitals over a time course of 4 years. Since all strains exhibited a similar antibiotic susceptibility pattern and carried the carbapenemase gene blaVIM, a monoclonal outbreak was assumed. To shed light on the intra-hospital evolution of these strains over time, whole genome sequence (WGS) analysis of 100 clinical and environmental outbreak strains was employed. Phylogenetic analysis of the core genome revealed the outbreak to be polyclonal, rather than monoclonal as initially suggested. The vast majority of strains fell into one of two major clusters, composed of 27 and 59 strains, and their accessory genome each revealed over 400 and 600 accessory genes, respectively, thus indicating an unexpectedly high structural diversity among phylogenetically clustered strains. Further analyses focused on the cluster with 59 strains, representing the hospital from which both clinical and environmental strains were available. Our investigation clearly shows both accumulation and loss of genes occur very frequently over time, as reflected by analysis of protein enrichment as well as functional enrichment. In addition, we investigated adaptation through single nucleotide polymorphisms (SNPs). Among the genes affected by SNPs, there are a multidrug efflux pump (mexZ) and a mercury detoxification operon (merR) with deleterious mutations, potentially leading to loss of repression with resistance against antibiotics and disinfectants. Our results not only confirm WGS to be a powerful tool for epidemiologic analyses, but also provide insights into molecular evolution during an XDR P. aeruginosa hospital outbreak. Genome mutation unveiled a striking genetic plasticity on an unexpectedly high level, mostly driven by horizontal gene transfer. Our study adds valuable information to the molecular understanding of “real-world” Intra-hospital P. aeruginosa evolution and is a step forward toward more personalized medicine in infection control.
Collapse
Affiliation(s)
- Michael Buhl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christina Kästle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - André Geyer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Impey RE, Panjikar S, Hall CJ, Bock LJ, Sutton JM, Perugini MA, Soares da Costa TP. Identification of two dihydrodipicolinate synthase isoforms from Pseudomonas aeruginosa that differ in allosteric regulation. FEBS J 2019; 287:386-400. [PMID: 31330085 DOI: 10.1111/febs.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections, accounting for 10% of all hospital-acquired infections. Current antibiotics against P. aeruginosa are becoming increasingly ineffective due to the exponential rise in drug resistance. Thus, there is an urgent need to validate and characterize novel drug targets to guide the development of new classes of antibiotics against this pathogen. One such target is the diaminopimelate (DAP) pathway, which is responsible for the biosynthesis of bacterial cell wall and protein building blocks, namely meso-DAP and lysine. The rate-limiting step of this pathway is catalysed by the enzyme dihydrodipicolinate synthase (DHDPS), typically encoded for in bacteria by a single dapA gene. Here, we show that P. aeruginosa encodes two functional DHDPS enzymes, PaDHDPS1 and PaDHDPS2. Although these isoforms have similar catalytic activities (kcat = 29 s-1 and 44 s-1 for PaDHDPS1 and PaDHDPS2, respectively), they are differentially allosterically regulated by lysine, with only PaDHDPS2 showing inhibition by the end product of the DAP pathway (IC50 = 130 μm). The differences in allostery are attributed to a single amino acid difference in the allosteric binding pocket at position 56. This is the first example of a bacterium that contains multiple bona fide DHDPS enzymes, which differ in allosteric regulation. We speculate that the presence of the two isoforms allows an increase in the metabolic flux through the DAP pathway when required in this clinically important pathogen. DATABASES: PDB ID: 6P90.
Collapse
Affiliation(s)
- Rachael E Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Australia
| | - Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lucy J Bock
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - J Mark Sutton
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
41
|
Treatment Efficacy of MEDI3902 in Pseudomonas aeruginosa Bloodstream Infection and Acute Pneumonia Rabbit Models. Antimicrob Agents Chemother 2019; 63:AAC.00710-19. [PMID: 31160288 PMCID: PMC6658784 DOI: 10.1128/aac.00710-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/19/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a challenge for clinicians due to increasing drug resistance and dwindling treatment options. We report on the activity of MEDI3902, an antibody targeting type 3 secretion protein PcrV and Psl exopolysaccharide, in rabbit bloodstream and lung infection models. MEDI3902 prophylaxis or treatment was protective in both acute models and exhibited enhanced activity when combined with a subtherapeutic dose of meropenem. Pseudomonas aeruginosa is a challenge for clinicians due to increasing drug resistance and dwindling treatment options. We report on the activity of MEDI3902, an antibody targeting type 3 secretion protein PcrV and Psl exopolysaccharide, in rabbit bloodstream and lung infection models. MEDI3902 prophylaxis or treatment was protective in both acute models and exhibited enhanced activity when combined with a subtherapeutic dose of meropenem. These findings further support MEDI3902 for the prevention or treatment of serious P. aeruginosa infections.
Collapse
|
42
|
Yan S, Wu G. Can Biofilm Be Reversed Through Quorum Sensing in Pseudomonas aeruginosa? Front Microbiol 2019; 10:1582. [PMID: 31396166 PMCID: PMC6664025 DOI: 10.3389/fmicb.2019.01582] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium causing diseases in plants, animals, and humans, and its drug resistance is a major concern in medical care. Biofilms play an important role in P. aeruginosa drug resistance. Three factors are most important to induce biofilm: quorum sensing (QS), bis-(3′-5′)-cyclic diguanosine monophosphate (c-di-GMP), and small RNAs (sRNAs). P. aeruginosa has its own specific QS system (PQS) besides two common QS systems, LasI–LasR and RhlI–RhlR, in bacteria. PQS is interesting not only because there is a negative regulation from RhlR to pqsR but also because the null mutation in PQS leads to a reduced biofilm formation. Furthermore, P. aeruginosa dispersed cells have physiological features that are distinct between the planktonic cells and biofilm cells. In response to a low concentration of c-di-GMP, P. aeruginosa cells can disperse from the biofilms to become planktonic cells. These raise an interesting hypothesis of whether biofilm can be reversed through the QS mechanism in P. aeruginosa. Although a single factor is certainly not sufficient to prevent the biofilm formation, it necessarily explores such possibility. In this hypothesis, the literature is analyzed to determine the negative regulation pathways, and then the transcriptomic data are analyzed to determine whether this hypothesis is workable or not. Unexpectedly, the transcriptomic data reveal a negative regulation between lasI and psqR. Also, the individual cases from transcriptomic data demonstrate the negative regulations of PQS with laslI, laslR, rhlI, and rhlR under different experiments. Based on our analyses, possible strategies to reverse biofilm formation are proposed and their clinic implications are addressed.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Guang Wu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
43
|
Young K, Painter RE, Raghoobar SL, Hairston NN, Racine F, Wisniewski D, Balibar CJ, Villafania A, Zhang R, Sahm DF, Blizzard T, Murgolo N, Hammond ML, Motyl MR. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol 2019; 19:150. [PMID: 31272373 PMCID: PMC6610938 DOI: 10.1186/s12866-019-1522-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The prevalence of antibiotic resistance is increasing, and multidrug-resistant Pseudomonas aeruginosa has been identified as a serious threat to human health. The production of β-lactamase is a key mechanism contributing to imipenem resistance in P. aeruginosa. Relebactam is a novel β-lactamase inhibitor, active against class A and C β-lactamases, that has been shown to restore imipenem susceptibility. In a series of studies, we assessed the interaction of relebactam with key mechanisms involved in carbapenem resistance in P. aeruginosa and to what extent relebactam might overcome imipenem non-susceptibility. RESULTS Relebactam demonstrated no intrinsic antibacterial activity against P. aeruginosa, had no inoculum effect, and was not subject to efflux. Enzymology studies showed relebactam is a potent (overall inhibition constant: 27 nM), practically irreversible inhibitor of P. aeruginosa AmpC. Among P. aeruginosa clinical isolates from the SMART global surveillance program (2009, n = 993; 2011, n = 1702; 2015, n = 5953; 2016, n = 6165), imipenem susceptibility rates were 68.4% in 2009, 67.4% in 2011, 70.4% in 2015, and 67.3% in 2016. With the addition of 4 μg/mL relebactam, imipenem susceptibility rates increased to 87.6, 86.0, 91.7, and 89.8%, respectively. When all imipenem-non-susceptible isolates were pooled, the addition of 4 μg/mL relebactam reduced the mode imipenem minimum inhibitory concentration (MIC) 8-fold (from 16 μg/mL to 2 μg/mL) among all imipenem-non-susceptible isolates. Of 3747 imipenem-non-susceptible isolates that underwent molecular profiling, 1200 (32%) remained non-susceptible to the combination imipenem/relebactam (IMI/REL); 42% of these encoded class B metallo-β-lactamases, 11% encoded a class A GES enzyme, and no class D enzymes were detected. No relationship was observed between alleles of the chromosomally-encoded P. aeruginosa AmpC and IMI/REL MIC. CONCLUSIONS IMI/REL exhibited potential in the treatment of carbapenem-resistant P. aeruginosa infections, with the exception of isolates encoding class B, some GES alleles, and class D carbapenemases.
Collapse
Affiliation(s)
- Katherine Young
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Ronald E. Painter
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Susan L. Raghoobar
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | | | - Fred Racine
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Douglas Wisniewski
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Carl J. Balibar
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Artjohn Villafania
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Rumin Zhang
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | | | - Timothy Blizzard
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Nicholas Murgolo
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Milton L. Hammond
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| | - Mary R. Motyl
- Merck & Co., Inc., 2015 Galloping Hill Road MN-410, Kenilworth, NJ 07033 USA
| |
Collapse
|
44
|
Otero-Asman JR, Wettstadt S, Bernal P, Llamas MA. Diversity of extracytoplasmic function sigma (σ ECF ) factor-dependent signaling in Pseudomonas. Mol Microbiol 2019; 112:356-373. [PMID: 31206859 DOI: 10.1111/mmi.14331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
Abstract
Pseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σECF ) factors is extensively present in Pseudomonas. σECF factors trigger expression of functions required under particular conditions in response to specific signals. This manuscript reviews the phylogeny and biological roles of σECF factors in Pseudomonas, and highlights the diversity of σECF -signaling pathways of this genus in terms of function and activation. We show that Pseudomonas σECF factors belong to 16 different phylogenetic groups. Most of them are included within the iron starvation group and are mainly involved in iron acquisition. The second most abundant group is formed by RpoE-like σECF factors, which regulate the responses to cell envelope stress. Other groups controlling solvent tolerance, biofilm formation and the response to oxidative stress, among other functions, are present in lower frequency. The role of σECF factors in the virulence of Pseudomonas pathogenic species is described.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
45
|
Poole K, Gilmour C, Farha MA, Parkins MD, Klinoski R, Brown ED. Meropenem potentiation of aminoglycoside activity against Pseudomonas aeruginosa: involvement of the MexXY-OprM multidrug efflux system. J Antimicrob Chemother 2019; 73:1247-1255. [PMID: 29420743 DOI: 10.1093/jac/dkx539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives To assess the ability of meropenem to potentiate aminoglycoside (AG) activity against laboratory and AG-resistant cystic fibrosis (CF) isolates of Pseudomonas aeruginosa and to elucidate its mechanism of action. Methods AG resistance gene deletions were engineered into P. aeruginosa laboratory and CF isolates using standard gene replacement technology. Susceptibility to AGs ± meropenem (at ½ MIC) was assessed using a serial 2-fold dilution assay. mexXY expression and MexXY-OprM efflux activity were quantified using quantitative PCR and an ethidium bromide accumulation assay, respectively. Results A screen for agents that rendered WT P. aeruginosa susceptible to a sub-MIC concentration of the AG paromomycin identified the carbapenem meropenem, which potentiated several additional AGs. Meropenem potentiation of AG activity was largely lost in a mutant lacking the MexXY-OprM multidrug efflux system, an indication that it was targeting this efflux system in enhancing P. aeruginosa susceptibility to AGs. Meropenem failed to block AG induction of mexXY expression or MexXY-OprM efflux activity, suggesting that it may be interfering with some MexXY-dependent process linked to AG susceptibility. Meropenem potentiated AG activity versus AG-resistant CF isolates, enhancing susceptibility to at least one AG in all isolates and susceptibility to all tested AGs in 50% of the isolates. Notably, meropenem potentiation of AG activity was linked to MexXY in some but not all CF isolates in which this was examined. Conclusions Meropenem potentiates AG activity against laboratory and CF strains of P. aeruginosa, both dependent on and independent of MexXY, highlighting the complexity of AG resistance in this organism.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Christie Gilmour
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Maya A Farha
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Michael D Parkins
- Department of Microbiology Immunology and Infectious Diseases and Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachael Klinoski
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Eric D Brown
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
46
|
Pitt SJ, Hawthorne JA, Garcia-Maya M, Alexandrovich A, Symonds RC, Gunn A. Identification and characterisation of anti - Pseudomonas aeruginosa proteins in mucus of the brown garden snail, Cornu aspersum. Br J Biomed Sci 2019; 76:129-136. [PMID: 30966874 DOI: 10.1080/09674845.2019.1603794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Novel antimicrobial treatments are urgently needed. Previous work has shown that the mucus of the brown garden snail (Cornu aspersum) has antimicrobial properties, in particular against type culture collection strains of Pseudomonas aeruginosa. We hypothesised that it would also be effective against clinical isolates of the bacterium and that investigation of fractions of the mucus would identify one or more proteins with anti-pseudomonal properties, which could be further characterised. Materials and methods: Mucus was extracted from snails collected from the wild. Antimicrobial activity against laboratory and clinical isolates of Ps. aeruginosa was determined in disc diffusion assays. Mucus was purified using size exclusion chromatography and fractions containing anti-pseudomonal activity identified. Mass spectroscopy and high performance liquid chromatography analysis of these fractions yielded partial peptide sequences. These were used to interrogate an RNA transcriptome generated from whole snails. Results: Mucus from C. aspersum inhibited growth of type collection strains and clinical isolates of Ps. aeruginosa. Four novel C. aspersum proteins were identified; at least three are likely to have antimicrobial properties. The most interesting is a 37.4 kDa protein whilst smaller proteins, one 17.5 kDa and one 18.6 kDa also appear to have activity against Ps. aeruginosa. Conclusions: The study has identified novel proteins with antimicrobial properties which could be used to develop treatments for use in human medicine.
Collapse
Affiliation(s)
- S J Pitt
- a School of Pharmacy and Biomolecular Sciences , University of Brighton , Brighton , UK
| | - J A Hawthorne
- a School of Pharmacy and Biomolecular Sciences , University of Brighton , Brighton , UK
| | - M Garcia-Maya
- b Randall Division of Cell and Molecular Biophysics , King's College London , London, UK
| | - A Alexandrovich
- b Randall Division of Cell and Molecular Biophysics , King's College London , London, UK
| | - R C Symonds
- c School of Natural Sciences and Psychology , Liverpool John Moores University , Liverpool , UK
| | - A Gunn
- c School of Natural Sciences and Psychology , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
47
|
Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci Rep 2019; 9:7063. [PMID: 31068610 PMCID: PMC6506473 DOI: 10.1038/s41598-019-42440-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Melimine and Mel4 are chimeric cationic peptides with broad-spectrum antimicrobial activity. They have been shown to be highly biocompatible in animal models and human clinical trials. The current study examined the mechanism of action of these two antimicrobial peptides against P. aeruginosa. The effect of the peptides of endotoxin neutralization, and their interactions with cytoplasmic membranes using DiSC(3)-5 and Sytox green, Syto-9 and PI dyes were analysed. Release of ATP and DNA/RNA were determined using ATP luminescence and increase in OD260 nm. The bacteriolytic ability of the peptides was determined by measuring decreases in OD620 nm. Both the peptides neutralized LPS suggesting their interaction with lipid A. Cytoplasmic membrane was disrupted within 30 seconds, which correlated with reductions in cellular viability. At 2 minutes melimine or Mel4, released 75% and 36% cellular ATP respectively (P < 0.001). Membrane permeabilization started 5 minutes with simultaneous release of DNA/RNA. Flow cytometry demonstrated 52% and 18% bacteria were stained with PI after 30 minutes. Overall, melimine showed higher capacity for membrane disruption compared to Mel4 (P < 0.001). The findings of this study have been summarized as a timeline of bactericidal activity, suggesting that the peptides permeabilized P. aeruginosa within 5 minutes, started lysis within 2 hours of exposure.
Collapse
|
48
|
Sobotta L, Ziental D, Sniechowska J, Dlugaszewska J, Potrzebowski MJ. Lipid vesicle-loaded meso-substituted chlorins of high in vitro antimicrobial photodynamic activity. Photochem Photobiol Sci 2018; 18:213-223. [PMID: 30427035 DOI: 10.1039/c8pp00258d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic inactivation potential against bacteria of four chlorin derivatives with phenyl or fluorophenyl substituents was evaluated. The quantum yield values of singlet oxygen formation were in the range of 0.16-0.86. Compounds were characterized by high quantum yields of fluorescence (0.15-0.44) and moderate photostability in DMF solutions. Irradiation of chlorins in DMSO resulted in their phototransformation and then photodecomposition. Photodynamic inactivation of bacteria was performed after the compounds had been loaded into lipid vesicles. The following log reductions of growth values were obtained: Enterococcus faecalis >5.44; Staphylococcus aureus 2.74-5.34; Escherichia coli 0.01-2.14. No activity of meso-substituted chlorins was noticed against Pseudomonas aeruginosa and fungi Candida albicans and Trichophyton mentagrophytes.
Collapse
Affiliation(s)
- Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Daniel Ziental
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Justyna Sniechowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
49
|
Maria de Souza Morais S, Ferreira Rodigues N, Ingrid Oliveira da Silva N, Aparecido Salvador E, Rodrigues Franco I, Augusto Pires de Souza G, Henrique Cruvinel da Silva P, Gustavo Nogueira de Almeida L, Prado Rocha R, Carolina Toledo da Cunha Pereira A, Portela Ferreira G, Veras Quelemes P, Pereira de Araújo M, Fornias Sperandio F, Júnia de Souza Santos L, Assis Martins Filho O, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Serum albumin nanoparticles vaccine provides protection against a lethal Pseudomonas aeruginosa challenge. Vaccine 2018; 36:6408-6415. [DOI: 10.1016/j.vaccine.2018.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
|
50
|
A new carbapenem drug dosage metric for carbapenem usage and correlation with carbapenem resistance of Pseudomonas aeruginosa. J Infect Chemother 2018; 24:949-953. [PMID: 30268412 DOI: 10.1016/j.jiac.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
The emergence and dissemination of antimicrobial resistance is a worldwide problem. Inappropriate antimicrobial use contributes to this resistance, and several metrics of drug usage have been used to monitor their consumption and rational use. We examined several existing drug metrics, and developed a new one, dose/duration-density (D/d2), for a the best correlation between carbapenem usage and carbapenem resistance of Pseudomonas aeruginosa. The annual changes of antimicrobial use density (AUD), days of therapy (DOT), daily dose (DD) and D/d2 for meropenem, imipenem and total carbapenems was analyzed for a correlation with carbapenem susceptibility of P. aeruginosa from 2006 through 2015 at a university hospital. The substitution of meropenem for imipenem usage, and an approximate 10% increase in carbapenem susceptibility of P. aeruginosa occurred over the study period. There were significant correlations of the meropenem susceptibility of P. aeruginosa and meropenem usage as measured by the meropenem DD, of imipenem susceptibility and imipenem AUD and DOT, and overall carbapenem susceptibility and imipenem DOT. The D/d2 for meropenem, imipenem and total carbapenems had significant correlations with individual and all carbapenem susceptibility of P. aeruginosa. These D/d2 is the best single carbapenem use metric for correlating carbapenem usage with P. aeruginosa resistance. Further studies are warranted to consider the value of D/d2 for other antimicrobials and bacteria.
Collapse
|