1
|
Soleimani MF, Ayubi E, Khosronezhad S, Hasler G, Amiri MR, Beikpour F, Jalilian FA. Human endogenous retroviruses type W (HERV-) activation and schizophrenia: A meta-analysis. Schizophr Res 2024; 271:220-227. [PMID: 39053037 DOI: 10.1016/j.schres.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Human endogenous retroviruses (HERV) are the remnants of infections that occurred million years ago. They gradually integrated into the human genome, comprising 8 % of it. There are growing reports suggesting their potential role in various diseases, including schizophrenia. Schizophrenia, a serious psychiatric disorder, is caused by the interaction of genetic and environmental factors. In the present paper, we investigated studies focusing on the association between schizophrenia and HERV-W. METHODS We registered this study at PROSPERO (registration number: CRD42022301122). The entire steps of this study were based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. We searched PubMed, Scopus, Web of Science, and Google Scholar up to 1 August 2022. Heterogeneity was estimated through I2 statistics, and the association was measured using the first estimate and penalization methods. RESULTS Finally, 13 eligible studies were analyzed, including 698 cases and 728 controls. The overall odds ratio indicated a significant association in both the first estimate (OR = 9.34, 95 % CI = 4.92-17.75; P = 0.002) and penalization (OR = 7.38, 95 % CI = 4.15-13.10; P = 0.003) methods. In the subgroup analysis, among HERV-W fragments, the HERV-W envelope protein or RNA (OR = 11.41, 95 % CI: 5.67-22.97; P = 0.03) showed the strongest association with schizophrenia. CONCLUSION Our meta-analysis showed that HERV-W is significantly associated with schizophrenia. More studies are required to determine the pathophysiological mechanism and the diagnostic, prognostic, and therapeutic value of HERV-W in schizophrenia.
Collapse
Affiliation(s)
| | - Erfan Ayubi
- Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Khosronezhad
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gregor Hasler
- University of Fribourg, Center for Psychiatric Research, Switzerland
| | - Mohammad Reza Amiri
- Department of Medical Library and Information Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzad Beikpour
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Farid Azizi Jalilian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Rangel SC, da Silva MD, Natrielli Filho DG, Santos SN, do Amaral JB, Victor JR, Silva KCN, Tuleta ID, França CN, Shio MT, Neves LM, Bachi ALL, da Silva Nali LH. HERV-W upregulation expression in bipolar disorder and schizophrenia: unraveling potential links to systemic immune/inflammation status. Retrovirology 2024; 21:7. [PMID: 38644495 PMCID: PMC11034070 DOI: 10.1186/s12977-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) are the two main mental disorders with unknown etiology that significantly impact individuals' quality of life. The potential pro-inflammatory role in their pathogenesis is postulated and Human Endogenous Retrovirus W (HERV-W) is an emerging candidate to modulate this pathogenic finding. HERVs, ancient retroviruses in the human genome, may play roles in inflammation and disease pathogenesis. Despite HERVs' involvement in autoimmune diseases, their influence on mental disorders remains underexplored. Therefore, the aim of this study was to assess the level of HERV-W-env expression and the systemic inflammatory profile through the concentration of IL-2, IL-4, IL-6, IL-10, TNF-α and INF-γ cytokines in BD and SZ patients. RESULTS All participants showed HERV-W-env expression, but its expression was higher in mental disorder patients (p < 0.01) than in control. When separated, SZ individuals exhibited higher HERV-W expression than the control group (p < 0.01). Higher serum levels of TNF-α and IL-10 were found in BD (p = 0.0001 and p = 0.001, respectively) and SZ (p = 0.01) and p = 0.01, respectively) than in the control group, while SZ showed decreased levels IFN-γ and IL-2 as compared to controls (p = 0.05) and BD patients (p = 0.05), respectively. Higher TNF-α/IL-4 and TNF-α/IL-10 ratios, and lower IFN-γ/IL-10 were observed in BD and SZ patients than controls. Significant negative correlation between HERV-W-env expression and IL-10 (r=-0.47 p < 0.05), as well as positive correlations between HERV-W-env expression and TNF-α/IL-10 or IFN-γ/IL-10 ratios (r = 0.48 p < 0.05 and r = 0.46 p < 0.05, respectively) were found in BD patients. CONCLUSION These findings suggest not only a potential link between HERV-W-env expression both in BD and SZ, but also a possible involvement of systemic inflammatory status in BD patients.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Michelly Damasceno da Silva
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Décio Gilberto Natrielli Filho
- Hospital Escola Wladimir Arruda- Departamento de Psiquiatria- Santo Amaro University, Rua Prof. Enéas de Siqueira Neto, 340, São Paulo, Brazil
| | - Samuel Nascimento Santos
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Jonatas Bussador do Amaral
- Ent Research Lab, Department of Otorhinolaryngology-Head and Neck Surgery, Federal University of Sao Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, New York, EUA, USA
| | - Carolina Nunes França
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Marina Tiemi Shio
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Lucas Melo Neves
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Luiz Henrique da Silva Nali
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil.
| |
Collapse
|
3
|
Subramanian K, Paul S, Libby A, Patterson J, Arterbery A, Knight J, Castaldi C, Wang G, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Kroemer A, Fishbein T, Mason A, Dominguez-Villar M, Mariappan M, Ekong UD. HERV1-env Induces Unfolded Protein Response Activation in Autoimmune Liver Disease: A Potential Mechanism for Regulatory T Cell Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:732-744. [PMID: 36722941 PMCID: PMC10691554 DOI: 10.4049/jimmunol.2100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Regulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR). Our coimmunoprecipitation studies show an interaction between HERV1-env proteins and the ATF6 branch of the UPR. The activated form of ATF6α activates the expression of RORC and STAT3 by binding to promoter sequences and induces IL-17A production. Silencing of HERV1-env results in recovery of Treg suppressive function. These findings identify ER stress and UPR activation as key factors driving Treg plasticity (species: human).
Collapse
Affiliation(s)
- Kumar Subramanian
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Saikat Paul
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Libby
- Dept of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jordan Patterson
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Adam Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Steve Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Alexander Kroemer
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Thomas Fishbein
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
4
|
Contribution of Retrotransposons to the Pathogenesis of Type 1 Diabetes and Challenges in Analysis Methods. Int J Mol Sci 2023; 24:ijms24043104. [PMID: 36834511 PMCID: PMC9966460 DOI: 10.3390/ijms24043104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases of the endocrine system, associated with several life-threatening comorbidities. While the etiopathogenesis of T1D remains elusive, a combination of genetic susceptibility and environmental factors, such as microbial infections, are thought to be involved in the development of the disease. The prime model for studying the genetic component of T1D predisposition encompasses polymorphisms within the HLA (human leukocyte antigen) region responsible for the specificity of antigen presentation to lymphocytes. Apart from polymorphisms, genomic reorganization caused by repeat elements and endogenous viral elements (EVEs) might be involved in T1D predisposition. Such elements are human endogenous retroviruses (HERVs) and non-long terminal repeat (non-LTR) retrotransposons, including long and short interspersed nuclear elements (LINEs and SINEs). In line with their parasitic origin and selfish behaviour, retrotransposon-imposed gene regulation is a major source of genetic variation and instability in the human genome, and may represent the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. Autoreactive immune cell subtypes with differentially expressed retrotransposons can be identified with single-cell transcriptomics, and personalized assembled genomes can be constructed, which can then serve as a reference for predicting retrotransposon integration/restriction sites. Here we review what is known to date about retrotransposons, we discuss the involvement of viruses and retrotransposons in T1D predisposition, and finally we consider challenges in retrotransposons analysis methods.
Collapse
|
5
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Epigenetic Modifications at the Center of the Barker Hypothesis and Their Transgenerational Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312728. [PMID: 34886453 PMCID: PMC8656758 DOI: 10.3390/ijerph182312728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
Embryo/fetal nutrition and the environment in the reproductive tract influence the subsequent risk of developing adult diseases and disorders, as formulated in the Barker hypothesis. Metabolic syndrome, obesity, heart disease, and hypertension in adulthood have all been linked to unwanted epigenetic programing in embryos and fetuses. Multiple studies support the conclusion that environmental challenges, such as a maternal low-protein diet, can change one-carbon amino acid metabolism and, thus, alter histone and DNA epigenetic modifications. Since histones influence gene expression and the program of embryo development, these epigenetic changes likely contribute to the risk of adult disease onset not just in the directly affected offspring, but for multiple generations to come. In this paper, we hypothesize that the effects of parental nutritional status on fetal epigenetic programming are transgenerational and warrant further investigation. Numerous studies supporting this hypothesis are reviewed, and potential research techniques to study these transgenerational epigenetic effects are offered.
Collapse
|
7
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
8
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
9
|
Expression of HERV Genes as Possible Biomarker and Target in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20153706. [PMID: 31362360 PMCID: PMC6696274 DOI: 10.3390/ijms20153706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic parasites, in-between genetics and environment. Few HERVs retain some coding capability. Sometimes, the host has the advantage of some HERV genes; conversely, HERVs may contribute to pathogenesis. The expression of HERVs depends on several factors, and is regulated epigenetically by stimuli such as inflammation, viral and microbial infections, etc. Increased expression of HERVs occurs in physiological and pathological conditions, in one or more body sites. Several diseases have been attributed to one or more HERVs, particularly neurological diseases. The key problem is to differentiate the expression of a HERV as cause or effect of a disease. To be used as a biomarker, a correlation between the expression of a certain HERV and the disease onset and/or behavior must be found. The greater challenge is to establish a pathogenic role. The criteria defining causal connections between HERVs and diseases include the development of animal models, and disease modulation in humans, by anti-HERV therapeutic antibody. So far, statistically significant correlations between HERVs and diseases have been achieved for HERV-W and multiple sclerosis; disease reproduction in transgenic animals was achieved for HERV-W and multiple sclerosis, and for HERV-K and amyotrophic lateral sclerosis. Clinical trials for both diseases are in progress.
Collapse
|
10
|
Fulop T, Witkowski JM, Larbi A, Khalil A, Herbein G, Frost EH. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer's disease? J Neurovirol 2019; 25:634-647. [PMID: 30868421 DOI: 10.1007/s13365-019-00732-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
HIV infection in the combination antiretroviral therapy (cART) era has become a chronic disease with a life expectancy almost identical to those free from this infection. Concomitantly, chronic diseases such as neurodegenerative diseases have emerged as serious clinical problems. HIV-induced cognitive changes, although clinically very diverse are collectively called HIV-associated neurocognitive disorder (HAND). HAND, which until the introduction of cART manifested clinically as a subcortical disorder, is now considered primarily cognitive disorder, which makes it similar to diseases like Alzheimer's (AD) and Parkinson's disease (PD). The pathogenesis involves either the direct effects of the virus or the effect of viral proteins such as Tat, Ggp120, and Nef. These proteins are either capable of destroying neurons directly by inducing neurotoxic mediators or by initiating neuroinflammation by microglia and astrocytes. Recently, it has become recognized that HIV infection is associated with increased production of the beta-amyloid peptide (Aβ) which is a characteristic of AD. Moreover, amyloid plaques have also been demonstrated in the brains of patients suffering from HAND. Thus, the question arises whether this production of Aβ indicates that HAND may lead to AD or it is a form of AD or this increase in Aβ production is only a bystander effect. It has also been discovered that APP in HIV and its metabolic product Aβ in AD manifest antiviral innate immune peptide characteristics. This review attempts to bring together studies linking amyloid precursor protein (APP) and Aβ production in HIV infection and their possible impact on the course of HAND and AD. These data indicate that human defense mechanisms in HAND and AD are trying to contain microorganisms by antimicrobial peptides, however by employing different means. Future studies will, no doubt, uncover the relationship between HAND and AD and, hopefully, reveal novel treatment possibilities.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore.,Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, Université of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030, Besançon, France.,Department of Virology, CHRU Besancon, F-25030, Besancon, France
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Curtin F, Bernard C, Levet S, Perron H, Porchet H, Médina J, Malpass S, Lloyd D, Simpson R. A new therapeutic approach for type 1 diabetes: Rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes Metab 2018; 20:2075-2084. [PMID: 29749030 DOI: 10.1111/dom.13357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
We describe a newly identified therapeutic target for type 1 diabetes (T1D): an envelope protein of endogenous retroviral origin, human endogenous retrovirus W envelope (HERV-W-Env). HERV-W-Env was found to be detected in the blood of ~60% of patients with T1D and is expressed in acinar pancreatic cells of 75% of patients with T1D at post mortem examination. Preclinical experiments showed that this protein displays direct cytotoxicity on human β-islet cells. In vivo HERV-W-Env impairs the insulin and glucose metabolism in transgenic mice expressing HERV-W-Env. GNbAC1, an IgG4 monoclonal antibody, has been developed to specifically target HERV-W-Env and to neutralize the effect of HERV-W-Env in vitro and in vivo. GNbAC1 is currently in clinical development for multiple sclerosis and > 300 subjects have been administered with GNbAC1 so far. GNbAC1 is now being tested in T1D in the RAINBOW-T1D study, which is a randomized placebo-controlled study with the objective of showing the safety and pharmacodynamic response of GNbAC1 in patients who have had T1D with a maximum of 4 years' duration. GNbAC1 is being tested vs placebo at the dose of 6 mg/kg in 60 patients during six repeated administrations for 6 months; a 6-month open-label extension will follow. The primary endpoint is to assess safety, and secondary endpoints are the pharmacodynamic responses to GNbAC1. GNbAC1 targeting HERV-W-Env is currently in clinical development in T1D, with the first safety and pharmacodynamic study. If the study results are positive, this may open the door to the development of an innovative non-immunomodulatory disease-modifying treatment for T1D.
Collapse
Affiliation(s)
- Francois Curtin
- GeNeuro SA, Plan-les-Ouates, Switzerland
- Division of Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Hervé Perron
- GeNeuro SA, Plan-les-Ouates, Switzerland
- Geneuro-Innovation, Lyon, France
- Laboratory of Immune Deficiencies, Faculty of Medicine Laënnec, University of Lyon, Lyon, France
| | - Hervé Porchet
- GeNeuro SA, Plan-les-Ouates, Switzerland
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | | | - Sam Malpass
- Southern Star Research Pty Ltd, Gordon, Australia
| | - David Lloyd
- Southern Star Research Pty Ltd, Gordon, Australia
| | | |
Collapse
|
12
|
Brütting C, Narasimhan H, Hoffmann F, Kornhuber ME, Staege MS, Emmer A. Investigation of Endogenous Retrovirus Sequences in the Neighborhood of Genes Up-regulated in a Neuroblastoma Model after Treatment with Hypoxia-Mimetic Cobalt Chloride. Front Microbiol 2018. [PMID: 29515560 PMCID: PMC5826361 DOI: 10.3389/fmicb.2018.00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endogenous retroviruses (ERVs) have been found to be associated with different diseases, e.g., multiple sclerosis (MS). Most human ERVs integrated in our genome are not competent to replicate and these sequences are presumably silent. However, transcription of human ERVs can be reactivated, e.g., by hypoxia. Interestingly, MS has been linked to hypoxia since decades. As some patterns of demyelination are similar to white matter ischemia, hypoxic damage is discussed. Therefore, we are interested in the association between hypoxia and ERVs. As a model, we used human SH-SY5Y neuroblastoma cells after treatment with the hypoxia-mimetic cobalt chloride and analyzed differences in the gene expression profiles in comparison to untreated cells. The vicinity of up-regulated genes was scanned for endogenous retrovirus-derived sequences. Five genes were found to be strongly up-regulated in SH-SY5Y cells after treatment with cobalt chloride: clusterin, glutathione peroxidase 3, insulin-like growth factor 2, solute carrier family 7 member 11, and neural precursor cell expressed developmentally down-regulated protein 9. In the vicinity of these genes we identified large (>1,000 bp) open reading frames (ORFs). Most of these ORFs showed only low similarities to proteins from retro-transcribing viruses. However, we found very high similarity between retrovirus envelope sequences and a sequence in the vicinity of neural precursor cell expressed developmentally down-regulated protein 9. This sequence encodes the human endogenous retrovirus group FRD member 1, the encoded protein product is called syncytin 2. Transfection of syncytin 2 into the well-characterized Ewing sarcoma cell line A673 was not able to modulate the low immunostimulatory activity of this cell line. Future research is needed to determine whether the identified genes and the human endogenous retrovirus group FRD member 1 might play a role in the etiology of MS.
Collapse
Affiliation(s)
- Christine Brütting
- Department of Surgical and Conservative Paediatrics and Adolescent Medicine, Martin Luther University of Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Harini Narasimhan
- Department of Surgical and Conservative Paediatrics and Adolescent Medicine, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Frank Hoffmann
- Department of Neurology, Hospital "Martha-Maria" Halle-Dölau, Halle, Germany
| | - Malte E Kornhuber
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Paediatrics and Adolescent Medicine, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Abstract
Two human endogenous retroviruses of the HERV-W family are proposed as multiple sclerosis (MS) co-factors: MS-associated retrovirus (MSRV) and ERVWE1, whose env proteins showed several potentially neuropathogenic features, in vitro and in animal models. Phase II clinical trials against HERV-Wenv are ongoing. HERV-W/MSRV was repeatedly found in MS patients, in striking parallel with MS stages, active/remission phases, and therapy outcome. The HERV-Wenv protein is highly expressed in active MS plaques. Early MSRV presence in spinal fluids predicted worst MS progression 10 years in advance. Effective anti-MS therapies strongly reduced MSRV/Syncytin-1/HERV-W expression. The Epstein–Barr virus (EBV) activates HERV-W/MSRV in vitro and in vivo, in patients with infectious mononucleosis and controls with high anti-EBNA1-IgG titers. Thus, the two main EBV/MS links (infectious mononucleosis and high anti-EBNA1-IgG titers) are paralleled by activation of HERV-W/MSRV. It is hypothesized that EBV may act as initial trigger of future MS, years later, by activating MSRV, which would act as direct neuropathogenic effector, before and during MS.
Collapse
|
14
|
Bhetariya PJ, Kriesel JD, Fischer KF. Analysis of Human Endogenous Retrovirus Expression in Multiple Sclerosis Plaques. JOURNAL OF EMERGING DISEASES AND VIROLOGY 2017; 3:10.16966/2473-1846.133. [PMID: 28868516 PMCID: PMC5580941 DOI: 10.16966/2473-1846.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has been suggested that Human endogenous retroviruses (HERVs) are associated with multiple sclerosis (MS) pathogenesis. The objective of this study was to broadly evaluate the expression of HERV core (GAG) and envelope (ENV) genes in diseased brain white matter samples from MS patients compared to normal controls. METHODS Twenty-eight HERV GAG and 88 ENV gene sequences were retrieved, classified by phylogeny, and grouped into clades. Consensus qPCR primers were designed for each clade, and quantitative PCR was performed on 33 MS and 9 normal control frozen brain samples. MS samples included chronic progressive (n=5), primary progressive (n=4), secondary progressive (n=14), relapsing remitting (n=3) and unclassified confirmed MS cases (n=7). The levels of GAG and ENV RNA within each of the samples were quantitated and normalized using the neuronal reference gene RPL19. Expression differences were analyzed for MS vs control. RESULTS Expression of GAG clades 1A, 3B, and 3C mapping to HERV-E and HERV-K were significantly increased compared to controls, while GAG clade 3A expression was decreased. Expression of HERV ENV clades 2, 3A, 3B, mapping to RTVL, HERV-E and HERV-K and MSRV (HERV-W), were significantly increased in the MS group. However, the relative expression differences between the MS and control groups were small, differing less than 1.5-fold. CONCLUSION Expression of GAG and ENV mapping to HERV-E, RTVL and HERV-K10 families were significantly increased in the MS group. However, the relative expression differences between the MS and control groups were small, differing less than 1.5-fold. These results indicate that the expression of HERV GAG and ENV regions do not differ greatly between MS and controls in these frozen brain samples.
Collapse
Affiliation(s)
- PJ Bhetariya
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - JD Kriesel
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - KF Fischer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Uleri E, Piu C, Caocci M, Ibba G, Serra C, Dolei A. The EGF epidermal growth factor counteracts Tat modulation of human endogenous retroviruses of the W family in astrocytes. J Neurovirol 2017; 23:587-592. [DOI: 10.1007/s13365-017-0531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023]
|
16
|
Cooccurrences of Putative Endogenous Retrovirus-Associated Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7973165. [PMID: 28326328 PMCID: PMC5343228 DOI: 10.1155/2017/7973165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
At least 8% of the human genome is composed of endogenous retrovirus (ERV) sequences. ERVs play a role in placental morphogenesis and can sometimes protect the host against exogenous viruses. On the other hand, ERV reactivation has been found to be associated with different diseases, for example, multiple sclerosis (MS), schizophrenia, type 1 diabetes mellitus (T1D), or amyotrophic lateral sclerosis (ALS). Little is known about the cooccurrence of these diseases. If all these diseases are caused by ERV, antiretroviral therapy should perhaps also show some effects in the other diseases. Here, we summarize literature demonstrating that some ERV-associated diseases seem to appear together more often than expected, for example, MS and ALS, MS and T1D, MS and schizophrenia, or ALS and T1D. In contrast, some ERV-associated diseases seem to appear together less frequently than expected, for example, schizophrenia and T1D. Besides, some reports demonstrate amelioration of MS, ALS, or schizophrenia under antiretroviral therapy in human immunodeficiency virus-infected patients. If such results could be confirmed in larger studies, alternative therapy strategies for ERV-associated diseases like MS and schizophrenia might be possible.
Collapse
|
17
|
Trombetta B, Fantini G, D'Atanasio E, Sellitto D, Cruciani F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci Rep 2016; 6:28710. [PMID: 27346230 PMCID: PMC4921805 DOI: 10.1038/srep28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Gloria Fantini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
18
|
A survey of endogenous retrovirus (ERV) sequences in the vicinity of multiple sclerosis (MS)-associated single nucleotide polymorphisms (SNPs). Mol Biol Rep 2016; 43:827-36. [PMID: 27169423 DOI: 10.1007/s11033-016-4004-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Although multiple sclerosis (MS) is one of the most common central nervous system diseases in young adults, little is known about its etiology. Several human endogenous retroviruses (ERVs) are considered to play a role in MS. We are interested in which ERVs can be identified in the vicinity of MS associated genetic marker to find potential initiators of MS. We analysed the chromosomal regions surrounding 58 single nucleotide polymorphisms (SNPs) that are associated with MS identified in one of the last major genome wide association studies. We scanned these regions for putative endogenous retrovirus sequences with large open reading frames (ORFs). We observed that more retrovirus-related putative ORFs exist in the relatively close vicinity of SNP marker indices in multiple sclerosis compared to control SNPs. We found very high homologies to HERV-K, HCML-ARV, XMRV, Galidia ERV, HERV-H/env62 and XMRV-like mouse endogenous retrovirus mERV-XL. The associated genes (CYP27B1, CD6, CD58, MPV17L2, IL12RB1, CXCR5, PTGER4, TAGAP, TYK2, ICAM3, CD86, GALC, GPR65 as well as the HLA DRB1*1501) are mainly involved in the immune system, but also in vitamin D regulation. The most frequently detected ERV sequences are related to the multiple sclerosis-associated retrovirus, the human immunodeficiency virus 1, HERV-K, and the Simian foamy virus. Our data shows that there is a relation between MS associated SNPs and the number of retroviral elements compared to control. Our data identifies new ERV sequences that have not been associated with MS, so far.
Collapse
|
19
|
Varadé J, García-Montojo M, de la Hera B, Camacho I, García-Martínez MÁ, Arroyo R, Álvarez-Lafuente R, Urcelay E. Multiple sclerosis retrovirus-like envelope gene: Role of the chromosome 20 insertion. BBA CLINICAL 2015; 3:162-7. [PMID: 26675450 PMCID: PMC4669942 DOI: 10.1016/j.bbacli.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 11/18/2022]
Abstract
Background The genetic basis involved in multiple sclerosis (MS) susceptibility was not completely revealed by genome-wide association studies. Part of it could lie in repetitive sequences, as those corresponding to human Endogenous Retroviruses (HERVs). Retrovirus-like particles were isolated from MS patients and the genome of the MS-associated retrovirus (MSRV) was the founder of the HERV-W family. We aimed to ascertain which chromosomal origin encodes the pathogenic ENV protein by genomic analysis of the HERV-W insertions. Methods/results In silico analyses allowed to uncover putative open reading frames containing the specific sequence previously reported for MSRV-like envelope (env) detection. Out of the 261 genomic insertions of HERV-W env, only 9 copies harbor the specific primers and probe featuring MSRV-like env. The copy from chromosome 20 was further studied considering its size, a truncated homologue of the functional HERV-W env sequence encoding syncytin. High Resolution Melting analysis of this sequence identified two single nucleotide polymorphisms, subsequently genotyped by Taqman chemistry in 668 MS patients and 678 healthy controls. No significant association of these polymorphisms with MS risk was evidenced. Transcriptional activity of this MSRV-like env copy was detected in peripheral blood mononuclear cells from patients and controls. RNA expression levels of chromosome 20-specific MSRV-like env did not show significant differences between MS patients and controls, neither were related to genotypes of the two mentioned polymorphisms. Conclusions The lack of association with MS risk of the identified polymorphisms together with the transcription results discard chromosome 20 as genomic origin of MSRV-like env. The chr.20 HERV-W env copy encodes a truncated homologue of the functional syncytin. Two single nucleotide polymorphisms were identified in this sequence by High Resolution Melting. No association of these polymorphisms with MS susceptibility was evidenced. RNA expression of the chr. 20 HERV-W env copy did not show association with MS risk. The chr. 20 HERV-W env copy does not seem to be an origin of MSRV ENV protein.
Collapse
Affiliation(s)
- Jezabel Varadé
- Immunology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Marta García-Montojo
- Multiple Sclerosis Unit, Neurology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Belén de la Hera
- Immunology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Iris Camacho
- Immunology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Mª. Ángel García-Martínez
- Immunology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Rafael Arroyo
- Multiple Sclerosis Unit, Neurology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Roberto Álvarez-Lafuente
- Multiple Sclerosis Unit, Neurology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
| | - Elena Urcelay
- Immunology Dept., Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid. Spain
- Corresponding author at: Immunology Department, Hospital Clínico San Carlos, IdISSC, Martin Lagos s/n, 28040 Madrid, Spain. Tel.: + 34 91 330 3000x7171; fax: + 34 91 330 3879.
| |
Collapse
|
20
|
HIV Tat acts on endogenous retroviruses of the W family and this occurs via Toll-like receptor 4: inference for neuroAIDS. AIDS 2014; 28:2659-70. [PMID: 25250834 DOI: 10.1097/qad.0000000000000477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study is to verify whether HIV activates two endogenous retroviruses of the human endogenous retrovirus (HERV)-W family, multiple sclerosis-associated retrovirus (MSRV) and Syncytin-1, whose neuropathogenic and immunopathogenic properties could contribute to HIV-related neurodegeneration. DESIGN AND METHODS Peripheral blood mononuclear cells, monocyte-macrophages and astrocytes were either infected by HIV or exposed to HIV-Tat, and/or other treatments. The expression of transcripts and proteins of interest was evaluated by real-time RT-PCR and western blotting assays, respectively. RESULTS HIV and Tat increase the levels of MSRVenv mRNAs and HERV-Wenv proteins in astrocytes and in blood cells. In monocyte-macrophages, Tat also induces high levels of CCR2, CD16 and Toll-like receptor 4 (TLR4) molecules. Syncytin-1 response to Tat depends on the cell context: in monocytes, Tat stimulates MSRVenv and inhibits Syncytin-1, while in differentiated macrophages, it stimulates both elements. In primary astrocytes, Tat stimulates MSRV and Syncytin-1 indirectly, through interaction with TLR4 and induction of tumour necrosis factor-alpha (TNFα), without internalization. CONCLUSION In-vivo consequence of the study could be that, through increase of CD16 and CCR2, Tat promotes neuroinvasion not only by HIV-infected monocytes/macrophages but also by the HERV-Ws, with their neuropathogenic potential. Also, the novel finding of TLR4 stimulation by Tat may be of relevance, as TLR4 is critical in neuroinflammation. Within central nervous system (CNS), Tat-induced TNFα could induce high levels of the HERV-Ws, in both macrophages and astrocytes, also without HIV replication. The indirect mechanism by which Tat activates the HERV-Ws through induction of TNFα could add a new piece to the puzzle of CNS pathogenesis, that is the HERV-Wenv contribute to the HIV-related neurodegeneration.
Collapse
|
21
|
Emmer A, Staege MS, Kornhuber ME. The retrovirus/superantigen hypothesis of multiple sclerosis. Cell Mol Neurobiol 2014; 34:1087-96. [PMID: 25138639 DOI: 10.1007/s10571-014-0100-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/09/2014] [Indexed: 12/21/2022]
Abstract
The pathogenesis of multiple sclerosis (MS) is as yet unknown. Commonly, MS is assumed to be due to an autoimmune inflammation of the central nervous system (CNS). Neurodegeneration is regarded to be a secondary reaction. This concept is increasingly being challenged. Human endogenous retroviruses (HERV) that could be locally activated in the CNS have been proposed as an alternative concept. HERV-encoded envelope proteins (env) can act as strong immune stimulators (superantigens). Thus, slow disease progression following neurodegeneration might be induced by re-activation of HERV expression directly, while relapses in parallel to inflammation might be secondary to the expression of HERV-encoded superantigens. It has been shown previously that T-cell superantigens are capable to induce a cellular inflammatory reaction in the CNS of experimental animals similar to that in MS. Furthermore, B-cell superantigens have been shown to activate blood leucocytes in vitro to produce immunoglobulin in an oligoclonal manner. It remains to be established, whether the outlined hypothesis accords with all known features of MS. Furthermore, anti-HERV agents may be taken into consideration to enrich and improve MS therapy.
Collapse
Affiliation(s)
- Alexander Emmer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany,
| | | | | |
Collapse
|
22
|
Naveira H, Bello X, Abal-Fabeiro JL, Maside X. Evidence for the persistence of an active endogenous retrovirus (ERVE) in humans. Genetica 2014; 142:451-60. [PMID: 25192754 DOI: 10.1007/s10709-014-9789-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
Transposable elements (TEs) account for nearly half (44 %) of the human genome. However, their overall activity has been steadily declining over the past 35-50 million years, so that <0.05 % of TEs are presumably still "alive" (potentially transposable) in human populations. All the active elements are retrotransposons, either autonomous (LINE-1 and possibly the endogenous retrovirus ERVK), or non-autonomous (Alu and SVA, whose transposition is dependent on the LINE-1 enzymatic machinery). Here we show that a lineage of the endogenous retrovirus ERVE was recently engaged in ectopic recombination events and may have at least one potentially fully functional representative, initially reported as a novel retrovirus isolated from blood cells of a Chinese patient with chronic myeloid leukemia, which bears signals of positive selection on its envelope region. Altogether, there is strong evidence that ERVE should be included in the short list of potentially active TEs, and we give clues on how to identify human specific insertions of this element that are likely to be segregating in some of our populations.
Collapse
MESH Headings
- Animals
- Base Sequence
- Endogenous Retroviruses/classification
- Endogenous Retroviruses/genetics
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Genome, Human/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Retroelements/genetics
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Horacio Naveira
- Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Celular e Molecular, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071, A Coruña, Spain,
| | | | | | | |
Collapse
|
23
|
Abstract
UNLABELLED Human endogenous retrovirus type K (HERV-K) proviruses are scattered throughout the human genome, but as no infectious HERV-K virus has been detected to date, the mechanism by which these viruses replicated and populated the genome remains unresolved. Here, we provide evidence that, in addition to the RNA genomes that canonical retroviruses package, modern HERV-K viruses can contain reverse-transcribed DNA (RT-DNA) genomes. Indeed, reverse transcription of genomic HERV-K RNA into the DNA form is able to occur in three distinct times and locations: (i) in the virus-producing cell prior to viral release, yielding a DNA-containing extracellular virus particle similar to the spumaviruses; (ii) within the extracellular virus particle itself, transitioning from an RNA-containing particle to a DNA-containing particle; and (iii) after entry of the RNA-containing virus into the target cell, similar to canonical retroviruses, such as murine leukemia virus and HIV. Moreover, using a resuscitated HERV-K virus construct, we show that both viruses with RNA genomes and viruses with DNA genomes are capable of infecting target cells. This high level of genomic flexibility historically could have permitted these viruses to replicate in various host cell environments, potentially assisting in their many integration events and resulting in their high prevalence in the human genome. Moreover, the ability of modern HERV-K viruses to proceed through reverse transcription and package RT-DNA genomes suggests a higher level of replication competency than was previously understood, and it may be relevant in HERV-K-associated human diseases. IMPORTANCE Retroviral elements comprise at least 8% of the human genome. Of all the endogenous retroviruses, HERV-K viruses are the most intact and biologically active. While a modern infectious HERV-K has yet to be found, HERV-K activation has been associated with cancers, autoimmune diseases, and HIV-1 infection. Thus, determining how this virus family became such a prevalent member of our genome and what it is capable of in its current form are of the utmost importance. Here, we provide evidence that HERV-K viruses currently found in the human genome are able to proceed through reverse transcription and historically utilized a life cycle with a surprising degree of genomic flexibility in which both RNA- and DNA-containing viruses were capable of mediating infection.
Collapse
|
24
|
Mameli G, Madeddu G, Mei A, Uleri E, Poddighe L, Delogu LG, Maida I, Babudieri S, Serra C, Manetti R, Mura MS, Dolei A. Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein-Barr virus latency: the missing link with multiple sclerosis? PLoS One 2013; 8:e78474. [PMID: 24236019 PMCID: PMC3827255 DOI: 10.1371/journal.pone.0078474] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is still unclear. The immuno-pathogenic phenomena leading to neurodegeneration are thought to be triggered by environmental (viral?) factors operating on predisposing genetic backgrounds. Among the proposed co-factors are the Epstein Barr virus (EBV), and the potentially neuropathogenic HERV-W/MSRV/Syncytin-1 endogenous retroviruses. The ascertained links between EBV and MS are history of late primary infection, possibly leading to infectious mononucleosis (IM), and high titers of pre-onset IgG against EBV nuclear antigens (anti-EBNA IgG). During MS, there is no evidence of MS-specific EBV expression, while a continuous expression of HERV-Ws occurs, paralleling disease behaviour. We found repeatedly extracellular HERV-W/MSRV and MSRV-specific mRNA sequences in MS patients (in blood, spinal fluid, and brain samples), and MRSV presence/load strikingly paralleled MS stages and active/remission phases. Aim of the study was to verify whether HERV-W might be activated in vivo, in hospitalized young adults with IM symptoms, that were analyzed with respect to expression of HERV-W/MSRV transcripts and proteins. Healthy controls were either EBV-negative or latently EBV-infected with/without high titers of anti-EBNA-1 IgG. The results show that activation of HERV-W/MSRV occurs in blood mononuclear cells of IM patients (2Log10 increase of MSRV-type env mRNA accumulation with respect to EBV-negative controls). When healthy controls are stratified for previous EBV infection (high and low, or no anti-EBNA-1 IgG titers), a direct correlation occurs with MSRV mRNA accumulation. Flow cytometry data show increased percentages of cells exposing surface HERV-Wenv protein, that occur differently in specific cell subsets, and in acute disease and past infection. Thus, the data indicate that the two main links between EBV and MS (IM and high anti-EBNA-1-IgG titers) are paralleled by activation of the potentially neuropathogenic HERV-W/MSRV. These novel findings suggest HERV-W/MSRV activation as the missing link between EBV and MS, and may open new avenues of intervention.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giordano Madeddu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luciana Poddighe
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Lucia G. Delogu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Ivana Maida
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Maria S. Mura
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
25
|
Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C, Manetti R, Dolei A. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 2012; 7:e44991. [PMID: 23028727 PMCID: PMC3459916 DOI: 10.1371/journal.pone.0044991] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022] Open
Abstract
Background Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses. Methodology/Principal Findings In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines. Conclusions/Significance In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Luciana Poddighe
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Department of Neurosciences and MIS, University of Sassari, Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Clinical, Experimental and Oncological Medicine, University of Sassari, Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences and Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
26
|
Mameli G, Poddighe L, Astone V, Delogu G, Arru G, Sotgiu S, Serra C, Dolei A. Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods 2009; 161:98-106. [PMID: 19505508 DOI: 10.1016/j.jviromet.2009.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 01/01/2023]
Abstract
Two components of the HERV-W family of human endogenous retroviruses are activated during multiple sclerosis (MS) and proposed immunopathogenic co-factors: MSRV (MS-associated retrovirus), and ERVWE1 (whose env protein, syncytin-1, reaches the plasma membrane). MSRVenv and syncytin-1 are closely related, and difficult to distinguish each other. The sequences of extracellular MSRVenv and of syncytin-1 available in GenBank were compared with those found in MS patients and controls of the cohort under study. With respect to syncytin-1, MSRVenv sequences have a 12-nucleotide insertion in the trans-membrane moiety. Based on this insertion, discriminatory real-time PCR assays were developed, that can amplify selectively either MSRVenv or syncytin-1. The data of MS patients and controls indicated that MSRV and ERVWE1 are both expressed in the brain of MS patients, while only MSRV is present in the blood; MSRV was released in culture by PBMCs of MSRV-producer individuals. These cells expressed the complete MSRVenv gene in the absence of syncytin-1 expression, up to the final, fully glycosylated envelope protein product, since western blot staining with anti-HERV-Wenv antibody detected two bands of the same molecular weight (73 and 61kDa) of the fully glycosylated and partially glycosylated HERV-Wenv uncleaved proteins. Beyond MSRVenv DNA copy numbers were more abundant in MS patients than in healthy humans, while syncytin-1 were unchanged. These findings reinforce the link between MSRV and MS.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43B, Sassari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virology 2007; 362:120-30. [PMID: 17258784 DOI: 10.1016/j.virol.2006.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/07/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFalpha, interferon-gamma, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-beta is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFalpha had the ability to activate the ERVWE1 promoter through an NF-kappaB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFalpha enhances the binding of the p65 subunit of NF-kappaB, to its cognate site within the promoter. The effect of TNFalpha is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFalpha-mediated induction of syncytin-1 in multiple sclerosis.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, Sotgiu S, Bonetti B, Dolei A. Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J Gen Virol 2007; 88:264-274. [PMID: 17170460 DOI: 10.1099/vir.0.81890-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS)-associated retrovirus (MSRV)/HERV-W (human endogenous retrovirus W) and Human herpesvirus 6 (HHV-6) are the two most studied (and discussed) viruses as environmental co-factors that trigger MS immunopathological phenomena. Autopsied brain tissues from MS patients and controls and peripheral blood mononuclear cells (PBMCs) were analysed. Quantitative RT-PCR and PCR with primers specific for MSRV/HERV-W env and pol and HHV-6 U94/rep and DNA-pol were used to determine virus copy numbers. Brain sections were immunostained with HERV-W env-specific monoclonal antibody to detect the viral protein. All brains expressed MSRV/HERV-W env and pol genes. Phylogenetic analysis indicated that cerebral MSRV/HERV-W-related env sequences, plasmatic MSRV, HERV-W and ERVWE1 (syncytin) are related closely. Accumulation of MSRV/HERV-W-specific RNAs was significantly greater in MS brains than in controls (P=0.014 vs healthy controls; P=0.006 vs pathological controls). By immunohistochemistry, no HERV-W env protein was detected in control brains, whereas it was upregulated within MS plaques and correlated with the extent of active demyelination and inflammation. No HHV-6-specific RNAs were detected in brains of MS patients; one healthy control had latent HHV-6 and one pathological control had replicating HHV-6. At the PBMC level, all MS patients expressed MSRV/HERV-W env at higher copy numbers than did controls (P=0.00003). Similar HHV-6 presence was found in MS patients and healthy individuals; only one MS patient had replicating HHV-6. This report, the first to study both MSRV/HERV-W and HHV-6, indicates that MSRV/HERV-W is expressed actively in human brain and activated strongly in MS patients, whilst there are no significant differences between these MS patients and controls for HHV-6 presence/replication at the brain or PBMC level.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Vito Astone
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Giannina Arru
- Institute of Clinical Neurology, University of Sassari, Sassari, Italy
| | - Silvia Marconi
- Section of Neurology, Department of Neurological Sciences and Vision, University of Verona, Verona, Italy
| | - Laura Lovato
- Section of Neurology, Department of Neurological Sciences and Vision, University of Verona, Verona, Italy
| | - Caterina Serra
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Institute of Clinical Neurology, University of Sassari, Sassari, Italy
| | - Bruno Bonetti
- Section of Neurology, Department of Neurological Sciences and Vision, University of Verona, Verona, Italy
| | - Antonina Dolei
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| |
Collapse
|