1
|
Quinn C, Moulton K, Farwell M, Le W, Wilson I, Goel N, McConathy J, Greenberg SA. Imaging With PET/CT of Diffuse CD8 T-Cell Infiltration of Skeletal Muscle in Patients With Inclusion Body Myositis. Neurology 2023; 101:e1158-e1166. [PMID: 37487752 PMCID: PMC10513879 DOI: 10.1212/wnl.0000000000207596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Inclusion body myositis (IBM) is a progressive autoimmune skeletal muscle disease in which cytotoxic CD8+ T cells infiltrate muscle and destroy myofibers. IBM has required a muscle biopsy for diagnosis. Here, we administered to patients with IBM a novel investigational PET tracer 89Zr-Df-crefmirlimab for in vivo imaging of whole body skeletal muscle CD8 T cells. This technology has not previously been applied to patients with autoimmune disease. METHODS Four patients with IBM received 89Zr-Df-crefmirlimab followed by PET/CT imaging 24 hours later, and the results were compared with similar imaging of age-matched patients with cancer. Mean standardized uptake value (SUVmean) was measured for reference tissues using spherical regions of interest (ROIs). RESULTS 89Zr-Df-crefmirlimab was safe and well-tolerated. PET imaging demonstrated diffusely increased uptake qualitatively and quantitatively in IBM limb musculature. Quantitation of 89Zr-Df-crefmirlimab intensity in ROIs demonstrated particularly increased CD8 T-cell infiltration in patients with IBM compared with patients with cancer in quadriceps (SUVmean 0.55 vs 0.20, p < 0.0001), biceps brachii (0.62 vs 0.26, p < 0.0001), triceps (0.61 vs 0.25, p = 0.0005), and forearm finger flexors (0.71 vs 0.23, p = 0.008). DISCUSSION 89Zr-Df-crefmirlimab uptake in muscles of patients with IBM was present at an intensity greater than the comparator population. The ability to visualize whole body in vivo cytotoxic T-cell tissue infiltration in the autoimmune disease IBM may hold utility as a biomarker for diagnosis, disease activity, and therapeutic development and potentially be applicable to other diseases with cytotoxic T-cell autoimmunity.
Collapse
Affiliation(s)
- Colin Quinn
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA.
| | - Kelsey Moulton
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Michael Farwell
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - William Le
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Ian Wilson
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Niti Goel
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Jonathan McConathy
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| | - Steven A Greenberg
- From the Departments of Neurology (C.Q., K.M.), and Radiology (M.F.), University of Pennsylvania, Perelman School of Medicine, Philadelphia; ImaginAb (W.L., I.W.), Inc., Inglewood, CA; Department of Medicine (N.G.), Duke University School of Medicine, Durham, NC; Abcuro, Inc., Newton, MA; Department of Radiology (J.M.), University of Alabama at Birmingham, Heersink School of Medicine; and Department of Neurology (S.A.G.), Brigham and Women's Hospital and Boston Childrens Hospital, Harvard Medical School, MA
| |
Collapse
|
2
|
Senn KC, Thiele S, Kummer K, Walter MC, Nagels KH. Patient-Reported Health-Related Quality of Life, Anxiety and Depression in Patients with Inclusion Body Myositis: A Register-Based Cross-Sectional Study in Germany. J Clin Med 2023; 12:5051. [PMID: 37568453 PMCID: PMC10420164 DOI: 10.3390/jcm12155051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Inclusion body myositis (IBM) is a rare neuromuscular disease and the most prevalent idiopathic inflammatory myopathy (IIM) in patients aged older than 50 years. A systematic review has shown that no clear-cut conclusions can be drawn about the health-related quality of life (HRQoL) and mental health in IBM. We aimed to assess the HRQoL and mental health, to explore associated disease-related and socioeconomic factors as well as the utilization of psychological support in German IBM patients. This cross-sectional study included 82 patients registered in the German IBM patient registry. Patients had completed a survey battery including the EQ-5D-5L, the Individualized Neuromuscular Quality of Life (INQoL) and the Hospital Anxiety and Depression Scale German version (HADS-D). The physical HRQoL dimension was suggested to be most relevant. Most impaired life domains of HRQoL were mobility, independence, and activities. We identified significant differences in the total INQoL score for the degree of disability and care level as well as in depression for the degree of disability (p < 0.05), respectively. Most patients indicated no symptoms of anxiety (64.6%) and depression (62.2%). A more need-oriented psychological support in German IBM patients, reporting doubtful or definite anxiety or depression, could be suggested.
Collapse
Affiliation(s)
- Katja C. Senn
- Chair of Healthcare Management and Health Services Research, University of Bayreuth, Parsifalstrasse 25, 95445 Bayreuth, Germany;
| | - Simone Thiele
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstrasse 1, 80336 Munich, Germany; (S.T.); (M.C.W.)
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Maggie C. Walter
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstrasse 1, 80336 Munich, Germany; (S.T.); (M.C.W.)
| | - Klaus H. Nagels
- Chair of Healthcare Management and Health Services Research, University of Bayreuth, Parsifalstrasse 25, 95445 Bayreuth, Germany;
| |
Collapse
|
3
|
Abstract
The autoimmune inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation and moderate to severe muscle weakness. Based on currently evolved distinct clinical, histologic, immunopathologic, and autoantibody features, these disorders can be best classified as dermatomyositis, necrotizing autoimmune myositis, antisynthetase syndrome-overlap myositis, and inclusion body myositis. Although polymyositis is no longer considered a distinct subset but rather an extinct entity, it is herein described because its clinicopathologic information has provided over many years fundamental information on T-cell-mediated myocytotoxicity, especially in reference to inclusion body myositis. Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis, and response to immunotherapies, necessitating the need to correctly diagnose each subtype from the outset and avoid disease mimics. The paper describes the main clinical characteristics that aid in the diagnosis of each myositis subtype, highlights the distinct features on muscle morphology and immunopathology, elaborates on the potential role of autoantibodies in pathogenesis or diagnosis , and clarifies common uncertainties in reference to putative triggering factors such as statins and viruses including the 2019-coronavirus-2 pandemic. It extensively describes the main autoimmune markers related to autoinvasive myocytotoxic T-cells, activated B-cells, complement, cytokines, and the possible role of innate immunity. The concomitant myodegenerative features seen in inclusion body myositis along with their interrelationship between inflammation and degeneration are specifically emphasized. Finally, practical guidelines on the best therapeutic approaches are summarized based on up-to-date knowledge and controlled studies, highlighting the prospects of future immunotherapies and ongoing controversies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States; Neuroimmunology Unit National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
4
|
Laurent D, Riek J, Sinclair CDJ, Houston P, Roubenoff R, Papanicolaou DA, Nagy A, Pieper S, Yousry TA, Hanna MG, Thornton JS, Machado PM. Longitudinal Changes in MRI Muscle Morphometry and Composition in People With Inclusion Body Myositis. Neurology 2022; 99:e865-e876. [PMID: 36038279 PMCID: PMC10513877 DOI: 10.1212/wnl.0000000000200776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Limited data suggest that quantitative MRI (qMRI) measures have potential to be used as trial outcome measures in sporadic inclusion body myositis (sIBM) and as a noninvasive assessment tool to study sIBM muscle pathologic processes. Our aim was to evaluate changes in muscle structure and composition using a comprehensive multiparameter set of qMRI measures and to assess construct validity and responsiveness of qMRI measures in people with sIBM. METHODS This was a prospective observational cohort study with assessments at baseline (n = 30) and 1 year (n = 26). qMRI assessments include thigh muscle volume (TMV), inter/intramuscular adipose tissue (IMAT), muscle fat fraction (FF), muscle inflammation (T2 relaxation time), IMAT from T2* relaxation (T2*-IMAT), intermuscular connective tissue from T2* relaxation (T2*-IMCT), and muscle macromolecular structure from the magnetization transfer ratio (MTR). Physical performance assessments include sIBM Physical Functioning Assessment (sIFA), 6-minute walk distance, and quantitative muscle testing of the quadriceps. Correlations were assessed using the Spearman correlation coefficient. Responsiveness was assessed using the standardized response mean (SRM). RESULTS After 1 year, we observed a reduction in TMV (6.8%, p < 0.001) and muscle T2 (6.7%, p = 0.035), an increase in IMAT (9.7%, p < 0.001), FF (11.2%, p = 0.030), connective tissue (22%, p = 0.995), and T2*-IMAT (24%, p < 0.001), and alteration in muscle macromolecular structure (ΔMTR = -26%, p = 0.002). A decrease in muscle T2 correlated with an increase in T2*-IMAT (r = -0.47, p = 0.008). Deposition of connective tissue and IMAT correlated with deterioration in sIFA (r = 0.38, p = 0.032; r = 0.34, p = 0.048; respectively), whereas a decrease in TMV correlated with a decrease in quantitative muscle testing (r = 0.36, p = 0.035). The most responsive qMRI measures were T2*-IMAT (SRM = 1.50), TMV (SRM = -1.23), IMAT (SRM = 1.20), MTR (SRM = -0.83), and T2 relaxation time (SRM = -0.65). DISCUSSION Progressive deterioration in muscle quality measured by qMRI is associated with a decline in physical performance. Inflammation may play a role in triggering fat infiltration into muscle. qMRI provides valid and responsive measures that might prove valuable in sIBM experimental trials and assessment of muscle pathologic processes. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that qMRI outcome measures are associated with physical performance measures in patients with sIBM.
Collapse
Affiliation(s)
- Didier Laurent
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom.
| | - Jon Riek
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Christopher D J Sinclair
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Parul Houston
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Ronenn Roubenoff
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Dimitris A Papanicolaou
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Attila Nagy
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Steve Pieper
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Tarek A Yousry
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Michael G Hanna
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - John S Thornton
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Pedro M Machado
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| |
Collapse
|
5
|
Goyal NA, Coulis G, Duarte J, Farahat PK, Mannaa AH, Cauchii J, Irani T, Araujo N, Wang L, Wencel M, Li V, Zhang L, Greenberg SA, Mozaffar T, Villalta SA. Immunophenotyping of Inclusion Body Myositis Blood T and NK Cells. Neurology 2022; 98:e1374-e1383. [PMID: 35131904 PMCID: PMC8967422 DOI: 10.1212/wnl.0000000000200013] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the therapeutic potential of targeting highly differentiated T cells in patients with inclusion body myositis (IBM) by establishing high-resolution mapping of killer cell lectin-like receptor subfamily G member 1 (KLRG1+) within the T and natural killer (NK) cell compartments. METHODS Blood was collected from 51 patients with IBM and 19 healthy age-matched donors. Peripheral blood mononuclear cells were interrogated by flow cytometry using a 12-marker antibody panel. The panel allowed the delineation of naive T cells (Tn), central memory T cells (Tcm), 4 stages of effector memory differentiation T cells (Tem 1-4), and effector memory re-expressing CD45RA T cells (TemRA), as well as total and subpopulations of NK cells based on the differential expression of CD16 and C56. RESULTS We found that a population of KLRG1+ Tem and TemRA were expanded in both the CD4+ and CD8+ T-cell subpopulations in patients with IBM. KLRG1 expression in CD8+ T cells increased with T-cell differentiation with the lowest levels of expression in Tn and highest in highly differentiated TemRA and CD56+CD8+ T cells. The frequency of KLRG1+ total NK cells and subpopulations did not differ between patients with IBM and healthy donors. IBM disease duration correlated with increased CD8+ T-cell differentiation. DISCUSSION Our findings reveal that the selective expansion of blood KLRG1+ T cells in patients with IBM is confined to the TemRA and Tem cellular compartments.
Collapse
Affiliation(s)
- Namita A Goyal
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Gérald Coulis
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Jorge Duarte
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Philip K Farahat
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Ali H Mannaa
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Jonathan Cauchii
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Tyler Irani
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Nadia Araujo
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Leo Wang
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Marie Wencel
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Vivian Li
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Lishi Zhang
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Steven A Greenberg
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - Tahseen Mozaffar
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA
| | - S Armando Villalta
- Department of Neurology (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M., S.A.V.), MDA ALS and Neuromuscular Center (N.A.G., J.C., T.I., N.A., M.W., V.L., T.M.), Department of Pathology and Laboratory Medicine (T.M.), Department of Physiology and Biophysics (G.C., J.D., P.K.F., A.H.M., S.A.V.), Institute for Immunology (G.C., J.D., P.K.F., A.H.M., T.M., S.A.V.), and Biostatistics, Epidemiology, and Research Design (BERD) Unit, Institute for Clinical Translational Sciences (L.Z.), University of California, Irvine; Department of Neurology (J.C.), University of New Mexico, Albuquerque; Department of Neurology (L.W.), University of Washington Medical Center, Seattle; Department of Neurology, Division of Neuromuscular Disease (S.A.G.), Brigham and Women's Hospital and Harvard Medical School; and Computational Health Informatics Program (S.A.G.), Boston Children's Hospital and Harvard Medical School, MA.
| |
Collapse
|
6
|
Dalakas MC. Complement in autoimmune inflammatory myopathies, the role of myositis-associated antibodies, COVID-19 associations, and muscle amyloid deposits. Expert Rev Clin Immunol 2022; 18:413-423. [PMID: 35323101 DOI: 10.1080/1744666x.2022.2054803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The inflammatory myopathies (IM) have now evolved into distinct subsets requiring clarification about their immunopathogenesis to guide applications of targeted therapies. AREAS COVERED Immunohistopathologic criteria of IM with a focus on complement, anti-complement therapeutics, and other biologic immunotherapies. The COVID19-triggered muscle autoimmunity along with the correct interpretation of muscle amyloid deposits is discussed. EXPERT OPINION The IM, unjustifiably referred as idiopathic, comprise Dermatomyositis (DM), Necrotizing Autoimmune Myositis (NAM), Anti-synthetase syndrome-overlap myositis (Anti-SS-OM), and Inclusion-Body-Myositis (IBM). In DM, complement activation with MAC-mediated endomysial microvascular destruction and perifascicular atrophy is the fundamental process, while innate immunity activation factors, INF1 and MxA, sense and secondarily enhance inflammation. Complement participates in muscle fiber necrosis from any cause and may facilitate muscle-fiber necrosis in NAM but seems unlikely that myositis-associated antibodies participate in complement-fixing. Accordingly, anti-complement therapeutics should be prioritized for DM. SARS-CoV-2 can potentially trigger muscle autoimmunity, but systematic studies are needed as the reported autopsy findings are not clinically relevant. In IBM, tiny amyloid deposits within muscle fibers are enhanced by inflammatory mediators contributing to myodegeneration; in contrast, spotty amyloid deposits in the endomysial connective tissue do not represent 'amyloid myopathy' but only have diagnostic value for amyloidosis due to any cause.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,University of Athens Medical School, Neuroimmunology Unit, National and Kapodistrian University, Athens, Greece
| |
Collapse
|
7
|
Biomarker und Histologie bei idiopathischen inflammatorischen Myopathien. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1548-8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie idiopathischen inflammatorischen Myopathien (IIM) sind eine Gruppe entzündlicher Muskelerkrankungen für deren Diagnosestellung, Verlaufsbeurteilung, Prognoseabschätzung und Risikostratifizierung Biomarker eine jeweils essentielle Rolle spielen. Biomarker in diesem Kontext können sowohl „herkömmliche“ serologische Marker wie Muskelenzyme oder Autoantikörper, histologische Marker wie entitätsspezifische inflammatorische Muster, aber auch genomische und genetische Marker sein. Der vorliegende Artikel gibt einen Überblick über bewährte und innovative Marker.
Collapse
|
8
|
Dalakas MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:289-301. [PMID: 33458584 PMCID: PMC7783437 DOI: 10.36185/2532-1900-032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation. Based on steadily evolved clinical, histological and immunopathological features and some autoantibody associations, these disorders can now be classified in five characteristic subsets: Dermatomyositis (DM) Polymyositis (PM), Necrotizing Autoimmune Myositis (NAM), Anti-synthetase syndrome-overlap myositis (Anti-SS-OM), and Inclusion-Body-Myositis (IBM). Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis and response to immunotherapies, necessitating the need to correctly identify each subtype from the outset to avoid disease mimics and proceed to early therapy initiation. The review presents the main clinicopathologic characteristics of each subset highlighting the importance of combining expertise in clinical neurological examination with muscle morphology and immunopathology to avoid erroneous diagnoses and therapeutic schemes. The main autoimmune markers related to autoreactive T cells, B cells, autoantibodies and cytokines are presented and the concomitant myodegenerative features seen in IBM muscles are pointed out. Most importantly, unsettled issues related to a role of autoantibodies and controversies with reference to possible triggering factors related to statins are clarified. The emerging effect SARS-CoV-2 as the cause of hyperCKemia and potentially NAM is addressed and practical guidelines on the best therapeutic approaches and concerns regarding immunotherapies during COVID-19 pandemic are summarized.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA and the Neuroimmunology Unit, National and Kapodistrian University University of Athens Medical School, Athens, Greece
| |
Collapse
|
9
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol Neurobiol 2018; 55:8355-8373. [PMID: 29546591 PMCID: PMC6153721 DOI: 10.1007/s12035-018-0997-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Collapse
|
11
|
A missense mutation in MYH1 is associated with susceptibility to immune-mediated myositis in Quarter Horses. Skelet Muscle 2018; 8:7. [PMID: 29510741 PMCID: PMC5838957 DOI: 10.1186/s13395-018-0155-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background The cause of immune-mediated myositis (IMM), characterized by recurrent, rapid-onset muscle atrophy in Quarter Horses (QH), is unknown. The histopathologic hallmark of IMM is lymphocytic infiltration of myofibers. The purpose of this study was to identify putative functional variants associated with equine IMM. Methods A genome-wide association (GWA) study was performed on 36 IMM QHs and 54 breed matched unaffected QHs from the same environment using the Equine SNP50 and SNP70 genotyping arrays. Results A mixed model analysis identified nine SNPs within a ~ 2.87 Mb region on chr11 that were significantly (Punadjusted < 1.4 × 10− 6) associated with the IMM phenotype. Associated haplotypes within this region encompassed 38 annotated genes, including four myosin genes (MYH1, MYH2, MYH3, and MYH13). Whole genome sequencing of four IMM and four unaffected QHs identified a single segregating nonsynonymous E321G mutation in MYH1 encoding myosin heavy chain 2X. Genotyping of additional 35 IMM and 22 unaffected QHs confirmed an association (P = 2.9 × 10− 5), and the putative mutation was absent in 175 horses from 21 non-QH breeds. Lymphocytic infiltrates occurred in type 2X myofibers and the proportion of 2X fibers was decreased in the presence of inflammation. Protein modeling and contact/stability analysis identified 14 residues affected by the mutation which significantly decreased stability. Conclusions We conclude that a mutation in MYH1 is highly associated with susceptibility to the IMM phenotype in QH-related breeds. This is the first report of a mutation in MYH1 and the first link between a skeletal muscle myosin mutation and autoimmune disease. Electronic supplementary material The online version of this article (10.1186/s13395-018-0155-0) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Inclusion body myositis: advancements in diagnosis, pathomechanisms, and treatment. Curr Opin Rheumatol 2017; 29:632-638. [DOI: 10.1097/bor.0000000000000436] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol 2017; 4:422-445. [PMID: 28589170 PMCID: PMC5454400 DOI: 10.1002/acn3.419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inclusion Body Myositis (IBM) is a relatively common acquired inflammatory myopathy in patients above 50 years of age. Pathological hallmarks of IBM are intramyofiber protein inclusions and endomysial inflammation, indicating that both myodegenerative and inflammatory mechanisms contribute to its pathogenesis. Impaired protein degradation by the autophagic machinery, which regulates innate and adaptive immune responses, in skeletal muscle fibers has recently been identified as a potential key pathomechanism in IBM. Immunotherapies, which are successfully used for treating other inflammatory myopathies lack efficacy in IBM and so far no effective treatment is available. Thus, a better understanding of the mechanistic pathways underlying progressive muscle weakness and atrophy in IBM is crucial in identifying novel promising targets for therapeutic intervention. Here, we discuss recent insights into the pathomechanistic network of mutually dependent inflammatory and degenerative events during IBM.
Collapse
Affiliation(s)
- Christian W. Keller
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
| | - Jens Schmidt
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan D. Lünemann
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
- Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
| |
Collapse
|
14
|
Anh-Tu Hoa S, Hudson M. Critical review of the role of intravenous immunoglobulins in idiopathic inflammatory myopathies. Semin Arthritis Rheum 2016; 46:488-508. [PMID: 27908534 DOI: 10.1016/j.semarthrit.2016.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this review was to summarize key findings from the literature concerning the therapeutic role of intravenous immunoglobulins (IVIg) in idiopathic inflammatory myopathies (IIM), dissecting the evidence according to disease subtype and treatment indication, and to review the evidence relating to the mechanism of action of IVIg in IIM to ascertain rationale for continued research. METHODS Medline (Ovid) and Pubmed databases were searched from inception to July 2016 using relevant keywords. Original and review articles were retrieved for full-text review. Bibliographies of selected articles were also hand-searched for additional references. Data were summarized qualitatively and in tabular form. RESULTS The efficacy of IVIg in IIM is supported by 3 randomized controlled trials, involving dermatomyositis and polymyositis subjects, in refractory, relapsed, or steroid-dependent disease, as well as part of first-line therapy in elderly dermatomyositis subjects. Other indications for IVIg are supported by uncontrolled evidence only. Limitations of studies include open, uncontrolled or retrospective study designs, small and selected samples, short-term follow-up and ad hoc outcome measures. Despite the limited evidence, there is strong biological plausibility for the role of IVIg in IIM. CONCLUSION Robust, controlled evidence to support the use of IVIg using validated outcome measures is urgently required to guide therapeutic decision-making and maximize outcomes in IIM.
Collapse
Affiliation(s)
- Sabrina Anh-Tu Hoa
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Marie Hudson
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada; Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Albrecht I, Wick C, Hallgren Å, Tjärnlund A, Nagaraju K, Andrade F, Thompson K, Coley W, Phadke A, Diaz-Gallo LM, Bottai M, Nennesmo I, Chemin K, Herrath J, Johansson K, Wikberg A, Ytterberg AJ, Zubarev RA, Danielsson O, Krystufkova O, Vencovsky J, Landegren N, Wahren-Herlenius M, Padyukov L, Kämpe O, Lundberg IE. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest 2015; 125:4612-24. [PMID: 26551678 DOI: 10.1172/jci81031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022] Open
Abstract
Mutations of the gene encoding four-and-a-half LIM domain 1 (FHL1) are the causative factor of several X-linked hereditary myopathies that are collectively termed FHL1-related myopathies. These disorders are characterized by severe muscle dysfunction and damage. Here, we have shown that patients with idiopathic inflammatory myopathies (IIMs) develop autoimmunity to FHL1, which is a muscle-specific protein. Anti-FHL1 autoantibodies were detected in 25% of IIM patients, while patients with other autoimmune diseases or muscular dystrophies were largely anti-FHL1 negative. Anti-FHL1 reactivity was predictive for muscle atrophy, dysphagia, pronounced muscle fiber damage, and vasculitis. FHL1 showed an altered expression pattern, with focal accumulation in the muscle fibers of autoantibody-positive patients compared with a homogeneous expression in anti-FHL1-negative patients and healthy controls. We determined that FHL1 is a target of the cytotoxic protease granzyme B, indicating that the generation of FHL1 fragments may initiate FHL1 autoimmunity. Moreover, immunization of myositis-prone mice with FHL1 aggravated muscle weakness and increased mortality, suggesting a direct link between anti-FHL1 responses and muscle damage. Together, our findings provide evidence that FHL1 may be involved in the pathogenesis not only of genetic FHL1-related myopathies but also of autoimmune IIM. Importantly, these results indicate that anti-FHL1 autoantibodies in peripheral blood have promising potential as a biomarker to identify a subset of severe IIM.
Collapse
|
16
|
Abstract
Idiopathic inflammatory myopathies (IIMs) involve inflammation of the muscles and are classified by the patterns of presentation and immunohistopathologic features on skin and muscle biopsy into 4 categories: dermatomyositis, polymyositis, inclusion body myositis, and immune-mediated necrotizing myopathy. Systemic corticosteroid (CS) treatment is the standard of care for IIM with muscle and organ involvement. The extracutaneous features of systemic sclerosis are frequently treated with CS; however, high doses have been associated with scleroderma renal crisis in high-risk patients. Although CS can be effective first-line agents, their significant side effect profile encourages concomitant treatment with other immunosuppressive medications to enable timely tapering.
Collapse
Affiliation(s)
- Anna Postolova
- Division of Rheumatology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Jennifer K Chen
- Department of Dermatology, Stanford Hospital and Clinics, 450 Broadway Street, Pavilion C, Suite 242, Redwood City, CA 94063, USA
| | - Lorinda Chung
- Division of Rheumatology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Division of Rheumatology, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
17
|
Muth IE, Zschüntzsch J, Kleinschnitz K, Wrede A, Gerhardt E, Balcarek P, Schreiber-Katz O, Zierz S, Dalakas MC, Voll RE, Schmidt J. HMGB1 and RAGE in skeletal muscle inflammation: Implications for protein accumulation in inclusion body myositis. Exp Neurol 2015; 271:189-97. [PMID: 26048613 DOI: 10.1016/j.expneurol.2015.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 05/23/2015] [Accepted: 05/30/2015] [Indexed: 01/26/2023]
Abstract
Inflammation is associated with protein accumulation in IBM, but precise mechanisms are elusive. The "alarmin" HMGB1 is upregulated in muscle inflammation. Its receptor RAGE is crucial for β-amyloid-associated neurodegeneration. Relevant signaling via HMGB1/RAGE is expected in IBM pathology. By real-time-PCR, mRNA-expression levels of HMGB1 and RAGE were upregulated in muscle biopsies of patients with IBM and PM, but not in muscular dystrophy or non-myopathic controls. By immunohistochemistry, both molecules displayed the highest signal in IBM, where they distinctly co-localized to intra-fiber accumulations of β-amyloid and neurofilament/tau. In these fibers, identification of phosphorylated Erk suggested that relevant downstream activation is present upon HMGB1 signaling via RAGE. Protein expressions of HMGB1, RAGE, Erk and phosphorylated Erk were confirmed by Western blot. In a well established cell-culture model for pro-inflammatory cell-stress, exposure of human muscle-cells to IL-1β+IFN-γ induced cytoplasmic translocation of HMGB1 and subsequent release as evidenced by ELISA. Upregulation of RAGE on the cell surface was demonstrated by immunocytochemistry and flow-cytometry. Recombinant HMGB1 was equally potent as IL-1β+IFN-γ in causing amyloid-accumulation and cell-death, and both were abrogated by the HMGB1-blocker BoxA. The findings strengthen the concept of unique interactions between degenerative and inflammatory mechanisms and suggest that HMGB1/RAGE signaling is a critical pathway in IBM pathology.
Collapse
Affiliation(s)
- Ingrid E Muth
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Konstanze Kleinschnitz
- Department of Neurology, University Medical Center, Göttingen, Germany; Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medical Center, Göttingen, Germany
| | - Arne Wrede
- Department of Neuropathology, University Medical Center, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Germany
| | - Peter Balcarek
- Department of Trauma Surgery, University Medical Center, Göttingen, Germany
| | - Olivia Schreiber-Katz
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of München, München, Germany
| | - Stephan Zierz
- Department of Neurology, University Hospital Halle/Saale, Halle/Saale, Germany
| | - Marinos C Dalakas
- Neuroimmunology Unit, Department of Pathophysiology, University of Athens Medical School, Athens, Greece; Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University Medical Center, Freiburg, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center, Göttingen, Germany; Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medical Center, Göttingen, Germany.
| |
Collapse
|
18
|
Benveniste O, Stenzel W, Hilton-Jones D, Sandri M, Boyer O, van Engelen BGM. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol 2015; 129:611-24. [PMID: 25579751 PMCID: PMC4405277 DOI: 10.1007/s00401-015-1384-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the most frequently acquired myopathy in patients over 50 years of age. It is imperative that neurologists and rheumatologists recognize this disorder which may, through clinical and pathological similarities, mimic other myopathies, especially polymyositis. Whereas polymyositis responds to immunosuppressant drug therapy, sIBM responds poorly, if at all. Controversy reigns as to whether sIBM is primarily an inflammatory or a degenerative myopathy, the distinction being vitally important in terms of directing research for effective specific therapies. We review here the pros and the cons for the respective hypotheses. A possible scenario, which our experience leads us to favour, is that sIBM may start with inflammation within muscle. The rush of leukocytes attracted by chemokines and cytokines may induce fibre injury and HLA-I overexpression. If the protein degradation systems are overloaded (possibly due to genetic predisposition, particular HLA-I subtypes or ageing), amyloid and other protein deposits may appear within muscle fibres, reinforcing the myopathic process in a vicious circle.
Collapse
Affiliation(s)
- Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Université Pierre et Marie Curie, Inserm, U974, DHU I2B, Paris, France,
| | | | | | | | | | | |
Collapse
|
19
|
Paltiel AD, Ingvarsson E, Lee DKK, Leff RL, Nowak RJ, Petschke KD, Richards-Shubik S, Zhou A, Shubik M, O'Connor KC. Demographic and clinical features of inclusion body myositis in North America. Muscle Nerve 2015; 52:527-33. [PMID: 25557419 DOI: 10.1002/mus.24562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2014] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Few studies of the demographics, natural history, and clinical management of inclusion body myositis (IBM) have been performed in a large patient population. To more accurately define these characteristics, we developed and distributed a questionnaire to patients with IBM. METHODS A cross-sectional, self-reporting survey was conducted. RESULTS The mean age of the 916 participants was 70.4 years, the male-to-female ratio was 2:1, and the majority reported difficulty with ambulation and activities of daily living. The earliest symptoms included impaired use and weakness of arms and legs. The mean time from first symptoms to diagnosis was 4.7 years. Half reported that IBM was their initial diagnosis. A composite functional index negatively associated with age and disease duration, and positively associated with participation in exercise. CONCLUSIONS These data are valuable for informing patients how IBM manifestations are expected to impair daily living and indicate that self-reporting could be used to establish outcome measures in clinical trials.
Collapse
Affiliation(s)
- A David Paltiel
- Yale School of Public Health, New Haven, Connecticut, USA.,Yale School of Management, New Haven, Connecticut, USA
| | | | | | - Richard L Leff
- Richard L. Leff, MD, LLC, Chadds Ford, Pennsylvania, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, 300 George Street, Room 353J, New Haven, Connecticut, USA, 06511
| | | | - Seth Richards-Shubik
- H. John Heinz III College, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Ange Zhou
- Yale School of Management, New Haven, Connecticut, USA
| | - Martin Shubik
- Yale School of Management, New Haven, Connecticut, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, 300 George Street, Room 353J, New Haven, Connecticut, USA, 06511
| |
Collapse
|
20
|
Askanas V, Engel WK, Nogalska A. Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:633-43. [PMID: 25241263 DOI: 10.1016/j.bbadis.2014.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/13/2023]
Abstract
Sporadic inclusion-body myositis (s-IBM) is the most common degenerative muscle disease in which aging appears to be a key risk factor. In this review we focus on several cellular molecular mechanisms responsible for multiprotein aggregation and accumulations within s-IBM muscle fibers, and their possible consequences. Those include mechanisms leading to: a) accumulation in the form of aggregates within the muscle fibers, of several proteins, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; and b) protein misfolding and aggregation, including evidence of abnormal myoproteostasis, such as increased protein transcription, inadequate protein disposal, and abnormal posttranslational modifications of proteins. Pathogenic importance of our recently demonstrated abnormal mitophagy is also discussed. The intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with aging, are also discussed. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Valerie Askanas
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA.
| | - W King Engel
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| | - Anna Nogalska
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| |
Collapse
|
21
|
Dalakas MC. Mechanistic effects of IVIg in neuroinflammatory diseases: conclusions based on clinicopathologic correlations. J Clin Immunol 2014; 34 Suppl 1:S120-6. [PMID: 24722854 DOI: 10.1007/s10875-014-0024-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022]
Abstract
The mechanisms of action of IVIg on immunoregulatory and neuroinflammatory network have been predominantly based on in vitro experiments and animal studies, rather than direct effects on human tissues. Based on clinicopathologic correlations and tissues obtained before and after IVIg therapy, the better documented and clinically-relevant in-vivo actions of IVIg include effects on: a) Antibodies. An extracted antigen-specific anti-immunoglobulin (idiotypic) fraction appears partially responsible for its effect in myasthenia gravis and GBS; b) Complement. Sera from Dermatomyositis (DM) patients responding to IVIg, inhibit complement consumption and intercept MAC formation leading to disappearance of MAC deposits in the repeated muscle biopsies and normalization of muscle tissue; c) Genes. In repeated muscle biopsies from DM patients who improved after IVIg, but not from Inclusion-Body-Myositis (IBM) who did not improve, there is a 2-fold alteration of 2206 tissue genes associated with inflammation, fibrosis, tissue remodeling and regeneration; and d) degenerative-proinflammatory molecules and β-amyloid, implicated in neurodegenerative CNS diseases and IBM. In repeated muscle biopsies of IBM patients who did not respond to IVIg, the mRNA or protein expression for chemokines, IFN-γ, TGF-ß, IL-10, Ubiquitin and aB-crystallin is reduced, but not for the key molecules ICOS, ICOSL, IL-6, IL1-β, perforin, APP, nitric oxide synthase and nitrotyrosine, in spite of good IVIg penetration in muscles. Collectively, the selective effectiveness of IVIg in human diseases seems to correlate in vivo with inhibition of causative inflammatory mediators. Study of accessible tissues before and after therapy and clinicopathologic correlations, may help explain the differential effect of IVIg in autoimmune or neuroinflammatory diseases.
Collapse
|