1
|
Wlodarski MW, Vlachos A, Farrar JE, Da Costa LM, Kattamis A, Dianzani I, Belendez C, Unal S, Tamary H, Pasauliene R, Pospisilova D, de la Fuente J, Iskander D, Wolfe L, Liu JM, Shimamura A, Albrecht K, Lausen B, Bechensteen AG, Tedgard U, Puzik A, Quarello P, Ramenghi U, Bartels M, Hengartner H, Farah RA, Al Saleh M, Hamidieh AA, Yang W, Ito E, Kook H, Ovsyannikova G, Kager L, Gleizes PE, Dalle JH, Strahm B, Niemeyer CM, Lipton JM, Leblanc TM. Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: international consensus statement. Lancet Haematol 2024; 11:e368-e382. [PMID: 38697731 DOI: 10.1016/s2352-3026(24)00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 05/05/2024]
Abstract
Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Adrianna Vlachos
- Cohen Children's Medical Center, Hematology/Oncology and Stem Cell Transplantation, Hew Hyde Park, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jason E Farrar
- Arkansas Children's Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lydie M Da Costa
- Hôpital R. DEBRE, Groupe Hospitalier Universitaire, Assistance Publique-Hôpitaux de Paris Nord, Université de Paris Cité, Paris, France; HEMATIM, EA4666, UPJV, Amiens, France; Le LabEx Gr-Ex - Biogénèse et Pathologies du Globule Rouge, Paris, France
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Cristina Belendez
- Pediatric Hematology and Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Instituto Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sule Unal
- Hacettepe University, Department of Pediatric Hematology and Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey
| | - Hannah Tamary
- The Rina Zaizov Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Peta Tikvah, Israel; Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Dagmar Pospisilova
- Department of Pediatrics, Faculty Hospital of Palacky University, Olomouc, Czech Republic
| | - Josu de la Fuente
- Department of Paediatrics, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK; Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Deena Iskander
- Department of Paediatrics, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK; Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Lawrence Wolfe
- Cohen Children's Medical Center, Hematology/Oncology and Stem Cell Transplantation, Hew Hyde Park, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Johnson M Liu
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Akiko Shimamura
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Katarzyna Albrecht
- Department of Oncology, Paediatric Haematology, Clinical Transplantology and Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulf Tedgard
- Department of Pediatric Hematology and Oncology, Skåne University Hospital, Lund, Sweden
| | - Alexander Puzik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paola Quarello
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Marije Bartels
- Pediatric Hematology Department, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heinz Hengartner
- Pediatric Hospital of Eastern Switzerland St Gallen, St Gallen, Switzerland
| | - Roula A Farah
- Department of Pediatrics, LAU Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Mahasen Al Saleh
- King Faisal Hospital and Research Center Riyadh, Riyadh, Saudi Arabia
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Wan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hoon Kook
- Chonnam National University Hwasun Hospital, Gwangju, South Korea
| | - Galina Ovsyannikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics, Medical University Vienna, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | | | - Jean-Hugues Dalle
- Pediatric Immunology and Hematology Department and CRMR aplasies médullaires, Robert Debré Hospital, Groupe Hospitalier Universitaire, Assistance Publique-Hôpitaux de Paris Nord, Université de Paris Cité, Paris, France
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium, Freiburg, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jeffrey M Lipton
- Cohen Children's Medical Center, Hematology/Oncology and Stem Cell Transplantation, Hew Hyde Park, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Thierry M Leblanc
- Pediatric Immunology and Hematology Department and CRMR aplasies médullaires, Robert Debré Hospital, Groupe Hospitalier Universitaire, Assistance Publique-Hôpitaux de Paris Nord, Université de Paris Cité, Paris, France
| |
Collapse
|
2
|
Willimann R, Chougar C, Wolfe LC, Blanc L, Lipton JM. Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg. Curr Osteoporos Rep 2023; 21:527-539. [PMID: 37436584 DOI: 10.1007/s11914-023-00809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Recently, there has been an increasing number of studies on the crosstalk between the bone and the bone marrow and how it pertains to anemia. Here, we discuss four heritable clinical syndromes contrasting those in which anemia affects bone growth and development, with those in which abnormal bone development results in anemia, highlighting the multifaceted interactions between skeletal development and hematopoiesis. RECENT FINDINGS Anemia results from both inherited and acquired disorders caused by either impaired production or premature destruction of red blood cells or blood loss. The downstream effects on bone development and growth in patients with anemia often constitute an important part of their clinical condition. We will discuss the interdependence of abnormal bone development and growth and hematopoietic abnormalities, with a focus on the erythroid lineage. To illustrate those points, we selected four heritable anemias that arise from either defective hematopoiesis impacting the skeletal system (the hemoglobinopathies β-thalassemia and sickle cell disease) versus defective osteogenesis resulting in impaired hematopoiesis (osteopetrosis). Finally, we will discuss recent findings in Diamond Blackfan anemia, an intrinsic disorder of both the erythron and the bone. By focusing on four representative hereditary hematopoietic disorders, this complex relationship between bone and blood should lead to new areas of research in the field.
Collapse
Affiliation(s)
- Rachel Willimann
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Christina Chougar
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Division of Pediatric Radiology, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lawrence C Wolfe
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lionel Blanc
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey M Lipton
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
3
|
Wang N, LaVasseur C, Riaz R, Papoin J, Blanc L, Narla A. Targeting of Calbindin 1 rescues erythropoiesis in a human model of Diamond Blackfan anemia. Blood Cells Mol Dis 2023; 102:102759. [PMID: 37267698 PMCID: PMC10330851 DOI: 10.1016/j.bcmd.2023.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by congenital anomalies, cancer predisposition and a severe hypo-proliferative anemia. It was the first disease linked to ribosomal dysfunction and >70 % of patients have been identified to have a haploinsufficiency of a ribosomal protein (RP) gene, with RPS19 being the most common mutation. There is significant variability within the disease in terms of phenotype as well as response to therapy suggesting that other genes contribute to the pathophysiology and potential management of this disease. To explore these questions, we performed a genome-wide CRISPR screen in a cellular model of DBA and identified Calbindin 1 (CALB1), a member of the calcium-binding superfamily, as a potential modifier of the disordered erythropoiesis in DBA. We used human derived CD34+ cells cultured in erythroid stimulating media with knockdown of RPS19 as a model for DBA to study the effects of CALB1. We found that knockdown of CALB1 in this DBA model promoted erythroid maturation. We also noted effects of CALB1 knockdown on cell cycle. Taken together, our results reveal CALB1 is a novel regulator of human erythropoiesis and has implications for using CALB1 as a novel therapeutic target in DBA.
Collapse
Affiliation(s)
- Nan Wang
- Division of Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Corinne LaVasseur
- Division of Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Rao Riaz
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America; Zucker School of Medicine at Hofstra Northwell, Hempstead, NY, United States of America.
| | - Anupama Narla
- Division of Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States of America.
| |
Collapse
|
4
|
Iskander D, Roy NBA, Payne E, Drasar E, Hennessy K, Harrington Y, Christodoulidou C, Karadimitris A, Batkin L, de la Fuente J. Diamond-Blackfan anemia in adults: In pursuit of a common approach for a rare disease. Blood Rev 2023; 61:101097. [PMID: 37263874 DOI: 10.1016/j.blre.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome, usually caused by loss-of function variants in genes encoding ribosomal proteins. The hallmarks of DBA are anemia, congenital anomalies and cancer predisposition. Although DBA usually presents in childhood, the prevalence in later life is increasing due to an expanding repertoire of implicated genes, improvements in genetic diagnosis and increasing life expectancy. Adult patients uniquely suffer the manifestations of end-organ damage caused by the disease and its treatment, and transition to adulthood poses specific issues in disease management. To standardize and optimize care for this rare disease, in this review we provide updated guidance on the diagnosis and management of DBA, with a specific focus on older adolescents and adults. Recommendations are based upon published literature and our pooled clinical experience from three centres in the United Kingdom (U·K.). Uniquely we have also solicited and incorporated the views of affected families, represented by the independent patient organization, DBA U.K.
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK.
| | - Noémi B A Roy
- Oxford University Hospitals NHS Foundation Trust and University of Oxford, OX3 9DU, UK
| | - Elspeth Payne
- UCL Cancer Institute, Dept of Hematology, London WC1 E6BT, UK; Dept of Hematology, University College Hospital London, NW1 2BU, UK
| | - Emma Drasar
- Whittington Health NHS Trust and University College Hospital London, N19 5NF, UK
| | - Kelly Hennessy
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Yvonne Harrington
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Chrysi Christodoulidou
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Leisa Batkin
- DBA, UK 71-73 Main Street, Palterton, Chesterfield, S44 6UR, UK
| | - Josu de la Fuente
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK.
| |
Collapse
|
5
|
易 美, 万 扬, 程 思, 巩 晓, 尹 梓, 李 俊, 高 洋, 吴 超, 宗 苏, 常 丽, 陈 玉, 郑 荣, 竺 晓. [Prevalence and risk factors of obesity in children with Diamond-Blackfan anemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1143-1148. [PMID: 36305116 PMCID: PMC9627996 DOI: 10.7499/j.issn.1008-8830.2206070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To investigate the distribution of body mass index (BMI) and risk factors for obesity in children with Diamond-Blackfan Anemia (DBA). METHODS The children with DBA who attended National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, from January 2003 to December 2020 were enrolled as subjects. The related clinical data and treatment regimens were recorded. The height and weight data measured within 1 week before or after follow-up time points were collected to calculate BMI. The risk factors for obesity were determined by multivariate regression analysis in children with DBA. RESULTS A total of 129 children with DBA were enrolled, among whom there were 80 boys (62.0%) and 49 girls (38.0%), with a median age of 49 months (range 3-189 months). The prevalence rate of obesity was 14.7% (19/129). The multivariate logistic regression analysis showed that the absence of ribosomal protein gene mutation was closely associated with obesity in children with DBA (adjusted OR=3.63, 95%CI: 1.16-11.38, adjusted P=0.027). In children with glucocorticoid-dependent DBA, obesity was not associated with age of initiation of glucocorticoid therapy, duration of glucocorticoid therapy, and maintenance dose of glucocorticoids (P>0.05). CONCLUSIONS There is a high prevalence rate of obesity in children with DBA, and the absence of ribosomal protein gene mutation is closely associated with obesity in children with DBA.
Collapse
|
6
|
Defending the island against excess heme. Blood 2022; 139:3359-3360. [PMID: 35679077 PMCID: PMC9185156 DOI: 10.1182/blood.2022016341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/23/2023] Open
|
7
|
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang Y, Tong J, Zhang Y, Liu J, Chang L, Xu C, Shen B, Chen Y, Jiang E, Kurita R, Nakamura Y, Lim KC, Engel JD, Zhou J, Cheng T, Zhu X, Zhu P, Shi L. Decoding the pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq. Cell Discov 2022; 8:41. [PMID: 35534476 PMCID: PMC9085895 DOI: 10.1038/s41421-022-00389-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.
Collapse
Affiliation(s)
- Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yige Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
8
|
Short Stature in Patients with Diamond-Blackfan Anemia: A Cross-Sectional Study. J Pediatr 2022; 240:177-185. [PMID: 34543620 DOI: 10.1016/j.jpeds.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To systematically describe the short stature of patients with Diamond-Blackfan anemia and to explore factors affecting the height development of patients with Diamond-Blackfan anemia. STUDY DESIGN This cross-sectional study was conducted at the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the height, weight, and clinical data of 129 patients with Diamond-Blackfan anemia were collected from June 2020 to September 2020. RESULTS The median height-age-z score (HAZ) of children affected by Diamond-Blackfan anemia was -1.54 (-6.36-1.96). Short stature was found in 37.98% of the patients. Specific Diamond-Blackfan anemia growth curves were developed for weight, height, and body mass index, separately for male and female patients. Multivariable logistic regression models showed that female sex (aOR 4.92; 95% CI 1.29-18.71; P = .0195), underweight (aOR 10.41, 95% CI 1.41-76.98, P = .0217), cardiovascular malformations (aOR 216.65; 95% CI 3.29-14279.79; P = .0118), and RPL11(aOR 29.14; 95% CI 1.18-719.10; P = .0392) or RPS26 (aOR 53.49; 95% CI 1.40-2044.30; P = .0323) mutations were independent risk factors for short stature. In the subgroup of patients who were steroid-dependent, patients with a duration of steroid therapy over 2 years (OR 2.95; 95% CI 1.00-8.66; P = .0494) or maintenance dose of prednisone >0.1 mg/kg per day (OR 3.30; 95% CI 1.02-10.72; P = .0470) had a higher incidence of short stature. CONCLUSIONS Patients with Diamond-Blackfan anemia had a high prevalence of short stature. The risk of short stature increased with age and was associated with sex, underweight, congenital malformations, and RPL11 or RPS26 mutations. The duration of steroid therapy and maintenance dose of steroid was significantly associated with the incidence of short stature in steroid-dependent patients with Diamond-Blackfan anemia.
Collapse
|
9
|
Lipton JM, Molmenti CLS, Desai P, Lipton A, Ellis SR, Vlachos A. Early Onset Colorectal Cancer: An Emerging Cancer Risk in Patients with Diamond Blackfan Anemia. Genes (Basel) 2021; 13:56. [PMID: 35052397 PMCID: PMC8774389 DOI: 10.3390/genes13010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome, the founding member of a class of disorders known as ribosomopathies. Most cases result from loss of function mutations or deletions in 1 of 23 genes encoding either a small or large subunit-associated ribosomal protein (RP), resulting in RP haploinsufficiency. DBA is characterized by red cell hypoplasia or aplasia, poor linear growth and congenital anomalies. Small case series and case reports demonstrate DBA to be a cancer predisposition syndrome. Recent analyses from the Diamond Blackfan Anemia Registry of North America (DBAR) have quantified the cancer risk in DBA. These studies reveal the most prevalent solid tumor, presenting in young adults and in children and adolescents, to be colorectal cancer (CRC) and osteogenic sarcoma, respectively. Of concern is that these cancers are typically detected at an advanced stage in patients who, because of their constitutional bone marrow failure, may not tolerate full-dose chemotherapy. Thus, the inability to provide optimal therapy contributes to poor outcomes. CRC screening in individuals over the age of 50 years, and now 45 years, has led to early detection and significant improvements in outcomes for non-DBA patients with CRC. These screening and surveillance strategies have been adapted to detect familial early onset CRC. With the recognition of DBA as a moderately penetrant cancer risk syndrome a rational screening and surveillance strategy will be implemented. The downstream molecular events, resulting from RP haploinsufficiency and leading to cancer, are the subject of significant scientific inquiry.
Collapse
Affiliation(s)
- Jeffrey M. Lipton
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, New Hyde Park, NY 11040, USA; (P.D.); (A.V.)
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (C.L.S.M.); (A.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Christine L. S. Molmenti
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (C.L.S.M.); (A.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Epidemiology, Department of Occupational Medicine, Epidemiology and Prevention, Great Neck, NY 11021, USA
| | - Pooja Desai
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, New Hyde Park, NY 11040, USA; (P.D.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alexander Lipton
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (C.L.S.M.); (A.L.)
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA;
| | - Adrianna Vlachos
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, New Hyde Park, NY 11040, USA; (P.D.); (A.V.)
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (C.L.S.M.); (A.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
10
|
Nim HT, Dang L, Thiyagarajah H, Bakopoulos D, See M, Charitakis N, Sibbritt T, Eichenlaub MP, Archer SK, Fossat N, Burke RE, Tam PPL, Warr CG, Johnson TK, Ramialison M. A cis-regulatory-directed pipeline for the identification of genes involved in cardiac development and disease. Genome Biol 2021; 22:335. [PMID: 34906219 PMCID: PMC8672579 DOI: 10.1186/s13059-021-02539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital heart diseases are the major cause of death in newborns, but the genetic etiology of this developmental disorder is not fully known. The conventional approach to identify the disease-causing genes focuses on screening genes that display heart-specific expression during development. However, this approach would have discounted genes that are expressed widely in other tissues but may play critical roles in heart development. RESULTS We report an efficient pipeline of genome-wide gene discovery based on the identification of a cardiac-specific cis-regulatory element signature that points to candidate genes involved in heart development and congenital heart disease. With this pipeline, we retrieve 76% of the known cardiac developmental genes and predict 35 novel genes that previously had no known connectivity to heart development. Functional validation of these novel cardiac genes by RNAi-mediated knockdown of the conserved orthologs in Drosophila cardiac tissue reveals that disrupting the activity of 71% of these genes leads to adult mortality. Among these genes, RpL14, RpS24, and Rpn8 are associated with heart phenotypes. CONCLUSIONS Our pipeline has enabled the discovery of novel genes with roles in heart development. This workflow, which relies on screening for non-coding cis-regulatory signatures, is amenable for identifying developmental and disease genes for an organ without constraining to genes that are expressed exclusively in the organ of interest.
Collapse
Affiliation(s)
- Hieu T. Nim
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
- Murdoch Children’s Research Institute, Parkville, VIC Australia
| | - Louis Dang
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
| | - Harshini Thiyagarajah
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Daniel Bakopoulos
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Michael See
- Murdoch Children’s Research Institute, Parkville, VIC Australia
- Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Natalie Charitakis
- Murdoch Children’s Research Institute, Parkville, VIC Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Tennille Sibbritt
- Embryology Research Unit, Children’s Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales Australia
| | - Michael P. Eichenlaub
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
| | - Stuart K. Archer
- Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Nicolas Fossat
- Embryology Research Unit, Children’s Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales Australia
- Present address: Copenhagen Hepatitis C Program, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Present address: Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Richard E. Burke
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Patrick P. L. Tam
- Embryology Research Unit, Children’s Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales Australia
| | - Coral G. Warr
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
- School of Molecular Sciences, La Trobe University, Bundoora, Victoria 3083 Australia
| | - Travis K. Johnson
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
- Murdoch Children’s Research Institute, Parkville, VIC Australia
| |
Collapse
|
11
|
Ruggiero RA, Iqbal QZ, Akram A, Dendy J, Zaidan J. A Rare Case of Hypoparathyroidism and Myxedema Coma in a Patient With Diamond-Blackfan Anemia. Cureus 2021; 13:e19941. [PMID: 34976531 PMCID: PMC8711578 DOI: 10.7759/cureus.19941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 11/05/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare genetic condition that presents due to bone marrow failure caused by a dysfunction in ribosomal biogenesis and function. The patients would often require chronic transfusions as treatment, which puts them at high risk for the development of secondary hemochromatosis. This secondary hemochromatosis results in endocrinopathies due to iron deposition into the endocrine glands. We present an interesting case report of a female patient with multiple endocrinopathies due to secondary hemochromatosis resulting from chronic transfusion therapy. Her endocrinopathies included hypothyroidism complicated by myxedema coma and, interestingly, hypoparathyroidism, which has seldom been reported in DBA patients. Early diagnosis and precise treatment of life-threatening conditions like myxedema coma in DBA patients can avoid morbidity and mortality.
Collapse
|
12
|
|
13
|
Shock in the Setting of Diamond-Blackfan Anemia Relapse. Case Rep Cardiol 2021; 2021:6623119. [PMID: 33927902 PMCID: PMC8049827 DOI: 10.1155/2021/6623119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Adult intensivists have increasing exposure to individuals with congenital diseases surviving into adulthood. Solid knowledge bases and early recognition of the possible sequelae of congenital disorders are crucial in caring for these patients. We present a challenging case of shock and relapse of Diamond-Blackfan anemia in a 42-year-old man lost to follow-up for 18 years and highlighted the importance of healthcare transitions into adulthood and the challenges faced by health care systems to develop new strategies successfully transitioning complex pediatric patients to adult care.
Collapse
|
14
|
Brindley EC, Papoin J, Kennedy L, Robledo RF, Ciciotte SL, Kalfa TA, Peters LL, Blanc L. Rasa3 regulates stage-specific cell cycle progression in murine erythropoiesis. Blood Cells Mol Dis 2021; 87:102524. [PMID: 33341069 PMCID: PMC7856249 DOI: 10.1016/j.bcmd.2020.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are heterogeneous disorders characterized by dysregulated hematopoiesis in various lineages, developmental anomalies, and predisposition to malignancy. The scat (severe combined anemia and thrombocytopenia) mouse model is a model of IBMFS with a phenotype of pancytopenia cycling through crises and remission. Scat carries an autosomal recessive missense mutation in Rasa3 that results in RASA3 mislocalization and loss of function. RASA3 functions as a Ras-GTPase activating protein (GAP), and its loss of function in scat results in increased erythroid RAS activity and reactive oxygen species (ROS) and altered erythroid cell cycle progression, culminating in delayed terminal erythroid differentiation. Here we sought to further resolve the erythroid cell cycle defect in scat through ex vivo flow cytometric analyses. These studies revealed a specific G0/G1 accumulation in scat bone marrow (BM) polychromatophilic erythroblasts and scat BM Ter119-/c-KIT+/CD71lo/med progenitors, with no changes evident in equivalent scat spleen populations. Systematic analyses of RNAseq data from megakaryocyte-erythroid progenitors (MEPs) in scat crisis vs. scat partial remission reveal altered expression of genes involved in the G1-S checkpoint. Together, these data indicate a precise, biphasic role for RASA3 in regulating the cell cycle during erythropoiesis with relevance to hematopoietic disease progression.
Collapse
Affiliation(s)
- Elena C Brindley
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Lauren Kennedy
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | | | - Theodosia A Kalfa
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 05229, USA
| | | | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|
15
|
Ashley RJ, Yan H, Wang N, Hale J, Dulmovits BM, Papoin J, Olive ME, Udeshi ND, Carr SA, Vlachos A, Lipton JM, Da Costa L, Hillyer C, Kinet S, Taylor N, Mohandas N, Narla A, Blanc L. Steroid resistance in Diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J Clin Invest 2020; 130:2097-2110. [PMID: 31961825 DOI: 10.1172/jci132284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the effective clinical use of steroids for the treatment of Diamond Blackfan anemia (DBA), the mechanisms through which glucocorticoids regulate human erythropoiesis remain poorly understood. We report that the sensitivity of erythroid differentiation to dexamethasone is dependent on the developmental origin of human CD34+ progenitor cells, specifically increasing the expansion of CD34+ progenitors from peripheral blood (PB) but not cord blood (CB). Dexamethasone treatment of erythroid-differentiated PB, but not CB, CD34+ progenitors resulted in the expansion of a newly defined CD34+CD36+CD71hiCD105med immature colony-forming unit-erythroid (CFU-E) population. Furthermore, proteomics analyses revealed the induction of distinct proteins in dexamethasone-treated PB and CB erythroid progenitors. Dexamethasone treatment of PB progenitors resulted in the specific upregulation of p57Kip2, a Cip/Kip cyclin-dependent kinase inhibitor, and we identified this induction as critical; shRNA-mediated downregulation of p57Kip2, but not the related p27Kip1, significantly attenuated the impact of dexamethasone on erythroid differentiation and inhibited the expansion of the immature CFU-E subset. Notably, in the context of DBA, we found that steroid resistance was associated with dysregulated p57Kip2 expression. Altogether, these data identify a unique glucocorticoid-responsive human erythroid progenitor and provide new insights into glucocorticoid-based therapeutic strategies for the treatment of patients with DBA.
Collapse
Affiliation(s)
- Ryan J Ashley
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hongxia Yan
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Nan Wang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - John Hale
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Brian M Dulmovits
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Julien Papoin
- Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meagan E Olive
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Namrata D Udeshi
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Adrianna Vlachos
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Jeffrey M Lipton
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | | | - Christopher Hillyer
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France.,Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| |
Collapse
|
16
|
Vlachos A, Atsidaftos E, Lababidi ML, Muir E, Rogers ZR, Alhushki W, Bernstein J, Glader B, Gruner B, Hartung H, Knoll C, Loew T, Nalepa G, Narla A, Panigrahi AR, Sieff CA, Walkovich K, Farrar JE, Lipton JM. L-leucine improves anemia and growth in patients with transfusion-dependent Diamond-Blackfan anemia: Results from a multicenter pilot phase I/II study from the Diamond-Blackfan Anemia Registry. Pediatr Blood Cancer 2020; 67:e28748. [PMID: 33025707 PMCID: PMC8273758 DOI: 10.1002/pbc.28748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA. PROCEDURE Patients ≥2 years of age received L-leucine 700 mg/m2 orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595). RESULTS This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy. CONCLUSIONS L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY;,Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, NY
| | - Evangelia Atsidaftos
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY;,Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, NY
| | | | - Ellen Muir
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY;,Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, NY
| | - Zora R. Rogers
- University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Waseem Alhushki
- Cure 4 The Kids Foundation, Pediatric Hematology Oncology, Las Vegas, NV
| | - Jonathan Bernstein
- Cure 4 The Kids Foundation, Pediatric Hematology Oncology, Las Vegas, NV; presently at Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Bertil Glader
- Division of Pediatric Hematology/Oncology, Stanford University School of Medicine, Stanford, CA
| | - Barbara Gruner
- Division of Pediatric Hematology/Oncology, University of Missouri, Columbia, MO
| | - Helge Hartung
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Christine Knoll
- The Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ
| | - Thomas Loew
- Division of Pediatric Hematology/Oncology, University of Missouri, Columbia, MO, presently at University of Kansas Medical Center, Kansas City, KS
| | - Grzegorz Nalepa
- Department of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Anupama Narla
- Division of Pediatric Hematology/Oncology, Stanford University School of Medicine, Stanford, CA
| | - Arun R. Panigrahi
- University of Louisville, Louisville, KY, presently at University of California Davis, Sacramento, CA
| | - Colin A. Sieff
- Harvard Medical School, Dana-Farber and Boston Children’s, Cancer and Blood Disorders Center, Boston, MA
| | - Kelly Walkovich
- Division of Hematology/Oncology, C.S. Mott Children’s Hospital, Ann Arbor, MI
| | - Jason E. Farrar
- Pediatric Hematology/Oncology, Arkansas Children’s Research Institute & University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jeffrey M. Lipton
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY;,Division of Hematology/Oncology and Cellular Therapy, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, NY
| |
Collapse
|
17
|
Human mutational constraint as a tool to understand biology of rare and emerging bone marrow failure syndromes. Blood Adv 2020; 4:5232-5245. [PMID: 33104793 DOI: 10.1182/bloodadvances.2020002687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited bone marrow failure (IBMF) syndromes are rare blood disorders characterized by hematopoietic cell dysfunction and predisposition to hematologic malignancies. Despite advances in the understanding of molecular pathogenesis of these heterogeneous diseases, genetic variant interpretation, genotype-phenotype correlation, and outcome prognostication remain difficult. As new IBMF and other myelodysplastic syndrome (MDS) predisposition genes continue to be discovered (frequently in small kindred studies), there is an increasing need for a systematic framework to evaluate penetrance and prevalence of mutations in genes associated with IBMF phenotypes. To address this need, we analyzed population-based genomic data from >125 000 individuals in the Genome Aggregation Database for loss-of-function (LoF) variants in 100 genes associated with IBMF. LoF variants in genes associated with IBMF/MDS were present in 0.426% of individuals. Heterozygous LoF variants in genes in which haploinsufficiency is associated with IBMF/MDS were identified in 0.422% of the population; homozygous LoF variants associated with autosomal recessive IBMF/MDS diseases were identified in only .004% of the cohort. Using age distribution of LoF variants and 2 measures of mutational constraint, LOEUF ("loss-of-function observed/expected upper bound fraction") and pLI ("probability of being loss-of-function intolerance"), we evaluated the pathogenicity, tolerance, and age-related penetrance of LoF mutations in specific genes associated with IBMF syndromes. This analysis led to insights into rare IBMF diseases, including syndromes associated with DHX34, MDM4, RAD51, SRP54, and WIPF1. Our results provide an important population-based framework for the interpretation of LoF variant pathogenicity in rare and emerging IBMF syndromes.
Collapse
|
18
|
Abstract
Rare inherited anemias are a subset of anemias caused by a genetic defect along one of the several stages of erythropoiesis or in different cellular components that affect red blood cell integrity, and thus its lifespan. Due to their low prevalence, several complications on growth and development, and multi-organ system damage are not yet well defined. Moreover, during the last decade there has been a lack of proper understanding of the impact of rare anemias on maternal and fetal outcomes. In addition, there are no clear-cut guidelines outlining the pathophysiological trends and management options unique to this special population. Here, we present on behalf of the European Hematology Association, evidence- and consensus-based guidelines, established by an international group of experts in different fields, including hematologists, gynecologists, general practitioners, medical geneticists, and experts in rare inherited anemias from various European countries for standardized and appropriate choice of therapeutic interventions for the management of pregnancy in rare inherited anemias, including Diamond-Blackfan Anemia, Congenital Dyserythropoietic Anemias, Thalassemia, Sickle Cell Disease, Enzyme deficiency and Red cell membrane disorders.
Collapse
|
19
|
Outcome of colorectal cancer in Diamond-Blackfan syndrome with a ribosomal protein S19 mutation. Clin J Gastroenterol 2020; 13:1173-1177. [PMID: 32643123 DOI: 10.1007/s12328-020-01176-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Diamond-Blackfan anemia is an autosomal dominant syndrome, characterized by anemia and a predisposition for malignancies. Ribosomal proteins are responsible for this syndrome, and the incidence of colorectal cancer in patients with this syndrome is higher than the general population. This patient's Diamond-Blackfan anemia was caused by a novel ribosomal protein S19 gene mutation, and he received chemotherapy for colorectal cancer caused by it. In his cancer, ribosomal proteins S19 and TP53 were overexpressed. He received 5FU and cetuximab; however, his anemia made chemotherapy difficult, and he did not survive long. Patients with Diamond-Blackfan anemia should be screened earlier and more often for colorectal cancer than usual.
Collapse
|
20
|
Dempsey E, Homfray T, Simpson JM, Jeffery S, Mansour S, Ostergaard P. Fetal hydrops – a review and a clinical approach to identifying the cause. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1719827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esther Dempsey
- Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Tessa Homfray
- SW Thames Regional Genetics Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Steve Jeffery
- Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Sahar Mansour
- Molecular and Clinical Sciences, St George’s University of London, London, UK
- SW Thames Regional Genetics Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Pia Ostergaard
- Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
21
|
Wang ZJ, Qiu YN, Yu H, Tan LF, Qu P, Jin RM. [Pure red cell aplasia in children: a clinical analysis of 16 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:772-776. [PMID: 31416501 PMCID: PMC7389893 DOI: 10.7499/j.issn.1008-8830.2019.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/05/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the clinical features, treatment, and prognosis of pure red cell aplasia (PRCA) in children. METHODS A retrospective analysis was performed for the clinical data of 16 children with PRCA. The outcome and prognosis of patients treated with prednisone combined with Huaiqihuang granules versus prednisone alone were evaluated. RESULTS All the 16 children complained of symptoms of anemia including pale or sallow complexion. Of 12 children undergoing pathogen test, 7 (58%) were found to have pathogen infection, among which human cytomegalovirus was the most common. Lymphocyte subsets were measured for 7 children, among whom 5 (71%) had lymphocyte immune disorder. Six children were found to have abnormalities in immunoglobulin and complement. The 8 children treated with prednisone combined with Huaiqihuang granules had a median follow-up time of 21.5 months, among whom 1 was almost cured, 1 was relieved, and 6 were obviously improved; the median onset time of treatment was 1 month, and 2 children had disease recurrence in the course of drug reduction or withdrawal. The 8 children in the prednisone alone treatment group had a median follow-up time of 34 months, among whom 4 were almost cured, and 4 were obviously improved; the median onset time of treatment was 2.5 months, and 4 children had recurrence during drug reduction or withdrawal. CONCLUSIONS Children with PRCA usually complain of anemia-related symptoms. Laboratory tests show pathogen infection in some children with PRCA, and most of children have immune disorders. Glucocorticoids have a good therapeutic effect, but some children relapse in the course of drug reduction or withdrawal. Combined treatment with prednisone and Huaiqihuang granules may have a faster onset of action and less possibility of recurrence.
Collapse
Affiliation(s)
- Zhong-Jian Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | |
Collapse
|
22
|
Vlachos A, Osorio DS, Atsidaftos E, Kang J, Lababidi ML, Seiden HS, Gruber D, Glader BE, Onel K, Farrar JE, Bodine DM, Aspesi A, Dianzani I, Ramenghi U, Ellis SR, Lipton JM. Increased Prevalence of Congenital Heart Disease in Children With Diamond Blackfan Anemia Suggests Unrecognized Diamond Blackfan Anemia as a Cause of Congenital Heart Disease in the General Population: A Report of the Diamond Blackfan Anemia Registry. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002044. [PMID: 29748317 DOI: 10.1161/circgenetics.117.002044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Adrianna Vlachos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.) .,Division of Hematology/Oncology, and Stem Cell Transplantation (A.V., D.S.O., E.A., K.O., J.M.L.)
| | - Diana S Osorio
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.).,Division of Hematology/Oncology, and Stem Cell Transplantation (A.V., D.S.O., E.A., K.O., J.M.L.).,Division of Pediatric Hematology/Oncology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (D.S.O.)
| | - Evangelia Atsidaftos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.).,Division of Hematology/Oncology, and Stem Cell Transplantation (A.V., D.S.O., E.A., K.O., J.M.L.)
| | - Jessica Kang
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.).,Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (J.K., D.M.B.)
| | - Mohammad Lutfi Lababidi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.)
| | - Howard S Seiden
- Division of Pediatric Cardiology (H.S.S., D.G.).,Division of Cardiology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY (H.S.S.)
| | - Dorota Gruber
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.).,Division of Pediatric Cardiology (H.S.S., D.G.)
| | - Bertil E Glader
- Division of Hematology/Oncology, Lucile Packard Children's Hospital Stanford, Palo Alto, CA (B.E.G.)
| | - Kenan Onel
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.).,Division of Hematology/Oncology, and Stem Cell Transplantation (A.V., D.S.O., E.A., K.O., J.M.L.).,Division of Genetics and Genomics (K.O.), Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
| | - Jason E Farrar
- Department of Pediatrics, Section of Hematology and Oncology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR (J.E.F.)
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (J.K., D.M.B.)
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy (A.A., I.D.)
| | - Irma Dianzani
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy (A.A., I.D.)
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Torino, Italy (U.R.)
| | - Steven R Ellis
- Department of Biochemistry (S.R.E.).,Department of Molecular Genetics (S.R.E.), University of Louisville, KY
| | - Jeffrey M Lipton
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY (A.V., D.S.O., E.A., J.K., M.L.L., D.G., K.O., J.M.L.).,Division of Hematology/Oncology, and Stem Cell Transplantation (A.V., D.S.O., E.A., K.O., J.M.L.)
| |
Collapse
|
23
|
Hernandez JA, Castro VL, Reyes-Nava N, Montes LP, Quintana AM. Mutations in the zebrafish hmgcs1 gene reveal a novel function for isoprenoids during red blood cell development. Blood Adv 2019; 3:1244-1254. [PMID: 30987969 PMCID: PMC6482358 DOI: 10.1182/bloodadvances.2018024539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Nayeli Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Laura P Montes
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
24
|
Genetic predisposition to MDS: clinical features and clonal evolution. Blood 2019; 133:1071-1085. [PMID: 30670445 DOI: 10.1182/blood-2018-10-844662] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndrome (MDS) typically presents in older adults with the acquisition of age-related somatic mutations, whereas MDS presenting in children and younger adults is more frequently associated with germline genetic predisposition. Germline predisposition is increasingly recognized in MDS presenting at older ages as well. Although each individual genetic disorder is rare, as a group, the genetic MDS disorders account for a significant subset of MDS in children and young adults. Because many patients lack overt syndromic features, genetic testing plays an important role in the diagnostic evaluation. This review provides an overview of syndromes associated with genetic predisposition to MDS, discusses implications for clinical evaluation and management, and explores scientific insights gleaned from the study of MDS predisposition syndromes. The effects of germline genetic context on the selective pressures driving somatic clonal evolution are explored. Elucidation of the molecular and genetic pathways driving clonal evolution may inform surveillance and risk stratification, and may lead to the development of novel therapeutic strategies.
Collapse
|
25
|
Khurana M, Edwards D, Rescorla F, Miller C, He Y, Sierra Potchanant E, Nalepa G. Whole-exome sequencing enables correct diagnosis and surgical management of rare inherited childhood anemia. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a003152. [PMID: 30275003 PMCID: PMC6169821 DOI: 10.1101/mcs.a003152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Correct diagnosis of inherited bone marrow failure syndromes is a challenge because of the significant overlap in clinical presentation of these disorders. Establishing right genetic diagnosis is crucial for patients’ optimal clinical management and family counseling. A nondysmorphic infant reported here developed severe transfusion-dependent anemia and met clinical criteria for diagnosis of Diamond–Blackfan anemia (DBA). However, whole-exome sequencing demonstrated that the child was a compound heterozygote for a paternally inherited pathogenic truncating variant (SPTA1c.4975 C>T) and a novel maternally inherited missense variant of uncertain significance (SPTA1c.5029 G>A) within the spectrin gene, consistent with hereditary hemolytic anemia due to disruption of red blood cell (RBC) cytoskeleton. Ektacytometry demonstrated abnormal membrane flexibility of the child's RBCs. Scanning electron microscopy revealed morphological aberrations of the patient's RBCs. Both parents were found to have mild hereditary elliptocytosis. Importantly, patients with severe RBC membrane defects may be successfully managed with splenectomy to minimize peripheral destruction of misshapen RBCs, whereas patients with DBA require lifelong transfusions, steroid therapy, or hematopoietic stem cell transplantation. As suggested by the WES findings, splenectomy rendered our patient transfusion-independent, improving the family's quality of life and preventing transfusion-related iron overload. This case illustrates the utility of whole-exome sequencing in clinical care of children with genetic disorders of unclear presentation.
Collapse
Affiliation(s)
- Monica Khurana
- Riley Hospital for Children at IU Health, Indianapolis, Indiana 46202, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, IU School of Medicine, Indianapolis, Indiana 46202, USA
| | - Donna Edwards
- Riley Hospital for Children at IU Health, Indianapolis, Indiana 46202, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, IU School of Medicine, Indianapolis, Indiana 46202, USA.,Wells Center for Pediatric Research, IU School of Medicine, Indianapolis, Indiana 46202, USA
| | - Frederic Rescorla
- Department of Surgery, IU School of Medicine, Indianapolis, Indiana 46202, USA
| | - Caroline Miller
- Electron Microscopy Core, IU School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ying He
- Wells Center for Pediatric Research, IU School of Medicine, Indianapolis, Indiana 46202, USA
| | | | - Grzegorz Nalepa
- Riley Hospital for Children at IU Health, Indianapolis, Indiana 46202, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, IU School of Medicine, Indianapolis, Indiana 46202, USA.,Wells Center for Pediatric Research, IU School of Medicine, Indianapolis, Indiana 46202, USA.,Department of Biochemistry, IU School of Medicine, Indianapolis, Indiana 46202, USA.,Department of Medical and Molecular Genetics, IU School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
26
|
|
27
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
28
|
Lee CH, Kiparaki M, Blanco J, Folgado V, Ji Z, Kumar A, Rimesso G, Baker NE. A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell 2018; 46:456-469.e4. [PMID: 30078730 DOI: 10.1016/j.devcel.2018.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 01/12/2023]
Abstract
Ribosomes perform protein synthesis but are also involved in signaling processes, the full extent of which are still being uncovered. We report that phenotypes of mutating ribosomal proteins (Rps) are largely due to signaling. Using Drosophila, we discovered that a bZip-domain protein, Xrp1, becomes elevated in Rp mutant cells. Xrp1 reduces translation and growth, delays development, is responsible for gene expression changes, and causes the cell competition of Rp heterozygous cells from genetic mosaics. Without Xrp1, even cells homozygously deleted for Rp genes persist and grow. Xrp1 induction in Rp mutant cells depends on a particular Rp with regulatory effects, RpS12, and precedes overall changes in translation. Thus, effects of Rp mutations, even the reductions in translation and growth, depend on signaling through the Xrp1 pathway and are not simply consequences of reduced ribosome production limiting protein synthesis. One benefit of this system may be to eliminate Rp-mutant cells by cell competition.
Collapse
Affiliation(s)
- Chang-Hyun Lee
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jorge Blanco
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Virginia Folgado
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zhejun Ji
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Amit Kumar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
30
|
Danilova N, Wilkes M, Bibikova E, Youn MY, Sakamoto KM, Lin S. Innate immune system activation in zebrafish and cellular models of Diamond Blackfan Anemia. Sci Rep 2018; 8:5165. [PMID: 29581525 PMCID: PMC5980095 DOI: 10.1038/s41598-018-23561-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Deficiency of ribosomal proteins (RPs) leads to Diamond Blackfan Anemia (DBA) associated with anemia, congenital defects, and cancer. While p53 activation is responsible for many features of DBA, the role of immune system is less defined. The Innate immune system can be activated by endogenous nucleic acids from non-processed pre-rRNAs, DNA damage, and apoptosis that occurs in DBA. Recognition by toll like receptors (TLRs) and Mda5-like sensors induces interferons (IFNs) and inflammation. Dying cells can also activate complement system. Therefore we analyzed the status of these pathways in RP-deficient zebrafish and found upregulation of interferon, inflammatory cytokines and mediators, and complement. We also found upregulation of receptors signaling to IFNs including Mda5, Tlr3, and Tlr9. TGFb family member activin was also upregulated in RP-deficient zebrafish and in RPS19-deficient human cells, which include a lymphoid cell line from a DBA patient, and fetal liver cells and K562 cells transduced with RPS19 shRNA. Treatment of RP-deficient zebrafish with a TLR3 inhibitor decreased IFNs activation, acute phase response, and apoptosis and improved their hematopoiesis and morphology. Inhibitors of complement and activin also had beneficial effects. Our studies suggest that innate immune system contributes to the phenotype of RPS19-deficient zebrafish and human cells.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mark Wilkes
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Bibikova
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA
| | - Min-Young Youn
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Department of Pediatrics Stanford University School of Medicine, Stanford, CA, USA.
| | - Shuo Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Csde1 binds transcripts involved in protein homeostasis and controls their expression in an erythroid cell line. Sci Rep 2018; 8:2628. [PMID: 29422612 PMCID: PMC5805679 DOI: 10.1038/s41598-018-20518-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Expression of the RNA-binding protein Csde1 (Cold shock domain protein e1) is strongly upregulated during erythropoiesis compared to other hematopoietic lineages. Csde1 expression is impaired in the severe congenital anemia Diamond Blackfan Anemia (DBA), and reduced expression of Csde1 in healthy erythroblasts impaired their proliferation and differentiation. To investigate the cellular pathways controlled by Csde1 in erythropoiesis, we identified the transcripts that physically associate with Csde1 in erythroid cells. These mainly encoded proteins involved in ribogenesis, mRNA translation and protein degradation, but also proteins associated with the mitochondrial respiratory chain and mitosis. Crispr/Cas9-mediated deletion of the first cold shock domain of Csde1 affected RNA expression and/or protein expression of Csde1-bound transcripts. For instance, protein expression of Pabpc1 was enhanced while Pabpc1 mRNA expression was reduced indicating more efficient translation of Pabpc1 followed by negative feedback on mRNA stability. Overall, the effect of reduced Csde1 function on mRNA stability and translation of Csde1-bound transcripts was modest. Clones with complete loss of Csde1, however, could not be generated. We suggest that Csde1 is involved in feed-back control in protein homeostasis and that it dampens stochastic changes in mRNA expression.
Collapse
|
32
|
Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018; 67:109-127. [PMID: 28942353 PMCID: PMC6710477 DOI: 10.1016/j.jbior.2017.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.
Collapse
MESH Headings
- Bone Marrow Diseases/metabolism
- Bone Marrow Diseases/pathology
- Cryoelectron Microscopy
- Exocrine Pancreatic Insufficiency/metabolism
- Exocrine Pancreatic Insufficiency/pathology
- Humans
- Lipomatosis/metabolism
- Lipomatosis/pathology
- Mutation
- Proteins/genetics
- Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Shwachman-Diamond Syndrome
Collapse
Affiliation(s)
- Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
|
34
|
Arbiv OA, Cuvelier G, Klaassen RJ, Fernandez CV, Robitaille N, Steele M, Breakey V, Abish S, Wu J, Sinha R, Silva M, Goodyear L, Jardine L, Lipton JH, Corriveau-Bourque C, Brossard J, Michon B, Ghemlas I, Waespe N, Zlateska B, Sung L, Cada M, Dror Y. Molecular analysis and genotype-phenotype correlation of Diamond-Blackfan anemia. Clin Genet 2017; 93:320-328. [PMID: 29044489 DOI: 10.1111/cge.13158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) features hypoplastic anemia and congenital malformations, largely caused by mutations in various ribosomal proteins. The aim of this study was to characterize the spectrum of genetic lesions causing DBA and identify genotypes that correlate with phenotypes of clinical significance. Seventy-four patients with DBA from across Canada were included. Nucleotide-level mutations or large deletions were identified in 10 ribosomal genes in 45 cases. The RPS19 mutation group was associated with higher requirement for chronic treatment for anemia than other DBA groups. Patients with RPS19 mutations, however, were more likely to maintain long-term corticosteroid response without requirement for further chronic transfusions. Conversely, patients with RPL11 mutations were less likely to need chronic treatment. Birth defects, including cardiac, skeletal, hand, cleft lip or palate and genitourinary malformations, also varied among the various genetic groups. Patients with RPS19 mutations had the fewest number of defects, while patients with RPL5 had the greatest number of birth defects. This is the first study to show differences between DBA genetic groups with regards to treatment. Previously unreported differences in the rate and types of birth defects were also identified. These data allow better patient counseling, a more personalized monitoring plan, and may also suggest differential functions of DBA genes on ribosome and extra-ribosomal functions.
Collapse
Affiliation(s)
- O A Arbiv
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - G Cuvelier
- Division of Haematology/Oncology, CancerCare Manitoba, Winnipeg, Canada
| | - R J Klaassen
- Division of Haematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - C V Fernandez
- Division of Haematology/Oncology, IWK Health Centre, Halifax, Canada
| | - N Robitaille
- Division of Haematology/Oncology, CHU Sainte Justine, Montreal, Canada
| | - M Steele
- Division of Haematology/Oncology, Alberta Children's Hospital, Calgary, Canada
| | - V Breakey
- Division of Haematology/Oncology, McMaster Children's Hospital, Hamilton, Canada
| | - S Abish
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, Canada
| | - J Wu
- Division of Haematology/Oncology, British Columbia Children's Hospital, Vancouver, Canada
| | - R Sinha
- Division of Haematology/Oncology, University of Saskatchewan, Saskatoon, Canada
| | - M Silva
- Division of Haematology/Oncology, Queen's University, Kingston, Canada
| | - L Goodyear
- Division of Haematology/Oncology, Janeway Child Health Centre, St. John's, Canada
| | - L Jardine
- Division of Haematology/Oncology, Children's Hospital of Western Ontario, London, Canada
| | - J H Lipton
- Department of Haematology and Internal Medicine, Princess Margaret Hospital, Toronto, Canada
| | - C Corriveau-Bourque
- Division of Haematology/Oncology, University of Alberta Health Sciences Centre, Edmonton, Canada
| | - J Brossard
- Division of Haematology/Oncology, Centre Y Sante L'Estrie-Fleur, Sherbrooke, Canada
| | - B Michon
- Division of Haematology/Oncology, Centre Hospitalier de l'Université Laval, Quebec City, Canada
| | - I Ghemlas
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Division of Haematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Waespe
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - B Zlateska
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - L Sung
- Program in Child Health and Evaluative Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Lymphoma Leukemia Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - M Cada
- The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Y Dror
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Vlachos A. Acquired ribosomopathies in leukemia and solid tumors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:716-719. [PMID: 29222326 PMCID: PMC6142526 DOI: 10.1182/asheducation-2017.1.716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutation in the gene encoding the small subunit-associated ribosomal protein RPS19, leading to RPS19 haploinsufficiency, is one of the ribosomal protein gene defects responsible for the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA). Additional inherited and acquired defects in ribosomal proteins (RPs) continue to be identified and are the basis for a new class of diseases called the ribosomopathies. Acquired RPS14 haploinsufficiency has been found to be causative of the bone marrow failure found in 5q- myelodysplastic syndromes. Both under- and overexpression of RPs have also been implicated in several malignancies. This review will describe the somatic ribosomopathies that have been found to be associated with a variety of solid tumors as well as leukemia and will review cancers in which over- or underexpression of these proteins seem to be associated with outcome.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, Zucker School of Medicine, Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
36
|
McReynolds LJ, Savage SA. Pediatric leukemia susceptibility disorders: manifestations and management. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:242-250. [PMID: 29222262 PMCID: PMC6142612 DOI: 10.1182/asheducation-2017.1.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The clinical manifestations of inherited susceptibility to leukemia encompass a wide phenotypic range, including patients with certain congenital anomalies or early-onset myelodysplastic syndrome (MDS) and some with no obvious medical problems until they develop leukemia. Leukemia susceptibility syndromes occur as a result of autosomal dominant, autosomal recessive, or X-linked recessive inheritance, or de novo occurrence, of germline pathogenic variants in DNA repair, ribosome biogenesis, telomere biology, hematopoietic transcription factors, tumor suppressors, and other critical cellular processes. Children and adults with cytopenias, MDS, dysmorphic features, notable infectious histories, immunodeficiency, certain dermatologic findings, lymphedema, unusual sensitivity to radiation or chemotherapy, or acute leukemia with a family history of early-onset cancer, pulmonary fibrosis, or alveolar proteinosis should be thoroughly evaluated for a leukemia susceptibility syndrome. Genetic testing and other diagnostic modalities have improved our ability to identify these patients and to counsel them and their family members for subsequent disease risk, cancer surveillance, and therapeutic interventions. Herein, the leukemia susceptibility syndromes are divided into 3 groups: (1) those associated with an underlying inherited bone marrow failure syndrome, (2) disorders in which MDS precedes leukemia development, and (3) those with a risk primarily of leukemia. Although children are the focus of this review, it is important for clinicians to recognize that inherited susceptibility to cancer can present at any age, even in older adults; genetic counseling is essential and prompt referral to experts in each syndrome is strongly recommended.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
37
|
|
38
|
Savage SA, Dufour C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol 2017. [PMID: 28637614 DOI: 10.1053/j.seminhematol.2017.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inherited marrow failure syndromes (IBMFS) are a heterogeneous group of diseases characterized by failure in the production of one or more blood lineage. The clinical manifestations of the IBMFS vary according to the type and number of blood cell lines involved, including different combinations of anemia, leukopenia, and thrombocytopenia. In some IBMFS, systemic non-hematologic manifestations, including congenital malformations, mucocutaneous abnormalities, developmental delay, and other medical complications, may be present. Fanconi anemia (FA), caused by germline pathogenic variants in the DNA repair genes comprising the FA/BRCA pathway is associated with congenital anomalies, bone marrow failure, and increased risk of myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML), and solid tumors. Dyskeratosis congenita (DC) is a telomere biology disorder (TBD) caused by aberrations in key telomere biology genes. In addition to mucocutaneous manifestations, patients with DC are at increased risk of marrow failure, MDS, AML, pulmonary fibrosis, and other complications. Ribosomal biology defects are the primary causes of Diamond Blackfan anemia (DBA) and Shwachman Diamond syndrome (SDS). In addition to pure red blood cell aplasia, DBA is associated with elevated risk of solid tumors, AML, and MDS. Patients with SDS have pancreatic insufficiency, neutropenia, as well as MDS and AML risks. Patients with severe congenital neutropenia (SCN), caused by pathogenic variants in genes essential in myeloid development, have profound neutropenia and high risk of MDS and AML. Herein we review the genetic causes, clinical features, diagnostic modalities, predisposition to malignancies with focus on leukemogenic markers whenever available, and approaches to treatments of the classical IBMFS: FA, DC, SDS, DBA, and SCN.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
39
|
Molecular convergence in ex vivo models of Diamond-Blackfan anemia. Blood 2017; 129:3111-3120. [PMID: 28377399 DOI: 10.1182/blood-2017-01-760462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 01/30/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by erythroid hypoplasia, usually without perturbation of other hematopoietic lineages. Approximately 65% of DBA patients with autosomal dominant inheritance have heterozygous mutations or deletions in ribosomal protein (RP) genes while <1% of patients with X-linked inheritance have been identified with mutations in the transcription factor GATA1 Erythroid cells from patients with DBA have not been well characterized, and the mechanisms underlying the erythroid specific effects of either RP or GATA1 associated DBA remain unclear. We have developed an ex vivo culture system to expand peripheral blood CD34+ progenitor cells from patients with DBA and differentiate them into erythroid cells. Cells from patients with RP or GATA1 mutations showed decreased proliferation and delayed erythroid differentiation in comparison with controls. RNA transcript analyses of erythroid cells from controls and patients with RP or GATA1 mutations showed distinctive differences, with upregulation of heme biosynthesis genes prominently in RP-mediated DBA and failure to upregulate components of the translational apparatus in GATA1-mediated DBA. Our data show that dysregulation of translation is a common feature of DBA caused by both RP and GATA1 mutations. This trial was registered at www.clinicaltrials.gov as #NCT00106015.
Collapse
|
40
|
Dietz AC, Mehta PA, Vlachos A, Savage SA, Bresters D, Tolar J, Boulad F, Dalle JH, Bonfim C, de la Fuente J, Duncan CN, Baker KS, Pulsipher MA, Lipton JM, Wagner JE, Alter BP. Current Knowledge and Priorities for Future Research in Late Effects after Hematopoietic Cell Transplantation for Inherited Bone Marrow Failure Syndromes: Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2017; 23:726-735. [PMID: 28115275 DOI: 10.1016/j.bbmt.2017.01.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 11/27/2022]
Abstract
Fanconi anemia (FA), dyskeratosis congenita (DC), and Diamond Blackfan anemia (DBA) are 3 of the most common inherited bone marrow failure syndromes (IBMFS), in which the hematologic manifestations can be cured with hematopoietic cell transplantation (HCT). Later in life, these patients face a variety of medical conditions, which may be a manifestation of underlying disease or due to pre-HCT therapy, the HCT, or a combination of all these elements. Very limited long-term follow-up data exist in these populations, with FA the only IBMFS that has specific published data. During the international consensus conference sponsored by the Pediatric Blood and Marrow Transplant Consortium entitled "Late Effects Screening and Recommendations following Allogeneic Hematopoietic Cell Transplant (HCT) for Immune Deficiency and Nonmalignant Hematologic Disease" held in Minneapolis, Minnesota in May of 2016, a half-day session was focused specifically on the unmet needs for these patients with IBMFS. A multidisciplinary group of experts discussed what is currently known, outlined an agenda for future research, and laid out long-term follow-up guidelines based on a combination of evidence in the literature as well as expert opinion. This article addresses the state of science in that area as well as consensus regarding the agenda for future research, with specific screening guidelines to follow in the next article from this group.
Collapse
Affiliation(s)
- Andrew C Dietz
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California.
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Adrianna Vlachos
- Hofstra Northwell School of Medicine, Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, New Hyde Park, New York
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Dorine Bresters
- Willem-Alexander Children's Hospital, SCT Unit, Leiden University Medical Center, Leiden, The Netherlands
| | - Jakub Tolar
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Farid Boulad
- Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Jean Hugues Dalle
- Université Paris 7, Hôpital Robert-Debré, Service d'hémato-immunologie, Paris, France
| | - Carmem Bonfim
- Hospital de Clinicas, Federal University of Parana, Curitiba, Brazil
| | - Josu de la Fuente
- Section of Paediatrics, Imperial College, London, United Kingdom; Department of Paediatric Haematology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Christine N Duncan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - K Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael A Pulsipher
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Jeffrey M Lipton
- Hofstra Northwell School of Medicine, Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, New Hyde Park, New York
| | - John E Wagner
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
41
|
Mao B, Huang S, Lu X, Sun W, Zhou Y, Pan X, Yu J, Lai M, Chen B, Zhou Q, Mao S, Bian G, Zhou J, Nakahata T, Ma F. Early Development of Definitive Erythroblasts from Human Pluripotent Stem Cells Defined by Expression of Glycophorin A/CD235a, CD34, and CD36. Stem Cell Reports 2016; 7:869-883. [PMID: 27720903 PMCID: PMC5106477 DOI: 10.1016/j.stemcr.2016.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of human erythroid cells has been mostly examined in models of adult hematopoiesis, while their early derivation during embryonic and fetal stages is largely unknown. We observed the development and maturation of erythroblasts derived from human pluripotent stem cells (hPSCs) by an efficient co-culture system. These hPSC-derived early erythroblasts initially showed definitive characteristics with a glycophorin A+ (GPA+) CD34lowCD36− phenotype and were distinct from adult CD34+ cell-derived ones. After losing CD34 expression, early GPA+CD36− erythroblasts matured into GPA+CD36low/+ stage as the latter expressed higher levels of β-globin along with a gradual loss of mesodermal and endothelial properties, and terminally suppressed CD36. We establish a unique in vitro model to trace the early development of hPSC-derived erythroblasts by serial expression of CD34, GPA, and CD36. Our findings may provide insight into the understanding of human early erythropoiesis and, ultimately, therapeutic potential. The hPSC/AGM-S3 co-culture system generates considerable definitive erythroblasts hPSC-derived erythroblasts initiate from a unique GPA+CD34lowCD36− fraction Human early erythropoiesis can be traced by serial expression of CD34, GPA, and CD36
Collapse
Affiliation(s)
- Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xulin Lu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jinfeng Yu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Song Mao
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech Inc., Chengdu 610036, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiaxi Zhou
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China; State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
Ben-Ami T, Revel-Vilk S, Brooks R, Shaag A, Hershfield MS, Kelly SJ, Ganson NJ, Kfir-Erenfeld S, Weintraub M, Elpeleg O, Berkun Y, Stepensky P. Extending the Clinical Phenotype of Adenosine Deaminase 2 Deficiency. J Pediatr 2016; 177:316-320. [PMID: 27514238 DOI: 10.1016/j.jpeds.2016.06.058] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/02/2016] [Accepted: 06/09/2016] [Indexed: 01/10/2023]
Abstract
Adenosine deaminase 2 deficiency is an autoinflammatory disease, characterized by various forms of vasculitis. We describe 5 patients with adenosine deaminase 2 deficiency with various hematologic manifestations, including pure red cell aplasia, with no evidence for vasculitis.
Collapse
Affiliation(s)
- Tal Ben-Ami
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Shoshana Revel-Vilk
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Rebecca Brooks
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael S Hershfield
- Department of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC
| | - Susan J Kelly
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Nancy J Ganson
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Shlomit Kfir-Erenfeld
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Weintraub
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yackov Berkun
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Polina Stepensky
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
44
|
Clinical features, mutations and treatment of 104 patients of Diamond-Blackfan anemia in China: a single-center retrospective study. Int J Hematol 2016; 104:430-9. [PMID: 27329125 DOI: 10.1007/s12185-016-2044-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by a paucity of erythroid progenitors. We summarized the clinical and genetic features of 104 DBA patients in a single-center retrospective study in China. Data of DBA patients who received consultations at our center from 2003 to 2015 were analyzed retrospectively. Genes encoding 10 ribosomal proteins (RPs) and GATA1 were sequenced for mutation detection. Our cohort was composed of 65 males and 39 females. Congenital malformations were observed in 19 patients. Mutations of the RP genes were detected in 58.3 % patients. Twenty different mutations were first reported. Thirty-four patients received prednisone combined with CsA therapy, and improvement was observed in 20 cases. During follow-up for a median 39 months, 33.7 % of the patients achieved remission, 41.3 % of the patients were persistently transfusion independent, 21.7 % of the patients were transfusion dependent, and three patients died. The patient group with detected mutations had a younger age of disease onset, a higher malformation rate, and tended to have a lower remission rate and a higher transfusion-dependence rate. Prednisone in combination with cyclosporine A can be a second-line choice for DBA patients. Differences were detected between DBA patients with and without detectable mutations in the genes studied.
Collapse
|
45
|
Jiang H, Wu MY, Li DZ. A Novel Mutation of Ribosomal Protein S19 Gene in a Chinese Child with Diamond-Blackfan Anemia. Indian J Hematol Blood Transfus 2016; 32:233-4. [DOI: 10.1007/s12288-015-0524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022] Open
|
46
|
Wan Y, Zhang Q, Zhang Z, Song B, Wang X, Zhang Y, Jia Q, Cheng T, Zhu X, Leung AYH, Yuan W, Jia H, Fang X. Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia. BMC Med Genomics 2016; 9:13. [PMID: 26961822 PMCID: PMC4785739 DOI: 10.1186/s12920-016-0174-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 03/03/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) was the first ribosomopathy associated with mutations in ribosome protein (RP) genes. The clinical phenotypes of DBA include failure of erythropoiesis, congenital anomalies and cancer predisposition. Mutations in RPL5 are reported in approximately 9 ~ 21 % of DBA patients, which represents the most common pathological condition related to a large-subunit ribosomal protein. However, it remains unclear how RPL5 downregulation results in severe phenotypes of this disease. RESULTS In this study, we generated a zebrafish model of DBA with RPL5 morphants and implemented high-throughput RNA-seq and ncRNA-seq to identify key genes, lncRNAs, and miRNAs during zebrafish development and hematopoiesis. We demonstrated that RPL5 is required for both primitive and definitive hematopoiesis processes. By comparing with other DBA zebrafish models and processing functional coupling network, we identified some common regulated genes, lncRNAs and miRNAs, that might play important roles in development and hematopoiesis. CONCLUSIONS Ribosome biogenesis and translation process were affected more in RPL5 MO than in other RP MOs. Both P53 dependent (for example, cell cycle pathway) and independent pathways (such as Aminoacyl-tRNA biosynthesis pathway) play important roles in DBA pathology. Our results therefore provide a comprehensive basis for the study of molecular pathogenesis of RPL5-mediated DBA and other ribosomopathies.
Collapse
Affiliation(s)
- Yang Wan
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Qian Zhang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhaojun Zhang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Binfeng Song
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiaomin Wang
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yingchi Zhang
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Qiong Jia
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Tao Cheng
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Xiaofan Zhu
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | | | - Weiping Yuan
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Haibo Jia
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiangdong Fang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
47
|
Society for Pediatric Research 2015 Young Investigator Award: genetics of human hematopoiesis-what patients can teach us about blood cell production. Pediatr Res 2016; 79:366-70. [PMID: 26575596 DOI: 10.1038/pr.2015.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/09/2022]
Abstract
Blood cell production or hematopoiesis is one of the most well-understood paradigms of cell differentiation in the body. The majority of work on hematopoiesis comes from studies that have primarily been conducted in mice, zebrafish, or other valuable model systems. However, it is clear that such model organisms may not consistently and faithfully mimic what is observed in humans with blood disorders. Moreover, there is significant divergence between species that is increasingly being appreciated at the genomic level. As a result, there is an opportunity to use observations in humans to provide a refined view of hematopoiesis. Here, we discuss vignettes from our work that illustrate how insight from human genetics can improve our understanding of blood cell production and identify promising therapeutic approaches for blood disorders.
Collapse
|
48
|
Abstract
The daily production of up to 1011 erythrocytes is tightly controlled to maintain the number of erythrocytes in peripheral blood between narrow boundaries. Availability of growth factors and nutrients, particularly iron, control the proliferation and survival of precursor cells partly through control of mRNA translation. General translation initiation mechanisms can selectively control translation of transcripts that carry specific structures in the UTRs. This selective mRNA translation is an important layer of gene expression regulation in erythropoiesis. Ribosome profiling is a recently developed high throughput sequencing technique for global mapping of translation initiation sites across the transcriptome. Here we describe what is known about control of mRNA translation in erythropoiesis and how ribosome profiling will help to further our knowledge. Ribosome footprinting will give insight in transcript-specific translation at codon resolution, which is of great value to understand many cellular processes during erythropoiesis. It will be of particular interest to understand responses to iron availability and reactive oxygen species (ROS), which affects translation initiation of transcripts harbouring upstream ORFs (uORF) and potential alternative downstream ORFs (aORF).
Collapse
|
49
|
Engert A, Balduini C, Brand A, Coiffier B, Cordonnier C, Döhner H, de Wit TD, Eichinger S, Fibbe W, Green T, de Haas F, Iolascon A, Jaffredo T, Rodeghiero F, Salles G, Schuringa JJ. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica 2016; 101:115-208. [PMID: 26819058 PMCID: PMC4938336 DOI: 10.3324/haematol.2015.136739] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/28/2023] Open
Abstract
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
Collapse
Affiliation(s)
| | | | - Anneke Brand
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | | | | | | | | | | | - Willem Fibbe
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | - Tony Green
- Cambridge Institute for Medical Research, United Kingdom
| | - Fleur de Haas
- European Hematology Association, The Hague, the Netherlands
| | | | | | | | - Gilles Salles
- Hospices Civils de Lyon/Université de Lyon, Pierre-Bénite, France
| | | |
Collapse
|
50
|
Lahoti A, Harris YT, Speiser PW, Atsidaftos E, Lipton JM, Vlachos A. Endocrine Dysfunction in Diamond-Blackfan Anemia (DBA): A Report from the DBA Registry (DBAR). Pediatr Blood Cancer 2016; 63:306-12. [PMID: 26496000 PMCID: PMC4829065 DOI: 10.1002/pbc.25780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome. The mainstays of treatment involve chronic red cell transfusions, long-term glucocorticoid therapy, and stem cell transplantation. Systematic data concerning endocrine function in DBA are limited. We studied patients in the DBA Registry (DBAR) of North America to assess the prevalence of various endocrinopathies. PROCEDURE In a pilot study, retrospective data were collected for 12 patients with DBA. Subsequently, patients with DBA aged 1-39 years were recruited prospectively. Combined, 57 patients were studied; 38 chronically transfused, 12 glucocorticoid-dependent, and seven in remission. Data were collected on anthropometric measurements, systematic screening of pituitary, thyroid, parathyroid, adrenal, pancreatic, and gonadal function, and ferritin levels. Descriptive statistics were tabulated and group differences were assessed. RESULTS Fifty-three percent of patients had ≥ 1 endocrine disorder, including adrenal insufficiency (32%), hypogonadism (29%), hypothyroidism (14%), growth hormone dysfunction (7%), diabetes mellitus (2%), and/or diabetes insipidus (2%). Ten of the 33 patients with available heights had height standard deviation less than -2. Low 25-hydroxy vitamin D (25(OH)D) levels were present in 50%. A small proportion also had osteopenia, osteoporosis, or hypercalciuria. Most with adrenal insufficiency were glucocorticoid dependent; other endocrinopathies were more common in chronically transfused patients. CONCLUSIONS Endocrine dysfunction is common in DBA, as early as the teenage years. Although prevalence is highest in transfused patients, patients taking glucocorticoids or in remission also have endocrine dysfunction. Longitudinal studies are needed to better understand the etiology and true prevalence of these disorders.
Collapse
Affiliation(s)
- Amit Lahoti
- Division of Endocrinology, Cohen Children’s Medical Center (CCMC), New Hyde Park, NY,Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Yael T Harris
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY,Internal Medicine-Endocrinology, North Shore LIJ Health System (NSLIJHS), Manhasset, NY
| | - Phyllis W Speiser
- Division of Endocrinology, Cohen Children’s Medical Center (CCMC), New Hyde Park, NY,Hofstra North Shore-LIJ School of Medicine, Hempstead, NY,Feinstein Institute for Medical Research (FIMR); Manhasset, NY
| | | | - Jeffrey M Lipton
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY,Feinstein Institute for Medical Research (FIMR); Manhasset, NY,Division of Hematology/Oncology and Stem Cell Transplantation, CCMC, New Hyde Park, NY
| | - Adrianna Vlachos
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY,Feinstein Institute for Medical Research (FIMR); Manhasset, NY,Division of Hematology/Oncology and Stem Cell Transplantation, CCMC, New Hyde Park, NY
| |
Collapse
|