1
|
Rida J, Bouchriti Y, Ait Haddou M, Achbani A, Sine H, Serhane H. Meteorological factors and climate change impact on asthma: a systematic review of epidemiological evidence. J Asthma 2024:1-10. [PMID: 38953539 DOI: 10.1080/02770903.2024.2375272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE This systematic review aimed to investigate the epidemiological data about meteorological factors and climate change (CC) impact on asthma. DATA SOURCES A search was performed using three databases (Web of Science, Science Direct, and MEDLINE) for all relevant studies published from January 1, 2018, to December 31, 2022. STUDY SELECTIONS This systematic review complied with the PRISMA document's requirements, including studies related to meteorological factors and CC impact on asthma. The search included studies published in English or French language, and was based on title, abstract, and complete text. Documents not meeting inclusion requirements were excluded. RESULTS We identified 18 studies published in the last five years that were eligible for inclusion in this review. We found that these studies concerned European, Asian, American, and Oceanic cities. Extreme variations in temperature, humidity, wind speed, exceptional incidents like hurricanes, cold and heat waves, and seasonal shifts were strongly correlated with the worsening of asthmatic symptoms, particularly in childhood. In addition, excessive concentrations of air pollutants and aeroallergens were linked to pediatric asthma emergency hospital admissions. CONCLUSIONS A significant association between the consequences of CC and asthma in adults particularly in children has been demonstrated. Future research should quantify the impact of global change in climate regarding the aeroallergens' distribution in terms of geography and time. It is also necessary to research the impact of air pollution on asthmatic health, like sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and particles having an aerodynamic diameter lower than 2.5 µm (PM2.5).
Collapse
Affiliation(s)
- Jamila Rida
- Research Laboratory of Innovation in Health Sciences, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Health Sciences and Environment Laboratory, Health Sciences, Epidemiology and Human Pathologies Research Team, Agadir, Morocco
| | - Youssef Bouchriti
- High Institute of Nursing Professions and Health Techniques, Health Sciences and Environment Laboratory, Health Sciences, Epidemiology and Human Pathologies Research Team, Agadir, Morocco
- Geosciences, Environment and Geomatic Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ait Haddou
- Geosciences, Environment and Geomatic Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Department of Geography, Faculty of Humanities and Social Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abderrahmane Achbani
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Marrakesh, Morocco
| | - Hasnaa Sine
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- High Institute of Nursing Professions and Health Techniques, Marrakesh, Morocco
| | - Hind Serhane
- Research Laboratory of Innovation in Health Sciences, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
2
|
Motlogeloa O, Fitchett JM. Assessing the impact of climatic variability on acute respiratory diseases across diverse climatic zones in South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170661. [PMID: 38320698 DOI: 10.1016/j.scitotenv.2024.170661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Acute respiratory diseases are a significant public health concern in South Africa, with climatic variables such as temperature and rainfall being key influencers. This study investigates the associations between these variables and the prevalence of acute respiratory diseases in Johannesburg, Cape Town, and Gqeberha (Port Elizabeth), representing distinct climatic zones. Spearman's correlation analyses showed negative correlations in Johannesburg for respiratory disease claims with maximum temperature (r = -0.12, p < 0.0001) and mean temperature (r = -0.13, p < 0.0001), and a negative correlation with daily rainfall (r = -0.12, p < 0.0001). Cape Town demonstrated a negative correlation with maximum temperature (r = -0.18, p < 0.0001) and a positive correlation with rainfall (r = 0.08, p < 0.0001). Utilizing Distributed Lag Non-linear Models (DLNM), the study revealed that in Johannesburg, the relative risk (RR) of respiratory claims increases notably at temperatures below 12 °C, and again at a Tmax between 16 and 23 °C. The risk escalates further at >30 °C, although with a considerable error margin. For Cape Town, a stable level of moderate RR is seen from Tmax 15-24 °C, with a significant increase in RR and error margin above 30 °C. In Gqeberha, the DLNM results are less definitive, reflecting the city's moderate climate and year-round rainfall. The RR of acute respiratory diseases did not show clear patterns with temperature changes, with increasing error margins outside the 22 °C threshold. These findings emphasize the imperative for region-specific public health strategies that account for the complex, non-linear influences of climate on respiratory health. This detailed understanding of the climate-health nexus provides a robust basis for enhancing public health interventions and future research directed at reducing the impacts of climate factors.
Collapse
Affiliation(s)
- Ogone Motlogeloa
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Jennifer M Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Luedders J, Poole JA, Rorie AC. Extreme Weather Events and Asthma. Immunol Allergy Clin North Am 2024; 44:35-44. [PMID: 37973258 PMCID: PMC11472832 DOI: 10.1016/j.iac.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The objective of this article is to review recent literature on the implications of extreme weather events such as thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes in relationship to asthma symptoms. Several studies have shown worsening of asthma symptoms with thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes. In particular, thunderstorm asthma can be exacerbated by certain factors such as temperature, precipitation, and allergen sensitization. Therefore, it is imperative that the allergy and immunology community be aware of the health effects associated with these extreme weather events in order to educate patients and engage in mitigation strategies.
Collapse
Affiliation(s)
- Jennilee Luedders
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew C Rorie
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Tang M, Liu W, Li H, Li F. Greenness and chronic respiratory health issues: a systematic review and meta-analysis. Front Public Health 2023; 11:1279322. [PMID: 38125839 PMCID: PMC10732026 DOI: 10.3389/fpubh.2023.1279322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The number of chronic respiratory disease (CRD) individuals worldwide has been continuously increasing. Numerous studies have shown that greenness can improve chronic respiratory health issues through different mechanisms, with inconsistent evidence. By quantitatively summarizing existing studies, our purpose is to determine the connection between greenness exposure and various chronic respiratory health. Methods We conducted a comprehensive search on PubMed, EMBASE, and Web of Science core databases to identify relevant studies on the correlation between greenness exposure and chronic respiratory health issues. Studies published up to January 2023 were included in the search. The study used the most frequent indicator (normalized difference vegetation index [NDVI]) as the definition of greenness exposure. Results We finally identified 35 studies for meta-analysis. We calculated pooled effects across studies using a random-effects model and conducted a subgroup analysis by age and buffer zones to discuss the effects on chronic respiratory health issues. This study showed that 0.1 increments in NDVI were significantly related to lower rates of asthma incidence, lung cancer incidence, and chronic obstructive pulmonary disease (COPD) mortality risk; the pooled RRs were 0.92 (95% CI: 0.85-0.98), 0.62 (95% CI: 0.40-0.95), and 0.95 (95% CI: 0.92- 0.99), respectively. For the age subgroup, the higher greenness exposure level was related to the incidence rate of asthma among teenagers aged 13-18years (RR: 0.91; 95% CI: 0.83-0.99). For the buffer subgroup, a positive relationship with greenness exposure and asthma incidence/prevalence at 200-300m and 800- 1000m buffers, as well as the COPD mortality at 800-1000m buffer, the pooled RRs were 0.92 (95% CI: 0.86-0.98), 0.87 (95% CI: 0.81-0.93), and 0.93 (95% CI: 0.88- 0.98), respectively. Evidence of publication bias was not detected in this study. Discussion Our study is the first global meta-analysis between greenness and various CRDs to report an inverse association. Further research is needed in order to determine the effect of greenness exposure on different CRDs. Therefore, when planning for green development, more consideration must be given to public health and green management as intervention measures. https://www.crd.york.ac.uk/PROSPEROFILES/384029_STRATEGY_20230116.pdf.
Collapse
Affiliation(s)
- Mingcheng Tang
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Wei Liu
- School of Art, Qufu Normal University, Rizhao, Shandong, China
| | - Haifang Li
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Fengyi Li
- School of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Burbank AJ. Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution. J Asthma Allergy 2023; 16:183-194. [PMID: 36721739 PMCID: PMC9884560 DOI: 10.2147/jaa.s364845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Climate change has both direct and indirect effects on human health, and some populations are more vulnerable to these effects than others. Viral respiratory infections are most common illnesses in humans, with estimated 17 billion incident infections globally in 2019. Anthropogenic drivers of climate change, chiefly the emission of greenhouse gases and toxic pollutants from burning of fossil fuels, and the consequential changes in temperature, precipitation, and frequency of extreme weather events have been linked with increased susceptibility to viral respiratory infections. Air pollutants like nitrogen dioxide, particulate matter, diesel exhaust particles, and ozone have been shown to impact susceptibility and immune responses to viral infections through various mechanisms, including exaggerated or impaired innate and adaptive immune responses, disruption of the airway epithelial barrier, altered cell surface receptor expression, and impaired cytotoxic function. An estimated 90% of the world's population is exposed to air pollution, making this a topic with high relevance to human health. This review summarizes the available epidemiologic and experimental evidence for an association between climate change, air pollution, and viral respiratory infection.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Correspondence: Allison J Burbank, 5008B Mary Ellen Jones Building, 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA, Tel +1 919 962 5136, Fax +1 919 962 4421, Email
| |
Collapse
|
7
|
Hu Y, Cheng J, Liu S, Tan J, Yan C, Yu G, Yin Y, Tong S. Evaluation of climate change adaptation measures for childhood asthma: A systematic review of epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156291. [PMID: 35644404 DOI: 10.1016/j.scitotenv.2022.156291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Global climate change (GCC) is widely accepted as the biggest threat to human health of the 21st century. Children are particularly vulnerable to GCC due to developing organ systems, psychological immaturity, nature of daily activities, and higher level of per-body-unit exposure. There is a rising trend in the disease burden of childhood asthma and allergies in many parts of the world. The associations of CC, air pollution and other environmental exposures with childhood asthma are attracting more research attention, but relatively few studies have focused on CC adaptation measures and childhood asthma. This study aimed to bridge this knowledge gap and conducted the first systematic review on CC adaptation measures and childhood asthma. We searched electronic databases including PubMed, Embase, and Web of Science using a set of MeSH terms and related synonyms, and identified 20 eligible studies included for review. We found that there were a number of adaptation measures proposed for childhood asthma in response to GCC, including vulnerability assessment, improving ventilation and heating, enhancing community education, and developing forecast models and early warning systems. Several randomized controlled trials show that improving ventilation and installing heating in the homes appear to be an effective way to relieve childhood asthma symptoms, especially in winter. However, the effectiveness of most adaptation measures, except for improving ventilation and heating, have not been explored and quantified. Given more extreme weather events (e.g., cold spells and heatwaves) may occur as climate change progresses, this finding may have important implications. Evidently, further research is urgently warranted to evaluate the impacts of CC adaptation measures on childhood asthma. These adaptation measures, if proven to be effective, should be integrated in childhood asthma control and prevention programs as GCC continues.
Collapse
Affiliation(s)
- Yabin Hu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health (Shanghai Meteorological Service), Shanghai, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
8
|
Mueller W, Milner J, Loh M, Vardoulakis S, Wilkinson P. Exposure to urban greenspace and pathways to respiratory health: An exploratory systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154447. [PMID: 35283125 DOI: 10.1016/j.scitotenv.2022.154447] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/OBJECTIVE Urban greenspace may have a beneficial or adverse effect on respiratory health. Our objective was to perform an exploratory systematic review to synthesise the evidence and identify the potential causal pathways relating urban greenspace and respiratory health. METHODS We followed PRISMA guidelines on systematic reviews and searched five databases for eligible studies during 2000-2021. We incorporated a broad range of urban greenspace and respiratory health search terms, including both observational and experimental studies. Screening, data extraction, and risk of bias, assessed using the Navigation Guide criteria, were performed independently by two authors. We performed a narrative synthesis and discuss suggested pathways to respiratory health. RESULTS We identified 108 eligible papers (n = 104 observational, n = 4 experimental). The most common greenspace indicators were the overall greenery or vegetation (also known as greenness), green land use/land cover of physical area classes (e.g., parks, forests), and tree canopy cover. A wide range of respiratory health indicators were studied, with asthma prevalence being the most common. Two thirds (n = 195) of the associations in these studies were positive (i.e., beneficial) with health, with 31% (n = 91) statistically significant; only 9% (n = 25) of reported associations were negative (i.e., adverse) with health and statistically significant. The most consistent positive evidence was apparent for respiratory mortality. There were n = 35 (32%) 'probably low' and n = 73 (68%) 'probably high' overall ratings of bias. Hypothesised causal pathways for health benefits included lower air pollution, more physically active populations, and exposure to microbial diversity; suggested mechanisms with poorer health included exposure to pollen and other aeroallergens. CONCLUSION Many studies showed positive association between urban greenspace and respiratory health, especially lower respiratory mortality; this is suggestive, but not conclusive, of causal effects. Results underscore the importance of contextual factors, greenspace metric employed, and the potential bias of subtle selection factors, which should be explored further.
Collapse
Affiliation(s)
- William Mueller
- Institute of Occupational Medicine, Edinburgh, UK; London School of Hygiene & Tropical Medicine, UK.
| | - James Milner
- London School of Hygiene & Tropical Medicine, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Australian National University, Australia
| | | |
Collapse
|
9
|
ALIRAVCI ID. Küresel Isınmanın Enfeksiyon Hastalıklarına Etkisi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.998000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Pacheco SE, Guidos G, Annesi-Maesano I, Pawankar R, Amato GD, Latour-Staffeld P, Urrutia-Pereira M, Kesic MJ, Hernandez ML. Climate Change and Global Issues in Allergy and Immunology. J Allergy Clin Immunol 2021; 148:1366-1377. [PMID: 34688774 DOI: 10.1016/j.jaci.2021.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
The steady increase in global temperatures, resulting from the combustion of fossil fuels and the accumulation of greenhouse gases (GHG), continues to destabilize all ecosystems worldwide. Although annual emissions must halve by 2030 and reach net-zero by 2050 to limit some of the most catastrophic impacts associated with a warming planet, the world's efforts to curb GHG emissions fall short of the commitments made in the 2015 Paris Agreement (1). To this effect, July 2021 was recently declared the hottest month ever recorded in 142 years (2). The ramifications of these changes on global temperatures are complex and further promote outdoor air pollution, pollen exposure, and extreme weather events. Besides worsening respiratory health, air pollution, promotes atopy and susceptibility to infections. The GHG effects on pollen affect the frequency and severity of asthma and allergic rhinitis. Changes in temperature, air pollution, and extreme weather events exert adverse multisystemic health effects and disproportionally affect disadvantaged and vulnerable populations. This article is an update for allergists and immunologists about the health impacts of climate change, already evident in our daily practices. It is also a call to action and advocacy, including integrating climate change-related mitigation, education, and adaptation measures to protect our patients and avert further injury to our planet.
Collapse
Affiliation(s)
- Susan E Pacheco
- Professor of Pediatrics, University of Texas McGovern Medical School, MSB3.228, Houston, Texas 77030.
| | - Guillermo Guidos
- Professor of Immunology, School of Medicine, ENMH, Instituto Politecnico Nacional, Mexico City
| | - Isabella Annesi-Maesano
- Deputy Director of Institute Desbrest of Epiddemioloy and Public Health, INSERM and Montpellier University, Montpellier, France
| | - Ruby Pawankar
- Professor, Division of Allergy, Dept. of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Gennaro D' Amato
- Fellow and Honorary member of EAACI, FAAAAI, FERS. , Chairman Committee World Allergy Organization on "Aerobiology, Climate change, Biodiversity and Allergy"; Division of Respiratory Diseases and Allergy, High Specialty Hospital A. Cardarelli, Naples
| | - Patricia Latour-Staffeld
- Allergy and Clinical Immunology, Distinguished Graduate Universidad Nacional Pedro Henriquez Ureña, Medical director of Centro Avanzado De Alergia y Asma Santo Domingo, President Latin American Society of Allergy, Asthma and Immunology, Associate Professor School of Medicine Universidad Nacional Pedro Henriquez Ureña, Dominican Republic
| | | | - Matthew J Kesic
- Campbell University, Physician Assistant Program, College of Pharmacy and Health Sciences, 4150 US HWY 421 South, Lillington, NC 27546
| | - Michelle L Hernandez
- Professor of Pediatrics Division of Allergy & Immunology Director, Clinical Research Unit, Children's Research Institute, UNC School of Medicine, 5008C Mary Ellen Jones Building, 116 Manning Drive, CB #7231 Chapel Hill, NC 27599-7231
| | | |
Collapse
|
11
|
Eguiluz‐Gracia I, Mathioudakis AG, Bartel S, Vijverberg SJH, Fuertes E, Comberiati P, Cai YS, Tomazic PV, Diamant Z, Vestbo J, Galan C, Hoffmann B. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 2020; 75:2170-2184. [PMID: 31916265 DOI: 10.1111/all.14177] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
Air pollution and climate change have a significant impact on human health and well-being and contribute to the onset and aggravation of allergic rhinitis and asthma among other chronic respiratory diseases. In Westernized countries, households have experienced a process of increasing insulation and individuals tend to spend most of their time indoors. These sequelae implicate a high exposure to indoor allergens (house dust mites, pets, molds, etc), tobacco smoke, and other pollutants, which have an impact on respiratory health. Outdoor air pollution derived from traffic and other human activities not only has a direct negative effect on human health but also enhances the allergenicity of some plants and contributes to global warming. Climate change modifies the availability and distribution of plant- and fungal-derived allergens and increases the frequency of extreme climate events. This review summarizes the effects of indoor air pollution, outdoor air pollution, and subsequent climate change on asthma and allergic rhinitis in children and adults and addresses the policy adjustments and lifestyle changes required to mitigate their deleterious effects.
Collapse
Affiliation(s)
- Ibon Eguiluz‐Gracia
- Allergy Unit IBIMA‐Hospital Regional Universitario de Malaga‐UMA Malaga Spain
| | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences The University of Manchester Manchester Academic Health Science Centre UK
- North West Lung Centre Wythenshawe Hospital Manchester University NHS Foundation Trust Southmoor Road Manchester UK
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel Leibniz Lung Center Member of the German Research Center for Lung Research (DZL) Borstel Germany
- Department of Pathology and Medical Biology University Medical Center Groningen GRIAC Research Institute University of Groningen Groningen The Netherlands
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Elaine Fuertes
- National Heart and Lung Institute Imperial College London London UK
| | - Pasquale Comberiati
- Section of Paediatrics Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
- Department of Clinical Immunology and Allergology Sechenov University Moscow Russia
| | - Yutong Samuel Cai
- Department of Epidemiology and Biostatistics MRC Centre for Environment and Health School of Public Health Imperial College London London UK
- The George Institute for Global Health University of Oxford Oxford UK
| | - Peter Valentin Tomazic
- Department of General ORL, Head and Neck Surgery Medical University of Graz Graz Austria
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine School of Biological Sciences The University of Manchester Manchester Academic Health Science Centre UK
- North West Lung Centre Wythenshawe Hospital Manchester University NHS Foundation Trust Southmoor Road Manchester UK
| | - Carmen Galan
- Department of Botany, Ecology and Plant Physiology International Campus of Excellence on Agrifood (ceiA3) University of Córdoba Córdoba Spain
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine Medical Faculty University of Düsseldorf Düsseldorf Germany
| |
Collapse
|
12
|
|
13
|
Pawankar R, Wang JY, Wang IJ, Thien F, Chang YS, Latiff AHA, Fujisawa T, Zhang L, Thong BYH, Chatchatee P, Leung TF, Kamchaisatian W, Rengganis I, Yoon HJ, Munkhbayarlakh S, Recto MT, Neo AGE, Le Pham D, Lan LTT, Davies JM, Oh JW. Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases. Asia Pac Allergy 2020; 10:e11. [PMID: 32099833 PMCID: PMC7016319 DOI: 10.5415/apallergy.2020.10.e11] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Air pollution, climate change, and reduced biodiversity are major threats to human health with detrimental effects on a variety of chronic noncommunicable diseases in particular respiratory and cardiovascular diseases. The extent of air pollution both outdoor and indoor air pollution and climate change including global warming is increasing-to alarming proportions particularly in the developing world especially rapidly industrializing countries worldwide. In recent years, Asia has experienced rapid economic growth and a deteriorating environment and increase in allergic diseases to epidemic proportions. Air pollutant levels in many Asian countries especially in China and India are substantially higher than are those in developed countries. Moreover, industrial, traffic-related, and household biomass combustion, indoor pollutants from chemicals and tobacco are major sources of air pollutants, with increasing burden on respiratory allergies. Here we highlight the major components of outdoor and indoor air pollutants and their impacts on respiratory allergies associated with asthma and allergic rhinitis in the Asia-Pacific region. With Asia-Pacific comprising more than half of the world's population there is an urgent need to increase public awareness, highlight targets for interventions, public advocacy and a call to action to policy makers to implement policy changes towards reducing air pollution with interventions at a population-based level. 1. Epidemiological studies show that indoor and outdoor pollutions affect respiratory health, including an increased prevalence of asthma and allergic diseases. Global warming will increase the effects of outdoor air pollution on health. 2. The Asia-Pacific is the most populated region in the world, with a huge burden of both outdoor and indoor pollutants, including PM2.5, PM10, SPM, CO, O3, NO2, SO2, NO and household pollutants including biomass and tobacco. 3. The risk factors for the epidemic rise of allergic diseases in the Asia-Pacific are due to the increasing urbanization, environmental factors of air pollution and climate changes in recent decades than in the other parts of the world. 4. In light of the different environmental exposures in different countries of the Asia-Pacific region, strategies to combat allergic disease in this region should be focused on active government policies to fight air pollution based on the local conditions. 5. Substantial efforts need to be implemented with a concerted strategy at legislative, administrative, and community levels to improve air quality. 6. Abatement of the main risk factors for respiratory diseases, in particular, environmental tobacco smoke, indoor biomass fuels, and outdoor air pollution, as well as better control of asthma and rhinitis will achieve huge health benefits.
Collapse
Affiliation(s)
- Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Jiu-Yao Wang
- Division of Allergy and Clinical Immunology, Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare; School of Medicine, National Yang-Ming University, Taipei; College of Public Health, China Medical University, Taichung, Taiwan
| | - Francis Thien
- Eastern Health, Monash University, Melbourne, Australia
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Takao Fujisawa
- Institute for Clinical Research, Mie National Hospital, Tsu, Japan
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital, Medical University, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bernard Yu-Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | - Pantipa Chatchatee
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wasu Kamchaisatian
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Ho Joo Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sonomjamts Munkhbayarlakh
- Department of Pulmonology and Allergology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Marysia T Recto
- Division of Adult and Pediatric Allergy and Immunology, University of the Philippines College of Medicine, Philippine General Hospital, Manila, the Philippines
| | - Anne Goh Eng Neo
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Duy Le Pham
- Medicine Faculty, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Thi Tuyet Lan
- Hochiminh city Asthma, Allergy and Clinical Immunology Society, UMC, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Janet Mary Davies
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD; AustraliaOffice of Research, Metro North Hospital and Health Service, Herston, QLD, Australia
| | - Jae Won Oh
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Besancenot JP, Sindt C, Thibaudon M. Pollen et changement climatique. Bouleau et graminées en France métropolitaine. REVUE FRANCAISE D ALLERGOLOGIE 2019. [DOI: 10.1016/j.reval.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Sierra-Heredia C, North M, Brook J, Daly C, Ellis AK, Henderson D, Henderson SB, Lavigne É, Takaro TK. Aeroallergens in Canada: Distribution, Public Health Impacts, and Opportunities for Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1577. [PMID: 30044421 PMCID: PMC6121311 DOI: 10.3390/ijerph15081577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
Aeroallergens occur naturally in the environment and are widely dispersed across Canada, yet their public health implications are not well-understood. This review intends to provide a scientific and public health-oriented perspective on aeroallergens in Canada: their distribution, health impacts, and new developments including the effects of climate change and the potential role of aeroallergens in the development of allergies and asthma. The review also describes anthropogenic effects on plant distribution and diversity, and how aeroallergens interact with other environmental elements, such as air pollution and weather events. Increased understanding of the relationships between aeroallergens and health will enhance our ability to provide accurate information, improve preventive measures and provide timely treatments for affected populations.
Collapse
Affiliation(s)
| | - Michelle North
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H7, Canada.
- Department of Biomedical & Molecular Sciences and Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Allergy Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Jeff Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M3H 5T4, Canada.
| | - Christina Daly
- Air Quality Health Index, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Anne K Ellis
- Department of Biomedical & Molecular Sciences and Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Allergy Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Dave Henderson
- Health and Air Quality Services, Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada.
| | - Sarah B Henderson
- Environmental Health Services, BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada.
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Éric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON K1A 0K9, Canada.
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada.
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
16
|
George M, Bruzzese JM, Matura LA. Climate Change Effects on Respiratory Health: Implications for Nursing. J Nurs Scholarsh 2017; 49:644-652. [PMID: 28806469 DOI: 10.1111/jnu.12330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. APPROACH This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. FINDINGS AND CONCLUSIONS Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. CLINICAL RELEVANCE While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action.
Collapse
Affiliation(s)
- Maureen George
- Xi, Associate Professor, Columbia University School of Nursing, New York, NY, USA
| | - Jean-Marie Bruzzese
- Associate Professor of Applied Developmental Psychology (in Nursing), Columbia University School of Nursing, New York, NY, USA
| | - Lea Ann Matura
- Beta Beta, Associate Professor, University of Pennsylvania School of Nursing, Philadelphia, PA, USA
| |
Collapse
|
17
|
D'Amato G, Pawankar R, Vitale C, Lanza M, Molino A, Stanziola A, Sanduzzi A, Vatrella A, D'Amato M. Climate Change and Air Pollution: Effects on Respiratory Allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:391-5. [PMID: 27334776 PMCID: PMC4921692 DOI: 10.4168/aair.2016.8.5.391] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction.
Collapse
Affiliation(s)
- Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, Department of Chest Diseases High Speciality, A. Cardarelli Hospital, Napoli, Italy. .,University "Federico II", Medical School, Naples, Italy
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Carolina Vitale
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | - Maurizia Lanza
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | - Antonio Molino
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | - Anna Stanziola
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | - Alessandro Sanduzzi
- University "Federico II", Medical School, Naples, Italy.,Second Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | | | - Maria D'Amato
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| |
Collapse
|
18
|
D'Amato G, Vitale C, De Martino A, Viegi G, Lanza M, Molino A, Sanduzzi A, Vatrella A, Annesi-Maesano I, D'Amato M. Effects on asthma and respiratory allergy of Climate change and air pollution. Multidiscip Respir Med 2015; 10:39. [PMID: 26697186 PMCID: PMC4687168 DOI: 10.1186/s40248-015-0036-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/10/2022] Open
Abstract
The major changes to our world are those involving the atmosphere and the climate, including global warming induced by anthropogenic factors, with impact on the biosphere and human environment. Studies on the effects of climate changes on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, like meteorological variables, airborne allergens and air pollution. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions and westernized lifestyle are correlated with an increased frequency of respiratory allergy, mainly in people who live in urban areas in comparison with people living in rural areas. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in general and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could be also considered an effect of air pollution and climate changes. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last five decades. Pollen allergy is frequently used to study the interrelationship between air pollution and respiratory allergic diseases such as rhinitis and bronchial asthma. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. Scientific societies should be involved in advocacy activities, such as those realized by the Global Alliance against chronic Respiratory Diseases (GARD).
Collapse
Affiliation(s)
- Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, Department of Chest Diseases, High Speciality A.Cardarelli Hospital, Via Rione Sirignano,10, 80121 Naples, Italy ; University "Federico II", Medical School, Naples, Italy
| | - Carolina Vitale
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | | | - Giovanni Viegi
- Institute of Biomedicine and Molecular Immunology and Institute of Clinical Physiology, National Research Council, Palermo and Pisa, Italy
| | - Maurizia Lanza
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | - Antonio Molino
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | - Alessandro Sanduzzi
- University "Federico II", Medical School, Naples, Italy ; Second Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| | | | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory diseases department (EPAR), Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France ; Sorbonne Universités, UPMC Univ Paris 06, INSERM, Medical School Saint-Antoine, F75012 Paris, France
| | - Maria D'Amato
- First Division of Pneumology, High Speciality Hospital "V. Monaldi" and University "Federico II" Medical School, Naples, Italy
| |
Collapse
|
19
|
Shimada ALB, Cruz WS, Loiola RA, Drewes CC, Dörr F, Figueiredo NG, Pinto E, Farsky SHP. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response. Sci Rep 2015; 5:14917. [PMID: 26449762 PMCID: PMC4598834 DOI: 10.1038/srep14917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/07/2015] [Indexed: 01/02/2023] Open
Abstract
PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.
Collapse
Affiliation(s)
- Ana Lúcia B Shimada
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Wesley S Cruz
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Rodrigo A Loiola
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Carine C Drewes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Fabiane Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Natália G Figueiredo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900 Brazil
| |
Collapse
|
20
|
Tibbetts JH. Air quality and climate change: a delicate balance. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A148-53. [PMID: 26030069 PMCID: PMC4455574 DOI: 10.1289/ehp.123-a148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
21
|
McIver L, Hashizume M, Kim H, Honda Y, Pretrick M, Iddings S, Pavlin B. Assessment of Climate-sensitive Infectious Diseases in the Federated States of Micronesia. Trop Med Health 2014; 43:29-40. [PMID: 25859151 PMCID: PMC4361343 DOI: 10.2149/tmh.2014-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022] Open
Abstract
Background: The health impacts of climate change are an issue of growing concern in the Pacific region. Prior to 2010, no formal, structured, evidence-based approach had been used to identify the most significant health risks posed by climate change in Pacific island countries. During 2010 and 2011, the World Health Organization supported the Federated States of Micronesia (FSM) in performing a climate change and health vulnerability and adaptation assessment. This paper summarizes the priority climate-sensitive health risks in FSM, with a focus on diarrheal disease, its link with climatic variables and the implications of climate change. Methods: The vulnerability and adaptation assessment process included a review of the literature, extensive stakeholder consultations, ranking of climate-sensitive health risks, and analysis of the available long-term data on climate and climate-sensitive infectious diseases in FSM, which involved examination of health information data from the four state hospitals in FSM between 2000 and 2010; along with each state’s rainfall, temperature and El Niño-Southern Oscillation data. Generalized linear Poisson regression models were used to demonstrate associations between monthly climate variables and cases of climate-sensitive diseases at differing temporal lags. Results: Infectious diseases were among the highest priority climate-sensitive health risks identified in FSM, particularly diarrheal diseases, vector-borne diseases and leptospirosis. Correlation with climate data demonstrated significant associations between monthly maximum temperature and monthly outpatient cases of diarrheal disease in Pohnpei and Kosrae at a lag of one month and 0 to 3 months, respectively; no such associations were observed in Chuuk or Yap. Significant correlations between disease incidence and El Niño-Southern Oscillation cycles were demonstrated in Kosrae state. Conclusions: Analysis of the available data demonstrated significant associations between climate variables and climate-sensitive infectious diseases. This information should prove useful in implementing health system and community adaptation strategies to avoid the most serious impacts of climate change on health in FSM.
Collapse
Affiliation(s)
- Lachlan McIver
- National Centre for Epidemiology and Population Health, Australian National University , Canberra, Australia
| | - Masahiro Hashizume
- Institute of Tropical Medicine, Nagasaki University , 1-12-4 Sakamoto, Nagasaki 852-8523 Japan
| | - Ho Kim
- Graduate School of Public Health, Seoul National University , Building 221, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea 151-742
| | - Yasushi Honda
- University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan
| | - Moses Pretrick
- Department of Health and Social Affairs , P.O. Box PS 70 Palikir, Pohnpei 96941, Federated States of Micronesia
| | - Steven Iddings
- World Health Organization , Sankat Chak Tomouk, Khan Daun Penh, Phnom Penh, Cambodia
| | - Boris Pavlin
- World Health Organization , 4th Floor, Aopi Centre, Waigani Drive, Port Moresby, Papua New Guinea
| |
Collapse
|
22
|
McIver L, Woodward A, Davies S, Tibwe T, Iddings S. Assessment of the health impacts of climate change in Kiribati. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:5224-40. [PMID: 24830452 PMCID: PMC4053873 DOI: 10.3390/ijerph110505224] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/23/2022]
Abstract
Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.
Collapse
Affiliation(s)
- Lachlan McIver
- Australian National University, Canberra, ACT 0200, Australia.
| | - Alistair Woodward
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Seren Davies
- Ministry of Health and Medical Services, Bikenibau, Republic of Kiribati.
| | - Tebikau Tibwe
- Ministry of Health and Medical Services, Bikenibau, Republic of Kiribati.
| | - Steven Iddings
- Division of Pacific Technical Support, World Health Organization, Suva, Fiji.
| |
Collapse
|
23
|
White-Newsome JL, McCormick S, Sampson N, Buxton MA, O'Neill MS, Gronlund CJ, Catalano L, Conlon KC, Parker EA. Strategies to reduce the harmful effects of extreme heat events: a four-city study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1960-88. [PMID: 24531122 PMCID: PMC3945579 DOI: 10.3390/ijerph110201960] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/26/2022]
Abstract
Extreme heat events (EHEs) are becoming more intense, more frequent and longer lasting in the 21st century. These events can disproportionately impact the health of low-income, minority, and urban populations. To better understand heat-related intervention strategies used by four U.S. cities, we conducted 73 semi-structured interviews with government and non-governmental organization leaders representing public health, general social services, emergency management, meteorology, and the environmental planning sectors in Detroit, MI; New York City, NY; Philadelphia, PA and Phoenix, AZ-cities selected for their diverse demographics, climates, and climate adaptation strategies. We identified activities these leaders used to reduce the harmful effects of heat for residents in their city, as well as the obstacles they faced and the approaches they used to evaluate these efforts. Local leaders provided a description of how local context (e.g., climate, governance and city structure) impacted heat preparedness. Despite the differences among study cities, political will and resource access were critical to driving heat-health related programming. Upon completion of our interviews, we convened leaders in each city to discuss these findings and their ongoing efforts through day-long workshops. Our findings and the recommendations that emerged from these workshops could inform other local or national efforts towards preventing heat-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Sabrina McCormick
- George Washington University School of Public Health and Health Services, 2100 M Street, NW, suite 203, Washington, DC 20037, USA.
| | - Natalie Sampson
- Department of Health Behavior Health Education, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Miatta A Buxton
- Department of Epidemiology, University Of Michigan School Of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Marie S O'Neill
- Department of Epidemiology, University Of Michigan School Of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Carina J Gronlund
- Department of Epidemiology, University Of Michigan School Of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Linda Catalano
- Department of Sociology, City University of New York-Queens College, 65-30 Kissena Blvd, Flushing, NY 11367, USA.
| | - Kathryn C Conlon
- National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA.
| | - Edith A Parker
- Department of Community and Behavioral Health, College of Public Health, The University of Iowa, N432A CPHB, 105 River Street, Iowa City, IA 52242, USA.
| |
Collapse
|