1
|
Jantzie L, Muthukumar S, Kitase Y, Vasan V, Fouda MA, Hamimi S, Burkhardt C, Burton VJ, Gerner G, Scafidi J, Ye X, Northington F, Robinson S. Infantile Cocktail of Erythropoietin and Melatonin Restores Gait in Adult Rats with Preterm Brain Injury. Dev Neurosci 2022; 44:266-276. [PMID: 35358965 PMCID: PMC10066804 DOI: 10.1159/000524394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral palsy (CP) is the most common cause of physical disability for children worldwide. Many infants and toddlers are not diagnosed with CP until they fail to achieve obvious motor milestones. Currently, there are no effective pharmacologic interventions available for infants and toddlers to substantially improve their trajectory of neurodevelopment. Because children with CP from preterm birth also exhibit a sustained immune system hyper-reactivity, we hypothesized that neuro-immunomodulation with a regimen of repurposed endogenous neurorestorative medications, erythropoietin (EPO) and melatonin (MLT), could improve this trajectory. Thus, we administered EPO + MLT to rats with CP during human infant-toddler equivalency to determine whether we could influence gait patterns in mature animals. After a prenatal injury on embryonic day 18 (E18) that mimics chorioamnionitis at ∼25 weeks human gestation, rat pups were born and raised with their dam. Beginning on postnatal day 15 (P15), equivalent to human infant ∼1 year, rats were randomized to receive either a regimen of EPO + MLT or vehicle (sterile saline) through P20. Gait was assessed in young adult rats at P30 using computerized digital gait analyses including videography on a treadmill. Results indicate that gait metrics of young adult rats treated with an infantile cocktail of EPO + MLT were restored compared to vehicle-treated rats (p < 0.05) and similar to sham controls. These results provide reassuring evidence that pharmacological interventions may be beneficial to infants and toddlers who are diagnosed with CP well after the traditional neonatal window of intervention.
Collapse
Affiliation(s)
- Lauren Jantzie
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Dept. of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Dept. of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Dept. of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Sankar Muthukumar
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuma Kitase
- Dept. of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vikram Vasan
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohammed A. Fouda
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah Hamimi
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Dept. of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Vera Joanna Burton
- Dept. of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Center for Infant Neurodevelopment, Kennedy Krieger Institute, Baltimore, MD
| | - Gwendolyn Gerner
- Center for Infant Neurodevelopment, Kennedy Krieger Institute, Baltimore, MD
| | - Joseph Scafidi
- Dept. of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Center for Infant Neurodevelopment, Kennedy Krieger Institute, Baltimore, MD
| | - Xiaobu Ye
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frances Northington
- Dept. of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shenandoah Robinson
- Dept. of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Dept. of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Dept. of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
2
|
Lembo C, Buonocore G, Perrone S. Oxidative Stress in Preterm Newborns. Antioxidants (Basel) 2021; 10:antiox10111672. [PMID: 34829543 PMCID: PMC8614893 DOI: 10.3390/antiox10111672] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Preterm babies are highly susceptible to oxidative stress (OS) due to an imbalance between the oxidant and antioxidant systems. The generation of free radicals (FR) induces oxidative damage to multiple body organs and systems. OS is the main factor responsible for the development of typical premature infant diseases, such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia, kidney damage, eryptosis, and also respiratory distress syndrome and patent ductus arteriosus. Many biomarkers have been detected to early identify newborns at risk of developing a free radical-mediated disease and to investigate new antioxidant strategies. This review reports the current knowledge on OS in the preterm newborns and the newest findings concerning the use of OS biomarkers as diagnostic tools, as well as in implementing antioxidant therapeutic strategies for the prevention and treatment of these diseases and their sequelae.
Collapse
Affiliation(s)
- Chiara Lembo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (G.B.)
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (G.B.)
| | - Serafina Perrone
- Department of Medicine and Surgery, Neonatology Unit, University of Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
3
|
O'Connor KM, Ashoori M, Dias ML, Dempsey EM, O'Halloran KD, McDonald FB. Influence of innate immune activation on endocrine and metabolic pathways in infancy. Am J Physiol Endocrinol Metab 2021; 321:E24-E46. [PMID: 33900849 DOI: 10.1152/ajpendo.00542.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prematurity is the leading cause of neonatal morbidity and mortality worldwide. Premature infants often require extended hospital stays, with increased risk of developing infection compared with term infants. A picture is emerging of wide-ranging deleterious consequences resulting from innate immune system activation in the newborn infant. Those who survive infection have been exposed to a stimulus that can impose long-lasting alterations into later life. In this review, we discuss sepsis-driven alterations in integrated neuroendocrine and metabolic pathways and highlight current knowledge gaps in respect of neonatal sepsis. We review established biomarkers for sepsis and extend the discussion to examine emerging findings from human and animal models of neonatal sepsis that propose novel biomarkers for early identification of sepsis. Future research in this area is required to establish a greater understanding of the distinct neonatal signature of early and late-stage infection, to improve diagnosis, curtail inappropriate antibiotic use, and promote precision medicine through a biomarker-guided empirical and adjunctive treatment approach for neonatal sepsis. There is an unmet clinical need to decrease sepsis-induced morbidity in neonates, to limit and prevent adverse consequences in later life and decrease mortality.
Collapse
Affiliation(s)
- K M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - M Ashoori
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - M L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - E M Dempsey
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, School of Medicine, College of Medicine and Health, Cork University Hospital, Wilton, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - F B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
4
|
D’Angelo G, Chimenz R, Reiter RJ, Gitto E. Use of Melatonin in Oxidative Stress Related Neonatal Diseases. Antioxidants (Basel) 2020; 9:antiox9060477. [PMID: 32498356 PMCID: PMC7346173 DOI: 10.3390/antiox9060477] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species have a crucial role in the pathogenesis of perinatal diseases. Exposure to inflammation, infections, or high oxygen concentrations is frequent in preterm infants, who have high free iron levels that enhance toxic radical generation and diminish antioxidant defense. The peculiar susceptibility of newborns to oxidative stress supports the prophylactic use of melatonin in preventing or decreasing oxidative stress-mediated diseases. Melatonin, an effective direct free-radical scavenger, easily diffuses through biological membranes and exerts pleiotropic activity everywhere. Multiple investigations have assessed the effectiveness of melatonin to reduce the “oxygen radical diseases of newborn” including perinatal brain injury, sepsis, chronic lung disease (CLD), and necrotizing enterocolitis (NEC). Further studies are still awaited to test melatonin activity during perinatal period.
Collapse
Affiliation(s)
- Gabriella D’Angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-3100; Fax: +39-090-221-3876
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology with Dialysis, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 40729, USA;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
5
|
Ling R, Greenough A. Advances in emerging treatment options to prevent bronchopulmonary dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1281736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Protective role of melatonin in neonatal diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:980374. [PMID: 24349616 PMCID: PMC3852086 DOI: 10.1155/2013/980374] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/07/2013] [Indexed: 01/24/2023]
Abstract
Oxidative stress contributes to the severity of several newborn conditions to the extent that Saugstad coined the phrase “oxygen radical diseases of neonatology.” In order to counteract free radicals damage many strategies to augment antioxidant status in ill-term and preterm infants have been proposed and several medications have been experimented with mixed results. Several studies have tested the efficacy of melatonin to counteract oxidative damage in diseases of newborns such as chronic lung disease, perinatal brain injury, necrotizing enterocolitis, and retinopathy of prematurity, giving promising results. The peculiar perinatal susceptibility to oxidative stress indicates that prophylactic use of antioxidants as melatonin could help to prevent or at least reduce oxidative stress related diseases in newborns. However, more studies are needed to confirm these beneficial effects.
Collapse
|