1
|
Allegrini B, Mignotet M, Rapetti-Mauss R, Borgese F, Soriani O, Guizouarn H. A new regulation mechanism for KCNN4, the Ca 2+-dependent K + channel, by molecular interactions with the Ca 2+pump PMCA4b. J Biol Chem 2024:108114. [PMID: 39716493 DOI: 10.1016/j.jbc.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
KCNN4, a Ca2+-activated K+ channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system and other physiological mechanisms but its activation is also involved in cancer pathophysiology as well as red blood cell disorders (RBC). The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described seventy years ago. This Ca2+ induced dehydration is irreversible in human RBC and must be tightly controlled to prevent not only hemolysis but also alterations in RBC rheological properties. In this study, we have investigated the regulation of KCNN4 activity after changes in RBC Ca2+ concentration. Using electrophysiology, immunoprecipitation and proximity ligation assay in HEK293 transfected cells, K562 cells or RBC, we have found that KCNN4 and the Ca2+ pump PMCA4b interact tightly with each other, such that the C-terminal domain of PMCA4b regulates KCNN4 activity, independently of the Ca2+ extrusion activity of the pump. This regulation was not restricted to KCNN4: the small-conductance Ca2+-activated K+ channel KCNN2 was similarly regulated by the calcium pump. We propose a new mechanism that could control KCNN4 activity by a molecular inhibitory interaction with PMCA4b. It is suggested that this mechanism could attenuate erythrocyte dehydration in response to an increase in intracellular Ca2+.
Collapse
Affiliation(s)
- Benoit Allegrini
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Morgane Mignotet
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | | | - Franck Borgese
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Olivier Soriani
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France
| | - Hélène Guizouarn
- Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, 75015, Paris, France.
| |
Collapse
|
2
|
Thi Hong Van N, Hyun Nam J. Intermediate conductance calcium-activated potassium channel (KCa3.1) in cancer: Emerging roles and therapeutic potentials. Biochem Pharmacol 2024; 230:116573. [PMID: 39396649 DOI: 10.1016/j.bcp.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The KCa3.1 channel (also known as the KCNN4, IK1, or SK4 channel) is an intermediate-conductance calcium-activated potassium channel that regulates the membrane potential and maintains calcium homeostasis. Recently, KCa3.1 channels have attracted increasing attention because of their diverse roles in various types of cancers. In cancer cells, KCa3.1 channels regulate key processes, including cell proliferation, cell cycle, migration, invasion, tumor microenvironments, and therapy resistance. In addition, abnormal KCa3.1 expression in cancers is utilized to distinguish between tumor and normal tissues, classify cancer stages, and predict patient survival outcomes. This review comprehensively examines the current understanding of the contribution of KCa3.1 channels to tumor formation, metastasis, and its mechanisms. We evaluated the potential of KCa3.1 as a biomarker for cancer diagnosis and prognosis. Finally, we discuss the advances and challenges of applying KCa3.1 modulators in cancer treatment and propose approaches to overcome these obstacles. In summary, this review highlights the importance of this ion channel as a potent therapeutic target and prognostic biomarker of cancer.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea.
| |
Collapse
|
3
|
Zimmermann S, Mathew A, Bondareva O, Elwakiel A, Waldmann K, Jiang S, Rana R, Singh K, Kohli S, Shahzad K, Biemann R, Roskoden T, Storsberg SD, Mawrin C, Krügel U, Bechmann I, Goldschmidt J, Sheikh BN, Isermann B. Chronic kidney disease leads to microglial potassium efflux and inflammasome activation in the brain. Kidney Int 2024; 106:1101-1116. [PMID: 39089576 DOI: 10.1016/j.kint.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
Cognitive impairment is common in extracerebral diseases such as chronic kidney disease (CKD). Kidney transplantation reverses cognitive impairment, indicating that cognitive impairment driven by CKD is therapeutically amendable. However, we lack mechanistic insights allowing development of targeted therapies. Using a combination of mouse models (including mice with neuron-specific IL-1R1 deficiency), single cell analyses (single-nuclei RNA-sequencing and single-cell thallium autometallography), human samples and in vitro experiments we demonstrate that microglia activation impairs neuronal potassium homeostasis and cognition in CKD. CKD disrupts the barrier of brain endothelial cells in vitro and the blood-brain barrier in vivo, establishing that the uremic state modifies vascular permeability in the brain. Exposure to uremic conditions impairs calcium homeostasis in microglia, enhances microglial potassium efflux via the calcium-dependent channel KCa3.1, and induces p38-MAPK associated IL-1β maturation in microglia. Restoring potassium homeostasis in microglia using a KCa3.1-specific inhibitor (TRAM34) improves CKD-triggered cognitive impairment. Likewise, inhibition of the IL-1β receptor 1 (IL-1R1) using anakinra or genetically abolishing neuronal IL-1R1 expression in neurons prevent CKD-mediated reduced neuronal potassium turnover and CKD-induced impaired cognition. Accordingly, in CKD mice, impaired cognition can be ameliorated by either preventing microglia activation or inhibiting IL-1R-signaling in neurons. Thus, our data suggest that potassium efflux from microglia triggers their activation, which promotes microglia IL-1β release and IL-1R1-mediated neuronal dysfunction in CKD. Hence, our study provides new mechanistic insight into cognitive impairment in association with CKD and identifies possible new therapeutic approaches.
Collapse
Affiliation(s)
- Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany.
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (Hl-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Klarina Waldmann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany
| | - Thomas Roskoden
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Christian Mawrin
- Department of Neuropathology and Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (Hl-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital; Leipzig, Germany.
| |
Collapse
|
4
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Deng J, Liu J, Chen W, Liang Q, He Y, Sun G. Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis. Drug Des Devel Ther 2024; 18:1627-1650. [PMID: 38774483 PMCID: PMC11108075 DOI: 10.2147/dddt.s388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.
Collapse
Affiliation(s)
- JiuLing Deng
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - WanSheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| | - YuQiong He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - GuangChun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
6
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Todesca LM, Gerke M, Bulk EE, Bachmann M, Rudersdorf A, Antonuzzo L, Pillozzi S, Düfer M, Szabo I, Schwab A. Targeting K Ca3.1 channels to overcome erlotinib resistance in non-small cell lung cancer cells. Cell Death Discov 2024; 10:2. [PMID: 38177097 PMCID: PMC10767088 DOI: 10.1038/s41420-023-01776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Almost all non-small cell lung cancer (NSCLC) patients initially responding to EGFR tyrosine kinase inhibitors (TKIs) develop acquired resistance. Since KCa3.1 channels, expressed in mitochondria and plasma membrane, regulate similar behavioral traits of NSCLC cells as EGFR, we hypothesized that their blockade contributes to overcoming EGFR-TKI resistance. Meta-analysis of microarray data revealed that KCa3.1 channel expression in erlotinib-resistant NSCLC cells correlates with that of genes of integrin and apoptosis pathways. Using erlotinib-sensitive and -resistant NSCLC cells we monitored the role of mitochondrial KCa3.1 channels in integrin signaling by studying cell-matrix adhesion with single-cell force spectroscopy. Apoptosis was quantified with fluorescence-based assays. The function of mitochondrial KCa3.1 channels in these processes was assessed by measuring the mitochondrial membrane potential and by quantifying ROS production. Functional assays were supplemented by biochemical analyses. We show that KCa3.1 channel inhibition with senicapoc in erlotinib-resistant NSCLC cells increases cell adhesion by increasing β1-integrin expression, that in turn depends on mitochondrial ROS release. Increased adhesion impairs migration of NSCLC cells in a 3D matrix. At the same time, the senicapoc-dependent ROS production induces cytochrome C release and triggers apoptosis of erlotinib-resistant NSCLC cells. Thus, KCa3.1 channel blockade overcomes EGFR-TKI resistance by inhibiting NSCLC motility and inducing apoptosis.
Collapse
Affiliation(s)
| | - Matthias Gerke
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Emma Etmar Bulk
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | - Alisa Rudersdorf
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Zuccolini P, Barbieri R, Sbrana F, Picco C, Gavazzo P, Pusch M. IK Channel-Independent Effects of Clotrimazole and Senicapoc on Cancer Cells Viability and Migration. Int J Mol Sci 2023; 24:16285. [PMID: 38003471 PMCID: PMC10671816 DOI: 10.3390/ijms242216285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Many studies highlighted the importance of the IK channel for the proliferation and the migration of different types of cancer cells, showing how IK blockers could slow down cancer growth. Based on these data, we wanted to characterize the effects of IK blockers on melanoma metastatic cells and to understand if such effects were exclusively IK-dependent. For this purpose, we employed two different blockers, namely clotrimazole and senicapoc, and two cell lines: metastatic melanoma WM266-4 and pancreatic cancer Panc-1, which is reported to have little or no IK expression. Clotrimazole and senicapoc induced a decrease in viability and the migration of both WM266-4 and Panc-1 cells irrespective of IK expression levels. Patch-clamp experiments on WM266-4 cells revealed Ca2+-dependent, IK-like, clotrimazole- and senicapoc-sensitive currents, which could not be detected in Panc-1 cells. Neither clotrimazole nor senicapoc altered the intracellular Ca2+ concentration. These results suggest that the effects of IK blockers on cancer cells are not strictly dependent on a robust presence of the channel in the plasma membrane, but they might be due to off-target effects on other cellular targets or to the blockade of IK channels localized in intracellular organelles.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Pusch
- Biophysics Institute, National Research Council, 16149 Genova, Italy; (P.Z.); (R.B.); (F.S.); (C.P.); (P.G.)
| |
Collapse
|
9
|
Chen X, Zhang L, He L, Zheng L, Tuo B. Potassium channels as novel molecular targets in hepatocellular carcinoma (Review). Oncol Rep 2023; 50:185. [PMID: 37654193 PMCID: PMC10485806 DOI: 10.3892/or.2023.8622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a serious health burden worldwide. It is often not diagnosed until the patient is at an advanced stage of the disease, when treatment options are limited and the prognosis is poor. Therefore, novel treatment strategies are urgently required. Potassium (K+) channels have an important role in HCC, including regulating the proliferation, migration, invasion and drug resistance of HCC cells. The aim of the present review was therefore to survey the relevant publications that have investigated K+ channels not only as markers for the early diagnosis of HCC, but also as potential therapeutic targets for the treatment of HCC. Several of these channels have been indicated to be the sites of action for natural products previously known to inhibit HCC; however, more systematic studies are required to determine which K+ channels may be utilized for the clinical treatment of HCC, particularly in the advanced stages of the disease and in cases where patients are resistant to the existing drugs.
Collapse
Affiliation(s)
- Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ling He
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
10
|
Orfali R, AlFaiz A, Rahman MA, Lau L, Nam YW, Zhang M. K Ca2 and K Ca3.1 Channels in the Airways: A New Therapeutic Target. Biomedicines 2023; 11:1780. [PMID: 37509419 PMCID: PMC10376499 DOI: 10.3390/biomedicines11071780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
K+ channels are involved in many critical functions in lung physiology. Recently, the family of Ca2+-activated K+ channels (KCa) has received more attention, and a massive amount of effort has been devoted to developing selective medications targeting these channels. Within the family of KCa channels, three small-conductance Ca2+-activated K+ (KCa2) channel subtypes, together with the intermediate-conductance KCa3.1 channel, are voltage-independent K+ channels, and they mediate Ca2+-induced membrane hyperpolarization. Many KCa2 channel members are involved in crucial roles in physiological and pathological systems throughout the body. In this article, different subtypes of KCa2 and KCa3.1 channels and their functions in respiratory diseases are discussed. Additionally, the pharmacology of the KCa2 and KCa3.1 channels and the link between these channels and respiratory ciliary regulations will be explained in more detail. In the future, specific modulators for small or intermediate Ca2+-activated K+ channels may offer a unique therapeutic opportunity to treat muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Ali AlFaiz
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
11
|
Foster HM, Carle MN, Jira LR, Koh DW. TRPM2 Channels: A Potential Therapeutic Target in Melanoma? Int J Mol Sci 2023; 24:10437. [PMID: 37445615 DOI: 10.3390/ijms241310437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The transient receptor potential, the melastatin (TRPM) subfamily, which consists of eight known members, appears to have significant importance in melanoma progression, treatment, and prognosis. As several members were originally cloned from cancerous tissue, initial studies aimed towards identifying TRPM involvement in cancer progression and tumorigenesis. For relevance in skin cancer, previous research has shown roles for several TRPM members in skin cancer progression, growth, and patient prognosis. One unique member, TRPM2, appears to have notable therapeutic potential in the treatment of melanoma. Previous and recent studies have demonstrated increased TRPM2 expression levels in melanoma, as well as important roles for TRPM2 in melanoma growth, proliferation, and survival. TRPM2 is thus an emerging target in the treatment of melanoma, where TRPM2 antagonism may offer an additional treatment option for melanoma patients in the future.
Collapse
Affiliation(s)
- Hattie M Foster
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - McKenzie N Carle
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - Lukas R Jira
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| | - David W Koh
- Department of Pharmaceutical & Biomedical Sciences, Ohio Northern University, Ada, OH 45810, USA
| |
Collapse
|
12
|
Szanto TG, Feher A, Korpos E, Gyöngyösi A, Kállai J, Mészáros B, Ovari K, Lányi Á, Panyi G, Varga Z. 5-Chloro-2-Guanidinobenzimidazole (ClGBI) Is a Non-Selective Inhibitor of the Human H V1 Channel. Pharmaceuticals (Basel) 2023; 16:ph16050656. [PMID: 37242439 DOI: 10.3390/ph16050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
5-chloro-2-guanidinobenzimidazole (ClGBI), a small-molecule guanidine derivative, is a known effective inhibitor of the voltage-gated proton (H+) channel (HV1, Kd ≈ 26 μM) and is widely used both in ion channel research and functional biological assays. However, a comprehensive study of its ion channel selectivity determined by electrophysiological methods has not been published yet. The lack of selectivity may lead to incorrect conclusions regarding the role of hHv1 in physiological or pathophysiological responses in vitro and in vivo. We have found that ClGBI inhibits the proliferation of lymphocytes, which absolutely requires the functioning of the KV1.3 channel. We, therefore, tested ClGBI directly on hKV1.3 using a whole-cell patch clamp and found an inhibitory effect similar in magnitude to that seen on hHV1 (Kd ≈ 72 μM). We then further investigated ClGBI selectivity on the hKV1.1, hKV1.4-IR, hKV1.5, hKV10.1, hKV11.1, hKCa3.1, hNaV1.4, and hNaV1.5 channels. Our results show that, besides HV1 and KV1.3, all other off-target channels were inhibited by ClGBI, with Kd values ranging from 12 to 894 μM. Based on our comprehensive data, ClGBI has to be considered a non-selective hHV1 inhibitor; thus, experiments aiming at elucidating the significance of these channels in physiological responses have to be carefully evaluated.
Collapse
Affiliation(s)
- Tibor G Szanto
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adam Feher
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eva Korpos
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adrienn Gyöngyösi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Kállai
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beáta Mészáros
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztian Ovari
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
Vera OD, Wulff H, Braun AP. Endothelial KCa channels: Novel targets to reduce atherosclerosis-driven vascular dysfunction. Front Pharmacol 2023; 14:1151244. [PMID: 37063294 PMCID: PMC10102451 DOI: 10.3389/fphar.2023.1151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Elevated levels of cholesterol in the blood can induce endothelial dysfunction, a condition characterized by impaired nitric oxide production and decreased vasodilatory capacity. Endothelial dysfunction can promote vascular disease, such as atherosclerosis, where macrophages accumulate in the vascular intima and fatty plaques form that impair normal blood flow in conduit arteries. Current pharmacological strategies to treat atherosclerosis mostly focus on lipid lowering to prevent high levels of plasma cholesterol that induce endothelial dysfunction and atherosclerosis. While this approach is effective for most patients with atherosclerosis, for some, lipid lowering is not enough to reduce their cardiovascular risk factors associated with atherosclerosis (e.g., hypertension, cardiac dysfunction, stroke, etc.). For such patients, additional strategies targeted at reducing endothelial dysfunction may be beneficial. One novel strategy to restore endothelial function and mitigate atherosclerosis risk is to enhance the activity of Ca2+-activated K+ (KCa) channels in the endothelium with positive gating modulator drugs. Here, we review the mechanism of action of these small molecules and discuss their ability to improve endothelial function. We then explore how this strategy could mitigate endothelial dysfunction in the context of atherosclerosis by examining how KCa modulators can improve cardiovascular function in other settings, such as aging and type 2 diabetes. Finally, we consider questions that will need to be addressed to determine whether KCa channel activation could be used as a long-term add-on to lipid lowering to augment atherosclerosis treatment, particularly in patients where lipid-lowering is not adequate to improve their cardiovascular health.
Collapse
Affiliation(s)
- O. Daniel Vera
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Andrew P. Braun,
| |
Collapse
|
14
|
Nicolini G, Balzan S, Forini F. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sci 2023; 321:121575. [PMID: 36933828 DOI: 10.1016/j.lfs.2023.121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-β dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.
Collapse
Affiliation(s)
| | - Silvana Balzan
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
15
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
16
|
Naseem MU, Gurrola-Briones G, Romero-Imbachi MR, Borrego J, Carcamo-Noriega E, Beltrán-Vidal J, Zamudio FZ, Shakeel K, Possani LD, Panyi G. Characterization and Chemical Synthesis of Cm39 (α-KTx 4.8): A Scorpion Toxin That Inhibits Voltage-Gated K + Channel K V1.2 and Small- and Intermediate-Conductance Ca 2+-Activated K + Channels K Ca2.2 and K Ca3.1. Toxins (Basel) 2023; 15:41. [PMID: 36668861 PMCID: PMC9866218 DOI: 10.3390/toxins15010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 μM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Georgina Gurrola-Briones
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Margarita R. Romero-Imbachi
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| |
Collapse
|
17
|
Synergistic effects of agonists and two-pore-domain potassium channels on secretory responses of human pancreatic duct cells Capan-1. Pflugers Arch 2023; 475:361-379. [PMID: 36534232 PMCID: PMC9908661 DOI: 10.1007/s00424-022-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.
Collapse
|
18
|
Jia X, Chen X, Gao C, Wang H, Yang C, Jiang LH, Fan Y. Functional cooperation between IK Ca and TRPC1 channels regulates serum-induced vascular smooth muscle cell proliferation via mediating Ca 2+ influx and ERK1/2 activation. Cell Prolif 2022; 56:e13385. [PMID: 36562293 PMCID: PMC10068941 DOI: 10.1111/cpr.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The increased proliferation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of vascular diseases. The intermediate conductance calcium-activated potassium (IKCa ) channel plays a critical role in VSMC proliferation by raising the intracellular calcium concentration ([Ca2+ ]i ), but the underlying mechanism is still not unclear. Here we investigated the cooperation between IKCa and transient receptor potential canonical 1 (TRPC1) channels in mediating extracellular Ca2+ entry, which in turn activates downstream Ca2+ signalling in the regulation of VSMC proliferation using serum-induced cell proliferation model. Serum-induced cell proliferation was accompanied with up-regulation of IKCa expression and an increase in [Ca2+ ]i . Serum-induced cell proliferation and increase in [Ca2+ ]i were suppressed by IKCa inhibition with TRAM-34 or IKCa knockdown. Serum-induced cell proliferation was strongly reduced by the removal of extracellular Ca2+ with EGTA or intracellular Ca2+ with BAPTA-AM and, additionally, by TRPC1 knockdown. Moreover, the increase in [Ca2+ ]i induced by serum or by IKCa activation with 1-EBIO was attenuated by TRPC1 knockdown. Finally, serum induced ERK1/2 activation, which was attenuated by treatment with TRAM-34 or BAPTA-AM, as well as TRPC1 knockdown. Consistently, serum-induced cell proliferation was suppressed by ERK1/2 inhibition with PD98059. Taken together, these results suggest that the IKCa and TRPC1 channels cooperate in mediating Ca2+ influx that activates the ERK1/2 pathway to promote cell proliferation, thus providing new mechanistic insights into VSMC proliferation.
Collapse
Affiliation(s)
- Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Xinlan Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Chao Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Haikun Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Chengxi Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
19
|
Feng J, Xie Z, Hu H. Ion channel regulation of gut immunity. J Gen Physiol 2022; 155:213734. [PMID: 36459135 PMCID: PMC9723512 DOI: 10.1085/jgp.202113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates that gastrointestinal (GI) homeostasis hinges on communications among many cellular networks including the intestinal epithelium, the immune system, and both intrinsic and extrinsic nerves innervating the gut. The GI tract, especially the colon, is the home base for gut microbiome which dynamically regulates immune function. The gut's immune system also provides an effective defense against harmful pathogens entering the GI tract while maintaining immune homeostasis to avoid exaggerated immune reaction to innocuous food and commensal antigens which are important causes of inflammatory disorders such as coeliac disease and inflammatory bowel diseases (IBD). Various ion channels have been detected in multiple cell types throughout the GI tract. By regulating membrane properties and intracellular biochemical signaling, ion channels play a critical role in synchronized signaling among diverse cellular components in the gut that orchestrates the GI immune response. This work focuses on the role of ion channels in immune cells, non-immune resident cells, and neuroimmune interactions in the gut at the steady state and pathological conditions. Understanding the cellular and molecular basis of ion channel signaling in these immune-related pathways and initial testing of pharmacological intervention will facilitate the development of ion channel-based therapeutic approaches for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China,Correspondence to Jing Feng:
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Hongzhen Hu:
| |
Collapse
|
20
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
21
|
Konken CP, Heßling K, Thale I, Schelhaas S, Dabel J, Maskri S, Bulk E, Budde T, Koch O, Schwab A, Schäfers M, Wünsch B. Imaging of the calcium activated potassium channel 3.1 (K Ca 3.1) in vivo using a senicapoc-derived positron emission tomography tracer. Arch Pharm (Weinheim) 2022; 355:e2200388. [PMID: 36161669 DOI: 10.1002/ardp.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022]
Abstract
The calcium-activated potassium channel 3.1 (KCa 3.1) is overexpressed in many tumor entities and has predictive power concerning disease progression and outcome. Imaging of the KCa 3.1 channel in vivo using a radiotracer for positron emission tomography (PET) could therefore establish a potentially powerful diagnostic tool. Senicapoc shows high affinity and excellent selectivity toward the KCa 3.1 channel. We have successfully pursued the synthesis of the 18 F-labeled derivative [18 F]3 of senicapoc using the prosthetic group approach with 1-azido-2-[18 F]fluoroethane ([18 F]6) in a "click" reaction. The biological activity of the new PET tracer was evaluated in vitro and in vivo. Inhibition of the KCa 3.1 channel by 3 was demonstrated by patch clamp experiments and the binding pose was analyzed by docking studies. In mouse and human serum, [18 F]3 was stable for at least one half-life of [18 F]fluorine. Biodistribution experiments in wild-type mice were promising, showing rapid and predominantly renal excretion. An in vivo study using A549-based tumor-bearing mice was performed. The tumor signal could be delineated and image analysis showed a tumor-to-muscle ratio of 1.47 ± 0.24. The approach using 1-azido-2-[18 F]fluoroethane seems to be a good general strategy to achieve triarylacetamide-based fluorinated PET tracers for imaging of the KCa 3.1 channel in vivo.
Collapse
Affiliation(s)
- Christian P Konken
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Kathrin Heßling
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster, Münster, Germany
| | - Insa Thale
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westphalian Wilhelms-University Münster, Münster, Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster, Münster, Germany
| | - Jennifer Dabel
- European Institute for Molecular Imaging (EIMI), Westphalian Wilhelms-University Münster, Münster, Germany
| | - Sarah Maskri
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Etmar Bulk
- Institute for Physiology II, University Hospital Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute for Physiology I, University Hospital Münster, Münster, Germany
| | - Oliver Koch
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Albrecht Schwab
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute for Physiology II, University Hospital Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging (EIMI), Westphalian Wilhelms-University Münster, Münster, Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster, Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster, Münster, Germany
| |
Collapse
|
22
|
Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022; 15:783-797. [PMID: 35899081 PMCID: PMC9309325 DOI: 10.2147/ott.s326614] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer – cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities – emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.
Collapse
Affiliation(s)
- Leandro Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Angel Cayo
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Cristian Vilos
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile.,Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, 3460000, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Rafael Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| |
Collapse
|
23
|
Laska MJ, Møller JB, Graversen JH, Strøbæk D, Blomster L, Christophersen P, Bahrami S. Retroviral glycoprotein-mediated immune suppression via the potassium channel KCa3.1 - A new strategy for amelioration of inflammatory bowel diseases. Clin Immunol 2022; 242:109081. [PMID: 35905828 DOI: 10.1016/j.clim.2022.109081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
Peptides derived from retroviral envelope proteins have been shown to possess a wide range of immunosuppressive and anti-inflammatory activities. We have previously reported identification of such a peptide derived from the envelope protein coded by a human endogenous retrovirus (HERV). In this study, we identified that in vitro the peptide inhibits the KCa3.1 potassium channel, a potential target for therapy of immune diseases. We describe in vitro ENV59-GP3 effects with respect to potency of inhibition on KCa3.1 channels and calcium influx. Furthermore, we asses in vivo the effect of blocking KCa3.1 with ENV59-GP3 peptide or KCa3.1-blocker NS6180 on protection against DSS-induced acute colitis. ENV59-GP3 peptide treatment showed reduction of the disease score in the DSS-induced acute colitis mice model, which was comparable to effects of the KCa3.1 channel blocker NS6180. Analysis of cytokine production from DSS-mice model treated animals revealed equipotent inhibitory effects of the ENV59-GP3 and NS6180 compounds on the production of IL-6, TNF-α, IL-1β. These findings altogether suggest that ENV59-GP3 functions as a KCa3.1 channel inhibitor and underline the implications of using virus derived channel blockers for treatment of autoimmune diseases. Additionally, they open the possibilities whether KCa3.1 inhibition is efficacious in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Magdalena J Laska
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| | - Jesper Bonnet Møller
- Department of Cancer and Inflammation Research, University of Southern Denmark, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
How the Potassium Channel Response of T Lymphocytes to the Tumor Microenvironment Shapes Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14153564. [PMID: 35892822 PMCID: PMC9330401 DOI: 10.3390/cancers14153564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.
Collapse
|
25
|
Chen X, Zhang L, Zheng L, Tuo B. Role of Ca 2+ channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). Int J Mol Med 2022; 50:113. [PMID: 35796003 PMCID: PMC9282635 DOI: 10.3892/ijmm.2022.5169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
26
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
27
|
Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022; 14:pharmaceutics14061303. [PMID: 35745875 PMCID: PMC9227908 DOI: 10.3390/pharmaceutics14061303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The constant changes in cancer cell bioenergetics are widely known as metabolic reprogramming. Reprogramming is a process mediated by multiple factors, including oncogenes, growth factors, hypoxia-induced factors, and the loss of suppressor gene function, which support malignant transformation and tumor development in addition to cell heterogeneity. Consequently, this hallmark promotes resistance to conventional anti-tumor therapies by adapting to the drastic changes in the nutrient microenvironment that these therapies entail. Therefore, it represents a revolutionary landscape during cancer progression that could be useful for developing new and improved therapeutic strategies targeting alterations in cancer cell metabolism, such as the deregulated mTOR and PI3K pathways. Understanding the complex interactions of the underlying mechanisms of metabolic reprogramming during cancer initiation and progression is an active study field. Recently, novel approaches are being used to effectively battle and eliminate malignant cells. These include biguanides, mTOR inhibitors, glutaminase inhibition, and ion channels as drug targets. This review aims to provide a general overview of metabolic reprogramming, summarise recent progress in this field, and emphasize its use as an effective therapeutic target against cancer.
Collapse
|
28
|
Granfeldt A, Andersen LW, Vallentin MF, Hilberg O, Hasselstrøm JB, Sørensen LK, Mogensen S, Christensen S, Grejs AM, Rasmussen BS, Kristiansen KT, Strøm T, Johansen IS, Schjørring OL, Simonsen U. Senicapoc treatment in COVID-19 patients with severe respiratory insufficiency-A randomized, open-label, phase II trial. Acta Anaesthesiol Scand 2022; 66:838-846. [PMID: 35403225 PMCID: PMC9111301 DOI: 10.1111/aas.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of the current study was to determine if treatment with senicapoc, improves the PaO2 /FiO2 ratio in patients with COVID-19 and severe respiratory insufficiency. METHODS Investigator-initiated, randomized, open-label, phase II trial in four intensive care units (ICU) in Denmark. We included patients aged ≥18 years and admitted to an ICU with severe respiratory insufficiency due to COVID-19. The intervention consisted of 50 mg enteral senicapoc administered as soon as possible after randomization and again after 24 h. Patients in the control group received standard care only. The primary outcome was the PaO2 /FiO2 ratio at 72 h. RESULTS Twenty patients were randomized to senicapoc and 26 patients to standard care. Important differences existed in patient characteristics at baseline, including more patients being on non-invasive/invasive ventilation in the control group (54% vs. 35%). The median senicapoc concentration at 72 h was 62.1 ng/ml (IQR 46.7-71.2). The primary outcome, PaO2 /FiO2 ratio at 72 h, was significantly lower in the senicapoc group (mean 19.5 kPa, SD 6.6) than in the control group (mean 24.4 kPa, SD 9.2) (mean difference -5.1 kPa [95% CI -10.2, -0.04] p = .05). The 28-day mortality in the senicapoc group was 2/20 (10%) compared with 6/26 (23%) in the control group (OR 0.36 95% CI 0.06-2.07, p = .26). CONCLUSIONS Treatment with senicapoc resulted in a significantly lower PaO2 /FiO2 ratio at 72 h with no differences for other outcomes.
Collapse
Affiliation(s)
- Asger Granfeldt
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Lars W. Andersen
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Prehospital Emergency Medical Services Central Denmark Region Denmark
- Research Center for Emergency Medicine Aarhus University Hospital Aarhus Denmark
| | - Mikael F. Vallentin
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Prehospital Emergency Medical Services Central Denmark Region Denmark
| | - Ole Hilberg
- Department of Medicine Vejle Hospital Vejle Denmark
| | - Jørgen B. Hasselstrøm
- Section for Forensic Chemistry, Department of Forensic Medicine Aarhus University Aarhus Denmark
| | - Lambert K. Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine Aarhus University Aarhus Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| | - Steffen Christensen
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Anders M. Grejs
- Department of Anesthesiology and Intensive Care Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Bodil S. Rasmussen
- Department of Anesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
| | | | - Thomas Strøm
- Department of Anesthesiology Odense University Hospital Odense Denmark
- Department of Anesthesiology, Hospital of Southern Jutland University of Southern Denmark Odense Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases Odense University Hospital Odense Denmark
| | - Olav L. Schjørring
- Department of Anesthesia and Intensive Care Aalborg University Hospital Aalborg Denmark
- Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| |
Collapse
|
29
|
Morotti M, Garofalo S, Cocozza G, Antonangeli F, Bianconi V, Mozzetta C, De Stefano ME, Capitani R, Wulff H, Limatola C, Catalano M, Grassi F. Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels. Life (Basel) 2022; 12:life12040538. [PMID: 35455028 PMCID: PMC9025295 DOI: 10.3390/life12040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease, caused by a mutant dystrophin gene, leading to muscle membrane instability, followed by muscle inflammation, infiltration of pro-inflammatory macrophages and fibrosis. The calcium-activated potassium channel type 3.1 (KCa3.1) plays key roles in controlling both macrophage phenotype and fibroblast proliferation, two critical contributors to muscle damage. In this work, we demonstrate that pharmacological blockade of the channel in the mdx mouse model during the early degenerative phase favors the acquisition of an anti-inflammatory phenotype by tissue macrophages and reduces collagen deposition in muscles, with a concomitant reduction of muscle damage. As already observed with other treatments, no improvement in muscle performance was observed in vivo. In conclusion, this work supports the idea that KCa3.1 channels play a contributing role in controlling damage-causing cells in DMD. A more complete understanding of their function could lead to the identification of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Germana Cocozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Valeria Bianconi
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Riccardo Capitani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA 95616, USA;
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
- Correspondence:
| |
Collapse
|
30
|
Fuchs AA, Balne PK, Giuliano EA, Sinha NR, Mohan RR. Evaluation of a novel combination of TRAM-34 and ascorbic acid for the treatment of corneal fibrosis in vivo. PLoS One 2022; 17:e0262046. [PMID: 35007294 PMCID: PMC8746773 DOI: 10.1371/journal.pone.0262046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Corneal injury and aberrant wound healing commonly result in corneal fibrosis and subsequent vision loss. Intermediate-conductance calmodulin/calcium-activated K+ channels (KCa3.1) have been shown to promote fibrosis in non-ocular and ocular tissues via upregulation of transforming growth factor beta (TGFβ). TRAM-34 is a selective inhibitor of KCa3.1 and reduces fibrosis by downregulation of TGFβ-induced transdifferentiation of stromal fibroblasts to myofibroblasts. Ascorbic acid has been demonstrated to be effective in promoting corneal re-epithelialization and reduction of neovascularization via anti-VEGF and anti-MMP mechanisms. This study evaluates tolerability and efficacy of a novel combination of TRAM-34 (25μM) and ascorbic acid (10%) topical treatment for corneal fibrosis using an established in vivo rabbit model and conducting clinical eye examinations. Markers of corneal fibrosis were evaluated in all corneas at study endpoint via histopathology, immunofluorescence, and quantitative real-time PCR. The eyedrop treated eyes showed significantly improved clinical outcomes based on modified McDonald Shadduck scores, reduction of clinical haze on Fantes scores, and reduction of central corneal thickness (CCT). At cellular and molecular levels, eyedrop treatment also significantly reduced expression of alpha smooth muscle actin (α-SMA) mRNA and protein, collagen III mRNA, and fibronectin mRNA compared to non-treated eyes. Our study suggests that a tested new bimodal eyedrop is well tolerated and effectively reduces corneal fibrosis/haze in rabbits in vivo.
Collapse
Affiliation(s)
- Allison A. Fuchs
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Praveen K. Balne
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Elizabeth A. Giuliano
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Nishant R. Sinha
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Rajiv R. Mohan
- Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
31
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
32
|
Wright JR, Mahaut-Smith MP. Why do platelets express K + channels? Platelets 2021; 32:872-879. [PMID: 33872124 PMCID: PMC8437091 DOI: 10.1080/09537104.2021.1904135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022]
Abstract
Potassium ions have widespread roles in cellular homeostasis and activation as a consequence of their large outward concentration gradient across the surface membrane and ability to rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in the platelet, although they remain to be demonstrated using electrophysiological techniques. Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their precursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit an increased platelet count, which may result from an increased splenic megakaryocyte development and longer platelet lifespan. This review discusses the evidence in the literature that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. Putative roles for other K+ channels and known accessory proteins which to date have only been detected in transcriptomic or proteomic studies, are also discussed.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| | | |
Collapse
|
33
|
Brömmel K, Konken CP, Börgel F, Obeng-Darko H, Schelhaas S, Bulk E, Budde T, Schwab A, Schäfers M, Wünsch B. Synthesis and biological evaluation of PET tracers designed for imaging of calcium activated potassium channel 3.1 (K Ca3.1) channels in vivo. RSC Adv 2021; 11:30295-30304. [PMID: 35480282 PMCID: PMC9041111 DOI: 10.1039/d1ra03850h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
Expression of the Ca2+ activated potassium channel 3.1 (KCa3.1) channel (also known as the Gàrdos channel) is dysregulated in many tumor entities and has predictive power with respect to patient survival. Therefore, a positron emission tomography (PET) tracer targeting this ion channel could serve as a potential diagnostic tool by imaging the KCa3.1 channel in vivo. It was envisaged to synthesize [18F]senicapoc ([18F]1) since senicapoc (1) shows high affinity and excellent selectivity towards the KCa3.1 channels. Because problems occurred during 18F-fluorination, the [18F]fluoroethoxy senicapoc derivative [18F]28 was synthesized to generate an alternative PET tracer targeting the KCa3.1 channel. Inhibition of the KCa3.1 channel by 28 was confirmed by patch clamp experiments. In vitro stability in mouse and human serum was shown for 28. Furthermore, biodistribution experiments in wild type mice were performed. Since [18F]fluoride was detected in vivo after application of [18F]28, an in vitro metabolism study was conducted. A potential degradation route of fluoroethoxy derivatives in vivo was found which in general should be taken into account when designing new PET tracers for different targets with a [18F]fluoroethoxy moiety as well as when using the popular prosthetic group [18F]fluoroethyl tosylate for the alkylation of phenols. Expression of the Ca2+ activated potassium channel 3.1 (KCa3.1) channel (also known as the Gàrdos channel) is dysregulated in many tumor entities and has predictive power with respect to patient survival.![]()
Collapse
Affiliation(s)
- Kathrin Brömmel
- Institute for Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster Corrensstraße 48 D-48149 Münster Germany
| | - Christian Paul Konken
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany +49-8347363 +49-251-8344791
| | - Frederik Börgel
- Institute for Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster Corrensstraße 48 D-48149 Münster Germany
| | - Henry Obeng-Darko
- Institute for Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster Corrensstraße 48 D-48149 Münster Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westphalian Wilhelms-University Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Etmar Bulk
- Institute for Physiology II, University Hospital Münster Robert-Koch-Straße 27b D-48149 Münster Germany
| | - Thomas Budde
- Institute for Physiology I, University Hospital Münster Robert-Koch-Straße 27a D-48149 Münster Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster Waldeyerstraße 15 D-84149 Münster Germany
| | - Albrecht Schwab
- Institute for Physiology II, University Hospital Münster Robert-Koch-Straße 27b D-48149 Münster Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster Waldeyerstraße 15 D-84149 Münster Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany +49-8347363 +49-251-8344791.,European Institute for Molecular Imaging (EIMI), Westphalian Wilhelms-University Münster Waldeyerstraße 15 D-48149 Münster Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster Waldeyerstraße 15 D-84149 Münster Germany
| | - Bernhard Wünsch
- Institute for Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University Münster Corrensstraße 48 D-48149 Münster Germany.,Cells-in-Motion Interfaculty Center, Westphalian Wilhelms-University Münster Waldeyerstraße 15 D-84149 Münster Germany
| |
Collapse
|
34
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
35
|
He S, Wang Y, Yao Y, Cao Z, Yin J, Zi L, Chen H, Fu Y, Wang X, Zhao Q. Inhibition of KCa3.1 Channels Suppresses Atrial Fibrillation via the Attenuation of Macrophage Pro-inflammatory Polarization in a Canine Model With Prolonged Rapid Atrial Pacing. Front Cardiovasc Med 2021; 8:656631. [PMID: 34136541 PMCID: PMC8200470 DOI: 10.3389/fcvm.2021.656631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
Aims: To investigate the role of KCa3. 1 inhibition in macrophage pro-inflammatory polarization and vulnerability to atrial fibrillation (AF) in a canine model with prolonged rapid atrial pacing. Materials and Methods: Twenty beagle dogs (weighing 8–10 kg) were randomly assigned to a sham group (n = 6), pacing group (n = 7) and pacing+TRAM-34 group (n = 7). An experimental model of AF was established by rapid pacing. TRAM-34 was administered to the Pacing+TRAM-34 group by slow intravenous injection (10 mg/kg), 3 times each day. After 7 days of pacing, the electrophysiology was measured in vivo. The levels of interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), CD68, c-Fos, p38, and NF-κB p65 in both atriums were measured by Western blotting, and the levels of inducible nitric oxide synthase (iNOS) and arginase1 (Arg-1) were measured by real-time PCR. Macrophage and KCa3.1 in macrophage in the atrium were quantized following double labeled immunofluorescent. Results: Greater inducibility of AF, an extended duration of AF and lower atrial effective refractory period (AERP) were observed in the pacing group compared with those in the sham group. Both CD68-labeled macrophage and the expression of KCa3.1 in macrophage were elevated in the pacing group and inhibited by TRAM-34, led to higher iNOS expression, lower Arg-1 expression, elevated levels of IL-1β, MCP-1, and TNF-α in the atria, which could be reversed by TRAM-34 treatment (all P < 0.01). KCa3.1 channels were possibly activated via the p38/AP-1/NF-κB signaling pathway. Conclusions: Inhibition of KCa3.1 suppresses vulnerability to AF by attenuating macrophage pro-inflammatory polarization and inflammatory cytokine secretion in a canine model with prolonged rapid atrial pacing.
Collapse
Affiliation(s)
- Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junkui Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liuliu Zi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
36
|
Wan Y, Feng B, You Y, Yu J, Xu C, Dai H, Trapp BD, Shi P, Chen Z, Hu W. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep 2021; 33:108346. [PMID: 33147450 DOI: 10.1016/j.celrep.2020.108346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022] Open
Abstract
Complex febrile seizures (FSs) lead to a high risk of intractable temporal lobe epilepsy during adulthood, yet the pathological process of complex FSs is largely unknown. Here, we demonstrate that activated microglia extensively associated with glutamatergic neuronal soma displace surrounding GABAergic presynapses in complex FSs. Patch-clamp electrophysiology establishes that the microglial displacement of GABAergic presynapses abrogates a complex-FS-induced increase in GABAergic neurotransmission and neuronal excitability, whereas GABA exerts an excitatory action in this immature stage. Pharmacological inhibition of microglial displacement of GABAergic presynapses or selective ablation of microglia in CD11bDTR mice promotes the generation of complex FSs. Blocking or deleting the P2Y12 receptor (P2Y12R) reduces microglial displacement of GABAergic presynapses and shortens the latency of complex FSs. Together, microglial displacement of GABAergic presynapses, regulated by P2Y12R, reduces neuronal excitability to mitigate the generation of complex FSs. Microglial displacement is a protective event during the pathological process of complex FSs.
Collapse
Affiliation(s)
- Yushan Wan
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Bo Feng
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Yu
- Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China; Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
37
|
Abstract
Neoplastic transformation is reportedly associated with alterations of the potassium transport across plasma and intracellular membranes. These alterations have been identified as crucial elements of the tumourigenic reprogramming of cells. Potassium channels may contribute to cancer initiation, malignant progression and therapy resistance of tumour cells. The book chapter focusses on (oncogenic) potassium channels frequently upregulated in different tumour entities, upstream and downstream signalling of these channels, their contribution to the maintenance of cancer stemness and the formation of an immunosuppressive tumour microenvironment. In addition, their role in adaptation to tumour hypoxia, metabolic reprogramming, as well as tumour spreading and metastasis is discussed. Finally, we discuss how (oncogenic) potassium channels may confer treatment resistance of tumours against radiation and chemotherapy and thus might be harnessed for new therapy strategies, for instance, by repurposing approved drugs known to target potassium channels.
Collapse
|
38
|
Hansen FB, Secher N, Mattson T, Løfgren B, Simonsen U, Granfeldt A. Effect of the KCa3.1 blocker, senicapoc, on cerebral edema and cardiovascular function after cardiac arrest - A randomized experimental rat study. Resusc Plus 2021; 6:100111. [PMID: 34223371 PMCID: PMC8244250 DOI: 10.1016/j.resplu.2021.100111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
Senicapoc was successfully administered intravenously. Senicapoc did not reduce cerebral edema 4 h after cardiac arrest. Senicapoc did not increase mean arterial pressure within 4 h from resuscitation.
Aim Formation of cerebral edema and cardiovascular dysfunction may worsen brain injury following cardiac arrest. We hypothesized that administration of the intermediate calcium-activated potassium (KCa3.1) channel blocker, senicapoc, would reduce cerebral edema and augment mean arterial pressure in the early post-resuscitation period. Method Male Sprague-Dawley rats, aged 11–15 weeks, were utilized in the study. Rats were exposed to 8 min of asphyxial cardiac arrest. Shortly after resuscitation, rats were randomized to receive either vehicle or senicapoc (10 mg/kg) intravenously. The primary outcome was cerebral wet to dry weight ratio 4 h after resuscitation. Secondary outcomes included mean arterial pressure, cardiac output, norepinephrine dose, inflammatory cytokines and neuron specific enolase levels. Additionally, a sub-study was conducted to validate intravenous administration of senicapoc. Results The sub-study revealed that senicapoc-treated rats maintained a significantly higher mean arterial pressure during administration of SKA-31 (a KCa3.1 channel opener). The plasma concentration of senicapoc was 1060 ± 303 ng/ml 4 h after administration. Senicapoc did not reduce cerebral edema or augment mean arterial pressure 4 h after resuscitation. Likewise, cardiac function and norepinephrine dose did not vary between groups. Inflammatory cytokines and neuron specific enolase levels increased in both groups after resuscitation with no difference between groups. Senicapoc enhanced the PaO2/FiO2 ratio significantly 4 h after resuscitation. Conclusion Senicapoc was successfully administered intravenously after resuscitation, but did not reduce cerebral edema or increase mean arterial pressure in the early post-resuscitation period.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark
| | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Thomas Mattson
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Bo Løfgren
- Department of Internal Medicine, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark.,Research Center for Emergency Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus N, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| |
Collapse
|
39
|
Increased Levels of ER Stress and Apoptosis in a Sheep Model for Pulmonary Fibrosis Are Alleviated by In Vivo Blockade of the KCa3.1 Ion Channel. Can Respir J 2021; 2021:6683195. [PMID: 33828632 PMCID: PMC8004363 DOI: 10.1155/2021/6683195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease, characterized by progressive damage to the lung tissues. Apoptosis and endoplasmic reticulum stress (ER stress) in type II alveolar epithelial cells (AECs) and lung macrophages have been linked with the development of IPF. Therefore, apoptosis- and ER stress-targeted therapies have drawn attention as potential avenues for treatment of IPF. The calcium-activated potassium ion channel KCa3.1 has been proposed as a potential therapeutic target for fibrotic diseases including IPF. While KCa3.1 is expressed in AECs and macrophages, its influence on ER stress and apoptosis during the disease process is unclear. We utilized a novel sheep model of pulmonary fibrosis to demonstrate that apoptosis and ER stress occur in type II AECs and macrophages in sheep with bleomycin-induced lung fibrosis. Apoptosis in type II AEC and macrophages was identified using the TUNEL method of tagging fragmented nuclear DNA, while ER stress was characterized by increased expression of GRP-78 ER chaperone proteins. We demonstrated that apoptosis and ER stress in type II AECs and macrophages increased significantly 2 weeks after the final bleomycin infusion and remained high for up to 7 weeks post-bleomycin injury. Senicapoc treatment significantly reduced the rates of ER stress in type II AECs and macrophages that were resident in bleomycin-infused lung segments. There were also significant reductions in the rates of apoptosis of type II AECs and macrophages in the lung segments of senicapoc-treated sheep. In vivo blockade of the KCa3.1 ion channel alleviates the ER stress and apoptosis in type II AECs and macrophages, and this effect potentially contributes to the anti-fibrotic effects of senicapoc.
Collapse
|
40
|
Zheng F, Tao Y, Liu J, Geng Z, Wang Y, Wang Y, Fu S, Wang W, Xie C, Zhang Y, Gong F. KCa3.1 Inhibition of Macrophages Suppresses Inflammatory Response Leading to Endothelial Damage in a Cell Model of Kawasaki Disease. J Inflamm Res 2021; 14:719-735. [PMID: 33727847 PMCID: PMC7954440 DOI: 10.2147/jir.s297131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Macrophages-mediated inflammation is linked with endothelial damage of Kawasaki disease (KD). KCa3.1, a calcium-activated potassium channel, modulates inflammation of macrophages. However, little is known about the role of KCa3.1 in inflammation by macrophages involved in KD. Hence, this study is aimed to explore the potential role of KCa3.1 in regulating inflammatory response by macrophages and subsequent vascular injury in an in vitro model of KD. Methods RAW264.7 cells were stimulated with Lactobacillus casei cell wall extract (LCWE) with or without TRAM-34 or PDTC or AG490. Subsequently, mouse coronary artery endothelial cells (MCAECs) were incubated with RAW264.7 cells-conditioned medium to mimic local inflammatory lesions in KD. CCKi8 assay was used to evaluate cell viability. The mRNA levels of inflammatory mediators were detected by qRT-PCR. Expressions of KCa3.1, MCAECs injury-associated molecules, proteins involved in signal pathways of nuclear factor-κB (NF-κB), signal transducers and activators of transcription (STAT) 3 and p38 were evaluated by Western blot. Results Our study showed that LCWE increased KCa3.1 protein level in RAW264.7 macrophages and KCa3.1 inhibition by TRAM-34 notably suppressed the expression of pro-inflammatory molecules in LCWE-treated macrophages via blocking the activation of NF-κB and STAT3 pathways. Besides, the inflammation and damage of MCAECs were attenuated in the TRAM-34-treated group compared with the KD model group. This vascular protective role was dependent on the down-regulation of NF-κB and STAT3 signal pathways, which was confirmed by using inhibitors of NF-κB and STAT3. Conclusion This study demonstrates that KCa3.1 blockade of macrophages suppresses inflammatory reaction leading to mouse coronary artery endothelial cell injury in a cell model of KD by hampering the activation of NF-κB and STAT3 signaling pathway. These findings imply that KCa3.1 may be a potential therapeutic target for KD.
Collapse
Affiliation(s)
- Fenglei Zheng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Yijing Tao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Jingjing Liu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Zhimin Geng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Ying Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Yujia Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Songling Fu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Wei Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Chunhong Xie
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Yiying Zhang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, People's Republic of China
| |
Collapse
|
41
|
Huang C, Yi H, Shi Y, Cao Q, Shi Y, Cheng D, Braet F, Chen XM, Pollock CA. KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. Front Cell Dev Biol 2021; 9:573814. [PMID: 33681190 PMCID: PMC7933228 DOI: 10.3389/fcell.2021.573814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of diabetic kidney disease. Mitochondrial quality control is primarily mediated by mitochondrial turnover and repair through mitochondrial fission/fusion and mitophagy. We have previously shown that blockade of the calcium-activated potassium channel KCa3.1 ameliorates diabetic renal fibrosis. However, the mechanistic link between KCa3.1 and mitochondrial quality control in diabetic kidney disease is not yet known. Transforming growth factor β1 (TGF-β1) plays a central role in diabetic kidney disease. Recent studies indicate an emerging role of TGF-β1 in the regulation of mitochondrial function. However, the molecular mechanism mediating mitochondrial quality control in response to TGF-β1 remains limited. In this study, mitochondrial function was assessed in TGF-β1-exposed renal proximal tubular epithelial cells (HK2 cells) transfected with scrambled siRNA or KCa3.1 siRNA. In vivo, diabetes was induced in KCa3.1+/+ and KCa3.1−/− mice by low-dose streptozotocin (STZ) injection. Mitochondrial fission/fusion-related proteins and mitophagy markers, as well as BCL2 interacting protein 3 (BNIP3) (a mitophagy regulator) were examined in HK2 cells and diabetic mice kidneys. The in vitro results showed that TGF-β1 significantly inhibited mitochondrial ATP production rate and increased mitochondrial ROS (mtROS) production when compared to control, which was normalized by KCa3.1 gene silencing. Increased fission and suppressed fusion were found in both TGF-β1-treated HK2 cells and diabetic mice, which were reversed by KCa3.1 deficiency. Furthermore, our results showed that mitophagy was inhibited in both in vitro and in vivo models of diabetic kidney disease. KCa3.1 deficiency restored abnormal mitophagy by inhibiting BNIP3 expression in TGF-β1-induced HK2 cells as well as in the diabetic mice. Collectively, these results indicate that KCa3.1 mediates the dysregulation of mitochondrial quality control in diabetic kidney disease.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Hao Yi
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Ying Shi
- Division of Nephrology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Qinghua Cao
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Yin Shi
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Delfine Cheng
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Filip Braet
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW, Australia
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
42
|
Arsenault D, Tremblay C, Emond V, Calon F. Sex-dependent alterations in the physiology of entorhinal cortex neurons in old heterozygous 3xTg-AD mice. Biol Sex Differ 2020; 11:63. [PMID: 33198813 PMCID: PMC7667843 DOI: 10.1186/s13293-020-00337-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
While the higher prevalence of Alzheimer’s disease (AD) in women is clear, studies suggest that biological sex may also influence AD pathogenesis. However, mechanisms behind these differences are not clear. To investigate physiological differences between sexes at the cellular level in the brain, we investigated the intrinsic and synaptic properties of entorhinal cortex neurons in heterozygous 3xTg-AD mice of both sexes at the age of 20 months. This brain region was selected because of its early association with AD symptoms. First, we found physiological differences between male and female non-transgenic mice, providing indirect evidence of axonal alterations in old females. Second, we observed a transgene-dependent elevation of the firing activity, post-burst afterhyperpolarization (AHP), and spontaneous excitatory postsynaptic current (EPSC) activity, without any effect of sex. Third, the passive properties and the hyperpolarization-activated current (Ih) were altered by transgene expression only in female mice, whereas the paired-pulse ratio (PPR) of evoked EPSC was changed only in males. Fourth, both sex and transgene expression were associated with changes in action potential properties. Consistent with previous work, higher levels of Aβ neuropathology were detected in 3xTg-AD females, whereas tau deposition was similar. In summary, our results support the idea that aging and AD neuropathology differentially alter the physiology of entorhinal cortex neurons in males and females.
Collapse
Affiliation(s)
- Dany Arsenault
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.,Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada.,Physiotek, Quebec City, QC, Canada
| | - Cyntia Tremblay
- Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada
| | - Vincent Emond
- Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada. .,Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada.
| |
Collapse
|
43
|
de Jonge HR, Ardelean MC, Bijvelds MJC, Vergani P. Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas. FEBS Lett 2020; 594:4085-4108. [PMID: 33113586 PMCID: PMC7756540 DOI: 10.1002/1873-3468.13971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter. It acts as an anion‐selective channel that drives osmotic fluid transport across many epithelia. In the gut, CFTR is crucial for maintaining fluid and acid‐base homeostasis, and its activity is tightly controlled by multiple neuro‐endocrine factors. However, microbial toxins can disrupt this intricate control mechanism and trigger protracted activation of CFTR. This results in the massive faecal water loss, metabolic acidosis and dehydration that characterize secretory diarrhoeas, a major cause of malnutrition and death of children under 5 years of age. Compounds that inhibit CFTR could improve emergency treatment of diarrhoeal disease. Drawing on recent structural and functional insight, we discuss how existing CFTR inhibitors function at the molecular and cellular level. We compare their mechanisms of action to those of inhibitors of related ABC transporters, revealing some unexpected features of drug action on CFTR. Although challenges remain, especially relating to the practical effectiveness of currently available CFTR inhibitors, we discuss how recent technological advances might help develop therapies to better address this important global health need.
Collapse
Affiliation(s)
- Hugo R. de Jonge
- Department of Gastroenterology & HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Maria C. Ardelean
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonUK
- Department of Natural SciencesUniversity College LondonUK
| | - Marcel J. C. Bijvelds
- Department of Gastroenterology & HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Paola Vergani
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonUK
| |
Collapse
|
44
|
Yang M, Dart C, Kamishima T, Quayle JM. Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells. PeerJ 2020; 8:e10344. [PMID: 33240653 PMCID: PMC7664465 DOI: 10.7717/peerj.10344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels couple cellular metabolism to excitability, making them ideal candidate sensors for hypoxic vasodilation. However, it is still unknown whether cellular nucleotide levels are affected sufficiently to activate vascular KATP channels during hypoxia. To address this fundamental issue, we measured changes in the intracellular ATP:ADP ratio using the biosensors Perceval/PercevalHR, and membrane potential using the fluorescent probe DiBAC4(3) in human coronary artery smooth muscle cells (HCASMCs). ATP:ADP ratio was significantly reduced by exposure to hypoxia. Application of metabolic inhibitors for oxidative phosphorylation also reduced ATP:ADP ratio. Hyperpolarization caused by inhibiting oxidative phosphorylation was blocked by either 10 µM glibenclamide or 60 mM K+. Hyperpolarization caused by hypoxia was abolished by 60 mM K+ but not by individual K+ channel inhibitors. Taken together, these results suggest hypoxia causes hyperpolarization in part by modulating K+ channels in SMCs.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool, UK
| | - Caroline Dart
- Department of Biochemistry, Institute of Integrative Biology, Liverpool, UK
| | - Tomoko Kamishima
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool, UK
| | - John M. Quayle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Liverpool, UK
| |
Collapse
|
45
|
Jakakul C, Kanjanasirirat P, Muanprasat C. Development of a Cell-Based Assay for Identifying K Ca3.1 Inhibitors Using Intestinal Epithelial Cell Lines. SLAS DISCOVERY 2020; 26:439-449. [PMID: 32830616 DOI: 10.1177/2472555220950661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of the KCa3.1 potassium channel has therapeutic potential in a variety of human diseases, including inflammation-associated disorders and cancers. However, KCa3.1 inhibitors with high therapeutic promise are currently not available. This study aimed to establish a screening assay for identifying inhibitors of KCa3.1 in native cells and from library compounds derived from natural products in Thailand. The screening platform was successfully developed based on a thallium flux assay in intestinal epithelial (T84) cells with a Z' factor of 0.52. The screening of 1352 compounds and functional validation using electrophysiological analyses identified 8 compounds as novel KCa3.1 inhibitors with IC50 values ranging from 0.14 to 6.57 µM. These results indicate that the assay developed is of excellent quality for high-throughput screening and capable of identifying KCa3.1 inhibitors. This assay may be useful in identifying novel KCa3.1 inhibitors that may have therapeutic potential for inflammation-associated disorders and cancers.
Collapse
Affiliation(s)
- Chanon Jakakul
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
46
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Tinelli A. Pharmacological Scenarios in Translational Research: A Current Multidisciplinary Overview and Possible Developments. Curr Pharm Des 2020; 26:296-299. [PMID: 32213151 DOI: 10.2174/138161282603200306092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynecology, "Veris delli Ponti" Hospital, Scorrano, Lecce, Italy
| |
Collapse
|
48
|
Manfroni G, Ragonese F, Monarca L, Astolfi A, Mancinelli L, Iannitti RG, Bastioli F, Barreca ML, Cecchetti V, Fioretti B. New Insights on KCa3.1 Channel Modulation. Curr Pharm Des 2020; 26:2096-2101. [PMID: 32175839 DOI: 10.2174/1381612826666200316152645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022]
Abstract
The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Loretta Mancinelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | | - Maria L Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
49
|
Lozano-Gerona J, Oliván-Viguera A, Delgado-Wicke P, Singh V, Brown BM, Tapia-Casellas E, Pueyo E, Valero MS, Garcia-Otín ÁL, Giraldo P, Abarca-Lachen E, Surra JC, Osada J, Hamilton KL, Raychaudhuri SP, Marigil M, Juarranz Á, Wulff H, Miura H, Gilaberte Y, Köhler R. Conditional KCa3.1-transgene induction in murine skin produces pruritic eczematous dermatitis with severe epidermal hyperplasia and hyperkeratosis. PLoS One 2020; 15:e0222619. [PMID: 32150577 PMCID: PMC7062274 DOI: 10.1371/journal.pone.0222619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-β1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-β1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Javier Lozano-Gerona
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Aida Oliván-Viguera
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Univ. of Zaragoza, Zaragoza, Spain
| | | | - Vikrant Singh
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Brandon M. Brown
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Elena Tapia-Casellas
- Scientific and Technical Service, Aragónese Center for Biomedical Research, Univ. of Zaragoza, Zaragoza, Spain
| | - Esther Pueyo
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Univ. of Zaragoza, Zaragoza, Spain
| | | | - Ángel-Luis Garcia-Otín
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Pilar Giraldo
- Spanish Foundation for the Study and Treatment of Gaucher Disease and other Lysosomal Disorders (FEETEG), Zaragoza, Spain
| | - Edgar Abarca-Lachen
- Universidad San Jorge, Faculty of Health Sciences, Villanueva de Gállego, Spain
| | - Joaquín C. Surra
- Departamento de Producción Animal y Ciencia de los Alimentos, CIBER-obn, Univ. of Zaragoza, Zaragoza, Spain
| | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular (CIBEROBN), Facultad de Veterinaria, Univ. of Zaragoza, Zaragoza, Spain
| | - Kirk L. Hamilton
- Dept. of Physiology, School of Biomedical Sciences, Univ. of Otago, Dunedin, New Zealand
| | - Siba P. Raychaudhuri
- Department of Medicine and Dermatology, School of Medicine UC Davis and VA Sacramento Medical Center University of California, Mather, California, United States of America
| | | | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, UAM, Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Heike Wulff
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Hiroto Miura
- Dept. of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States of America
| | - Yolanda Gilaberte
- Dept. of Dermatology, Univ. Hospital Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Ralf Köhler
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| |
Collapse
|
50
|
Roach KM, Bradding P. Ca 2+ signalling in fibroblasts and the therapeutic potential of K Ca3.1 channel blockers in fibrotic diseases. Br J Pharmacol 2020; 177:1003-1024. [PMID: 31758702 DOI: 10.1111/bph.14939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ signalling in fibroblasts is of great interest in fibrosis-related diseases. Intracellular free Ca2+ ([Ca2+ ]i ) is a ubiquitous secondary messenger, regulating a number of cellular functions such as secretion, metabolism, differentiation, proliferation and contraction. The intermediate conductance Ca2+ -activated K+ channel KCa 3.1 is pivotal in Ca2+ signalling and plays a central role in fibroblast processes including cell activation, migration and proliferation through the regulation of cell membrane potential. Evidence from a number of approaches demonstrates that KCa 3.1 plays an important role in the development of many fibrotic diseases, including idiopathic pulmonary, renal tubulointerstitial fibrosis and cardiovascular disease. The KCa 3.1 selective blocker senicapoc was well tolerated in clinical trials for sickle cell disease, raising the possibility of rapid translation to the clinic for people suffering from pathological fibrosis. This review after analysing all the data, concludes that targeting KCa 3.1 should be a high priority for human fibrotic disease.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|