1
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
2
|
Citi V, Barresi E, Piragine E, Spezzini J, Testai L, Da Settimo F, Martelli A, Taliani S, Calderone V. Anti-Proliferative Properties of the Novel Hybrid Drug Met-ITC, Composed of the Native Drug Metformin with the Addition of an Isothiocyanate H 2S Donor Moiety, in Different Cancer Cell Lines. Int J Mol Sci 2023; 24:16131. [PMID: 38003321 PMCID: PMC10671447 DOI: 10.3390/ijms242216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Metformin (Met) is the first-line therapy in type 2 diabetes mellitus but, in last few years, it has also been evaluated as anti-cancer agent. Several pathways, such as AMPK or PI3K/Akt/mTOR, are likely to be involved in the anti-cancer Met activity. In addition, hydrogen sulfide (H2S) and H2S donors have been described as anti-cancer agents affecting cell-cycle and inducing apoptosis. Among H2S donors, isothiocyanates are endowed with a further anti-cancer mechanism: the inhibition of the histone deacetylase enzymes. On this basis, a hybrid molecule (Met-ITC) obtained through the addition of an isothiocyanate moiety to the Met molecule was designed and its ability to release Met has been demonstrated. Met-ITC exhibited more efficacy and potency than Met in inhibiting cancer cells (AsPC-1, MIA PaCa-2, MCF-7) viability and it was less effective on non-tumorigenic cells (MCF 10-A). The ability of Met-ITC to release H2S has been recorded both in cell-free and in cancer cells assays. Finally, its ability to affect the cell cycle and to induce both early and late apoptosis has been demonstrated on the most sensitive cell line (MCF-7). These results confirmed that Met-ITC is a new hybrid molecule endowed with potential anti-cancer properties derived both from Met and H2S.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
3
|
Xu S, Shieh M, Paul BD, Xian M. Hydrogen sulfide: Recent development of its dual donors and hybrid drugs. Br J Pharmacol 2023:10.1111/bph.16211. [PMID: 37553774 PMCID: PMC10850433 DOI: 10.1111/bph.16211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Hydrogen sulfide (H2 S) is an important gaseous signalling molecule known to be critically involved in regulating cellular redox homeostasis. As the beneficial and therapeutic effects of H2 S in pathophysiology, such as in cardiovascular and neurodegenerative diseases, have emerged, so too has the drive for the development of H2 S-releasing compounds (aka donors) and their therapeutic applications. Most reported donor compounds singularly release H2 S through biocompatible triggers. An emerging area in the field is the development of compounds that can co-deliver H2 S with other drugs or biologically relevant species, such as reactive oxygen and nitrogen species (ROS and RNS, respectively). These H2 S-based dual donors and hybrid drugs are expected to offset negative side effects from individual treatments or achieve synergistic effects rendering them more clinically effective. Additionally, considering that molecules exist and interact physiologically, dual donors may more accurately mimic biological systems as compared to single donors and allow for the elucidation of fundamental chemistry and biology. This review focuses on the recent advances in the development of H2 S-based dual donors and hybrid drugs along with their design principles and synergistic effects.
Collapse
Affiliation(s)
- Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Wang R, Wu X, Tian Z, Hu T, Cai C, Wu G, Jiang GB, Liu B. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact Mater 2023; 23:118-128. [DOI: 10.1016/j.bioactmat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
|
5
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
6
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
7
|
Polynorbornene-Derived Block Copolymer Micelles via Ring‐Opening Metathesis Polymerization with Capacity of Hydrogen Sulfide Generation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Synthesis and study of thioglycoside conjugates of 4-chloro-1,2-dithiol-3-one as potential cancer-preventive substances in vitro and in vivo. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Bhilare NV, Marulkar VS, Kumar D, Chatap VK, Patil KS, Shirote PJ. An insight into prodrug strategy for the treatment of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Li C, Sun H, Shi Y, Yu Y, Ji X, Li E, Zhou X, Liu X, Xue X, Sun H. Effects of Exogenous Hydrogen Sulfide in the Hypothalamic Paraventricular Nucleus on Gastric Function in Rats. Front Pharmacol 2022; 12:806012. [PMID: 35095514 PMCID: PMC8793780 DOI: 10.3389/fphar.2021.806012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hydrogen sulfide (H2S) is a new type of gas neurotransmitter discovered in recent years. It plays an important role in various physiological activities. The hypothalamus paraventricular nucleus (PVN) is an important nucleus that regulates gastric function. This study aimed to clarify the role of H2S in the paraventricular nucleus of the hypothalamus on the gastric function of rats. Methods: An immunofluorescence histochemistry double-labelling technique was used to determine whether cystathionine-beta-synthase (CBS) and c-Fos neurons are involved in PVN stress. Through microinjection of different concentrations of NaHS, physiological saline (PS), D-2-Amino-5-phosphonovaleric acid (D-AP5), and pyrrolidine dithiocarbamate (PDTC), we observed gastric motility and gastric acid secretion. Results: c-Fos and CBS co-expressed the most positive neurons after 1 h of restraint and immersion, followed by 3 h, and the least was at 0 h. After injection of different concentrations of NaHS into the PVN, gastric motility and gastric acid secretion in rats were significantly inhibited and promoted, respectively (p < 0.01); however, injection of normal saline, D-AP5, and PDTC did not cause any significant change (p > 0.05). The suppressive effect of NaHS on gastrointestinal motility and the promotional effect of NaHS on gastric acid secretion could be prevented by D-AP5, a specific N-methyl-D-aspartic acid (NMDA) receptor antagonist, and PDTC, an NF-κB inhibitor. Conclusion: There are neurons co-expressing CBS and c-Fos in the PVN, and the injection of NaHS into the PVN can inhibit gastric motility and promote gastric acid secretion in rats. This effect may be mediated by NMDA receptors and the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chenyu Li
- School of Life Science, Qilu Normal University, Jinan, China.,Key Laboratory of Animal Resistance, School of Life Science, Shandong Normal University, Jinan, China
| | - Hongzhao Sun
- School of Life Science, Qilu Normal University, Jinan, China
| | - Yuan Shi
- School of Life Science, Qilu Normal University, Jinan, China
| | - Yan Yu
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xiaofeng Ji
- School of Life Science, Qilu Normal University, Jinan, China
| | - Enguang Li
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xiaofan Zhou
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xiaomeng Liu
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xikang Xue
- School of Life Science, Qilu Normal University, Jinan, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance, School of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Investigation of H 2S Donor Treatment on Neutrophil Extracellular Traps in Experimental Colitis. Int J Mol Sci 2021; 22:ijms222312729. [PMID: 34884536 PMCID: PMC8657984 DOI: 10.3390/ijms222312729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders, which affect the gastrointestinal tract with intermittent ulceration. It is increasingly clear that neutrophil extracellular traps (NETs) seem to have a role in IBD; however, the associated pathogenesis is still not known. Furthermore, several conventional therapies are available against IBD, although these might have side effects. Our current study aimed to investigate the effects of hydrogen sulfide (H2S) treatment on NETs formation and on the expression of inflammatory mediators in experimental rat colitis. To model IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was administered intracolonically (i.c.) to Wistar-Harlan male rats. Animals were treated (2 times/day) with H2S donor Lawesson's reagent per os. Our results showed that H2S treatment significantly decreased the extent of colonic lesions. Furthermore, the expression of members of NETs formation: peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (citH3), myeloperoxidase (MPO) and inflammatory regulators, such as nuclear transcription factor-kappa B (NF-κB) and high-mobility group box 1 (HMGB1) were reduced in H2S treated group compared to TNBS. Additionally, H2S donor administration elevated the expression of ubiquitin C-terminal hydroxylase L1 (UCHL-1), a potential anti-inflammatory mediator. Taken together, our results showed that H2S may exert anti-inflammatory effect through the inhibition of NETs formation, which suggests a new therapeutic approach against IBD.
Collapse
|
12
|
Hao Y, Wang H, Fang L, Bian J, Gao Y, Li C. H2S Donor and Bone Metabolism. Front Pharmacol 2021; 12:661601. [PMID: 34366840 PMCID: PMC8339202 DOI: 10.3389/fphar.2021.661601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrogen sulfide (H2S) has been recognized as the third gasotransmitter, following nitric oxide and carbon monoxide, and it exerts important biological effects in the body. Growing evidence has shown that H2S is involved in many physiological processes in the body. In recent years, much research has been carried out on the role of H2S in bone metabolism. Bone metabolic diseases have been linked to abnormal endogenous H2S functions and metabolism. It has been found that H2S plays an important role in the regulation of bone diseases such as osteoporosis and osteoarthritis. Regulation of H2S on bone metabolism has many interacting signaling pathways at the molecular level, which play an important role in bone formation and absorption. H2S releasing agents (donors) have achieved significant effects in the treatment of metabolic bone diseases such as osteoporosis and osteoarthritis. In addition, H2S donors and related drugs have been widely used as research tools in basic biomedical research and may be explored as potential therapeutic agents in the future. Donors are used to study the mechanism and function of H2S as they release H2S through different mechanisms. Although H2S releasers have biological activity, their function can be inconsistent. Additionally, donors have different H2S release capabilities, which could lead to different effects. Side effects may form with the formation of H2S; however, it is unclear whether these side effects affect the biological effects of H2S. Therefore, it is necessary to study H2S donors in detail. In this review, we summarize the current information about H2S donors related to bone metabolism diseases and discuss some mechanisms and biological applications.
Collapse
Affiliation(s)
- Yanming Hao
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Hongzhen Wang
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Lingna Fang
- Department of Endocrinology, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Jinsong Bian
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Gao
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Chong Li
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| |
Collapse
|
13
|
FOMENKO I, LOZYNSKA I, BONDARCHUK T, DENYSENKO N, LESYK R, SKLYAROV A. Anti-inflammatory hydrogen sulfide-releasing agents with reduced gastro- and enterotoxicity on the stress model in rats. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2021. [DOI: 10.23736/s2724-542x.21.02758-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Opoku-Damoah Y, Zhang R, Ta HT, Amilan Jose D, Sakla R, Xu ZP. Lipid-encapsulated upconversion nanoparticle for near-infrared light-mediated carbon monoxide release for cancer gas therapy. Eur J Pharm Biopharm 2021; 158:211-221. [DOI: 10.1016/j.ejpb.2020.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
|
16
|
Dao NV, Ercole F, Kaminskas LM, Davis TP, Sloan EK, Whittaker MR, Quinn JF. Trisulfide-Bearing PEG Brush Polymers Donate Hydrogen Sulfide and Ameliorate Cellular Oxidative Stress. Biomacromolecules 2020; 21:5292-5305. [PMID: 33210534 DOI: 10.1021/acs.biomac.0c01347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A potential approach to combat cellular dysfunction is to manipulate cell communication and signaling pathways to restore physiological functions while protecting unaffected cells. For instance, delivering the signaling molecule H2S to certain cells has been shown to restore cell viability and re-normalize cell behavior. We have previously demonstrated the ability to incorporate a trisulfide-based H2S-donating moiety into linear polymers with good in vitro releasing profiles and demonstrated their potential for ameliorating oxidative stress. Herein, we report two novel series of brush polymers decorated with higher numbers of H2S-releasing segments. These materials contain two trisulfide-based monomers co-polymerized with oligo(ethylene glycol methyl ether methacrylate) via reversible addition-fragmentation chain-transfer polymerization. The macromolecules were characterized to have a range of trisulfide densities with similar, well-defined molecular weight distribution, good H2S-releasing profiles, and high cellular tolerance. Using an amperometric technique, the H2S liberated and total sulfide release were found to depend on concentrations and chemical nature of triggering molecules (glutathione and cysteine) and, importantly, the position of reactive groups within the brush structure. Notably, when introduced to cells at well-tolerated doses, two macromolecular donors which have the same proportion as of the H2S-donating monomer (30%) but differ in releasing moiety location show similar cellular H2S-releasing kinetics. These donors can restore reactive oxygen species levels to baseline values, when polymer pretreated cells are exposed to exogenous oxidants (H2O2). Our work opens up a new aspect in preparing H2S macromolecule donors and their application to arresting cellular oxidative cascades.
Collapse
Affiliation(s)
- Nam V Dao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
18
|
Rezai H, Ahmad S, Alzahrani FA, Sanchez-Aranguren L, Dias IH, Agrawal S, Sparatore A, Wang K, Ahmed A. MZe786, a hydrogen sulfide-releasing aspirin prevents preeclampsia in heme oxygenase-1 haplodeficient pregnancy under high soluble flt-1 environment. Redox Biol 2020; 38:101768. [PMID: 33137710 PMCID: PMC7610044 DOI: 10.1016/j.redox.2020.101768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023] Open
Abstract
Preeclampsia affects one in twelve of the 130 million pregnancies a year. The lack of an effective therapeutic to prevent or treat it is responsible for an annual global cost burden of 100 billion US dollars. Preeclampsia also affects these women later in life as it is a recognised risk factor for cardiovascular disease, stroke and vascular dementia. Our laboratory demonstrated that preeclampsia is associated with high soluble fms-like tyrosine kinase 1 (sFlt-1) and low heme oxygenase-1 (HO1/Hmox1) expression. Here we sought to determine the therapeutic value of a novel H2S-releasing aspirin (MZe786) in HO-1 haploid deficient (Hmox1+/−) pregnant mice in a high sFlt-1 environment. Pregnant Hmox1+/− mice were injected with adenovirus encoding sFlt-1 or control virus at gestation day E11.5. Subsequently, Hmox1+/− dams were treated daily with a number of treatment regimens until E17.5, when maternal and fetal outcomes were assessed. Here we show that HO-1 compromised mice in a high sFlt-1 environment during pregnancy exhibit severe preeclampsia signs and a reduction in antioxidant genes. MZe786 ameliorates preeclampsia by reducing hypertension and renal damage possibly by stimulating antioxidant genes. MZe786 also improved fetal outcome in comparison with aspirin alone and appears to be a better therapeutic agent at preventing preeclampsia than aspirin alone. Partial loss of heme oxygenase-1 under high soluble Flt-1 causes severe preeclampsia compared to high sFlt-1 alone. MZe786, hydrogen sulfide releasing aspirin prevents preeclampsia by suppressing maternal hypertension and kidney injury. MZe786 is able to rescue pregnancy and improves fetal outcome despite the persistent high levels of sFlt-1. MZe786 is a superior therapeutic candidate than aspirin in preventing preeclampsia.
Collapse
Affiliation(s)
- Homira Rezai
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Shakil Ahmad
- Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Faisal A Alzahrani
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Department of Biochemistry, ESC Research Unit, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lissette Sanchez-Aranguren
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Irundika Hk Dias
- Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Swati Agrawal
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Department of Maternal Fetal Medicine, Mt Sinai Hospital, University of Toronto, Toronto, Canada
| | - Anna Sparatore
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Keqing Wang
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Asif Ahmed
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom; Department of Biochemistry, ESC Research Unit, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; President's Office, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
Dali MM, Dansette PM, Mansuy D, Boucher JL. Comparison of Various Aryl-Dithiolethiones and Aryl-Dithiolones As Hydrogen Sulfide Donors in the Presence of Rat Liver Microsomes. Drug Metab Dispos 2020; 48:426-431. [PMID: 32234734 DOI: 10.1124/dmd.119.090274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
It has been reported that microsomal metabolism of ADT (5-(p-methoxyphenyl)-3H-1,2-dithiole-3-thione, anetholedithiolethione, Sulfarlem) and ADO (5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one, anetholedithiolone) led to formation of H2S mainly derived from oxidations catalyzed by cytochrome P450-dependent monooxygenases and that ADO was a better H2S donor than ADT under these conditions. This article compares the H2S donor abilities of 18 dithiolethione and dithiolone analogs of ADT and ADO upon incubation with rat liver microsomes. It shows that, for all the studied compounds, maximal H2S formation was obtained after incubation with microsomes and NADPH and that this formation greatly decreased in the presence of N-benzylimidazole, a known inhibitor of cytochrome P450. This indicates that H2S formation from all the studied compounds requires, as previously observed in the case of ADT and ADO, oxidations catalyzed by cytochrome P450-dependent monooxygenases. Under these conditions, the studied dithiolones were almost always better H2S donors than the corresponding dithiolethiones. Interestingly, the best H2S yields (up to 75%) were observed in microsomal oxidation of ADO and its close analogs, pCl-Ph-DO and Ph-DO, in the presence of glutathione (GSH), whereas only small amounts of H2S were formed in microsomal incubations of those compounds with GSH but in the absence of NADPH. A possible mechanism for this effect of GSH is proposed on the basis of results obtained from reactions of GSH with 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one-1-sulfoxide, the ADO metabolite involved in H2S formation in microsomal oxidation of ADO. SIGNIFICANCE STATEMENT: A series of 18 dithiolethiones and dithiolones were compared for their ability to form hydrogen sulfide (H2S) in oxidations catalyzed by microsomal monooxygenases. The studied dithiolones were better H2S donors than the corresponding dithiolethiones, and the addition of glutathione to the incubations strongly increased H2S formation. A possible mechanism for this effect of GSH is proposed on the basis of results obtained from reactions of GSH with 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one-1-sulfoxide, a metabolite of the choleretic and sialologic drug Sulfarlem.
Collapse
Affiliation(s)
- Madou-Marilyn Dali
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| |
Collapse
|
20
|
Späth MR, Koehler FC, Hoyer-Allo KJR, Grundmann F, Burst V, Müller RU. Preconditioning strategies to prevent acute kidney injury. F1000Res 2020; 9:F1000 Faculty Rev-237. [PMID: 32269763 PMCID: PMC7135682 DOI: 10.12688/f1000research.21406.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury is a common clinical disorder resulting in significantly increased morbidity and mortality. However, despite extensive research, strategies for prevention or treatment are still lacking in routine clinical practice. Already decades ago, several preconditioning strategies (e. g. ischemic/hypoxic preconditioning and calorie restriction) have been published and their extraordinary effectiveness - especially in rodents - has raised the hope for powerful clinical tools to prevent acute kidney injury. However, the underlying mechanisms are still not completely understood and translation to the clinics has not been successful yet. In this review, the most attractive strategies and the current mechanistic concepts are introduced and discussed. Furthermore, we present clinical trials evaluating the feasibility of preconditioning in the clinical setting.
Collapse
Affiliation(s)
- Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Felix Carlo Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Karla Johanna Ruth Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| |
Collapse
|
21
|
Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M. Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules 2020; 10:biom10020323. [PMID: 32085474 PMCID: PMC7072623 DOI: 10.3390/biom10020323] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the important biological mediators involved in physiological and pathological processes in mammals. Recently developed H2S donors show promising effects against several pathological processes in preclinical and early clinical studies. For example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence, the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide. In this work, we review data regarding sulfur drugs commonly used in clinical practice that can support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (R.O.)
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6195
| |
Collapse
|
22
|
Zaorska E, Hutsch T, Gawryś-Kopczyńska M, Ostaszewski R, Ufnal M, Koszelewski D. Evaluation of thioamides, thiolactams and thioureas as hydrogen sulfide (H2S) donors for lowering blood pressure. Bioorg Chem 2019; 88:102941. [DOI: 10.1016/j.bioorg.2019.102941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
|
23
|
Dulac M, Nagarathinam C, Dansette P, Mansuy D, Boucher JL. Mechanism of H 2S Formation from the Metabolism of Anetholedithiolethione and Anetholedithiolone by Rat Liver Microsomes. Drug Metab Dispos 2019; 47:1061-1065. [PMID: 31213461 DOI: 10.1124/dmd.119.087205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
The drug anetholedithiolethione (ADT) and its analogs have been extensively used as H2S donors. However, the mechanism of H2S formation from ADT under biologic conditions remains almost completely unknown. This article shows that only small amounts of H2S are formed during incubation of ADT and of its metabolite anetholedithiolone (ADO) with rat liver cytosol or with rat liver microsomes (RLM) in the absence of NADPH, indicating that H2S formation under these conditions is of hydrolytic origin only to a minor extent. By contrast, much greater amounts of H2S are formed upon incubation of ADT and ADO with RLM in the presence of NADPH and dioxygen, with a concomitant formation of H2S and para-methoxy-acetophenone (pMA). Moreover, H2S and pMA formation under those conditions are greatly inhibited in the presence of N-benzyl-imidazole indicating the involvement of cytochrome P450-dependent monooxygenases. Mechanistic studies show the intermediate formation of the ADT-derived 1,2-dithiolium cation and of the ADO sulfoxide during microsomal metabolism of ADT and ADO, respectively. This article proposes the first detailed mechanisms for the formation of H2S from microsomal metabolism of ADT and ADO in agreement with those data and with previously published data on the metabolism of compounds involving a C=S bond. Finally, this article shows for the first time that ADO is a better H2S donor than ADT under those conditions. SIGNIFICANCE STATEMENT: Incubation of anetholedithiolethione (ADT) or its metabolite anetholedithiolone (ADO) in the presence of rat liver microsomes, NADPH, and O2 leads to H2S. This article shows for the first time that this H2S formation involves several steps catalyzed by microsomal monooxygenases and that ADO is a better H2S donor than ADT. We propose the first detailed mechanisms for the formation of H2S from the microsomal metabolism of ADT and ADO.
Collapse
Affiliation(s)
- Martin Dulac
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Citra Nagarathinam
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Patrick Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| |
Collapse
|
24
|
Detaille D, Pasdois P, Sémont A, Dos Santos P, Diolez P. An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS One 2019; 14:e0216385. [PMID: 31048932 PMCID: PMC6497312 DOI: 10.1371/journal.pone.0216385] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Findings Here, we demonstrate that OP2113 (5-(4-Methoxyphenyl)-3H-1,2-dithiole-3-thione, CAS 532-11-6), synthesized and used as a drug since 1696, does not act as an unspecific antioxidant molecule (i.e., as a radical scavenger) but unexpectedly decreases mitochondrial reactive oxygen species (ROS/H2O2) production by acting as a specific inhibitor of ROS production at the IQ site of complex I of the mitochondrial respiratory chain. Studies performed on isolated rat heart mitochondria also showed that OP2113 does not affect oxidative phosphorylation driven by complex I or complex II substrates. We assessed the effect of OP2113 on an infarct model of ex vivo rat heart in which mitochondrial ROS production is highly involved and showed that OP2113 protects heart tissue as well as the recovery of heart contractile activity. Conclusion / Significance This work represents the first demonstration of a drug authorized for use in humans that can prevent mitochondria from producing ROS/H2O2. OP2113 therefore appears to be a member of the new class of mitochondrial ROS blockers (S1QELs) and could protect mitochondrial function in numerous diseases in which ROS-induced mitochondrial dysfunction occurs. These applications include but are not limited to aging, Parkinson’s and Alzheimer's diseases, cardiac atrial fibrillation, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dominique Detaille
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Philippe Pasdois
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Audrey Sémont
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Pierre Dos Santos
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Centre Hospitalo-Universitaire de Bordeaux (CHU), Pôle Cardio-thoracique, Pessac, France
| | - Philippe Diolez
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
25
|
Yang D, Li T, Li Y, Zhang S, Li W, Liang H, Xing Z, Du L, He J, Kuang C, Yang Q. H 2S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:88. [PMID: 30777103 PMCID: PMC6380069 DOI: 10.1186/s13046-019-1083-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
Abstract
Background Over-expression and over-activation of immunosuppressive enzyme indoleamine 2, 3 -dioxygenase 1 (IDO1) is a key mechanism of cancer immune escape. However, the regulation of IDO1 has not been fully studied. The relation between hydrogen sulfide (H2S) and IDO1 is unclear. Methods The influences of endogenous and exogenous H2S on the expression of IDO1, iNOS and NF-κB and STAT3 signaling proteins were investigated using qPCR or western blot, and the production of nitric oxide (NO) was analyzed by nitrate/nitrite assay in Cse−/− mice and MCF-7 and SGC-7901 cells. The effect of H2S on IDO1 activity was investigated by HPLC and in-vitro enzymatic assay. The effect of H2S on tryptophan metabolism was tested by luciferase reporter assay in MCF-7 and SGC-7901 cells. The correlation between H2S-generating enzyme CSE and IDO1 was investigated by immunostaining and heatmaps analysis in clinical specimens and tissue arrays of hepatocellular carcinoma (HCC) patients. The immunotherapeutic effects of H2S on H22 HCC-bearing mice were investigated. Results Using Cse−/− mice, we found that H2S deficiency increased IDO1 expression and activity, stimulated NF-κB and STAT3 pathways and decreased the expression of NO-generating enzyme Inos. Using IDO1-expressing MCF-7 and SGC-7901 cells, we found that exogenous H2S inhibited IDO1 expression by blocking STAT3 and NF-κB pathways, and decreased IDO1 activity via H2S/NO crosstalk, and combinedly decreased the tryptophan metabolism. The negative correlation between H2S-generating enzyme CSE and IDO1 was further validated in clinical specimens and tissue arrays of HCC patients. Additionally, H2S donors effectively restricted the tumor development in H22 HCC-bearing mice via downregulating IDO1 expression, inducing T-effector cells and inhibiting MDSCs. Conclusions Thus, H2S, as a novel negative regulator of IDO1, shows encouraging antitumor immunotherapeutic effects and represents a novel therapeutic target in cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1083-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Tianqi Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yinlong Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Weirui Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Lisha Du
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jinchao He
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Chunxiang Kuang
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| |
Collapse
|
26
|
Ali R, Pal HA, Hameed R, Nazir A, Verma S. Controlled release of hydrogen sulfide significantly reduces ROS stress and increases dopamine levels in transgenic C. elegans. Chem Commun (Camb) 2019; 55:10142-10145. [DOI: 10.1039/c9cc05153h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel peptide based system has been developed that exhibits slow and sustained H2S release thereby reducing hydrogen peroxide-induced oxidative stress and increasing dopamine levels in a transgenic C. elegans model.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry and Centre for Nanoscience
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Hilal Ahmad Pal
- Department of Chemistry and Centre for Nanoscience
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sandeep Verma
- Department of Chemistry and Centre for Nanoscience
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
27
|
Giustarini D, Tazzari V, Bassanini I, Rossi R, Sparatore A. The new H 2S-releasing compound ACS94 exerts protective effects through the modulation of thiol homoeostasis. J Enzyme Inhib Med Chem 2018; 33:1392-1404. [PMID: 30173573 PMCID: PMC6127811 DOI: 10.1080/14756366.2018.1509211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The synthesis of a new dithiolethione-cysteine ethyl ester hybrid, ACS94, its metabolites, and its effect on GSH levels in rat tissues and on the concentration of circulating H2S is described. ACS94 rapidly enters the cells, where it is metabolised to cysteine and the dithiolethione moiety ACS48. Experiments performed through the oral administration of ACS94 to healthy rats showed that it is capable of increasing the GSH levels in most of the analysed organs and the concentration of circulating H2S. Although the increase in GSH concentration was similar to that obtained by ACS48 and N-acetylcysteine ethyl ester, the H2S increase was long-lasting and more evident with respect to the parent molecules. Moreover, a decrease of homocysteine in several rat organs and in plasma was noted. This effect may represent a potential therapeutic use of ACS94, as hyperhomocysteinaemia is considered a risk factor for cardiovascular diseases. Lastly, ACS94 was more efficient than N-acetylcysteine in protecting the liver and kidneys against acute acetaminophen toxicity.
Collapse
Affiliation(s)
| | - Valerio Tazzari
- b Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milan , Italy
| | - Ivan Bassanini
- b Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milan , Italy
| | - Ranieri Rossi
- a Department of Life Sciences , University of Siena , Siena , Italy
| | - Anna Sparatore
- b Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
28
|
Bora P, Chauhan P, Pardeshi KA, Chakrapani H. Small molecule generators of biologically reactive sulfur species. RSC Adv 2018; 8:27359-27374. [PMID: 35540007 PMCID: PMC9083908 DOI: 10.1039/c8ra03658f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Sulfur metabolism is integral to cellular growth and survival. The presence of a wide range of oxidation states of sulfur in biology coupled with its unique reactivity are some key features of the biology of this element. In particular, nearly all oxidation states of sulfur not only occur but are also inter-convertible. In order to study the chemical biology of reactive sulfur species, tools to reliably detect as well as generate these species within cells are necessary. Herein, an overview of strategies to generate certain reactive sulfur species is presented. The donors of reactive sulfur species have been organized based on their oxidation states. These interesting small molecules have helped lay a strong foundation to study the biology of reactive sulfur species and some may have therapeutic applications in the future as well.
Collapse
Affiliation(s)
- Prerona Bora
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Kundansingh A Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| |
Collapse
|
29
|
Dulac M, Sassi A, Nagarathinan C, Christen MO, Dansette PM, Mansuy D, Boucher JL. Metabolism of Anethole Dithiolethione by Rat and Human Liver Microsomes: Formation of Various Products Deriving from Its O-Demethylation and S-Oxidation. Involvement of Cytochromes P450 and Flavin Monooxygenases in These Pathways. Drug Metab Dispos 2018; 46:1390-1395. [DOI: 10.1124/dmd.118.082545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023] Open
|
30
|
Kashfi K. The dichotomous role of H 2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018; 149:205-223. [PMID: 29397935 PMCID: PMC5866221 DOI: 10.1016/j.bcp.2018.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) a gaseous free radical is one of the ten smallest molecules found in nature, while hydrogen sulfide (H2S) is a gas that bears the pungent smell of rotten eggs. Both are toxic yet they are gasotransmitters of physiological relevance. There appears to be an uncanny resemblance between the general actions of these two gasotransmitters in health and disease. The role of NO and H2S in cancer has been quite perplexing, as both tumor promotion and inflammatory activities as well as anti-tumor and antiinflammatory properties have been described. These paradoxes have been explained for both gasotransmitters in terms of each having a dual or biphasic effect that is dependent on the local flux of each gas. In this review/commentary, I have discussed the major roles of NO and H2S in carcinogenesis, evaluating their dual nature, focusing on the enzymes that contribute to this paradox and evaluate the pros and cons of inhibiting or inducing each of these enzymes.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| |
Collapse
|
31
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 643] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
32
|
Gugliandolo E, Fusco R, D'Amico R, Militi A, Oteri G, Wallace JL, Di Paola R, Cuzzocrea S. Anti-inflammatory effect of ATB-352, a H2S -releasing ketoprofen derivative, on lipopolysaccharide-induced periodontitis in rats. Pharmacol Res 2017; 132:220-231. [PMID: 29287688 DOI: 10.1016/j.phrs.2017.12.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/10/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Periodontal disease is the most common cause of tooth loss in humans, is an inflammatory disease initiated by oral microbial biofilm. Given the involvement of the inflammatory pathway in this type of pathology, the main pharmacological strategy for the treatment of periodontitis, is the inhibition of the inflammatory process in order to prevent tissue destruction and bone resorption, a condition associated with a painful state. To do this, the best class of drugs are Non-steroidal anti-inflammatory drugs (NSAIDs), however, the presence of side effects, especially at the gastrointestinal tract, limits their use for long-term therapy. Recently, some evidence shows that derivatives of NSAIDs capable of releasing hydrogen sulphide exhibit lower collateral effects, particularly at the gastric level. In fact, H2S is an endogenous gaseous mediator with a cytoprotective role at the gastric level. In this study, we have compared the protective effects of ketoprofen with ATB-352, a hydrogen sulfide-releasing derivative of ketoprofen, in an experimental model of periodontitis in rat. Periodontitis was induced by a single intragingival injection of 1 μl LPS (10 μg/μl), Our results show that 14 h after intragingival injection of LPS, there was a high tissue damage associated with bone resorption, and in gingivomucosal tissues there was a significant expression of NF-kb p65 and pro-inflammatory cytokine as well as a higher expression of COX-2 and iNOS, activation of the apoptotic process, and also increased levels of NGF expression, often associated with a higher nociceptive perception. Treatment with ATB-352 at the dose of 20mg\kg, was able to reduce the inflammatory process associated with intragingival LPS injection and also had a positive effect on bone resorption and tissue damage.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina, 98166, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina, 98166, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina, 98166, Italy
| | - Angela Militi
- Department of Biomedical, Dental and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Dentistry and Medical and Surgical Experimental Sciences, University of Messina, Messina, Italy
| | - John L Wallace
- Inflammation Research Network, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4 N1, Canada.
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina, 98166, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, no 31, Messina, 98166, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, USA.
| |
Collapse
|
33
|
Zhao Y, Henthorn HA, Pluth MD. Kinetic Insights into Hydrogen Sulfide Delivery from Caged-Carbonyl Sulfide Isomeric Donor Platforms. J Am Chem Soc 2017; 139:16365-16376. [PMID: 29056039 PMCID: PMC6022369 DOI: 10.1021/jacs.7b09527] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically important small gaseous molecule that exhibits promising protective effects against a variety of physiological and pathological processes. To investigate the expanding roles of H2S in biology, researchers often use H2S donors to mimic enzymatic H2S synthesis or to provide increased H2S levels under specific circumstances. Aligned with the need for new broad and easily modifiable platforms for H2S donation, we report here the preparation and H2S release kinetics from a series of isomeric caged-carbonyl sulfide (COS) compounds, including thiocarbamates, thiocarbonates, and dithiocarbonates, all of which release COS that is quickly converted to H2S by the ubiquitous enzyme carbonic anhydrase. Each donor is designed to release COS/H2S after the activation of a trigger by activation by hydrogen peroxide (H2O2). In addition to providing a broad palette of new, H2O2-responsive donor motifs, we also demonstrate the H2O2 dose-dependent COS/H2S release from each donor core, establish that release profiles can be modified by structural modifications, and compare COS/H2S release rates and efficiencies from isomeric core structures. Supporting our experimental investigations, we also provide computational insights into the potential energy surfaces for COS/H2S release from each platform. In addition, we also report initial investigations into dithiocarbamate cores, which release H2S directly upon H2O2-mediated activation. As a whole, the insights on COS/H2S release gained from these investigations provide a foundation for the expansion of the emerging area of responsive COS/H2S donor systems.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Hillary A. Henthorn
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
34
|
Sklyarova Y, Fomenko I, Lozynska I, Lozynskyi A, Lesyk R, Sklyarov A. Hydrogen Sulfide Releasing 2-Mercaptoacrylic Acid-Based Derivative Possesses Cytoprotective Activity in a Small Intestine of Rats with Medication-Induced Enteropathy. Sci Pharm 2017; 85:scipharm85040035. [PMID: 29064425 PMCID: PMC5748532 DOI: 10.3390/scipharm85040035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023] Open
Abstract
Small intestinal injury is known to be one of the most commonly appearing pathologies, resulting in the use of medications such as: nonsteroidal anti-inflammatory drugs (NSAIDs), antitumor drugs and angiotensin-converting enzyme (ACE) inhibitors. The principal objective of this study is to evaluate the action of a novel mercaptoacrylic acid derivative able to release H₂S on parameters of NO-synthase system and oxidative stress. Inducing enteropathy, three types of medications were used: indomethacin, an NSAID (35 mg/kg); methotrexate, an antitumor drug (10 mg/kg); and enalapril, an ACE inhibitor (2 mg/kg/day). 2-[(4-chlorophenyl-carbamoyl)-methyl]-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-acrylic acid (2C3DHTA) was introduced based on the background of medication-induced enteropathy (10 mg/kg/day). The survey showed that malondialdehyde (MDA) concentration, myeloperoxidase (MPO) activity, superoxide dismutase (SOD), catalase, and NO-synthases (NOS) were determined in the small intestinal mucosa. The increase in inducible NO-synthase (iNOS) activity was due to indomethacin and methotrexate administration. Constitutive NO-synthase (cNOS) activity was decreased by an ACE-inhibitor. The cytoprotective effect was demonstrated by 2C3DHTA, which returned iNOS activity to its control level and increased cNOS activity. The enterotoxic action of studied medication was accompanied by the development of oxidative stress manifested, activity of MPO was increased. MPO activity and manifestations of oxidative stress were decreased by 2C3DHTA. Effects of 2C3DHTA can be explained by the action of H₂S, released from this compound in the gastrointestinal (GI) system.
Collapse
Affiliation(s)
- Yulia Sklyarova
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine.
| | - Iryna Fomenko
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine.
| | - Iryna Lozynska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine.
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry of Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine.
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry of Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine.
| | - Alexandr Sklyarov
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine.
| |
Collapse
|
35
|
Abstract
Single-target inhibition is an unsatisfactory therapeutic option to treat multifactorial pathologies, brought into limelight 'paradox of inflammation' beside dearth of innovation, rationalizes a shift toward 'multiple-target' design concept in anti-inflammatory research field. To improvise, two platform strategies, drugs mixture or multitarget drugs, are plausible. Dual cyclooxygenase/lipoxygenase inhibitor 'licofelone' developed after the backfire of rofecoxib due to safety concerns has fetched first light of triumph of the latter strategy. As hitting multiple targets in restraint is perhaps more viable strategy rather than single target, this review, outlines the most germane multiple target agents of synthetic and natural origin placing clear advantage in favors of multitarget strategy as real therapeutic solution for inflammation.
Collapse
|
36
|
H2S confers colonoprotection against TNBS-induced colitis by HO-1 upregulation in rats. Inflammopharmacology 2017; 26:479-489. [DOI: 10.1007/s10787-017-0382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/22/2017] [Indexed: 12/31/2022]
|
37
|
Tkacheva NI, Morozov SV, Lomivorotov BB, Grigor’ev IA. Organic Hydrogen Sulfide Donor Compounds with Cardioprotective Properties (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1576-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Zhao Y, Bolton SG, Pluth MD. Light-Activated COS/H 2S Donation from Photocaged Thiocarbamates. Org Lett 2017; 19:2278-2281. [PMID: 28414240 DOI: 10.1021/acs.orglett.7b00808] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) is an important biomolecule, and responsive chemical tools for its delivery are needed. Here, we utilize the photocleavable o-nitrobenzyl group to unmask caged thiocarbamates and to access photoactivated H2S releasing molecules. These donors function by the initial release of carbonyl sulfide (COS), which is quickly hydrolyzed to H2S by carbonic anhydrase (CA). Our investigations demonstrate that o-nitrobenzyl-caged thiocarbamates can serve as a donor platform for the bio-orthogonal stimulated release of COS/H2S.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Material Science Institute, Institute of Molecular Biology, University of Oregon , Eugene, Oregon 97403, United States
| | - Sarah G Bolton
- Department of Chemistry and Biochemistry, Material Science Institute, Institute of Molecular Biology, University of Oregon , Eugene, Oregon 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Material Science Institute, Institute of Molecular Biology, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
39
|
Ercole F, Whittaker MR, Halls ML, Boyd BJ, Davis TP, Quinn JF. Garlic-inspired trisulfide linkers for thiol-stimulated H2S release. Chem Commun (Camb) 2017; 53:8030-8033. [DOI: 10.1039/c7cc03820h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Garlic-inspired cholesterol-mPEG conjugates incorporating a trisulfide linkage have the ability to cleave upon exposure to thiols with a concomitant release of H2S.
Collapse
Affiliation(s)
- Francesca Ercole
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Drug Delivery
- Disposition and Dynamics Theme
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Drug Delivery
- Disposition and Dynamics Theme
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Michelle L. Halls
- Drug Discovery Biology Theme
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Ben J. Boyd
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Drug Delivery
- Disposition and Dynamics Theme
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Drug Delivery
- Disposition and Dynamics Theme
- Monash Institute of Pharmaceutical Sciences
- Monash University
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Drug Delivery
- Disposition and Dynamics Theme
- Monash Institute of Pharmaceutical Sciences
- Monash University
| |
Collapse
|
40
|
Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2016; 312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) vascular signaling has long been considered an independent, self-sufficient pathway. However, recent data indicate that the novel gaseous mediator, hydrogen sulfide (H2S), serves as an essential enhancer of vascular NO signaling. The current article overviews the multiple levels at which this enhancement takes place. The first level of interaction relates to the formation of biologically active hybrid S/N species and the H2S-induced stimulation of NO release from its various stable "pools" (e.g., nitrite). The next interactions occur on the level of endothelial calcium mobilization and PI3K/Akt signaling, increasing the specific activity of endothelial NO synthase (eNOS). The next level of interaction occurs on eNOS itself; H2S directly interacts with the enzyme: sulfhydration of critical cysteines stabilizes it in its physiological, dimeric state, thereby optimizing eNOS-derived NO production and minimizing superoxide formation. Yet another level of interaction, further downstream, occurs at the level of soluble guanylate cyclase (sGC): H2S stabilizes sGC in its NO-responsive, physiological, reduced form. Further downstream, H2S inhibits the vascular cGMP phosphodiesterase (PDE5), thereby prolonging the biological half-life of cGMP. Finally, H2S-derived polysulfides directly activate cGMP-dependent protein kinase (PKG). Taken together, H2S emerges an essential endogenous enhancer of vascular NO signaling, contributing to vasorelaxation and angiogenesis. The functional importance of the H2S/NO cooperative interactions is highlighted by the fact that H2S loses many of its beneficial cardiovascular effects when eNOS is inactive.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
41
|
Zhao Y, Pluth MD. Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry; Institute of Molecular Biology, and Materials Science Institute; University of Oregon; Eugene OR 97403 USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry; Institute of Molecular Biology, and Materials Science Institute; University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
42
|
Zhao Y, Pluth MD. Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. Angew Chem Int Ed Engl 2016; 55:14638-14642. [PMID: 27774732 DOI: 10.1002/anie.201608052] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/21/2016] [Indexed: 11/09/2022]
Abstract
Hydrogen sulfide (H2 S) exhibits promising protective effects in many (patho)physiological processes, as evidenced by recent reports using synthetic H2 S donors in different biological models. Herein, we report the design and evaluation of compounds denoted PeroxyTCM, which are the first class of reactive oxygen species (ROS)-triggered H2 S donors. These donors are engineered to release carbonyl sulfide (COS) upon activation, which is quickly hydrolyzed to H2 S by the ubiquitous enzyme carbonic anhydrase (CA). The donors are stable in aqueous solution and do not release H2 S until triggered by ROS, such as hydrogen peroxide (H2 O2 ), superoxide (O2- ), and peroxynitrite (ONOO- ). We demonstrate ROS-triggered H2 S donation in live cells and also demonstrate that PeroxyTCM-1 provides protection against H2 O2 -induced oxidative damage, suggesting potential future applications of PeroxyTCM and similar scaffolds in H2 S-related therapies.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
43
|
Roy J, Adili R, Kulmacz R, Holinstat M, Das A. Development of Poly Unsaturated Fatty Acid Derivatives of Aspirin for Inhibition of Platelet Function. J Pharmacol Exp Ther 2016; 359:134-41. [PMID: 27488919 DOI: 10.1124/jpet.116.234781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023] Open
Abstract
The inhibition of platelet aggregation is key to preventing conditions such as myocardial infarction and ischemic stroke. Aspirin is the most widely used drug to inhibit platelet aggregation. Aspirin absorption can be improved further to increase its permeability across biologic membranes via esterification or converting the carboxylic acid to an anhydride. There are several reports indicating that ω-3 and ω-6 fatty acids such as linoleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) separately inhibit platelet aggregation. Herein, we synthesize anhydride conjugates of aspirin with linoleic acid, EPA, and DHA to form aspirin anhydrides that are expected to have higher permeability across cellular membranes. These aspirin-fatty acid anhydrides inhibited platelet aggregation in washed human platelets and platelet-rich plasma in a dose-dependent manner. In particular, the aspirin-DHA anhydride displayed similar effectiveness to aspirin. Platelet aggregation studies conducted in the presence of various platelet agonists indicated that the aspirin-lipid conjugates act through inhibition of the cyclooxygenase (COX)-thromboxane synthase (TXAS) pathway. Hence, we performed detailed biochemical studies using purified COX-1 as well as TXAS stabilized in nanoscale lipid bilayers of nanodiscs to confirm results from the platelet aggregation studies. We show that although all of the aspirin conjugates act through the COX-TXAS pathway by inhibiting COX-1, the parent fatty acids do not act via this pathway. Finally, we studied the hydrolysis of these compounds in buffer and human plasma, and we demonstrate that all of the aspirin-fatty acid conjugates hydrolyze to the parent molecules aspirin and fatty acid in a controlled manner.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Reheman Adili
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Richard Kulmacz
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Michael Holinstat
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| | - Aditi Das
- Department of Chemistry (J.R.), Division of Nutritional Sciences, Departments of Comparative Biosciences, Biochemistry, and Bioengineering, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science (A.D.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Cardiovascular Medicine (M.H.), Department of Pharmacology (R.A., M.H.), University of Michigan Medical School, Ann Arbor, Michigan; and Department of Internal Medicine, Texas Health Science Center, McGovern Medical School, Houston, Texas (R.K.)
| |
Collapse
|
44
|
Zheng Y, Yu B, Ji K, Pan Z, Chittavong V, Wang B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. Angew Chem Int Ed Engl 2016; 55:4514-8. [PMID: 26822005 PMCID: PMC4902284 DOI: 10.1002/anie.201511244] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/17/2022]
Abstract
Prodrugs that release hydrogen sulfide upon esterase-mediated cleavage of an ester group followed by lactonization are described herein. By modifying the ester group and thus its susceptibility to esterase, and structural features critical to the lactonization rate, H2 S release rates can be tuned. Such prodrugs directly release hydrogen sulfide without the involvement of perthiol species, which are commonly encountered with existing H2 S donors. Additionally, such prodrugs can easily be conjugated to another non-steroidal anti-inflammatory agent, leading to easy synthesis of hybrid prodrugs. As a biological validation of the H2 S prodrugs, the anti-inflammatory effects of one such prodrug were examined by studying its ability to inhibit LPS-induced TNF-α production in RAW 264.7 cells. This type of H2 S prodrugs shows great potential as both research tools and therapeutic agents.
Collapse
Affiliation(s)
- Yueqin Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Kaili Ji
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Zhixiang Pan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Vayou Chittavong
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303-3083, USA.
| |
Collapse
|
45
|
Abstract
Hydrogen sulfide (H(2)S) is a gasomediator synthesized from L- and D-cysteine in various tissues. It is involved in a number of physiological and pathological processes. H(2)S exhibits antiatherosclerotic, vasodilator, and proangiogenic properties, and protects the kidney and heart from damage following ischemia/reperfusion injury. H(2)S donors may be natural or synthetic, and may be used for the safe treatment of a wide range of diseases. This review article summarizes the current state of knowledge of the therapeutic function of H(2)S.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
46
|
Zheng Y, Yu B, Ji K, Pan Z, Chittavong V, Wang B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yueqin Zheng
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Bingchen Yu
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Kaili Ji
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Zhixiang Pan
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Vayou Chittavong
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| | - Binghe Wang
- Department of Chemistry; Georgia State University; Atlanta GA 30303-3083 USA
| |
Collapse
|
47
|
Ercole F, Mansfeld FM, Kavallaris M, Whittaker MR, Quinn JF, Halls ML, Davis TP. Macromolecular Hydrogen Sulfide Donors Trigger Spatiotemporally Confined Changes in Cell Signaling. Biomacromolecules 2015; 17:371-83. [DOI: 10.1021/acs.biomac.5b01469] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Friederike M. Mansfeld
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Children’s
Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW 2031, Australia
| | - Maria Kavallaris
- Children’s
Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW 2031, Australia
- ARC Centre of Excellence
in Convergent Bio-Nano Science and Technology, and Australian Centre
for NanoMedicine, UNSW Australia, NSW 2052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michelle L. Halls
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
48
|
Zhao Y, Yang C, Organ C, Li Z, Bhushan S, Otsuka H, Pacheco A, Kang J, Aguilar HC, Lefer DJ, Xian M. Design, Synthesis, and Cardioprotective Effects of N-Mercapto-Based Hydrogen Sulfide Donors. J Med Chem 2015; 58:7501-11. [PMID: 26317692 PMCID: PMC4766970 DOI: 10.1021/acs.jmedchem.5b01033] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule which plays regulatory roles in many physiological and/or pathological processes. Therefore, regulation of H2S levels could have great potential therapeutic value. In this work, we report the design, synthesis, and evaluation of a class of N-mercapto (N-SH)-based H2S donors. Thirty-three donors were synthesized and tested. Our results indicated that controllable H2S release from these donors could be achieved upon structural modifications. Selected donors (NSHD-1, NSHD-2, and NSHD-6) were tested in cellular models of oxidative damage and showed significant cytoprotective effects. Moreover, NSHD-1 and NSHD-2 were also found to exhibit potent protective effects in a murine model of myocardial ischemia reperfusion (MI/R) injury.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Chuntao Yang
- Department of Physiology, Guangzhou Medical University , Guangzhou 511436, China
| | - Chelsea Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Shashi Bhushan
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Hiro Otsuka
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Armando Pacheco
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Jianming Kang
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Hector C Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University , Pullman, Washington 99164, United States
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Ming Xian
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
49
|
Zheng Y, Ji X, Ji K, Wang B. Hydrogen sulfide prodrugs-a review. Acta Pharm Sin B 2015; 5:367-77. [PMID: 26579468 PMCID: PMC4629439 DOI: 10.1016/j.apsb.2015.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.
Collapse
|
50
|
Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2015; 50:11788-805. [PMID: 25019301 DOI: 10.1039/c4cc00968a] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in these fields. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of currently available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson's reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|