1
|
Capasso C, Supuran CT. Overview on tyrosinases: Genetics, molecular biology, phylogenetic relationship. Enzymes 2024; 56:1-30. [PMID: 39304284 DOI: 10.1016/bs.enz.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinases (TYRs) are enzymes found in various organisms that are crucial for melanin biosynthesis, coloration, and UV protection. They play vital roles in insect cuticle sclerotization, mollusk shell formation, fungal and bacterial pigmentation, biofilm formation, and virulence. Structurally, TYRs feature copper-binding sites that are essential for catalytic activity, facilitating substrate oxidation via interactions with conserved histidine residues. TYRs exhibit diversity across animals, plants, fungi, mollusks, and bacteria, reflecting their roles and function. Eukaryotic TYRs undergo post-translational modifications, such as glycosylation, which affect protein folding and activity. Bacterial TYRs are categorized into five types based on their structural variation, domain organization and enzymatic properties, showing versatility across bacterial species. Moreover, bacterial TYRs, akin to fungal TYRs, have been implicated in the synthesis of secondary metabolites with antimicrobial properties. TYRs share significant sequence homology with hemocyanins, oxygen-carrier proteins in mollusks and arthropods, highlighting their evolutionary relationships. The evolution of TYRs underscores the dynamic nature of these enzymes and reflects adaptive strategies across diverse taxa.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Kim IW, Park WJ, Yun HY, Kim DS. Methylsulfonylmethane promotes melanogenesis via activation of JNK in Mel-Ab cells. Int J Cosmet Sci 2024. [PMID: 38924609 DOI: 10.1111/ics.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Methylsulfonylmethane (MSM), which contains organic sulphur, has been used for a long time as a medicinal ingredient because of its benefits to human health. MSM is reported to be protective against certain skin disorders, but it is unknown whether it affects melanin synthesis. Therefore, in our current research, we examined the possibility of MSM controlling the production of melanin in Mel-Ab melanocytes. METHODS In Mel-Ab cells, melanin contents and tyrosinase activities were assessed and quantified. The expression of microphthalmia-associated transcription factor (MITF) and tyrosinase was evaluated using western blot analysis, while MSM-induced signalling pathways were investigated. RESULTS The MSM treatment significantly resulted in a dose-dependent increase in melanin production. Furthermore, MSM elevated melanin-related proteins, including MITF and tyrosinase. However, the rate-limiting enzyme of melanin production, tyrosinase, was not directly influenced by it. Therefore, we investigated potential melanogenesis-related signalling pathways that may have been triggered by MSM. Our findings showed that MSM did not influence the signalling pathways associated with glycogen synthase kinase 3β, cAMP response-element binding protein, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. However, MSM phosphorylated c-Jun N-terminal kinases/stress-activated protein kinase (JNK/SAPK), which is known to induce melanogenesis. SP600125, a specific JNK inhibitor, inhibited MSM-induced melanogenesis. CONCLUSION Taken together, our study indicates that MSM induces melanin synthesis and may serve as a therapeutic option for hypopigmentary skin disorders such as vitiligo.
Collapse
Affiliation(s)
- In Wook Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Karkoszka M, Rok J, Wrześniok D. Melanin Biopolymers in Pharmacology and Medicine-Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals (Basel) 2024; 17:521. [PMID: 38675481 PMCID: PMC11054731 DOI: 10.3390/ph17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug-melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation-determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation-different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article.
Collapse
Affiliation(s)
- Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
4
|
Alshammari F, Alam MB, Naznin M, Kim S, Lee SH. Optimization, Metabolomic Analysis, Antioxidant Potential andDepigmenting Activity of Polyphenolic Compounds fromUnmature Ajwa Date Seeds ( Phoenix dactylifera L.) Using Ultrasonic-Assisted Extraction. Antioxidants (Basel) 2024; 13:238. [PMID: 38397836 PMCID: PMC10886343 DOI: 10.3390/antiox13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
This study sought to optimize the ultrasonic-assisted extraction of polyphenolic compounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing the Box-Behnken design (BBD) and artificial neural network (ANN) modeling was applied to optimize extraction conditions, including the ethanol concentration, extraction temperature and time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction time (29.00 min), and extraction temperature (50 °C). Under these conditions, UMS exhibited total phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and relative standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner. Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2) and microphthalmia-associated transcription factor (MITF), which associated melanin production in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed antioxidant and depigmenting activities underscore the promising applications of UMS in skincare formulations and pharmaceutical developments.
Collapse
Affiliation(s)
- Fanar Alshammari
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
- Mass Spectroscopy Converging Research and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Davis AE, Kennelley GE, Amaye-Obu T, Jowdy PF, Ghadersohi S, Nasir-Moin M, Paragh G, Berman HA, Huss WJ. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 19:100221. [PMID: 38389933 PMCID: PMC10883358 DOI: 10.1016/j.jpap.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Photosensitivity to structurally diverse drugs is a common but under-reported adverse cutaneous reaction and can be classified as phototoxic or photoallergic. Phototoxic reactions occur when the skin is exposed to sunlight after administering topical or systemic medications that exhibit photosensitizing activity. These reactions depend on the dose of medication, degree of exposure to ultraviolet light, type of ultraviolet light, and sufficient skin distribution volume. Accurate prediction of the incidence and phototoxic response severity is challenging due to a paucity of literature, suggesting that phototoxicity may be more frequent than reported. This paper reports an extensive literature review on phototoxic drugs; the review employed pre-determined search criteria that included meta-analyses, systematic reviews, literature reviews, and case reports freely available in full text. Additional reports were identified from reference sections that contributed to the understanding of phototoxicity. The following drugs and/or drug classes are discussed: amiodarone, voriconazole, chlorpromazine, doxycycline, fluoroquinolones, hydrochlorothiazide, nonsteroidal anti-inflammatory drugs, and vemurafenib. In reviewing phototoxic skin reactions, this review highlights drug molecular structures, their reactive pathways, and, as there is a growing association between photosensitizing drugs and the increasing incidence of skin cancer, the consequential long-term implications of photocarcinogenesis.
Collapse
Affiliation(s)
- Anna E Davis
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gabrielle E Kennelley
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Tatiana Amaye-Obu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Peter F Jowdy
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Ghadersohi
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mehr Nasir-Moin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Harvey A Berman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Romanell Center for the Philosophy of Medicine and Bioethics, Park Hall University at Buffalo, Buffalo, NY 14260, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
6
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
7
|
Huo C, Lee S, Yoo MJ, Lee BS, Jang YS, Kim HK, Lee S, Bae HY, Kim KH. Methoxyflavones from Black Ginger ( Kaempferia parviflora Wall. ex Baker) and their Inhibitory Effect on Melanogenesis in B16F10 Mouse Melanoma Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1183. [PMID: 36904043 PMCID: PMC10005586 DOI: 10.3390/plants12051183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (1-6) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4'-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4'-trimethylkaempferol (5), and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4'-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure-activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds.
Collapse
Affiliation(s)
- Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Min Jeong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Seo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
9
|
Alam MB, Park NH, Song BR, Lee SH. Antioxidant Potential-Rich Betel Leaves ( Piper betle L.) Exert Depigmenting Action by Triggering Autophagy and Downregulating MITF/Tyrosinase In Vitro and In Vivo. Antioxidants (Basel) 2023; 12:antiox12020374. [PMID: 36829933 PMCID: PMC9952209 DOI: 10.3390/antiox12020374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Each individual has a unique skin tone based on the types and quantities of melanin pigment, and oxidative stress is a key element in melanogenesis regulation. This research sought to understand the in vitro and in vivo antioxidant and depigmenting properties of betel leaves (Piper betle L.) extract (PBL) and the underlying mechanism. Ethyl acetate fractions of PBL (PBLA) demonstrated excellent phenolic content (342 ± 4.02 mgGAE/g) and strong DPPH, ABTS radicals, and nitric oxide (NO) scavenging activity with an IC50 value of 41.52 ± 1.02 μg/mL, 45.60 ± 0.56 μg/mL, and 51.42 ± 1.25 μg/mL, respectively. Contrarily, ethanolic extract of PBL (PBLE) showed potent mushroom, mice, and human tyrosinase inhibition activity (IC50 = 7.72 ± 0.98 μg/mL, 20.59 ± 0.83 μg/mL and 24.78 ± 0.56 μg/mL, respectively). According to gas chromatography-mass spectrometry, PBL is abundant in caryophyllene, eugenol, O-eugenol, 3-Allyl-6-methoxyphenyl acetate, and chavicol. An in vitro and in vivo investigation showed that PBLE suppressed tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and Trp-2), and microphthalmia-associated transcription factors (MITF), decreasing the formation of melanin in contrast to the untreated control. PBLE reduced the cyclic adenosine monophosphate (cAMP) response to an element-binding protein (CREB) phosphorylation by preventing the synthesis of cAMP. Additionally, it activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (p38), destroying Tyr and MITF and avoiding melanin production. Higher levels of microtubule-associated protein-light chain 3 (LC3-II), autophagy-related protein 5 (Atg5), Beclin 1, and lower levels of p62 demonstrate that PBLE exhibits significant anti-melanogenic effects via an autophagy-induction mechanism, both in vitro and in vivo. Additionally, PBLE significantly reduced the amount of lipid peroxidation while increasing the activity of several antioxidant enzymes in vivo, such as catalase, glutathione, superoxide dismutase, and thioredoxin. PBLE can therefore be employed in topical formulations as a potent skin-whitening agent.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Na Hyun Park
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-053-950-7754
| |
Collapse
|
10
|
Wu W, Wang Y, Liu Y, Guo H, Li Z, Zou W, Liu J, Song Z. TRPA1 promotes UVB-induced skin pigmentation by regulating melanosome luminal pH. Exp Dermatol 2023; 32:165-176. [PMID: 36302111 DOI: 10.1111/exd.14693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
Melanocytes stimulated by ultraviolet radiation (UVR) produce melanin and melanosomes, which causes skin pigmentation and acts as an important physiological defence process for photoprotection. Neutral luminal pH of melanosomes is critical for providing optimal conditions for the rate-limiting, pH-sensitive melanin synthesizing enzyme tyrosinase (TYR). As a major component of extraocular phototransduction pathway, transient receptor potential ankyrin1 (TRPA1) can be activated by ultraviolet B (UVB) and reported to be expressed in melanocytes. However, whether TRPA1 is involved in the regulation of melanogenesis remains unclear. Melanogenic activity of TRPA1 was evaluated in primary normal human epidermal melanocytes (HEMs) and murine B16-F10 cell cultures, and the effects of topical applications of TRPA1 specific agonist and antagonist on UVB-induced skin pigmentation were confirmed on in vivo guinea pig models. Calcium (Ca2+ ) imaging and pH imaging were performed to analyse the effects of TRPA1 on intracellular Ca2+ concentration ([Ca2+ ]ic ) and melanosome luminal pH. TRPA1 regulated melanin synthesis, UVB-induced Ca2+ influx and melanosome luminal pH in HEMs and B16-F10 cells. Topical treatment of TRPA1 specific agonist JT010 increased UVB-induced skin pigmentation in guinea pigs, while topical using of TRPA1 selective antagonist HC-030031 mitigated such pigmentation. Our results indicated that TRPA1 activated by UVB enhanced the skin pigmentation, most likely by regulating the [Ca2+ ]ic and the melanosomal pH, consequently influencing the enzymatic activity of TYR. Therefore, the results suggest TRPA1 as a potential therapeutic target in the treatment of skin pigmented disorders that are at high risk under UVB irradiation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yupeng Wang
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Handan Guo
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhou Li
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
The pigmentation phenotype of melanocytes affects their response to nitric oxide in vitro. Postepy Dermatol Alergol 2023; 40:150-158. [PMID: 36909911 PMCID: PMC9993194 DOI: 10.5114/ada.2022.120130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction It has been shown that nitric oxide (NO) can modulate the immune properties of epidermal melanocytes, and that overexpression of NO in the skin may contribute to inflammation-related pigmentary disorders. Little is known about whether constitutive cell pigmentation affects the sensitivity of melanocytes to NO. Aim To compare the effect of NO on melanin synthesis and the expression of key melanogenesis-related genes in normal human melanocytes of various degrees of constitutive pigmentation. Material and methods Human epidermal melanocytes derived from lightly and darkly pigmented skin (HEMn-LP and HEMn-DP, respectively) were cultured with or without a NO donor (SPER/NO). Then the total melanin content, the pheomelanin content, the activity and concentration of tyrosinase, and the expressions of TYR and DCT were assessed. Results NO released from SPER/NO did not alter the total amount of melanin produced by cultured cells but increased the proportion of pheomelanin, especially in HEMn-DP. Transcriptional activity of the melanogenesis-related genes, in particular DCT, was downregulated in HEMn-DP and upregulated in HEMn-LP cultured with SPER/NO. Conclusions NO can promote pheomelanogenesis in human epidermal melanocytes, and the cell response in this respect is associated with the pigmentation phenotype. During exposure to NO, melanocytes from dark skin produce much more pheomelanin than lightly pigmented cells. NO-induced overproduction of pheomelanin in the skin could be one of the factors responsible for the greater propensity to develop severe inflammatory dermatoses in dark-skinned individuals, or even melanoma de novo formation based on local chronic inflammation.
Collapse
|
12
|
Anti-Melanogenesis Effects of a Cyclic Peptide Derived from Flaxseed via Inhibition of CREB Pathway. Int J Mol Sci 2022; 24:ijms24010536. [PMID: 36613979 PMCID: PMC9820828 DOI: 10.3390/ijms24010536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Linosorbs (Los) are cyclic peptides from flaxseed oil composed of the LO mixture (LOMIX). The activity of LO has been reported as being anti-cancer and anti-inflammatory. However, the study of skin protection has still not proceeded. In particular, there are poorly understood mechanisms of melanogenesis to LO. Therefore, we investigated the anti-melanogenesis effects of LOMIX and LO, and its activity was examined in mouse melanoma cell lines. The treatment of LOMIX (50 and 100 μg/mL) and LO (6.25-50 μM) suppressed melanin secretion and synthesis, which were 3-fold increased, in a dose-dependent manner, up to 95%. In particular, [1-9-NαC]-linusorb B3 (LO1) and [1-9-NαC]-linusorb B2 (LO2) treatment (12.5 and 25 μM) highly suppressed the synthesis of melanin in B16F10 cell lines up to 90%, without toxicity. LOMIX and LOs decreased the 2- or 3-fold increased mRNA levels, including the microphthalmia-associated transcription factor (MITF), Tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2) at the highest concentration (25 μM). Moreover, the treatment of 25 μM LO1 and LO2 inhibited the expression of MITF and phosphorylation of upper regulatory proteins such as CREB and PKA. Taken together, these results suggested that LOMIX and its individual LO could inhibit melanin synthesis via downregulating the CREB-dependent signaling pathways, and it could be used for novel therapeutic materials in hyperpigmentation.
Collapse
|
13
|
Harlisa P, Kariosentono H, Purwanto B, Dirgahayu P, Soetrisno S, Wasita B, Alif I, Putra A. The Mangosteen Peel Ethyl Acetate Extract-based Cream Inhibits Ultraviolet-B Radiation-induced Hyperpigmentation in Guinea Pig Skin. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Ultraviolet B (UVB) radiation is the main factor causing the aberrant melanin pigments leading to skin hyperpigmentation. Retinoic acid and hydroquinone are the primary preference for the skin whitening agents in preventing hyperpigmentation. However, these treatments could induce slight-to-severe irritation leading to skin cancer. Mangosteen peel possesses α-mangostin, the primary constituent of xanthones in mangosteen peel that has potency as an anti-tyrosinase for treating issues of skin hyperpigmentation.
AIM: This study aims to demonstrate the capacity of mangosteen peel ethyl acetate extract-based cream in inhibiting the UVB radiation-induced skin hyperpigmentation in guinea pig.
MATERIALS AND METHODS: A total of 25 female guinea pigs were used to produce UVB-irradiated skin hyperpigmentation model. Guinea pig skins were treated with 12% mangosteen ethyl acetate extract-based cream. Mushroom tyrosinase inhibitor activity was used to evaluate the capacity of mangosteen extract in inhibiting tyrosinase activity in vitro. The melanin index in guinea pig skin after treatments was analyzed using a mexameter. The percentage of epidermal melanin-contained keratinocytes of skin tissues were analyzed using masson fontana. Pmel17 expression in cell surface was determined using immunohistochemistry. The level of tyrosinase in tissue homogenates was analyzed using Enzyme-linked immunosorbent assays.
RESULTS: Mangosteen peel ethyl acetate extract showed potent inhibitory activity against the mushroom tyrosinase. Its-based cream decreased melanin index, epidermal melanin, Pmel17 expression, and tyrosinase level in hyperpigmentation skin tissues.
CONCLUSION: Overall, our study demonstrates the capacity of mangosteen peel ethyl acetate extract-based cream in inhibiting the UVB radiation-induced skin hyperpigmentation in guinea pig.
Collapse
|
14
|
Cabaço LC, Bento-Lopes L, Neto MV, Ferreira A, Staubli WB, Ramalho JS, Seabra MC, Barral DC. RAB3A Regulates Melanin Exocytosis and Transfer Induced by Keratinocyte-Conditioned Medium. JID INNOVATIONS 2022; 2:100139. [PMID: 36090299 PMCID: PMC9460155 DOI: 10.1016/j.xjidi.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Skin pigmentation is imparted by melanin and is crucial for photoprotection against UVR. Melanin is synthesized and packaged into melanosomes within melanocytes and is then transferred to keratinocytes (KCs). Although the molecular players involved in melanogenesis have been extensively studied, those underlying melanin transfer remain unclear. Previously, our group proposed that coupled exocytosis/phagocytosis is the predominant mechanism of melanin transfer in human skin and showed an essential role for RAB11B and the exocyst tethering complex in this process. In this study, we show that soluble factors present in KC-conditioned medium stimulate melanin exocytosis from melanocytes and transfer to KCs. Moreover, we found that these factors are released by differentiated KCs but not by basal layer KCs. Furthermore, we found that RAB3A regulates melanin exocytosis and transfer stimulated by KC-conditioned medium. Indeed, KC-conditioned medium enhances the recruitment of RAB3A to melanosomes in melanocyte dendrites. Therefore, our results suggest the existence of two distinct routes of melanin exocytosis: a basal route controlled by RAB11B and a RAB3A-dependent route, stimulated by KC-conditioned medium. Thus, this study provides evidence that soluble factors released by differentiated KCs control skin pigmentation by promoting the accumulation of RAB3A-positive melanosomes in melanocyte dendrites and their release and subsequent transfer to KCs.
Collapse
Key Words
- CO2, carbon dioxide
- FBS, fetal bovine serum
- FCM, fibroblast-conditioned medium
- HEKn, human neonatal epidermal keratinocyte
- HEMn-DP, human neonatal epidermal darkly pigmented melanocyte
- KC, keratinocyte
- KCM, keratinocyte-conditioned medium
- MKCM, melanocyte-/keratinocyte-conditioned medium
- miRNA, microRNA
- pKCM, primary keratinocyte-conditioned medium
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Luís C. Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Bento-Lopes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Matilde V. Neto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Andreia Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Wanja B.L. Staubli
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - José S. Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
The Combination of Niacinamide, Vitamin C, and PDRN Mitigates Melanogenesis by Modulating Nicotinamide Nucleotide Transhydrogenase. Molecules 2022; 27:molecules27154923. [PMID: 35956878 PMCID: PMC9370691 DOI: 10.3390/molecules27154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.
Collapse
|
16
|
Enhanced Anti-Melanogenic Effect of Adlay Bran Fermented with Lactobacillus brevis MJM60390. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fermentation is a traditional technique used to increase nutrients, flavonoids, vitamins, minerals, and the flavor of raw materials. In this study, adlay bran was fermented by Lactobacillus brevis MJM60390 (FAB), and the anti-melanogenic effect was investigated. The results demonstrated that FAB significantly suppressed melanin accumulation in mouse melanogenic B16F10 cells, and the activity was higher than non-fermented adlay bran (NFAB). The molecular mechanism study showed that FAB inhibited melanin synthesis by suppressing the gene expression of melanocortin 1 receptor (Mc1r), melanocyte-inducing transcription factor (Mitf), tyrosinase (Tyr), tyrosinase-related protein-1 (Trp-1), and tyrosinase-related protein-2 (Trp-2) genes. Western blotting analysis showed that FAB strongly decreased the expression of Tyr, Trp-1, and Trp-2 compared to NFAB. Furthermore, phenolic compounds such as gallic acid, p-coumaric acid, ferulic acid, and sinapic acid, which are known for their anti-melanogenic effects, were significantly increased in FAB compared with NFAB. These findings suggest that FAB holds great potential as an anti-melanogenic agent and can be used for the development of whitening cosmetics.
Collapse
|
17
|
Fang CL, Goswami D, Kuo CH, Day CH, Lin MY, Ho TJ, Yang LY, Hsieh DJY, Lin TK, Huang CY. Angelica dahurica attenuates melanogenesis in B16F0 cells by repressing Wnt/β-catenin signaling. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Nakano T, Takenaka M, Sugiyama M, Ishikawa A. QTL Mapping for Age-Related Eye Pigmentation in the Pink-Eyed Dilution Castaneus Mutant Mouse. Genes (Basel) 2022; 13:genes13071138. [PMID: 35885921 PMCID: PMC9318509 DOI: 10.3390/genes13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pink-eyed dilution castaneus (Oca2p-cas) is a mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus. Homozygotes for Oca2p-cas exhibit pink eyes and a light gray coat throughout life. In an ordinary mutant strain carrying Oca2p-cas, we previously discovered a novel spontaneous mutation that gradually increases melanin pigmentation in the eyes and coat with aging, and we developed a novel mutant strain that was fixed for the novel phenotype. The purpose of this study was to map major quantitative trait loci (QTLs) for the novel pigmentation phenotype and for expression levels of four important melanogenesis genes, microphthalmia-associated transcription factor (Mitf), tyrosinase (Tyr), tyrosinase-related protein-1 (Tyrp1) and dopachrome tautomerase (Dct). We developed 69 DNA markers and created 303 F2 mice from two reciprocal crosses between novel and ordinary mutant strains. The QTL analysis using a selective genotyping strategy revealed a significant QTL for eye pigmentation between 34 and 64 Mb on chromosome 13. This QTL explained approximately 20% of the phenotypic variance. The QTL allele derived from the novel strain increased pigmentation. Although eye pigmentation was positively correlated with Dct expression, no expression QTLs were found, suggesting that the pigmentation QTL on chromosome 13 may not be directly in the pathway of any of the four melanogenesis genes. This study is the first step toward identifying a causal gene for the novel spontaneous phenotype in mice and is expected to discover a new regulatory mechanism for complex melanin biosynthesis during aging.
Collapse
Affiliation(s)
- Takaya Nakano
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (T.N.); (M.T.)
| | - Momoko Takenaka
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (T.N.); (M.T.)
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan;
| | - Akira Ishikawa
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (T.N.); (M.T.)
- Correspondence:
| |
Collapse
|
19
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Esmat S, Assaf MI, Mohye Eldeen R, Gawdat HI, Saadi DG. Evaluation of needling/microneedling as an adjunct to phototherapy in the treatment of stable acral vitiligo: a comparative clinical and immunohistochemical study. J DERMATOL TREAT 2022; 33:2621-2628. [PMID: 35373693 DOI: 10.1080/09546634.2022.2062279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To evaluate the efficacy and tolerability of needling/microneedling as an adjunct to NB-UVB phototherapy in the treatment of stable refractory patches of acral vitiligo, based upon clinical and immunohistochemical assessment of melanocyte count and distribution in response to needling/microneedling. MATERIALS AND METHODS Twenty patients with stable acral vitiligo (≥2 patches) were enrolled. One of the two index patches was randomized to receive needling or microneedling in conjunction with NB-UVB. Patients received phototherapy sessions 3 times weekly, while needling was carried out on biweekly basis for 6 months. Assessment was done clinically using point counting method, VESTA, and global patients' satisfaction, and immunohistochemically by quantitative assessment of melanocyte count by Melan-A. RESULTS No statistically significant difference was observed between NB-UVB monotherapy and either of the combined therapy regimens as regards the mean percentage change in vitiligo surface area (p = .451), mean change in absolute melanocyte count from baseline (p = .589), and mean VESTA (p = .916). Patches subjected to adjuvant microneedling/needling were afflicted by koebnerization in 50% and 20% of cases, respectively. CONCLUSION Neither microneedling nor needling appear to confer an added therapeutic value to NB-UVB phototherapy in the treatment of stable acral vitiligo. Moreover, both carry the risk of koebnerization.
Collapse
Affiliation(s)
- Samia Esmat
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magda I Assaf
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Pathology, School of Medicine, NewGiza University, Giza, Egypt
| | - Riham Mohye Eldeen
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba I Gawdat
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina G Saadi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Moon SY, Akter KM, Ahn MJ, Kim KD, Yoo J, Lee JH, Lee JH, Hwangbo C. Fraxinol Stimulates Melanogenesis in B16F10 Mouse Melanoma Cells through CREB/MITF Signaling. Molecules 2022; 27:1549. [PMID: 35268650 PMCID: PMC8911637 DOI: 10.3390/molecules27051549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Melanin pigment produced in melanocytes plays a protective role against ultraviolet radiation. Selective destruction of melanocytes causes chronic depigmentation conditions such as vitiligo, for which there are very few specific medical treatments. Here, we found that fraxinol, a natural coumarin from Fraxinus plants, effectively stimulated melanogenesis. Treatment of B16-F10 cells with fraxinol increased the melanin content and tyrosinase activity in a concentration-dependent manner without causing cytotoxicity. Additionally, fraxinol enhanced the mRNA expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Fraxinol also increased the expression of microphthalmia-associated transcription factor at both mRNA and protein levels. Fraxinol upregulated the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). Furthermore, H89, a cAMP-dependent protein kinase A inhibitor, decreased fraxinol-induced CREB phosphorylation and microphthalmia-associated transcription factor expression and significantly attenuated the fraxinol-induced melanin content and intracellular tyrosinase activity. These results suggest that fraxinol enhances melanogenesis via a protein kinase A-mediated mechanism, which may be useful for developing potent melanogenesis stimulators.
Collapse
Affiliation(s)
- Sun Young Moon
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.-M.A.); (M.-J.A.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.-M.A.); (M.-J.A.)
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21), College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.Y.M.); (K.D.K.); (J.Y.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
22
|
Kang MS, Jang SC, Park T, Kim MS, Park JS, Chi WJ, Kim SY. Synthesis and Melanogenesis Effect of 7,8-Dimethoxy-4-Methylcoumarin via MAPK Signaling-Mediated Microphthalmia-Associated Transcription Factor Upregulation. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221076647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tyrosinase ultimately controls the melanogenesis rate of the skin, and tanning and haircare products generally induce the activation of tyrosinase. Moreover, various enzymes, including tyrosinase, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), mediate melanogenesis in which microphthalmia-associated transcription factor (MITF) is a master regulator. One coumarin family member 7,8-dihydroxy-4-methylcoumarin (DHMC) shows extensive biological activities with beneficial health effects; however, it also induces cytotoxicity and its melanogenic effect has not been reported yet. Therefore, we first synthesized DHMC derivatives via methylation to obtain 7,8-dimethoxy-4-methylcoumairn (DMMC), and investigated the pro- or anti-melanogenic effects of DHMC and DMMC in B16-F10 melanoma cells as well as the underlying mechanism. DHMC showed cytotoxicity at all tested concentrations, whereas DMMC did not reduce cell viability, even at the high concentration. DMMC also drives the significant increase in intracellular melanin and tyrosinase activity. Moreover, DMMC induced MITF expression by significantly increasing tyrosinase activity, which activates the gene expression of TRP1 and TRP2. Western blotting confirmed that DMMC induced the activation of mitogen-activated protein kinase (MAPK) signaling by the phosphorylation of C-Jun N-terminal kinase (JNK), resulting in the increased melanin production and the decreased phosphorylation of protein kinase B. Collectively, this study showed the pro-melanogenic effect of DMMC and its potential as a safe tanning and dyeing agent.
Collapse
Affiliation(s)
| | | | - Taejin Park
- Sunmoon University, Chungnam, Republic of Korea
| | - Min-Seon Kim
- Korea Institute of Science and Technology (KIST), Gangwon-do, Republic of Korea
| | - Jin-Soo Park
- Korea Institute of Science and Technology (KIST), Gangwon-do, Republic of Korea
| | - Won-Jae Chi
- National Institute of Biological Resources, Incheon, Republic of South Korea
| | | |
Collapse
|
23
|
Mitofusin-2 Negatively Regulates Melanogenesis by Modulating Mitochondrial ROS Generation. Cells 2022; 11:cells11040701. [PMID: 35203350 PMCID: PMC8869806 DOI: 10.3390/cells11040701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-organellar communication is emerging as one of the most crucial regulators of cellular physiology. One of the key regulators of inter-organellar communication is Mitofusin-2 (MFN2). MFN2 is also involved in mediating mitochondrial fusion–fission dynamics. Further, it facilitates mitochondrial crosstalk with the endoplasmic reticulum, lysosomes and melanosomes, which are lysosome-related organelles specialized in melanin synthesis within melanocytes. However, the role of MFN2 in regulating melanocyte-specific cellular function, i.e., melanogenesis, remains poorly understood. Here, using a B16 mouse melanoma cell line and primary human melanocytes, we report that MFN2 negatively regulates melanogenesis. Both the transient and stable knockdown of MFN2 leads to enhanced melanogenesis, which is associated with an increase in the number of mature (stage III and IV) melanosomes and the augmented expression of key melanogenic enzymes. Further, the ectopic expression of MFN2 in MFN2-silenced cells leads to the complete rescue of the phenotype at the cellular and molecular levels. Mechanistically, MFN2-silencing elevates mitochondrial reactive-oxygen-species (ROS) levels which in turn increases melanogenesis. ROS quenching with the antioxidant N-acetyl cysteine (NAC) reverses the MFN2-knockdown-mediated increase in melanogenesis. Moreover, MFN2 expression is significantly lower in the darkly pigmented primary human melanocytes in comparison to lightly pigmented melanocytes, highlighting a potential contribution of lower MFN2 levels to higher physiological pigmentation. Taken together, our work establishes MFN2 as a novel negative regulator of melanogenesis.
Collapse
|
24
|
Qin H, Chen Y, Wang S, Ge S, Pang Q. The role of KLF4 in melanogenesis and homeostasis in sheep melanocytes. Acta Histochem 2022; 124:151839. [PMID: 34998218 DOI: 10.1016/j.acthis.2021.151839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/01/2022]
Abstract
KLF4 expression has been associated with hair color in mammals and has also been found to regulate melanoma cell growth. Here, we assessed the influence of KLF4 on coat color formation and melanocytes. We found that KLF4 was highly expressed in the black skin of sheep both at the mRNA and protein levels compared with white skin. KLF4 immunostaining further showed that KLF4 protein was mainly expressed in epidermal, outer root, and hair bulb regions. In sheep melanocytes, the proliferation of melanocytes was inhibited by KLF4 overexpression and this decrease in cell proliferation was coupled with induction of the S phase, cell cycle arrest, and apoptosis. In vitro cell migration assays showed that KLF4 suppressed cell migration. In addition, KLF4 overexpression significantly increased melanin production and pigment-related gene expression. Collectively, our findings show that KLF4 is important for coat color formation and melanocyte homeostasis.
Collapse
|
25
|
Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. Eur J Med Chem 2022; 231:114147. [DOI: 10.1016/j.ejmech.2022.114147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|
26
|
Pecora A, Laprise J, Dahmene M, Laurin M. Skin Cancers and the Contribution of Rho GTPase Signaling Networks to Their Progression. Cancers (Basel) 2021; 13:4362. [PMID: 34503171 PMCID: PMC8431333 DOI: 10.3390/cancers13174362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Skin cancers are the most common cancers worldwide. Among them, melanoma, basal cell carcinoma of the skin and cutaneous squamous cell carcinoma are the three major subtypes. These cancers are characterized by different genetic perturbations even though they are similarly caused by a lifelong exposure to the sun. The main oncogenic drivers of skin cancer initiation have been known for a while, yet it remains unclear what are the molecular events that mediate their oncogenic functions and that contribute to their progression. Moreover, patients with aggressive skin cancers have been known to develop resistance to currently available treatment, which is urging us to identify new therapeutic opportunities based on a better understanding of skin cancer biology. More recently, the contribution of cytoskeletal dynamics and Rho GTPase signaling networks to the progression of skin cancers has been highlighted by several studies. In this review, we underline the various perturbations in the activity and regulation of Rho GTPase network components that contribute to skin cancer development, and we explore the emerging therapeutic opportunities that are surfacing from these studies.
Collapse
Affiliation(s)
- Alessandra Pecora
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Justine Laprise
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Manel Dahmene
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Mélanie Laurin
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
- Université Laval Cancer Research Center, Université Laval, Québec City, QC G1R 3S3, Canada
- Molecular Biology, Medical Biochemistry and Pathology Department, Faculty of Medicine, Université Laval, Québec City, QC G1V OA6, Canada
| |
Collapse
|
27
|
Goswami AG, Basu S, Shukla VK. Wound Healing in the Golden Agers: What We Know and the Possible Way Ahead. INT J LOW EXTR WOUND 2021; 21:264-271. [PMID: 34382451 DOI: 10.1177/15347346211037841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While "population aging" is an accomplishment that deserves acclamation, it is in itself a tremendous challenge. Age-related skin changes, impaired wound healing, and concurrent comorbidities are the deadly triad that contribute most to the development of nonhealing chronic wounds in the elderly. This imposes enormous medical, social, and financial burden. With the rising trend in the aging population, this problem is likely to exacerbate unless multidisciplinary, rapt wound care strategies are developed. The last decade was dedicated to understand the basic biology underlying the wound healing process but most in vitro and animal model studies translated poorly to human conditions. Forthcoming, the focus is on the development of diagnostic and therapeutic strategies to improve healing in this vulnerable age group. Further, understanding the complex pathobiology of cellular senescence and wound healing process is required to develop focused therapy for these "problem wounds" in the elderly.
Collapse
Affiliation(s)
| | - Somprakas Basu
- 442339All India Institute of Medical Sciences, Rishikesh, India
| | | |
Collapse
|
28
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
29
|
Tsunoi T, Noju K, Eto T, Suzuki H. A 1-bp deletion in Mc1r in a Norway rat (Rattus norvegicus) from Sado Island, Japan gives rise to a yellowish color variant: an insight into mammalian MC1R variants. Genes Genet Syst 2021; 96:89-97. [PMID: 33994400 DOI: 10.1266/ggs.20-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The melanocortin-1 receptor gene (MC1R) controls production of the pigments eumelanin and pheomelanin. Changes in MC1R lead to variation in coat color in mammals, which can range from entirely black (melanism) to yellowish. In this study, we report a case of a wild-caught Norway rat (Rattus norvegicus) from Sado Island, Japan with a yellowish coat color. Upon sequencing the whole coding region of the Mc1r gene (954 bp), we found a 1-bp deletion at site 337 (c.337del), indicative of a frameshift mutation, which was characterized as a severe loss-of-function or null mutation. A spectrophotometer was used to measure coat color, revealing that the rat had a distinctly lighter coat, based on lightness score, than mice with homozygous similar loss-of-function mutations. This implies that loss-of-function mutations can yield different phenotypes in murine rodents. The loss-of-function-mutant rat exhibited a contrasting coat pattern consisting of darker and lighter colors along its dorsal and ventral sides, respectively. Similar patterns have been observed in homozygous MC1R-deficient mutants in other mammals, implying that the countershading pattern can still be expressed despite the absence of MC1R in the melanocyte.
Collapse
Affiliation(s)
- Takeru Tsunoi
- Graduate School of Environmental Science, Hokkaido University
| | - Koki Noju
- Graduate School of Science, Hokkaido University
| | - Takeshi Eto
- Faculty of Agriculture, University of the Ryukyus
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
30
|
Marliolide Derivative Induces Melanosome Degradation via Nrf2/p62-Mediated Autophagy. Int J Mol Sci 2021; 22:ijms22083995. [PMID: 33924406 PMCID: PMC8070456 DOI: 10.3390/ijms22083995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.
Collapse
|
31
|
Hossain MR, Ansary TM, Komine M, Ohtsuki M. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation. Int J Mol Sci 2021; 22:3970. [PMID: 33921371 PMCID: PMC8070342 DOI: 10.3390/ijms22083970] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The production of melanin pigments by melanocytes and their quantity, quality, and distribution play a decisive role in determining human skin, eye, and hair color, and protect the skin from adverse effects of ultraviolet radiation (UVR) and oxidative stress from various environmental pollutants. Melanocytes reside in the basal layer of the interfollicular epidermis and are compensated by melanocyte stem cells in the follicular bulge area. Various stimuli such as eczema, microbial infection, ultraviolet light exposure, mechanical injury, and aging provoke skin inflammation. These acute or chronic inflammatory responses cause inflammatory cytokine production from epidermal keratinocytes as well as dermal fibroblasts and other cells, which in turn stimulate melanocytes, often resulting in skin pigmentation. It is confirmed by some recent studies that several interleukins (ILs) and other inflammatory mediators modulate the proliferation and differentiation of human epidermal melanocytes and also promote or inhibit expression of melanogenesis-related gene expression directly or indirectly, thereby participating in regulation of skin pigmentation. Understanding of mechanisms of skin pigmentation due to inflammation helps to elucidate the relationship between inflammation and skin pigmentation regulation and can guide development of new therapeutic pathways for treating pigmented dermatosis. This review covers the mechanistic aspects of skin pigmentation caused by inflammation.
Collapse
Affiliation(s)
| | | | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (M.R.H.); (T.M.A.); (M.O.)
| | | |
Collapse
|
32
|
Ho CC, Ng SC, Chuang HL, Chen JY, Wen SY, Kuo CH, Mahalakshmi B, Le QV, Huang CY, Kuo WW. Seven traditional Chinese herbal extracts fermented by Lactobacillus rhamnosus provide anti-pigmentation effects by regulating the CREB/MITF/tyrosinase pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:654-664. [PMID: 33314651 DOI: 10.1002/tox.23069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Skin pigmentation is resulted from several processes, such as melanin synthesis transportation and abnormal melanin accumulation in keratinocytes. Various studies have suggested that seven traditional Chinese herbal extracts from Atractylodes macrocephala, Paeonia lactiflora, Bletilla striata, Poria cocos, Dictamnus dasycarpus, Ampelopsis japonica and Tribulus terrestris (which we collectively named ChiBai), show several protective effects toward skin-related diseases. Lactobacillus rhamnosus, a lactic acid bacterium, has been reported to treat skin inflammation and atopic dermatitis. In this study, the broth produced by the cofermentation of ChiBai with Lactobacillus rhamnosus was studied for its effects on skin pigmentation through in vitro and in vitro experiments. In the in vitro experiments, we found that the fermented broth of ChiBai (FB-ChiBai) suppressed alpha-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in B16F0 murine melanoma cells without any cytotoxicity at a concentration of 0.5%. FB-ChiBai significantly attenuated melanin production, tyrosinase activities and melanogenesis-related signaling pathways. Treatment with FB-ChiBai also reduced the nuclear translocation and promoter binding activities of MITF. In the in vivo experiments, FB-ChiBai was topically applied to the dorsal skin of C57BL/6J nude mice and concurrently irradiated with UVB, three times a week for 8 weeks. The results indicated that FB-ChiBai alleviated UVB-induced hyperpigmentation by reducing epidermal hyperplasia and inhibiting the CREB/MITF/tyrosinase pathway. In conclusion, our data indicated that the anti-melanogenic effects of FB-ChiBai are mediated by the inhibition of CREB/MITF/tyrosinase signaling pathway. The findings suggest that FB-ChiBai can protect against UV-B irradiation and that it might be used as an agent in cosmetic products to protect against UVB-induced hyperpigmentation.
Collapse
Affiliation(s)
- Chih-Chu Ho
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Ho-Lin Chuang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Jia-Yi Chen
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Quoc-Vu Le
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Zingiber mioga Extract Improves Moisturization and Depigmentation of Skin and Reduces Wrinkle Formation in UVB-Irradiated HRM-2 Hairless Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we investigated the effects of Zingiber mioga extracts (FSH-ZM) on the moisturization and depigmentation of skin as well as wrinkle formation in UVB-irradiated HRM-2 hairless mice. The mice were divided into six groups as follows: normal control (NC), UVB-irradiated control (C), positive control 1 (PC1, L-ascorbic acid 200 mg/kg b.w.), positive control 2 (PC2, Arbutin 200 mg/kg b.w.), Z100 (FSH-ZM 100 mg/kg b.w.), and Z200 (FSH-ZM 200 mg/kg b.w.). The experiment spanned a period of 6 weeks. We found that FSH-ZM led to an increase in the expression of hyaluronan synthase 2, fibrillin-1, and elastin mRNAs, and showed improved skin hydration in HRM-2 hairless mice compared to that in the UVB-irradiated control group. Furthermore, FSH-ZM also inhibited the expression of inflammatory cytokines and wrinkle forming factors generated by UVB and reduced the formation of wrinkles in the test group relative to that in the control group by increasing collagen synthesis. Moreover, we found that FSH-ZM decreased the expression of melanogenesis factors, which improved depigmentation in UVB-irradiated hairless mice. These results suggest that Zingiber mioga can potentially be utilized to develop products aimed at improving skin moisturization and depigmentation and reducing wrinkle formation.
Collapse
|
34
|
Suzuki H, Kinoshita G, Tsunoi T, Noju K, Araki K. Mouse Hair Significantly Lightened Through Replacement of the Cysteine Residue in the N-Terminal Domain of Mc1r Using the CRISPR/Cas9 System. J Hered 2020; 111:640-645. [PMID: 33252683 DOI: 10.1093/jhered/esaa054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
A loss-of-function mutation in the melanocortin 1 receptor gene (MC1R), which switches off the eumelanin production, causes yellowish coat color variants in mammals. In a wild population of sables (Martes zibellina) in Hokkaido, Japan, the mutation responsible for a bright yellow coat color variant was inferred to be a cysteine replacement at codon 35 of the N-terminal extracellular domain of the Mc1r receptor. In the present study, we validated these findings by applying genome editing on Mc1r in mouse strains C3H/HeJ and C57BL/6N, altering the codon for cysteine (Cys33Phe). The resulting single amino acid substitution (Cys33Phe) and unintentionally generated frameshift mutations yielded a color variant exhibiting substantially brighter body color, indicating that the Cys35 replacement produced sufficient MC1R loss of function to confirm that this mutation is responsible for producing the Hokkaido sable yellow color variant. Notably, the yellowish mutant mouse phenotype exhibited brown coloration in subapical hair on the dorsal side in both the C3H/HeJ and C57BL/6N strains, despite the inability of the latter to produce the agouti signaling protein (Asip). This darker hair and body coloration was not apparent in the Hokkaido sable variant, implying the presence of an additional genetic system shaping yellowish hair variability.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Gohta Kinoshita
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takeru Tsunoi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Koki Noju
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Kimi Araki
- and Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Honjo, Kumamoto, Japan
| |
Collapse
|
35
|
Association between brown eye colour in rs12913832:GG individuals and SNPs in TYR, TYRP1, and SLC24A4. PLoS One 2020; 15:e0239131. [PMID: 32915910 PMCID: PMC7485777 DOI: 10.1371/journal.pone.0239131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
The genotype of a single SNP, rs12913832, is the primary predictor of blue and brown eye colours. The genotypes rs12913832:AA and rs12913832:GA are most often observed in individuals with brown eye colours, whereas rs12913832:GG is most often observed in individuals with blue eye colours. However, approximately 3% of Europeans with the rs12913832:GG genotype have brown eye colours. The purpose of the study presented here was to identify variants that explain brown eye colour formation in individuals with the rs12913832:GG genotype. Genes and regulatory regions surrounding SLC24A4, TYRP1, SLC24A5, IRF4, TYR, and SLC45A2, as well as the upstream region of OCA2 within the HERC2 gene were sequenced in a study comprising 40 individuals with the rs12913832:GG genotype. Of these, 24 individuals were considered to have blue eye colours and 16 individuals were considered to have brown eye colours. We identified 211 variants within the SLC24A4, TYRP1, IRF4, and TYR target regions associated with eye colour. Based on in silico analyses of predicted variant effects we recognized four variants, TYRP1 rs35866166:C, TYRP1 rs62538956:C, SLC24A4 rs1289469:C, and TYR rs1126809:G, to be the most promising candidates for explanation of brown eye colour in individuals with the rs12913832:GG genotype. Of the 16 individuals with brown eye colours, 14 individuals had four alleles, whereas the alleles were rare in the blue eyed individuals. rs35866166, rs62538956, and rs1289469 were for the first time found to be associated with pigmentary traits, whilst rs1126809 was previously found to be associated with pigmentary variation. To improve prediction of eye colours we suggest that future eye colour prediction models should include rs35866166, rs62538956, rs1289469, and rs1126809.
Collapse
|
36
|
Yakimov BP, Shirshin EA, Schleusener J, Allenova AS, Fadeev VV, Darvin ME. Melanin distribution from the dermal-epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy. Sci Rep 2020; 10:14374. [PMID: 32873804 PMCID: PMC7463016 DOI: 10.1038/s41598-020-71220-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
The fate of melanin in the epidermis is of great interest due to its involvement in numerous physiological and pathological processes in the skin. Melanin localization can be assessed ex vivo and in vivo using its distinctive optical properties. Melanin exhibits a characteristic Raman spectrum band shape and discernible near-infrared excited (NIR) fluorescence. However, a detailed analysis of the capabilities of depth-resolved confocal Raman and fluorescence microspectroscopy in the evaluation of melanin distribution in the human skin is lacking. Here we demonstrate how the fraction of melanin at different depths in the human skin in vivo can be estimated from its Raman spectra (bands at 1,380 and 1,570 cm-1) using several procedures including a simple ratiometric approach, spectral decomposition and non-negative matrix factorization. The depth profiles of matrix factorization components specific to melanin, collagen and natural moisturizing factor provide information about their localization in the skin. The depth profile of the collagen-related matrix factorization component allows for precise determination of the dermal-epidermal junction, i.e. the epidermal thickness. Spectral features of fluorescence background originating from melanin were found to correlate with relative intensities of the melanin Raman bands. We also hypothesized that NIR fluorescence in the skin is not originated solely from melanin, and the possible impact of oxidized species should be taken into account. The ratio of melanin-related Raman bands at 1,380 and 1,570 cm-1 could be related to melanin molecular organization. The proposed combined analysis of the Raman scattering signal and NIR fluorescence could be a useful tool for rapid non-invasive in vivo diagnostics of melanin-related processes in the human skin.
Collapse
Affiliation(s)
- B P Yakimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow, Russia, 119991
- Medical Research and Education Center, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect 27/10, Moscow, Russia, 119991
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow, Russia, 119991
| | - E A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow, Russia, 119991.
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow, Russia, 119991.
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, 108840, Troitsk, Moscow, Russia.
| | - J Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - A S Allenova
- Medical Research and Education Center, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect 27/10, Moscow, Russia, 119991
- Division of Immune-Mediated Skin Diseases, Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow, Russia, 119991
| | - V V Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow, Russia, 119991
| | - M E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
37
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
38
|
Unni PA, Lulu SS, Pillai GG. Computational strategies towards developing novel antimelanogenic agents. Life Sci 2020; 250:117602. [PMID: 32240677 DOI: 10.1016/j.lfs.2020.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 11/30/2022]
Abstract
AIMS Extrinsic ageing or photoageing relates to the onset of age-linked phenotypes such as skin hyperpigmentation due to UV exposure. UV induced upregulated production of tyrosinase enzyme, which catalyses the vital biochemical reactions of melanin synthesis is responsible for the inception of skin hyperpigmentation. We aimed to generate a validated QSAR model with a dataset consisting of 69 thio-semicarbazone derivatives to elucidate the physicochemical properties of compounds essential for tyrosinase inhibition and to identify novel lead molecules with enhanced tyrosinase inhibitory activity and bioavailability. MAIN METHODS Lead optimization and insilico approaches were employed in this research work. QSAR model was generated and validated by exploiting Multiple Linear Regression method. Prioritization of lead-like compounds was accomplished by performing multi parameter optimization depleting molecular docking, bioavailability assessments and toxicity prediction for 69 compounds Derivatives of best lead compound were retrieved from chemical spaces. KEY FINDINGS Molecular descriptors explicated the significance of chemical properties essential for chelation of copper ions present in the active site of tyrosinase protein target. Further, derivatives which comprise of electron donating groups in their chemical structure were predicted and analysed for tyrosinase inhibitory activity by employing insilico methodologies including chemical space exploration. SIGNIFICANCE Our research work resulted in the generation of a validated QSAR model with higher degree of external predictive ability and significance to tyrosinase inhibitory activity. We propose 11 novel derivative compounds with enhanced tyrosinase inhibitory activity and bioavailability.
Collapse
Affiliation(s)
- P Ambili Unni
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S Sajitha Lulu
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Girinath G Pillai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India; Nyro Research India, Kochi, Kerala, India.
| |
Collapse
|
39
|
Malaspina P, Catellani E, Burlando B, Brignole D, Cornara L, Bazzicalupo M, Candiani S, Obino V, De Feo V, Caputo L, Giordani P. Depigmenting potential of lichen extracts evaluated by in vitro and in vivo tests. PeerJ 2020; 8:e9150. [PMID: 32461836 PMCID: PMC7233272 DOI: 10.7717/peerj.9150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
Melanin is the main pigment of human skin, playing the primary role of protection from ultraviolet radiation. Alteration of the melanin production may lead to hyperpigmentation diseases, with both aesthetic and health consequences. Thus, suppressors of melanogenesis are considered useful tools for medical and cosmetic treatments. A great interest is focused on natural sources, aimed at finding safe and quantitatively available depigmenting substances. Lichens are thought to be possible sources of this kind of compounds, as the occurrence of many phenolic molecules suggests possible effects on phenolase enzymes involved in melanin synthesis, like tyrosinase. In this work, we used four lichen species, Cetraria islandica Ach., Flavoparmelia caperata Hale, Letharia vulpina (L.) Hue, and Parmotrema perlatum (Hudson) M. Choisy, to obtain extracts in solvents of increasing polarity, viz. chloroform, chloroform-methanol, methanol, and water. Cell-free, tyrosinase inhibition experiments showed highest inhibition for L. vulpina methanol extract, followed by C. islandica chloroform-methanol one. Comparable results for depigmenting activities were observed by means of in vitro and in vivo systems, such as MeWo melanoma cells and zebrafish larvae. Our study provides first evidence of depigmenting effects of lichen extracts, from tyrosinase inhibition to cell and in vivo models, suggesting that L. vulpina and C. islandica extracts deserve to be further studied for developing skin-whitening products.
Collapse
Affiliation(s)
| | | | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genoa, Italy
- Biophysics Institute, National Research Council (CNR), Genoa, Italy
| | | | | | | | | | | | | | | | - Paolo Giordani
- Department of Pharmacy, University of Genoa, Genoa, Italy
| |
Collapse
|
40
|
Shin SY, Sun SO, Ko JY, Oh YS, Cho SS, Park DH, Park KM. New Synthesized Galloyl-RGD Inhibits Melanogenesis by Regulating the CREB and ERK Signaling Pathway in B16F10 Melanoma Cells. Photochem Photobiol 2020; 96:1321-1331. [PMID: 32348553 DOI: 10.1111/php.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Gallic acid (3, 4, 5-trihydroxybenzoic acid) is a phytochemical derived from diverse herbs. It has been reported to have effective antifungal, antiviral and antioxidant activity. However, gallic acid exhibits low solubility and instability at high temperatures. In a previous study, in order to overcome these limitations, we synthesized galloyl-RGD by combining gallic acid with arginine, glycine and asparaginic acid (RGD peptide). This compound showed better thermal stability than gallic acid. In this study, we investigated the antimelanogenic effect of galloyl-RGD and the underlying mechanism for this effect. Galloyl-RGD markedly inhibited melanin content and tyrosinase activity in a concentration-dependent manner. We also found that galloyl-RGD decreased the levels of melanogenesis-related gene and protein. In addition, galloyl-RGD reduces intracellular cyclic adenosine monophosphate (cAMP) levels that leads to inhibition of cAMP-responsive element binding protein (CREB) phosphorylation and activates extracellular signal-regulated kinase (ERK) expression. These results indicate that CREB and ERK regulation by galloyl-RGD contributes to reduced melanin synthesis via degradation of microphthalmia-associated transcription factor. Therefore, galloyl-RGD can be potential candidate for application in cosmetic or pharmaceutical industry.
Collapse
Affiliation(s)
- Seo Yeon Shin
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Sang Ouk Sun
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Jae Yeon Ko
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Yun Seo Oh
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeannam, Korea
| | - Dae-Hun Park
- Department of Nursing, Dongshin University, Jeonnam, Korea
| | - Kyung Mok Park
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| |
Collapse
|
41
|
Schidlowski L, Liebert F, Iankilevich PG, Rebellato PRO, Rocha RA, Almeida NAP, Jain A, Wu Y, Itan Y, Rosati R, Prando C. Non-syndromic Oculocutaneous Albinism: Novel Genetic Variants and Clinical Follow Up of a Brazilian Pediatric Cohort. Front Genet 2020; 11:397. [PMID: 32411182 PMCID: PMC7198815 DOI: 10.3389/fgene.2020.00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Oculocutaneous albinism (OCA) is a genetic disorder characterized by skin, hair, and eye hypopigmentation due to a reduction or absence of melanin. Clinical manifestations include vision problems and a high susceptibility to skin cancer. In its non-syndromic form, OCA is associated with six genes and one chromosomal region. Because OCA subtypes are not always clinically distinguishable, molecular analysis has become an important tool for classifying types of OCA, which facilitates genetic counseling and can guide the development of new therapies. We studied eight Brazilian individuals aged 1.5–18 years old with clinical diagnosis of OCA. Assessment of ophthalmologic characteristics showed results consistent with albinism, including reduced visual acuity, nystagmus, and loss of stereoscopic vision. We also observed the appearance of the strabismus and changes in static refraction over a 2-year period. Dermatologic evaluation showed that no participants had preneoplastic skin lesions, despite half of the participants reporting insufficient knowledge about skin care in albinism. Whole-exome and Sanger sequencing revealed eight different mutations: six in the TYR gene and two in the SLC45A2 gene, of which one was novel and two were described in a population study but were not previously associated with the OCA phenotype. We performed two ophthalmological evaluations, 2 years apart; and one dermatological evaluation. To the best of our knowledge, this is the first study to perform clinical follow-up and genetic analysis of a Brazilian cohort with albinism. Here, we report three new OCA causing mutations.
Collapse
Affiliation(s)
- Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Fernando Liebert
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | | | | | | | | | - Aayushee Jain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Hospital Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
42
|
Induction of Melanogenesis by Fosfomycin in B16F10 Cells Through the Upregulation of P-JNK and P-p38 Signaling Pathways. Antibiotics (Basel) 2020; 9:antibiotics9040172. [PMID: 32290383 PMCID: PMC7235749 DOI: 10.3390/antibiotics9040172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
Fosfomycin disodium salt (FDS), which is a water-soluble extract, is a bactericidal drug used to inhibit the synthesis of cells. Moreover, it has been found to be effective in the treatment of urinary tract infections. The present study was conducted to investigate the melanogenesis-stimulating effect of FDS in B16F10 cells. Several experiments were performed on B16F10 cells: the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, the melanin content assay, the cellular tyrosinase activity assay, and Western blotting. FDS upregulated the activity of tyrosinase in a dose-dependent manner at a wide concentration range of 0–1 mg/mL, which showed no cytotoxicity. It also increased the melanin content and the activity of the microphthalmia-associated transcription factor (MITF), tyrosinase related protein 1 (TRP-1), and tyrosinase related protein 2 (TRP-2) enzymes in a dose-dependent manner. Western blotting results showed that FDS clearly upregulated the phosphorylation of c-Jun N-terminal kinases (JNK) and p38 pathways. These data are clear evidence of the melanogenesis-inducing effect of FDS in B16F10 murine melanoma cells.
Collapse
|
43
|
Abstract
Of all the big cats, or perhaps of all the endangered wildlife, the tiger may be both the most charismatic and most well-recognized flagship species in the world. The rapidly changing field of molecular genetics, particularly advances in genome sequencing technologies, has provided new tools to reconstruct what characterizes a tiger. Here we review how applications of molecular genomic tools have been used to depict the tiger's ancestral roots, phylogenetic hierarchy, demographic history, morphological diversity, and genetic patterns of diversification on both temporal and geographical scales. Tiger conservation, stabilization, and management are important areas that benefit from use of these genome resources for developing survival strategies for this charismatic megafauna both in situ and ex situ.
Collapse
Affiliation(s)
- Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
44
|
Gaudel C, Soysouvanh F, Leclerc J, Bille K, Husser C, Montcriol F, Bertolotto C, Ballotti R. Regulation of Melanogenesis by the Amino Acid Transporter SLC7A5. J Invest Dermatol 2020; 140:2253-2259.e4. [PMID: 32240722 DOI: 10.1016/j.jid.2020.03.941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Integration of chromatin immunoprecipitation-sequencing and microarray data enabled us to identify previously unreported MITF-target genes, among which the amino acid transporter SLC7A5 is also included. We reported that small interfering RNA-mediated SLC7A5 knockdown decreased pigmentation in B16F10 cells but neither affected morphology nor dendricity. Treatment with the SLC7A5 inhibitors 2-amino-2-norbornanecarboxylic acid (BCH) or JPH203 also decreased melanin synthesis in B16F10 cells. Our findings indicated that BCH was as potent as reference depigmenting agent, kojic acid, but acted through a different pathway not affecting tyrosinase activity. BCH also decreased pigmentation in human MNT1 melanoma cells or normal human melanocytes. Finally, we tested BCH on a more physiological model, using reconstructed human epidermis and confirmed a strong inhibition of pigmentation, revealing the clinical potential of SLC7A5 inhibition and positioning BCH as a depigmenting agent suitable for cosmetic or dermatological intervention in hyperpigmentation diseases.
Collapse
Affiliation(s)
- Céline Gaudel
- Nunii Laboratoire, Grasse Biotech, Grasse, France; Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France
| | - Frédéric Soysouvanh
- Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France
| | - Justine Leclerc
- Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France
| | - Karine Bille
- Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France
| | - Chrystel Husser
- Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France
| | | | - Corine Bertolotto
- Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, C3M, INSERM, U1065, Biology and pathologies of melanocytes, Nice, France.
| |
Collapse
|
45
|
Chang PK, Cary JW, Lebar MD. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol 2020; 104:2277-2286. [PMID: 31974722 DOI: 10.1007/s00253-020-10347-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/27/2022]
Abstract
Fungal pigments, which are classified as secondary metabolites, are polymerized products derived mostly from phenolic precursors with remarkable structural diversity. Pigments of conidia and sclerotia serve myriad functions. They provide tolerance against various environmental stresses such as ultraviolet light, oxidizing agents, and ionizing radiation. Some pigments even play a role in fungal pathogenesis. This review gathers available research and discusses current knowledge on the formation of conidial and sclerotial pigments in aspergilli. It examines organization of genes involved in pigment production, biosynthetic pathways, and biological functions and reevaluates some of the current dogma, especially with respect to the DHN-melanin pathway, on the production of these enigmatic polymers. A better understanding of the structure and biosynthesis of melanins and other pigments could facilitate strategies to mitigate fungal pathogenesis.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Agricultural Research Service, U. S. Department of Agriculture, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA.
| | - Jeffrey W Cary
- Agricultural Research Service, U. S. Department of Agriculture, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA.
| | - Matthew D Lebar
- Agricultural Research Service, U. S. Department of Agriculture, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| |
Collapse
|
46
|
Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, Gonçalves WA, Shwartz Y, Fast EM, Su Y, Zon LI, Regev A, Buenrostro JD, Cunha TM, Chiu IM, Fisher DE, Hsu YC. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 2020; 577:676-681. [PMID: 31969699 PMCID: PMC7184936 DOI: 10.1038/s41586-020-1935-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/13/2019] [Indexed: 01/24/2023]
Abstract
Empirical and anecdotal evidence have associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but the scientific evidence linking the two is scant. Here, we report that acute stress leads to hair greying through fast depletion of melanocyte stem cells (MeSCs). Combining adrenalectomy, denervation, chemogenetics3,4, cell ablation, and MeSC-specific adrenergic receptor knockout, we found that stress-induced MeSC loss is independent of immune attack or adrenal stress hormones. Rather, hair greying results from activation of the sympathetic nerves that innervate the MeSC niche. Upon stress, sympathetic nerve activation leads to burst release of the neurotransmitter norepinephrine, which drives quiescent MeSCs into rapid proliferation, followed by differentiation, migration, and permanent depletion from the niche. Transient suppression of MeSC proliferation prevents stress-induced hair greying. Our studies demonstrate that acute stress-induced neuronal activity can drive rapid and permanent loss of somatic stem cells, and illustrate an example in which somatic stem cell maintenance is directly influenced by the overall physiological state of the organism.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Pankaj Baral
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sekyu Choi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - William A Gonçalves
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Eva M Fast
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yiqun Su
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Thiago M Cunha
- Department of Immunology, Harvard Medical School, Boston, MA, USA.,Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
47
|
Wäster P, Eriksson I, Vainikka L, Öllinger K. Extracellular vesicles released by melanocytes after UVA irradiation promote intercellular signaling via miR21. Pigment Cell Melanoma Res 2020; 33:542-555. [PMID: 31909885 DOI: 10.1111/pcmr.12860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Skin pigmentation is controlled by complex crosstalk between melanocytes and keratinocytes and is primarily induced by exposure to ultraviolet (UV) irradiation. Several aspects of UVA-induced signaling remain to be explored. In skin cells, UVA induces plasma membrane damage, which is repaired by lysosomal exocytosis followed by instant shedding of extracellular vesicles (EVs) from the plasma membrane. The released EVs are taken up by neighboring cells. To elucidate the intercellular crosstalk induced by UVA irradiation, EVs were purified from UVA-exposed melanocytes and added to keratinocytes. Transcriptome analysis of the keratinocytes revealed the activation of TGF-β and IL-6/STAT3 signaling pathways and subsequent upregulation of microRNA (miR)21. EVs induced phosphorylation of ERK and JNK, reduced protein levels of PDCD4 and PTEN, and augment antiapoptotic signaling. Consequently, keratinocyte proliferation and migration were stimulated and UV-induced apoptosis was significantly reduced. Interestingly, melanoma cells and melanoma spheroids also generate increased amounts of EVs with capacity to stimulate proliferation and migration upon UVA. In conclusion, we present a novel intercellular crosstalk mediated by UVA-induced lysosome-derived EVs leading to the activation of proliferation and antiapoptotic signaling via miR21.
Collapse
Affiliation(s)
- Petra Wäster
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ida Eriksson
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linda Vainikka
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
48
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
49
|
Azumi J, Takeda T, Shimada Y, Aso H, Nakamura T. The Organogermanium Compound THGP Suppresses Melanin Synthesis via Complex Formation with L-DOPA on Mushroom Tyrosinase and in B16 4A5 Melanoma Cells. Int J Mol Sci 2019; 20:E4785. [PMID: 31561511 PMCID: PMC6801725 DOI: 10.3390/ijms20194785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
The organogermanium compound 3-(trihydroxygermyl)propanoic acid (THGP) has various biological activities. We previously reported that THGP forms a complex with cis-diol structures. L-3,4-Dihydroxyphenylalanine (L-DOPA), a precursor of melanin, contains a cis-diol structure in its catechol skeleton, and excessive melanin production causes skin darkening and staining. Thus, the cosmetic field is investigating substances that suppress melanin production. In this study, we investigated whether THGP inhibits melanin synthesis via the formation of a complex with L-DOPA using mushroom tyrosinase and B16 4A5 melanoma cells. The ability of THGP to interact with L-DOPA was analyzed by 1H-NMR, and the influence of THGP and/or kojic acid on melanin synthesis was investigated. We also examined the effect of THGP on cytotoxicity, tyrosinase activity, and gene expression and found that THGP interacted with L-DOPA, a precursor of melanin with a cis-diol structure. The results also showed that THGP inhibited melanin synthesis, exerted a synergistic effect with kojic acid, and did not affect tyrosinase activity or gene expression. These results suggest that THGP is a useful substrate that functions as an inhibitor of melanogenesis and that its effect is enhanced by combination with kojic acid.
Collapse
Affiliation(s)
- Junya Azumi
- Asai Germanium Research Institute Co., Ltd. Suzuranoka 3-131, Hakodate, Hokkaido 042-0958, Japan.
| | - Tomoya Takeda
- Asai Germanium Research Institute Co., Ltd. Suzuranoka 3-131, Hakodate, Hokkaido 042-0958, Japan.
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Sendai 980-8572, Japan.
| | - Yasuhiro Shimada
- Asai Germanium Research Institute Co., Ltd. Suzuranoka 3-131, Hakodate, Hokkaido 042-0958, Japan.
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Sendai 980-8572, Japan.
| | - Takashi Nakamura
- Asai Germanium Research Institute Co., Ltd. Suzuranoka 3-131, Hakodate, Hokkaido 042-0958, Japan.
| |
Collapse
|
50
|
Lambert MW, Maddukuri S, Karanfilian KM, Elias ML, Lambert WC. The physiology of melanin deposition in health and disease. Clin Dermatol 2019; 37:402-417. [PMID: 31896398 DOI: 10.1016/j.clindermatol.2019.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Eumelanin is the major pigment responsible for human skin color. This black/brown pigment is localized in membrane-bound organelles (melanosomes) found in specialized cells (melanocytes) in the basal layer of the epidermis. This review highlights the steps involved in melanogenesis in the epidermis and the disorders in skin pigmentation that occur when specific steps critical for this process are defective. Melanosomes, which contain tyrosinase, a major enzyme involved in melanin synthesis, develop through a series of steps in the melanocyte. They are donated from the melanocyte dendrites to the surrounding keratinocytes in the epidermis. In the keratinocytes, the melanosomes are found singly or packaged into groups, and as the keratinocytes move upward in the epidermis, the melanosomes start to degrade. This sequence of events is critical for melanin pigmentation in the skin and can be influenced by genetic, hormonal, and environmental factors, which all play a role in levels of melanization of the epidermis. The effects these factors have on skin pigmentation can be due to different underlying mechanisms involved in the melanization process leading to either hypo- or hyperpigmentary disorders. These disorders highlight the importance of mechanistic studies on the specific steps involved in the melanization process.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
| | - Spandana Maddukuri
- Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katrice M Karanfilian
- Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marcus L Elias
- Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - W Clark Lambert
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|