1
|
Wang K, Chen M, Yan S, Han Y, Yuan H, Liu Q, Lu D, Li L, Wang K, Liu F, Li Q, Luo D, Jiang J, Zhou H, Chen Y, Qin J, Gao D. Zinc ions activate AKT and promote prostate cancer cell proliferation via disrupting AKT intramolecular interaction. Oncogene 2024:10.1038/s41388-024-03195-x. [PMID: 39438763 DOI: 10.1038/s41388-024-03195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Prostate is a zinc rich organ and the physiological function of the abundant zinc ions is relatively less understood. AKT kinase is a pivotal regulator downstream of cytokines, growth factors and other extracellular stimuli, and the attachment of its PH domain to PtdIns-3,4,5-P3 (PIP3) and the subsequent phosphorylation of its kinase domain by PDPK1 are considered important for its activation. Herein, we report a regulatory mechanism of AKT kinase by zinc ions. Mechanistically, zinc ions directly bind to AKT and facilitate AKT activation through disrupting the interaction between PH and kinase domains within AKT molecule. Consistently, AKT1-H89A/E91A mutant (zinc-binding-deficient) fails to respond to zinc ions and exhibits strong interaction between PH and kinase domains, and it is less oncogenic in orthotopic xenograft model of prostate cancer. On the other hand, the AKT1-W80L mutant with minimum intra-molecular interaction between PH and kinase domains shows strong tumor promoting capacity although it could not be further stimulated by zinc ions. Overall, this study reveals a distinctive regulatory mechanism of AKT activation and implies a tumor promoting role of the zinc ions in prostate cancer.
Collapse
Affiliation(s)
- Kangjunjie Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Long Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kaihua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Daming Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang X, Tian H, Chen Y, Liang B, Nice EC, Huang C, Xie N, Zheng S. A metal-organic nanoframework for efficient colorectal cancer immunotherapy by the cGAS-STING pathway activation and immune checkpoint blockade. J Nanobiotechnology 2024; 22:592. [PMID: 39343911 PMCID: PMC11441132 DOI: 10.1186/s12951-024-02836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Immunotherapy has shown marked progress in promoting systemic anti-colorectal cancer (CRC) clinical effects. For further effectively sensitizing CRC to immunotherapy, we have engineered a pH-sensitive zeolitic imidazolate framework-8 (CS/NPs), capable of efficient cGAS-STING pathway activation and immune checkpoint blockade, by encapsulating the chemotherapeutic mitoxantrone (MTX) and immunomodulator thymus pentapeptide (TP5) and tailoring with tumor-targeting chondroitin sulfate (CS). In this nanoframework, CS endows CS/NPs with specific tumor-targeting activity and reduced systemic toxicity. Of note, the coordinated Zn2+ disrupts glycolytic processes and downregulates the expression of glucose transporter type 1 (GLUT1), thus depriving the cancer cells of their energy. Zn2+ further initiates the adenosine 5'-monophosphate activated protein kinase (AMPK) pathway, which leads to PD-L1 protein degradation and sensitizes CRC cells to immunotherapy. Moreover, the damaged double-stranded DNA during MTX treatment activates the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which works together with TP5 induced the proliferation and differentiation of T lymphocytes and dendritic cells to further enhance the anti-CRC immune response. Therefore, CS/NPs efficiently sensitize cells to chemotherapy and stimulate systemic antitumor immune responses both in vitro and in vivo, representing a promising strategy to increase the feasibility of CRC immunotherapy.
Collapse
Affiliation(s)
- Xiaodian Zhang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, the First Clinical College & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Hailong Tian
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Chen
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baichuan Liang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, the First Clinical College & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Ismail KM, Rashidi FB, Hassan SS. Ultrasonic synthesis, characterization, DFT and molecular docking of a biocompatible Zn-based MOF as a potential antimicrobial, anti-inflammatory and antitumor agent. Sci Rep 2024; 14:21989. [PMID: 39313547 PMCID: PMC11420363 DOI: 10.1038/s41598-024-71609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Zinc metal-organic frameworks have emerged as promising candidates, demonstrating excellent biological properties stemming from the unique characteristics of MOFs and zinc. In this study, we employed a facile method to synthesize a zinc metal-organic framework [Zn(IP)(H2O)] using ultrasound irradiation, with the linker being isophthalic acid (IPA) (1,3-benzene dicarboxylic acid). The parent Zn-MOF and two Ag/Zn-MOF samples prepared via loading and encapsulation methods were comprehensively characterized using various techniques, including FT-IR, XRD, SEM, TEM, N2 adsorption-desorption isotherm, UV-vis spectroscopy and TGA. The parent Zn-MOF and two Ag/Zn-MOF samples exhibited a broad spectrum of antibacterial effects. Remarkably, genomic DNA of P. aeruginosa was effectively degraded by Zn-MOF, further supporting its potent antibacterial results. The free radical inhibition assay demonstrated a 71.0% inhibition under the influence of Zn-MOF. In vitro cytotoxicity activity of Zn-MOF against HepG-2 and Caco-2 cell lines revealed differential cytotoxic effects, with higher cytotoxicity against Caco-2 as explored from the IC50 values. This cytotoxicity was supported by the high binding affinity of Zn-MOF to CT-DNA. Importantly, the non-toxic property of Zn-MOF was confirmed through its lack of cytotoxic effects against normal lung cell (Wi-38). The anti-inflammatory treatment of Zn-MOF achieved 75.0% efficiency relative to the standard Ibuprofen drug. DFT and docking provided insights into the geometric stability of Zn-MOF and its interaction with active amino acids within selected proteins associated with the investigated diseases. Finally, the synthesized Zn-MOF shows promise for applications in cancer treatment, chemoprevention, and particularly antibacterial purposes.
Collapse
Affiliation(s)
- Khaled M Ismail
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Fatma B Rashidi
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Safaa S Hassan
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Milenin A, Niedźwiedzki Ł, Truchan K, Guzik G, Kąc S, Tylko G, Osyczka AM. Investigating the Anticancer Potential of Zinc and Magnesium Alloys: From Base Materials to Nanocoated Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3365. [PMID: 38998445 PMCID: PMC11242978 DOI: 10.3390/ma17133365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
In this work, we show the in vitro anticancer potential of surgical wires, obtained from zinc (ZnMg0.004) or magnesium (MgCa0.7) alloys by spatial technology comprising casting, extrusion, and final drawing processes. We also present the selective anticancer effects of applied soluble multilayer nanocoatings of zinc and magnesium onto titanium surfaces using the pulse laser deposition method. In the latter, the titanium samples were produced via 3D printing using the selective laser melting method and coated with various combinations of zinc and magnesium layers. For cytotoxicity studies, human dental pulp-derived stem cells (hDPSCs) and human osteosarcoma SaOS-2 cell line were used as representatives of healthy and cancer cells. Cells were examined against the 0.3-3.0 cm2/mL material extract ratios obtained from experimental and steel surgical wires, the latter being the current clinical industry standard. The MgCa0.7 alloy wires were approx. 1.5 times more toxic to cancer cells at all examined extract ratios vs. the extracts from steel surgical wires that exhibited comparable toxicity towards healthy and cancer cells. The ZnMg0.004 alloy wires displayed increased toxicity towards cancer cells with decreasing extract ratios. This was also reflected in the increased anticancer effectiveness, calculated based on the viability ratio of healthy cells to cancer cells, from 1.1 to 4.0 times. Healthy cell viability remained at 80-100%, whereas cancer cell survival fluctuated at 20-75%, depending on the extract ratio. Furthermore, the culture of normal or cancer cells on the surface of Zn/Mg-coated titanium allowed us to select combinations of specific coating layers that yielded a comparable anticancer effectiveness to that observed with the experimental wires that ranged between 2 and 3. Overall, this work not only demonstrates the substantial anticancer properties of the studied wires but also indicates that similar anticancer effects can be replicated with appropriate nanocoatings on titanium samples. We believe that this work lays the groundwork for the future potential development of the category of new implants endowed with anticancer properties.
Collapse
Affiliation(s)
- Andrij Milenin
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30 Ave., 30-059 Krakow, Poland
| | - Łukasz Niedźwiedzki
- Department of Orthopedics and Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St., 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza 11 St., 30-348 Krakow, Poland
| | - Grzegorz Guzik
- Department of Orthopaedic Oncology, Specialist Hospital in Brzozów-Podkarpacie Oncology Center, Bielawskiego 18 St., 36-200 Brzozów, Poland
| | - Sławomir Kąc
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30 Ave., 30-059 Krakow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St., 30-387 Krakow, Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St., 30-387 Krakow, Poland
| |
Collapse
|
5
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Tsymbal S, Refeld A, Zatsepin V, Kuchur O. The p53 protein is a suppressor of Atox1 copper chaperon in tumor cells under genotoxic effects. PLoS One 2023; 18:e0295944. [PMID: 38127999 PMCID: PMC10735018 DOI: 10.1371/journal.pone.0295944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes. The metallochaperone Atox1 is under intensive study in this context because it serves as transcription factor allegedly mediating described effects of copper. Investigating the interaction between p53 and Atox1 could provide insights into tumor cell survival and potential therapeutic applications in oncology. This study explores the relationship between p53 and Atox1 in HCT116 and A549 cell lines with wild type and knockout TP53. The study found an inverse correlation between Atox1 and p53 at the transcriptional and translational levels in response to genotoxic stress. Atox1 expression decreased with increased p53 activity, while cells with inactive p53 had significantly higher levels of Atox1. Suppression of both genes increased apoptosis, while suppression of the ATOX1 gene prevented apoptosis even under the treatment with chemotherapeutic drugs. The findings suggest that Atox1 may act as one of key elements in promotion of cell cycle under DNA-damaging conditions, while p53 works as an antagonist by inhibiting Atox1. Understanding of this relationship could help identify potential targets in cell signaling pathways to enhance the effectiveness of combined antitumor therapy, especially in tumors with mutant or inactive p53.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| | - Aleksandr Refeld
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| | | | - Oleg Kuchur
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| |
Collapse
|
8
|
Xue Y, Tang H, Chen G, Pan Y, Li D, Ping Y. Intracellular regulation of zinc by metal-organic framework-mediated genome editing for prostate cancer therapy. Biomater Sci 2023; 11:7556-7567. [PMID: 37458078 DOI: 10.1039/d3bm00002h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Normal prostate tissues generally exhibit a higher level of zinc to maintain their special "citrate-producing" metabolism, while its level dramatically decreases during prostate tumorigenesis. Despite the significant antitumor effects, the intracellular accumulation of zinc in prostate cancer cells also promotes the expression of ZNT1, which in turn results in the efflux of zinc and attenuated cytotoxicity against cancer cells. To solve the dilemma, we developed a 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA)-decorated zeolitic imidazolate framework-8 (ZIF8), which is able to load plasmid DNA encoding the Cas9 editor and single-guide RNA to form Cas9@ZIF8-DUPA nanocomplexes. The intracellular delivery of Cas9@ZIF8-DUPA simultaneously increases the level of zinc and inhibits the ZNT-1 function by disrupting the SLC30A1 gene to prevent the efflux of zinc in prostate cancer cells. Due to the high affinity between DUPA and the prostate-specific membrane antigen, Cas9@ZIF8-DUPA nanocomplexes exhibit excellent prostate tumor-targeting ability. The internalization and degradation of Cas9@ZIF8-DUPA not only release free zinc and Cas9 editors, but also reduce zinc efflux through Cas9-mediated genome editing that disables the function of ZNT1. As a result, Cas9@ZIF8-DUPA nanocomplexes exhibit significant antitumor activity and extended survival in the mouse model bearing prostate tumors. The current platform offers an alternative therapeutic strategy and holds tremendous translational potential as an anticancer nanomedicine for prostate cancer treatment.
Collapse
Affiliation(s)
- Yanan Xue
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3100016, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Honglin Tang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3100016, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Guangpeng Chen
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3100016, China.
| | - Yubin Pan
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3100016, China.
| | - Da Li
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3100016, China.
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|
9
|
Verma R, Aggarwal P, Bischoff ME, Reigle J, Secic D, Wetzel C, VandenHeuvel K, Biesiada J, Ehmer B, Landero Figueroa JA, Plas DR, Medvedovic M, Meller J, Czyzyk-Krzeska MF. Microtubule-associated protein MAP1LC3C regulates lysosomal exocytosis and induces zinc reprogramming in renal cancer cells. J Biol Chem 2023; 299:104663. [PMID: 37003503 PMCID: PMC10173779 DOI: 10.1016/j.jbc.2023.104663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.
Collapse
Affiliation(s)
- Rita Verma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Parul Aggarwal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Megan E Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - James Reigle
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine VandenHeuvel
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Birgit Ehmer
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Julio A Landero Figueroa
- Department of Chemistry, Agilent Metallomics Center of the Americas, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Veterans Affairss, Veteran Affairs Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
10
|
Seal I, Sil S, Das A, Roy S. Assessment of toxicity and genotoxic safety profile of novel fisetin ruthenium-p-cymene complex in mice. Toxicol Res 2023; 39:213-229. [PMID: 37008693 PMCID: PMC10050516 DOI: 10.1007/s43188-022-00158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Throughout the last decades flavonoids have been considered as a powerful bioactive molecule. Complexation of these flavonoids with metal ions demonstrated the genesis of unique organometallic complexes which provide improved pharmacological and therapeutic activities. In this research, the fisetin ruthenium-p-cymene complex was synthesized and characterized via different analytical methods like UV-visible spectroscopy, Fourier-transform infrared spectroscopy, mass spectroscopy, and scanning electron microscope. The toxicological profile of the complex was evaluated by acute and sub-acute toxicity. Additionally, the mutagenic and genotoxic activity of the complex was assessed by Ames test, chromosomal aberration test, and micronucleus based assay in Swiss albino mice. The acute oral toxicity study exhibited the LD50 of the complex at 500 mg/kg and subsequently, the sub-acute doses were selected. In sub-acute toxicity study, the hematology and serum biochemistry of the 400 mg/kg group showed upregulated white blood cells, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, glucose and cholesterol. However, there was no treatment related alteration of hematological and serum biochemical parameters in the 50, 100, and 200 mg/kg group. In the histopathological analysis, the 50, 100, and 200 mg/kg groups were not associated with any toxicological alterations, whereas the 400 mg/kg group showed prominent toxicological incidences. Nevertheless, the treatment with fisetin ruthenium-p-cymene complex did not exhibit any mutagenic and genotoxic effect in Swiss albino mice. Thus, the safe dose of this novel organometallic complex was determined as 50, 100, and 200 mg/kg without any toxicological and genotoxic potential.
Collapse
Affiliation(s)
- Ishita Seal
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124 B.L. Saha Road, Tara Park, Behala, 700053 West Bengal India
| | - Sidhanta Sil
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124 B.L. Saha Road, Tara Park, Behala, 700053 West Bengal India
| | - Abhijit Das
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124 B.L. Saha Road, Tara Park, Behala, 700053 West Bengal India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124 B.L. Saha Road, Tara Park, Behala, 700053 West Bengal India
| |
Collapse
|
11
|
Chircov C, Mincă MA, Serban AB, Bîrcă AC, Dolete G, Ene VL, Andronescu E, Holban AM. Zinc/Cerium-Substituted Magnetite Nanoparticles for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24076249. [PMID: 37047223 PMCID: PMC10093860 DOI: 10.3390/ijms24076249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Numerous studies have reported the possibility of enhancing the properties of materials by incorporating foreign elements within their crystal lattice. In this context, while magnetite has widely known properties that have been used for various biomedical applications, the introduction of other metals within its structure could prospectively enhance its effectiveness. Specifically, zinc and cerium have demonstrated their biomedical potential through significant antioxidant, anticancer, and antimicrobial features. Therefore, the aim of the present study was to develop a series of zinc and/or cerium-substituted magnetite nanoparticles that could further be used in the medical sector. The nanostructures were synthesized through the co-precipitation method and their morpho-structural characteristics were evaluated through X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses. Furthermore, the nanostructures were subjected to a ROS-Glo H2O2 assay for assessing their antioxidant potential, MTT assay for determining their anticancer effects, and antimicrobial testing against S. aureus, P. aeruginosa, and C. albicans strains. Results have proven promising for future biomedical applications, as the nanostructures inhibit oxidative stress in normal cells, with between two- and three-fold reduction and cell proliferation in tumor cells; a two-fold decrease in cell viability and microbial growth; an inhibition zone diameter of 4–6 mm and minimum inhibitory concentration (MIC) of 1–2 mg/mL.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Maria-Andreea Mincă
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andreea Bianca Serban
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National R&D Institute for Physics and Nuclear Engineering, Reactorului Street No. 30, 077125 Magurele, Romania
- Doctoral School in Engineering and Applications of Lasers and Accelerators, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vladimir-Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence:
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|
12
|
Zhang Y, Stopsack KH, Wu K, Song M, Mucci LA, Giovannucci E. Post-diagnostic Zinc Supplement Use and Prostate Cancer Survival Among Men With Nonmetastatic Prostate Cancer. J Urol 2023; 209:549-556. [PMID: 36453265 PMCID: PMC10628854 DOI: 10.1097/ju.0000000000003080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Biological and experimental evidence support restoration of normal zinc levels in malignant prostate cells as a promising prostate cancer treatment, yet the influence of zinc supplementation after diagnosis on prostate cancer survival in a human population is unknown. MATERIALS AND METHODS We prospectively assessed post-diagnostic zinc supplementation in relation to prostate cancer survival among 5,788 men with nonmetastatic prostate cancer in the Health Professionals Follow-up Study (1986-2019). We used Cox regression models to estimate the multivariable hazard ratios and 95% confidence intervals of lethal prostate cancer (distant metastases or prostate cancer-specific death) and all-cause mortality according to post-diagnostic zinc supplement use and dosage. RESULTS During a median follow-up of 11 years, we documented 527 lethal prostate cancer events and 3,198 all-cause deaths. Fifteen percent of men reported zinc supplement use post-diagnosis. Compared to nonusers, post-diagnostic zinc supplement use was associated suggestively with a lower risk of lethal prostate cancer (HR [95% CI], 0.82 [0.60-1.13]) and significantly with all-cause mortality (0.84 [0.74-0.96]). The inverse association was mostly observed among men who used post-diagnostic zinc supplements of 1-24 mg/d (lethal prostate cancer: 0.55 [0.32-0.96]; all-cause mortality: 0.77 [0.64-0.93]), while higher dosage did not show a lower risk. CONCLUSIONS Post-diagnostic low-dose zinc supplement use among nonmetastatic prostate cancer patients was associated with lower risk of lethal prostate cancer and all-cause mortality. A potential benefit of low-dose post-diagnostic zinc supplement for prostate cancer survival merits further study.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
13
|
Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol Trace Elem Res 2023; 201:1026-1050. [PMID: 35467267 PMCID: PMC9898429 DOI: 10.1007/s12011-022-03226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is an aggressive type of cancer affecting women worldwide. Many affected individuals rely on smear tests for the diagnosis, surgery, chemotherapy, or radiation for their treatment. However, due to a broad set of undesired results and side-effects associated with the existing protocols, the search for better diagnostic and therapeutic interventions is a never-ending pursuit. In the purview, the bio-concentration of trace elements (copper, selenium, zinc, iron, arsenic, manganese, and cadmium) is seen to fluctuate during the occurrence of cervical cancer and its progression from pre-cancerous to metastatic nature. Thus, during the occurrence of cervical cancer, the detection of trace elements and their supplementation will prove to be highly advantageous in developing diagnostic tools and therapeutics, respectively. This review provides a detailed overview of cervical cancer, its encouragement by human papillomavirus infections, the mechanism of pathology, and resistance. Majorly, the review emphasizes the less explored role of trace elements, their contribution to the growth and inhibition of cervical cancer. Numerous clinical trials have been listed, thereby providing a comprehensive reference to the exploration of trace elements in the management of cervical cancer.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
14
|
Fazilatpanah D, Fallah Tafti H, Rasta S, Masudian M, Rangani A. Comparative evaluation of serum zinc level in head and neck cancer patients before and after radiation therapy. CASPIAN JOURNAL OF INTERNAL MEDICINE 2023; 14:128-132. [PMID: 36741484 PMCID: PMC9878906 DOI: 10.22088/cjim.14.1.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/11/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Background Head and neck cancers (HNCs) include 5.3% of all cancers and they are the cause of the same 5.3% of cancer deaths. Oxidative stress has a crucial role in cancer progression and cancer therapy. Ionizing radiation causes cell malfunction and death by creating reactive oxygen species. Due to its antioxidant activity, immune system power enhancement and role in apoptosis, zinc is a crucial trace element in oncology including HNCs. We decided to compare serum zinc level of HNC patients before and after RT, to assess the potential effects of ionizing radiation therapy on serum zinc. Methods Fifty-seven HNC patients, who were candidates for curative radiation therapy (RT), were enrolled and their serum zinc level just before and 2 months after completion of RT were checked in a single laboratory. RT was prescribed by linear accelerator with 60 to 70 Gy by conventional method. Data were analyzed by SPSS 20. Results Mean serum zinc prior to RT and following RT were 77.64±13.45 mg/dl and 68.28±11.93 mg/dl, respectively, which was lower following RT (p<0.001). Patients' sex, age and duration from diagnosis to treatment and site of disease didn't have any impact on serum zinc difference. Conclusion This study showed that RT of HNCs leads to serum zinc reduction, which is greater in nodal disease because of either larger field or higher dose of radiation. Taking zinc supplements while being treated by RT, may be necessary.
Collapse
Affiliation(s)
| | | | - Sara Rasta
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | | |
Collapse
|
15
|
Sil S, Das A, Seal I, Mukherjee S, Roy S. A toxicological evaluation for safety assessment of ruthenium-based diosmetin complex in rats. Regul Toxicol Pharmacol 2022; 137:105303. [PMID: 36427689 DOI: 10.1016/j.yrtph.2022.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The flavonoid-based organometallic complexes have been identified as novel bioactive compounds with enhanced pharmacological and therapeutic activity. In this study, the ruthenium-p-cymene diosmetin complex was synthesized, characterized, and investigated for toxicological profiling through different toxicological and genotoxicological studies which include acute and sub-acute toxicity, chromosomal aberration, and bone marrow micronucleus study. The acute oral toxicity study demonstrated the LD50 dose of the complex at 500 mg/kg body weight which further instigated the sub-acute doses i.e. 50, 100, and 200 mg/kg. The histopathological analysis demonstrated that the 400 mg/kg dose was associated with severe toxicological incidences of the vital organs (liver, kidney, pancreas, testis, and stomach) except the ovary with increased levels of ALP, AST, ALT, and WBC count. However, 50, 100, and 200 mg/kg doses did not show any toxicological alteration and maintained the normal levels of hematological and serum biochemical parameters. The genotoxicological assessment of the complex depicted no such genetic damage or mutagenicity in any complex treated groups. In conclusion, the 50, 100, and 200 mg/kg doses were determined as therapeutic dose of the novel ruthenium-p-cymene diosmetin complex without any genotoxic and mutagenic potential which can be further implemented in the investigation of various pharmacological and therapeutic interventions.
Collapse
Affiliation(s)
- Sidhanta Sil
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124, B.L. Saha Road, Tara Park, Behala, 700053, West Bengal, India
| | - Abhijit Das
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124, B.L. Saha Road, Tara Park, Behala, 700053, West Bengal, India
| | - Ishita Seal
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124, B.L. Saha Road, Tara Park, Behala, 700053, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124, B.L. Saha Road, Tara Park, Behala, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus Kolkata-Group of Institution, 124, B.L. Saha Road, Tara Park, Behala, 700053, West Bengal, India.
| |
Collapse
|
16
|
Lenda R, Padjasek M, Krężel A, Ożyhar A, Bystranowska D. Does one plus one always equal two? Structural differences between nesfatin-1, -2, and nesfatin-1/2. Cell Commun Signal 2022; 20:163. [PMID: 36280843 PMCID: PMC9590162 DOI: 10.1186/s12964-022-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Nesfatin-1 and -2 are produced from a reaction in which the N-terminus of human Nucleobindin-2 undergoes proteolytical processing. To date, Nucleobindin-2 and/or nesfatin-1 have only been shown to act as peptide hormones. On the other hand, the purpose of nesfatin-2 remains unknown. Since Nucleobindin-2/nesfatin-1 is thought impact the control of a wide range of physiological processes, including energy homeostasis, neurodegenerative processes and carcinogenesis, its ligands/interactions deserve special studies and attention. However, there are no reports about the molecular properties of the proteolytical products of human Nucleobindin-2 in the literature. Hence, this study aimed to analyze the effect of Zn(II) and Ca(II) on human nesfatin-1, -2, and -1/2 structures. Herein, we report that human nesfatin-1 is a member of the intrinsically disordered protein family, as indicated by circular dichroism and analytical ultracentrifugation experiments. In contrast, we found that the human nesfatin-2 and nesfatin-1/2 structures were globular with intrinsically disordered regions. Under Zn(II) treatment, we observed concentration-dependent structurization and compaction of intrinsically disordered nesfatin-1 and its propensity for oligomerization, as well as destabilization of both nesfatin-2 and nesfatin-1/2. Furthermore, dissociation constants for Zn(II) binding by nesfatin-1, nesfatin-2, and nesfatin-1/2 were also reported. Moreover, structurally distinct nesfatin-1 and -2 seem to be interdependent when linked together, as indicated by the observed molecular properties of nesfatin-1/2, which in turn are not a simple sum of the properties exhibited by the former peptides. Thus, herein, we shed new light on the molecular behavior of human nesfatins, which might help to elucidate the complex function of those peptides. Video abstract.
Collapse
Affiliation(s)
- Rafał Lenda
- grid.7005.20000 0000 9805 3178Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Padjasek
- grid.8505.80000 0001 1010 5103Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- grid.8505.80000 0001 1010 5103Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Ożyhar
- grid.7005.20000 0000 9805 3178Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- grid.7005.20000 0000 9805 3178Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
17
|
Tang Z, Wu S, Zhao P, Wang H, Ni D, Li H, Jiang X, Wu Y, Meng Y, Yao Z, Cai W, Bu W. Chemical Factory-Guaranteed Enhanced Chemodynamic Therapy for Orthotopic Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201232. [PMID: 35712774 PMCID: PMC9376848 DOI: 10.1002/advs.202201232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Indexed: 05/05/2023]
Abstract
In the field of nanomedicine, there is a tendency of matching designed nanomaterials with a suitable type of orthotopic cancer model, not just a casual subcutaneous one. Under this condition, knowing the specific features of the chosen cancer model is the priority, then introducing a proper therapy strategy using designed nanomaterials. Here, the Fenton chemistry is combined with zinc peroxide nanoparticles in the treatment of orthotopic liver cancer which has a "chemical factory" including that liver is the main place for iron storage, metabolism, and also the main metabolic sites for the majority of ingested substances, guaranteeing customized and enhanced chemodynamic therapy and normal liver cells protection as well. The good results in vitro and in vivo can set an inspiring example for exploring and utilizing suitable nanomaterials in corresponding cancer models, ensuring well-fitness of nanomaterials for disease and satisfactory therapeutic effect.
Collapse
Affiliation(s)
- Zhongmin Tang
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- Departments of Radiology, Medical Physics, Materials Science & EngineeringPharmaceutical SciencesUniversity of Wisconsin − MadisonMadisonWI53705USA
| | - Shiman Wu
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Han Wang
- Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Dalong Ni
- Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| | - Yelin Wu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Yun Meng
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
| | - Zhenwei Yao
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Weibo Cai
- Departments of Radiology, Medical Physics, Materials Science & EngineeringPharmaceutical SciencesUniversity of Wisconsin − MadisonMadisonWI53705USA
| | - Wenbo Bu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200438P. R. China
| |
Collapse
|
18
|
Wu S, Zhang K, Liang Y, Wei Y, An J, Wang Y, Yang J, Zhang H, Zhang Z, Liu J, Shi J. Nano-enabled Tumor Systematic Energy Exhaustion via Zinc (II) Interference Mediated Glycolysis Inhibition and Specific GLUT1 Depletion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103534. [PMID: 34913610 PMCID: PMC8895132 DOI: 10.1002/advs.202103534] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Indexed: 05/19/2023]
Abstract
Despite the promise of tumor starvation therapies, they are often associated with nonspecific and incomplete energy blockade. Here, a novel paradigm of starvation therapy is proposed to synergize the "Zn2+ interference"-mediated glycolysis inhibition and Zn2+ -activating GLUT1 (Glucose transporter 1) tumor specific depletion for systematic energy exhaustion. It is discovered that ZIF-8 (zinc imidazolate metal-organic frameworks ) can induce abrupt intracellular Zn2+ elevation preferentially in melanoma cells, and then achieve effective glycolysis blockade through "Zn2+ interference"-triggered decrease of NAD+ and inactivation of GAPDH, making it a powerful tumor energy nanoinhibitor. Meanwhile, Zn2+ -activating DNAzymes for specifically cleaving GLUT1 mRNA is designed. This DNAzyme can only be activated under intracellular Zn2+ overloading, and then directionally cut off glucose supply, which further restrains the adaptive up-regulation of glycolytic flux after glycolysis inhibition in tumors. Afterward, DNAzymes are loaded in ZIF-8 concurrently tethered by hyaluronic acid (HA), constructing a "nanoenabled energy interrupter ". Such a rational design presents a preferential accumulation tendency to tumor sites due to the active CD44-targeting mechanisms, specifically achieves remarkable systematic energy exhaustion in melanoma cells, and affords 80.8% in tumor growth suppression without systemic toxicity in vivo. This work verifies a fascinating therapeutic platform enabling ion interference-inductive starvation strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Sixuan Wu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Yan Liang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Yongbin Wei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Jingyi An
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Yifei Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Jiali Yang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Hongling Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou450001P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001P. R. China
| | - Junjie Liu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| |
Collapse
|
19
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
20
|
Survival of Laryngeal Cancer Patients Depending on Zinc Serum Level and Oxidative Stress Genotypes. Biomolecules 2021; 11:biom11060865. [PMID: 34200699 PMCID: PMC8228711 DOI: 10.3390/biom11060865] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023] Open
Abstract
Stress contributes to various aspects of malignancy and could influence survival in laryngeal cancer patients. Among antioxidant mechanisms, zinc and the antioxidant enzymes superoxide dismutase 2, catalase and glutathione peroxidase 1 play a major role. The aim of this study was a prospective evaluation of the survival of patients with laryngeal cancer in relation to serum levels of zinc in combination with functional genotype differences of three key antioxidant enzymes. The study group consisted of 300 patients treated surgically for laryngeal cancer. Serum zinc levels and common polymorphisms in SOD2, CAT and GPX1 were analyzed. The risk of death in patients with the lowest zinc levels was increased in comparison with patients with the highest levels. Polymorphisms of antioxidant genes by themselves were not correlated with survival, however, serum zinc level impact on survival was stronger for SOD2 TC/TT and CAT CC variants. GPX1 polymorphisms did not correlate with zinc levels regarding survival. In conclusion, serum zinc concentration appears to be an important prognostic factor for survival of patients diagnosed with laryngeal cancer. When higher zinc levels were correlated with polymorphisms in SOD2 and CAT a further increase in survival was observed.
Collapse
|
21
|
Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of Repurposing Clioquinol for Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:14-31. [PMID: 32106803 DOI: 10.2174/1574892815666200227090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer is a prevalent disease in the world and is becoming more widespread as time goes on. Advanced and more effective chemotherapeutics need to be developed for the treatment of cancer to keep up with this prevalence. Repurposing drugs is an alternative to discover new chemotherapeutics. Clioquinol is currently being studied for reposition as an anti-cancer drug. OBJECTIVE This study aimed to summarize the anti-cancer effects of clioquinol and its derivatives through a detailed literature and patent review and to review their potential re-uses in cancer treatment. METHODS Research articles were collected through a PubMed database search using the keywords "Clioquinol" and "Cancer." The keywords "Clioquinol Derivatives" and "Clioquinol Analogues" were also used on a PubMed database search to gather research articles on clioquinol derivatives. Patents were gathered through a Google Patents database search using the keywords "Clioquinol" and "Cancer." RESULTS Clioquinol acts as a copper and zinc ionophore, a proteasome inhibitor, an anti-angiogenesis agent, and is an inhibitor of key signal transduction pathways responsible for its growth-inhibitory activity and cytotoxicity in cancer cells preclinically. A clinical trial conducted by Schimmer et al., resulted in poor outcomes that prompted studies on alternative clioquinol-based applications, such as new combinations, new delivery methods, or new clioquinol-derived analogues. In addition, numerous patents claim alternative uses of clioquinol for cancer therapy. CONCLUSION Clioquinol exhibits anti-cancer activities in many cancer types, preclinically. Low therapeutic efficacy in a clinical trial has prompted new studies that aim to discover more effective clioquinol- based cancer therapies.
Collapse
Affiliation(s)
- Raheel Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Harras Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Yassen Abdullah
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Q Ping Dou
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
22
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
23
|
John Gagliardi L, Shain DH. Biophysical mechanism for zinc as an anticancer agent. Med Hypotheses 2020; 144:110273. [PMID: 33254577 DOI: 10.1016/j.mehy.2020.110273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
The experimental observation that an increase in calcium above micromolar concentrations results in a slowing or stopping of anaphase-A motion is evidence for an electrostatic mechanism for poleward mitotic chromosome motions. Specifically, higher concentrations of doubly-charged calcium ions screen negative charges at microtubule free "plus" ends at kinetochores and at centrosomes. These structures normally interact with positive charges at kinetochores and positively charged microtubule free ends vicinal to centrosomes to generate poleward force. As with calcium ions, doubly-charged zinc cations can also shield these negative charges, thereby interfering with force generation for anaphase-A chromosome motion, aborting mitosis. Experimental evidence reveals that dysregulation of free cytosolic zinc homeostasis contributes to cancerous transformation. Treatment of cancers by increasing zinc concentration has unknowingly been accomplished by utilizing zinc ionophores to facilitate zinc transport across the plasma membrane, revealing an inverse relationship between malaria incidence - and malaria treatment with zinc ionophores - and cancer mortality. Here we hypothesize a biophysical mechanism for cancer therapy employing zinc supplementation enhanced by zinc ionophores.
Collapse
Affiliation(s)
- L John Gagliardi
- Departments of Physics and Biology, Rutgers The State University of New Jersey, Camden, NJ 08102, United States
| | - Daniel H Shain
- Departments of Physics and Biology, Rutgers The State University of New Jersey, Camden, NJ 08102, United States.
| |
Collapse
|
24
|
Magnetic Metal–Organic Framework Based on Zinc and 5-Aminolevulinic Acid: MR Imaging and Brain Tumor Therapy. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01782-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Soldatović TV, Selimović E, Milivojević N, Jovanović M, Šmit B. Novel heteronuclear Pt (II)‐L‐Zn (II) complexes: synthesis, interactions with biomolecules, cytotoxic properties. Two metals give promising antitumor activity? Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tanja V. Soldatović
- State University of Novi Pazar, Department of Chemical‐Technological Sciences Vuka Karadžića bb Novi Pazar 36300 Serbia
| | - Enisa Selimović
- State University of Novi Pazar, Department of Chemical‐Technological Sciences Vuka Karadžića bb Novi Pazar 36300 Serbia
| | - Nevena Milivojević
- University of Kragujevac Institute of Information Technologies, Department of Science Jovana Cvijića bb Kragujevac 34000 Serbia
- University of Kragujevac, Faculty of Science, Department for Biology and Ecology Radoja Domanovića 12 Kragujevac 34000 Serbia
| | - Milena Jovanović
- University of Kragujevac, Faculty of Science, Department for Biology and Ecology Radoja Domanovića 12 Kragujevac 34000 Serbia
| | - Biljana Šmit
- University of Kragujevac Institute of Information Technologies, Department of Science Jovana Cvijića bb Kragujevac 34000 Serbia
| |
Collapse
|
26
|
Sauer AK, Vela H, Vela G, Stark P, Barrera-Juarez E, Grabrucker AM. Zinc Deficiency in Men Over 50 and Its Implications in Prostate Disorders. Front Oncol 2020; 10:1293. [PMID: 32850402 PMCID: PMC7424038 DOI: 10.3389/fonc.2020.01293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Research has been consistently showing the role of zinc (Zn) in prostate function. In this article, we review the current literature on the anatomy and main functions of the prostate, highlighting the role of zinc. In particular, we will review the etiology of benign prostate enlargement (BPH), its prevalence in men over 50, the likelihood of BPH becoming prostate cancer (PCa), and explain the relationship of zinc and apoptosis in the prostate cells and the implications for BPH and PCa. We present a model that explains how endogenous factors provoke excretion of zinc or limit zinc absorption, and how exogenous factors like nutrition and drugs regularly used in men over 50 can significantly decrease zinc status and thereby increase the risk of BPH. Finally, we explain how Zn amino acid (AA) complexes may be capable of avoiding antagonists and inhibitors of zinc absorption, thereby increasing the bioavailability of zinc for the necessary biological processes in the prostate.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Hector Vela
- Vela Staines y Asociados SA de CV, Monterrey, Mexico
| | - Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN, United States.,Autismo ABP, Monterrey, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN, United States
| | | | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
27
|
Fu S, Wan X, Du C, Wang H, Zhou J, Wang Z. A novel fluorescent probe for the early detection of prostate cancer based on endogenous zinc sensing. Prostate 2019; 79:1378-1385. [PMID: 31349394 DOI: 10.1002/pros.23844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND The early detection of prostate cancer can significantly optimize the prognosis, prolong patient lifespan, and improve quality of life. It has been well documented that prostate cancer tissues have lower zinc content than normal prostate tissues due to an impairment of the zinc accumulation mechanism. METHODS A novel diketopyrrolopyrrole (DPP)-based fluorescent zinc ion probe named DPP-C2 was prepared. The fluorescent intensity of this novel molecule is in direct proportion to environmental zinc concentration. Malignant (DU145 and PC3 cells) and normal prostate epithelial RWPE-1 cells were tested. Prostate cancer tissues were also cultured and observed as tissue sections. The probe was also intravenously administered to tumor-bearing (DU145 and PC3 cells) nude mice and observed under a whole-body fluorescence live-imaging system. RESULTS The probe showed minimal cytotoxicity to malignant and normal prostate cells. The RWPE-1 cells showed not only stronger baseline fluorescence but also a significant increase in signal intensity after culturing in a zinc-supplemented medium. In human prostate sections, the pathologically confirmed cancer tissues exhibited weaker fluorescence signals than normal and benign hyperplastic tissues. With proper excitation, prostate tissues revealed more intense fluorescence signals than tumor tissues, whereas other surrounding tissues showed almost no fluorescence. CONCLUSIONS The novel zinc ion fluorescent probe DPP-C2 is low toxic and showed potential application for the early detection of prostate cancer based on endogenous zinc sensing.
Collapse
Affiliation(s)
- Shibo Fu
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wan
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Du
- Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Hongyu Wang
- Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Juan Zhou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45:304-317. [PMID: 31018024 DOI: 10.1002/biof.1504] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Curcumin, a naturally occurring phenolic compound isolated from Curcuma longa, has different pharmacological effects, including antiinflammatory, antimicrobial, antioxidant, and anticancer properties. However, curcumin has been found to have a limited bioavailability because of its hydrophobic nature, low-intestinal absorption, and rapid metabolism. Therefore, there is a need for enhancing the bioavailability and its solubility in water in order to increase the pharmacological effects of this bioactive compound. One strategy is curcumin complexation with transition metals to circumvent the abovementioned problems. Curcumin can undergo chelation with various metal ions to form metallo-complexes of curcumin, which may show greater effects as compared with curcumin alone. Promising results with metal curcumin complexes have been observed with regard to antioxidant, anticancer, and antimicrobial activity, as well as in treatment of Alzheimer's disease. The present review provides a concise summary of the characterization and biological properties of curcumin-metal complexes. © 2019 BioFactors, 45(3):304-317, 2019.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Selimović E, Soldatović T. Study on the reactions between dichlorido[2,2′:6′,2″-terpyridine] zinc(II) and biologically relevant nucleophiles in aqueous solution. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.1177/1468678319825724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Substitution reactions of square-pyramidal [ZnCl2(terpy)] complex (terpy = 2,2′:6′,2″-terpyridine) with biologically relevant nucleophiles such as imidazole, glutathione, 1,2,4-triazole, and pyrazine were investigated at pH 7.0 as a function of nucleophile concentration. The reactions were followed under pseudo first-order conditions by UV-Vis spectrophotometry. The substitution reactions comprised two steps of consecutive displacement of chlorido ligands. Different reaction pathways for the first reaction step of nucleophilic substitution were defined. The order of reactivity of the investigated nucleophiles for the first reaction was imidazole > glutathione > pyrazine > 1,2,4-triazole, while for the second reaction step it was pyrazine > 1,2,4-triazole > imidazole > glutathione.
Collapse
Affiliation(s)
- Enisa Selimović
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Tanja Soldatović
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| |
Collapse
|
30
|
Roy S, Sil A, Chakraborty T. Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol 2019; 234:4888-4909. [PMID: 30246261 DOI: 10.1002/jcp.27287] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most frequent cause of cancer in women. In the current study, transition metal ruthenium was complexed with flavonoid chrysin to evaluate the chemotherapeutic potential of this compound in Michigan Cancer Foundation-7 (MCF-7) human mammary cancer cell line and 7,12-dimethylbenz(α)anthracene-induced mammary cancer in female Sprague-Dawley rats. The characterizations of the complex were accomplished through UV-visible, NMR, IR, Mass spectra, and XRD techniques and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro studies included cell viability, cell cycle analysis, DNA fragmentation, and marker analysis by western blot analysis and found that complex treatment suppressed cell growth-induced cell cycle arrest and enhanced the induction of apoptosis in cancer cells. Moreover, complex treatment modulated signaling pathways including mTOR, VEGF, and p53 in the MCF-7 cells. Acute and subacute toxicity was performed in rats to determine the therapeutic doses. Breast cancer in rats was initiated by the administration of 7,12-dimethylbenz(α)anthracene (0.5 mg/100 g body weight) via single tail vein injection. The histopathological analysis after 24 weeks of carcinogenesis study depicted substantial repair of hyperplastic lesions. Immunohistochemical analysis revealed upregulation of Bax and p53 and downregulation of Bcl2 proteins and TUNEL assay showed an increase in apoptotic index in ruthenium-chrysin-treated groups as compared to the carcinogen control. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium-chrysin complex possesses a potential chemotherapeutic activity against breast cancer and was efficient in reducing hyperplastic lesions in the mammary tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus Kolkata-Group of Institutions, NSHM College of Pharmaceutical Technology, Kolkata, India
| | - Anweshan Sil
- Department of Pharmacology, NSHM Knowledge Campus Kolkata-Group of Institutions, NSHM College of Pharmaceutical Technology, Kolkata, India
| | - Tania Chakraborty
- Department of Pharmacology, NSHM Knowledge Campus Kolkata-Group of Institutions, NSHM College of Pharmaceutical Technology, Kolkata, India
| |
Collapse
|
31
|
Lo YW, Sheu MT, Chiang WH, Chiu YL, Tu CM, Wang WY, Wu MH, Wang YC, Lu M, Ho HO. In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer. Acta Biomater 2019; 86:280-290. [PMID: 30616077 DOI: 10.1016/j.actbio.2019.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Recently, novel approaches for the delivery of therapeutic antibodies have attracted much attention, especially sustained release formulations. However, sustained release formulations capable of carrying a high antibody load remain a challenge for practical use. In this study, a novel injectable hydrogel composed of maleimide-modified γ-polyglutamic acid (γ-PGA-MA) and thiol end-functionalized 4-arm poly(ethylene glycol) (4-arm PEG-SH) was developed for the subcutaneous delivery of trastuzumab. γ-PGA-MA and 4-arm PEG-SH formed a hydrogel through thiol-maleimide reactions, which had shear-thinning properties and reversible rheological behaviors. Moreover, a high content of trastuzumab (>100 mg/mL) could be loaded into this hydrogel, and trastuzumab demonstrated a sustained release over several weeks through electrostatic attraction. In addition, trastuzumab released from the hydrogel had adequate stability in terms of its structural integrity, binding bioactivity, and antiproliferative effect on BT-474 cells. Pharmacokinetic studies demonstrated that trastuzumab-loaded hydrogel (Her-hydrogel-10, composed of 1.5% γ-PGA-MA, 1.5% 4-arm PEG-SH, and 10 mg/mL trastuzumab) and trastuzumab/Zn-loaded hydrogel (Her/Zn-hydrogel-10, composed of 1.5% γ-PGA-MA, 1.5% 4-arm PEG-SH, 5 mM ZnCl2, and 10 mg/mL trastuzumab) could lower the maximum plasma concentration (Cmax) than the trastuzumab solution. Furthermore, Her/Zn-hydrogel-10 was better able to release trastuzumab in a controlled manner, which was ascribed to electrostatic attraction and formation of trastuzumab/Zn nanocomplexes. In a BT-474 xenograft tumor model, Her-hydrogel-10 had a similar tumor growth-inhibitory effect as that of the trastuzumab solution. By contrast, Her/Zn-hydrogel-10 exhibited a superior tumor growth-inhibitory capability due to the functionality of Zn. This study demonstrated that this hydrogel has potential as a carrier for the local and systemic delivery of proteins and antibodies. STATEMENT OF SIGNIFICANCE: Recently, novel sustained-release formulations of therapeutic antibodies have attracted much attention. However, these formulations should be able to carry a high antibody load owing to the required high dose, and these formulations remain a challenge for practical use. In this study, a novel injectable chemically cross-linked hydrogel was developed for the subcutaneous delivery of trastuzumab. This novel hydrogel possessed ideal characteristics of loading high content of trastuzumab (>100 mg/mL), sustained release of trastuzumab over several weeks, and maintaining adequate stability of trastuzumab. In vivo studies demonstrated that a trastuzumab-loaded hydrogel possessed the ability of controlled release of trastuzumab and maintained antitumor efficacy same as that of trastuzumab. These results implied that a γ-PGA-MA and 4-arm PEG-SH-based hydrogel has great potential in serving as a carrier for the local or systemic delivery of therapeutic proteins or antibodies.
Collapse
|
32
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
33
|
Soldatović TV, Selimović E, Šmit B, Ašanin D, Planojević NS, Marković SD, Puchta R, Alzoubi BM. Interactions of zinc(II) complexes with 5′-GMP and their cytotoxic activity. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1569229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tanja V. Soldatović
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Enisa Selimović
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Biljana Šmit
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Darko Ašanin
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Nevena S. Planojević
- Department for Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Snežana D. Marković
- Department for Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ralph Puchta
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center, University of Erlangen-Nürnberg, Erlangen, Germany
- ZISC (Zentralinstitut für Scientific Computing), Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Basam M. Alzoubi
- Department of Basic Science, Al-Huson University College, Al-Balqa Applied University, Irbid, Jordan
| |
Collapse
|
34
|
Selimović E, Soldatović T. Impact of Chloride Concentration on Ligand Substitution Reactions of Zinc(II) Complexes with Biologically Relevant Nitrogen Nucleophiles. PROGRESS IN REACTION KINETICS AND MECHANISM 2018. [DOI: 10.3184/146867818x15319903829164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mole-ratio method was used to determine the metal–ligand stoichiometry between [ZnCl2(en)] and [ZnCl2(terpy)] (where en = 1,2-diaminoethane or ethylenediamine and terpy = 2,2′:6′,2″-terpyridine) and imidazole at pH 7.2 in the presence of different chloride concentrations. The results indicated step-wise formation of 1:1 and 1:2 complexes in the presence of 0.010 M NaCl and 1:1 complexes in the presence of 0.001 M NaCl for the [ZnCl2(en)] complex. These results are correlated with additional coordination of chlorides in the first coordination sphere and with changes in coordination geometry. In the presence of 0.001 M NaCl the five-coordinate complex anion [ZnCl3(en)]- is formed initially and then a substitution reaction with imidazole occurs. In the presence of 0.010 M NaCl the octahedral complex anion [ZnCl4(en)]2- is formed. Additional coordination of chloride in the [ZnCl2(terpy)] complex is not found and the metal–ligand stoichiometry is 1:2. The kinetics of ligand substitution reactions of zinc(II) complexes and biologically relevant nitrogen nucleophiles such as imidazole, 1,2,3-triazole and L-histidine were investigated at pH 7.2 as a function of nucleophile concentration in the presence of 0.001 M and 0.010 M NaCl. The reactions were followed under pseudo first-order conditions by UV-Vis spectrophotometry. The substitution reactions included two steps of consecutive displacement of chlorido ligands with changes only in the coordination geometry of the [ZnCl2(en)] complex. The order of reactivity of the investigated nucleophiles for the first reaction step towards both complexes was L-histidine > 1,2,3-triazole > imidazole, while in the presence of 0.010 M NaCl the most reactive ligand was 1,2,3-triazole towards the [ZnCl2(en)] complex.
Collapse
Affiliation(s)
- Enisa Selimović
- Department of Chemical-Technological Science, State University of Novi Pazar, Vuka Karadžiča bb, 36300 Novi Pazar, Serbia
| | - Tanja Soldatović
- Department of Chemical-Technological Science, State University of Novi Pazar, Vuka Karadžiča bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
35
|
Costello LC, Franklin RB. Testosterone, prolactin, and oncogenic regulation of the prostate gland. A new concept: Testosterone-independent malignancy is the development of prolactin-dependent malignancy! Oncol Rev 2018; 12:356. [PMID: 30093983 PMCID: PMC6065049 DOI: 10.4081/oncol.2018.356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Hormone-independent malignancy is a major issue of morbidity and deaths that confronts prostate cancer. Despite decades of research, the oncogenic and hormonal implications in the development and progression of prostate malignancy remain mostly speculative. This is largely due to the absence and/or lack of consideration by contemporary clinicians and biomedical investigators regarding the established implications of the co-regulation of testosterone and prolactin in the development, maintenance, metabolism and functions of the prostate gland. Especially relevant is the major metabolic function of production of high levels of citrate by the peripheral zone acinar epithelial cells. Citrate production, along with growth and proliferation by these cells, is regulated by co-existing testosterone and prolactin signaling pathways; and by the oncogenic down-regulation of ZIP1 transporter/zinc/citrate in the development of malignancy. These relationships had not been considered in the issues of hormonedependent malignancy. This review provides the relevant background that has established the dual role of testosterone and prolactin regulation of the prostate gland; which is essential to address the implications in the oncogenic development and progression of hormone-dependent malignancy. The oncogenic factor along with testosterone-dependent and prolactin-dependent relationships leads to the plausible concept that androgen ablation for the treatment of testosteronedependent malignancy results in the development of prolactindependent malignancy; which is testosterone-independent malignancy. Consequently, both testosterone ablation and prolactin ablation are required to prevent and/or abort terminal hormonedependent prostate cancer.
Collapse
Affiliation(s)
- Leslie C. Costello
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry; and the University of Maryland Greenebaum Cancer Center, Baltimore, MD, USA
| | | |
Collapse
|
36
|
Callegaro G, Forcella M, Melchioretto P, Frattini A, Gribaldo L, Fusi P, Fabbri M, Urani C. Toxicogenomics applied to in vitro Cell Transformation Assay reveals mechanisms of early response to cadmium. Toxicol In Vitro 2018; 48:232-243. [DOI: 10.1016/j.tiv.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
|
37
|
Mehrzad V, Mahmood-Zadeh M, Feizi A, Raisi A. Determination Relation of the Zinc Serum Level in Acute Leukemia Adult Patients with Mucositis and Neutropenic Prevalence before and after Treatment in Isfahan' Seyed-Al-Shohada Hospital, 2012-2013. Adv Biomed Res 2018. [PMID: 29531929 PMCID: PMC5840969 DOI: 10.4103/abr.abr_7_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Neutropenic fever and mucositis with 70% outbreak average is one of the major reasons of death in the acute leukemia adult patients. The aim of this study was to determine the relationship of serum zinc level with neutropenic fever and mucositis prevalence in acute leukemia adult patients and comparison of the effects of therapeutic intervention with the serum zinc correct level in the group of patients with zinc deficiency. Materials and Methods: From May 2012 to May 2013 in a double-blind, randomized, placebo-controlled study, on the basis of zinc serum level, 40 acute leukemia adult patients were divided into two groups of normal and deficiency zinc, and neutropenic fever and mucositis prevalence were taken into consideration in each and every group. The deficiency zinc patients were randomly allocated to zinc or control group in a blocked randomization schedule. The data analysis was performed by SPSS software 20 and with the aid of variance analysis statistical method, logistic regression, and X2 statistical test. Results: Serum zinc level was higher in acute leukemia adult patients without mucositis and neutropenic fever than others but was not statistically significant. There is a positive relation between receiving zinc with recovery; although the relationship has not become statistically significant. Conclusion: These data, although preliminary, suggest that zinc therapy could be a valid therapeutic adjuvant to improve the quality-of-life of acute leukemia adult patients.
Collapse
Affiliation(s)
- Valiollah Mehrzad
- Department of Hematology and Oncology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahmood-Zadeh
- Department of Hematology and Oncology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Department of Hematology and Oncology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
|
39
|
Costello LC, Franklin RB. Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas. Expert Opin Ther Targets 2016; 21:51-66. [PMID: 27885880 DOI: 10.1080/14728222.2017.1265506] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Efficacious chemotherapy does not exist for treatment or prevention of prostate, liver, and pancreatic carcinomas, and some other cancers that exhibit decreased zinc in malignancy. Zinc treatment offers a potential solution; but its support has been deterred by adverse bias. Areas covered: 1. The clinical and experimental evidence for the common ZIP transporter/Zn down regulation in these cancers. 2. The evidence for a zinc approach to prevent and/or treat these carcinomas. 3. The issues that introduce bias against support for the zinc approach. Expert opinion: ZIP/Zn downregulation is a clinically established common event in prostate, hepatocellular and pancreatic cancers. 2. Compelling evidence supports the plausibility that a zinc treatment regimen will prevent development of malignancy and termination of progressing malignancy in these cancers; and likely other carcinomas that exhibit decreased zinc. 3. Scientifically-unfounded issues that oppose this ZIP/Zn relationship have introduced bias against support for research and funding of a zinc treatment approach. 4. The clinically-established and supporting experimental evidence provide the scientific credibility that should dictate the support for research and funding of a zinc approach for the treatment and possible prevention of these cancers. 5. This is in the best interest of the medical community and the public-at-large.
Collapse
Affiliation(s)
- Leslie C Costello
- a Department of Oncology and Diagnostic Sciences , School of Dentistry; and The Greenebaum Cancer Center, University of Maryland , Baltimore , MD , USA
| | - Renty B Franklin
- a Department of Oncology and Diagnostic Sciences , School of Dentistry; and The Greenebaum Cancer Center, University of Maryland , Baltimore , MD , USA
| |
Collapse
|
40
|
Costello LC, Franklin RB. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 2016; 611:100-112. [PMID: 27132038 DOI: 10.1016/j.abb.2016.04.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022]
Abstract
The human prostate gland contains extremely high zinc levels; which is due to the specialized zinc-accumulating acinar epithelial of the peripheral zone. These cells evolved for their unique capability to produce and secrete extremely levels of citrate, which is achieved by the high cellular zinc level effects on the cell metabolism. This review highlights the specific functional and metabolic alterations that result from the accumulation of the high zinc levels, especially its effects on mitochondrial citrate metabolism and terminal oxidation. The implications of zinc in the development and progression of prostate cancer are described, which is the most consistent hallmark characteristic of prostate cancer. The requirement for decreased zinc resulting from down regulation of ZIP1 to prevent zinc cytotoxicity in the malignant cells is described as an essential early event in prostate oncogenesis. This provides the basis for the concept that an agent (such as the zinc ionophore, clioquinol) that facilitates zinc uptake and accumulation in ZIP1-deficient prostate tumors cells will markedly inhibit tumor growth. In the current absence of an efficacious chemotherapy for advanced prostate cancer, and for prevention of early development of malignancy; a zinc treatment regimen is a plausible approach that should be pursued.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences, Dental School/University of Maryland, Baltimore, MD 21201, USA; The University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA.
| | - Renty B Franklin
- Department of Oncology and Diagnostic Sciences, Dental School/University of Maryland, Baltimore, MD 21201, USA; The University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
41
|
Costello LC, Zou J, Franklin RB. In situ clinical evidence that zinc levels are decreased in breast invasive ductal carcinoma. Cancer Causes Control 2016; 27:729-35. [PMID: 27097912 DOI: 10.1007/s10552-016-0746-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/30/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE Altered zinc levels in malignant cells versus their normal cells have important implications in the development and progression of several cancers. Prostate, pancreatic, and hepatocellular carcinomas exhibit consistent marked zinc decrease in situ in the malignant cells, and other cancers (such as kidney, lung, and thyroid) also exhibit decreased tissue zinc levels. However, zinc levels are increased in breast cancer tissue compared to breast normal tissue, and the contemporary dominant view is that zinc is increased in invasive ductal carcinoma. This has important implications regarding the role and effects of zinc in breast malignancy compared to other cancers, which caused us to initiate this study to either confirm or challenge the contemporary view of an increased zinc level in the invasive ductal malignant cells. METHODS We employed dithizone staining of breast tissue sections and tissue cores to determine the relative in situ cellular zinc levels specifically in the invasive ductal malignant cells as compared to normal ductal epithelium. This approach had not been employed in any of the reported breast studies. RESULTS The results revealed that the zinc levels are consistently and markedly decreased in the ductal malignant cells as compared with higher prominent zinc levels in the normal ductal epithelium. Decreased zinc is evident in Grade 1 well-differentiated malignancy and in Grade 2 and Grade 3 carcinomas. Among the twenty-five cancer cases in this study, none exhibited increased zinc in the invasive ductal carcinoma compared to the zinc level in the normal ductal epithelium. CONCLUSIONS The decreased zinc levels in breast invasive ductal carcinoma is consistent with prostate, pancreatic, and liver carcinomas in which the decrease in zinc is a required event in the development of malignancy to prevent cytotoxicity that would result from the higher zinc levels in the normal cells. This new understanding requires a redirection in elucidating the mechanisms and factors regarding the regulation of zinc in breast cancer, its potential translational applications as possible biomarkers, and for treatment of breast invasive ductal carcinoma.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,The University of Maryland Greenebaum Cancer Center, Baltimore, MD, 21201, USA.
| | - Jing Zou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Renty B Franklin
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,The University of Maryland Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
42
|
Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.12.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Aude-Garcia C, Dalzon B, Ravanat JL, Collin-Faure V, Diemer H, Strub JM, Cianferani S, Van Dorsselaer A, Carrière M, Rabilloud T. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. J Proteomics 2016; 134:174-185. [DOI: 10.1016/j.jprot.2015.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
|
44
|
Lee SR, Noh SJ, Pronto JR, Jeong YJ, Kim HK, Song IS, Xu Z, Kwon HY, Kang SC, Sohn EH, Ko KS, Rhee BD, Kim N, Han J. The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:389-99. [PMID: 26330751 PMCID: PMC4553398 DOI: 10.4196/kjpp.2015.19.5.389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn(2+)) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn(2+) activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn(2+) levels are largely regulated by metallothioneins (MTs), Zn(2+) importers (ZIPs), and Zn(2+) transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn(2+). However, these regulatory actions of Zn(2+) are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn(2+) levels, Zn(2+)-mediated signal transduction, impacts of Zn(2+) on ion channels and mitochondrial metabolism, and finally, the implications of Zn(2+) in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn(2+).
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University, Busan 614-735, Korea
| | - Su Jin Noh
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Julius Ryan Pronto
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Yu Jeong Jeong
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Hyoung Kyu Kim
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University, Busan 614-735, Korea
| | - In Sung Song
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tainjin 300070, P.R. China
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medio-bio Science (SIMS), Soonchunhyang University, Cheonan 336-745, Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam 461-701, Korea
| | - Eun-Hwa Sohn
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 245-711, Korea
| | - Kyung Soo Ko
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Byoung Doo Rhee
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Nari Kim
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Jin Han
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| |
Collapse
|
45
|
Kocdor H, Ates H, Aydin S, Cehreli R, Soyarat F, Kemanli P, Harmanci D, Cengiz H, Kocdor MA. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3899-909. [PMID: 26251569 PMCID: PMC4524380 DOI: 10.2147/dddt.s87662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells. METHODS Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549) and p53-null (H1299) cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels. RESULTS Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC50) values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 μM and 100 μM. CONCLUSION Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells.
Collapse
Affiliation(s)
- Hilal Kocdor
- Institute of Oncology, Dokuz Eylul University, Izmir Turkey ; Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Halil Ates
- Institute of Oncology, Dokuz Eylul University, Izmir Turkey
| | - Suleyman Aydin
- Department of Biochemistry, Firat University School of Medicine, Elazig, Turkey
| | - Ruksan Cehreli
- Institute of Oncology, Dokuz Eylul University, Izmir Turkey
| | - Firat Soyarat
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Pinar Kemanli
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Duygu Harmanci
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Hakan Cengiz
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Mehmet Ali Kocdor
- Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
46
|
Synthesis, characterization and biological evaluation of Rutin-zinc(II) flavonoid -metal complex. Chem Biol Interact 2015; 239:184-91. [PMID: 26091902 DOI: 10.1016/j.cbi.2015.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/19/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Synthesis of compounds analogous to natural products from secondary metabolites, such as flavonoids, is a promising source of novel drugs. Rutin (quercetin-3-O-rutinoside) is a natural flavone, which has, in its chemical structure, different sites for coordination with transition metals and the complexation with these metals enhances its biological properties. Rutin-zinc(II), a flavonoid-metal complex, was synthesized and characterized by UV-VIS, FT-IR, elemental analysis and (1)H NMR. The antioxidant and antitumor activities, as well as the cytotoxicity and in vivo toxicity of this complex were evaluated and compared with the free rutin. Rutin-zinc(II) has not shown any cytotoxicity against normal cells (fibroblasts and HUVECs) or toxicity in BALB/c mice, but has shown antioxidant activity in vitro and cytotoxicity against leukemia (KG1, K562 and Jurkat), multiple myeloma (RPMI8226) and melanoma (B16F10 and SK-Mel-28) cell lines in vitro. In Ehrlich ascites carcinoma model, Rutin-zinc(II) modulated the mitochondrial membrane potential and the expression of genes related to cell cycle progression, angiogenesis and apoptosis.
Collapse
|
47
|
|
48
|
Franklin RB, Zou J, Costello LC. The cytotoxic role of RREB1, ZIP3 zinc transporter, and zinc in human pancreatic adenocarcinoma. Cancer Biol Ther 2014; 15:1431-7. [PMID: 25050557 DOI: 10.4161/cbt.29927] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (ductal adenocarcinoma) remains a deadly cancer with ~85% mortality, and a 5-year survival rate of ~6% or less for the past 30 years. The factors and events associated with the development of pancreatic cancer are poorly identified. As such, effective biomarkers for early detection of malignancy are lacking. Efficacious chemotherapy once the cancer is identified does not exist. Recent clinical studies have revealed that the zinc levels are consistently and markedly decreased in adenocarcinoma as compared with normal/benign pancreatic tissue. The decreased zinc is exhibited in well-differentiated malignancy and in progressing malignancy, and also exists throughout the development of PanIN. Concurrent with the decrease in zinc, RREB1 transcription factor and ZIP3 zinc uptake transporter are downregulated. Thus, a RREB1/ZIP3/Zinc transformation appears to be an early event in the development of pancreatic cancer. We propose that this transformation is necessary to prevent the accumulation of high cellular zinc levels, which result in cytotoxic effects on the developing malignant cells. This report now demonstrates that exposure of Panc1 cells to physiological concentrations of zinc that result in increased zinc uptake and accumulation also inhibits cell proliferation. The study further shows that ZIP3 is the important transporter required for the accumulation of zinc and its inhibition of proliferation. RREB1 is identified as the positive regulator of ZIP3 expression. Therefore, the pathway of RREB1/ZIP3/Zinc and its downregulation during oncogenesis exist to prevent the accumulation of cytotoxic levels of zinc during the development and progression of the malignant cells in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Renty B Franklin
- Department of Oncology and Diagnostic Sciences; University of Maryland Dental School; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| | - Jing Zou
- Department of Oncology and Diagnostic Sciences; University of Maryland Dental School; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| | - Leslie C Costello
- Department of Oncology and Diagnostic Sciences; University of Maryland Dental School; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| |
Collapse
|
49
|
Singh CK, Pitschmann A, Ahmad N. Resveratrol-zinc combination for prostate cancer management. Cell Cycle 2014; 13:1867-74. [PMID: 24866157 DOI: 10.4161/cc.29334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Zinc, an essential trace element, plays a critical role in cell signaling, and defect(s) in zinc homeostasis may contribute to adverse physiological and pathological conditions, including cancer. Zinc is present in healthy prostate at a very high concentration, where it is required for important prostatic functions. However, zinc levels are significantly diminished in cancerous tissue, and intracellular zinc level is inversely correlated with prostate cancer progression. During neoplastic transformation, zinc-accumulating, citrate-producing normal prostate cells are metabolically transformed to citrate oxidizing cells that lose the ability to accumulate zinc. Interestingly, zinc has been shown to function as chemopreventive agent against prostate cancer, albeit at high doses, which may lead to many adverse effects. Therefore, novel means to enhance bioaccumulation of sufficient zinc in prostate cells via increasing zinc transport could be useful against prostate cancer. On the basis of available evidence, we present a possibility that the grape antioxidant resveratrol, when given with zinc, may lead to retuning the zinc homeostasis in prostate, thereby abolishing or reversing malignancy. If experimentally verified in in vivo model(s) of prostate cancer, such as transgenic mouse models, this may lead to novel means toward management of prostate cancer and other conditions with compromised zinc homeostasis.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology; University of Wisconsin; Madison, WI USA
| | - Anna Pitschmann
- Department of Dermatology; University of Wisconsin; Madison, WI USA
| | - Nihal Ahmad
- Department of Dermatology; University of Wisconsin; Madison, WI USA
| |
Collapse
|
50
|
Costello LC, Franklin RB. The status of zinc in the development of hepatocellular cancer: an important, but neglected, clinically established relationship. Cancer Biol Ther 2014; 15:353-60. [PMID: 24448510 DOI: 10.4161/cbt.27633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver cancer (hepatocellular carcinoma, HCC) is increasing worldwide. About 75% of HCC cases result in death generally within one year. The factors responsible for the initiation and progression of HCC remain largely unknown and speculative, thereby impeding advancements in the development of effective therapeutic agents and biomarkers for early detection of HCC. A consistent marked decrease in zinc in HCC tumors compared with normal liver is an established clinical relationship, which occurs in virtually all cases of HCC. However, this relationship has been largely ignored by the contemporary clinical and research community. Consequently, the factors and mechanisms involved in this relationship have not been addressed. Thus, the opportunity and potential for its employment as biomarkers for early identification of malignancy, and for development of a chemotherapeutic approach have been lacking. This presentation includes a review of the literature and the description of important recent and new data, which provide the basis for a concept of the role of zinc in the development of HCC. The basis is presented for characterizing HCC malignancy as ZIP14-deficient tumors, and its requirement to prevent zinc cytotoxic effects on the malignant cells. The potential for an efficacious zinc treatment approach for HCC is described. The involvement of zinc in the predisposition for HCC by chronic liver disease/cirrhosis is presented. Hopefully, this presentation will raise the awareness, interest, and support for the much needed research in the implications of zinc in the development and progression of HCC.
Collapse
Affiliation(s)
- Leslie C Costello
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| | - Renty B Franklin
- Department of Oncology and Diagnostic Sciences; Dental School; University of Maryland; Baltimore, MD USA; The University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| |
Collapse
|