1
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Smith GS, Protas H, Kuwabara H, Savonenko A, Nassery N, Gould NF, Kraut M, Avramopoulos D, Holt D, Dannals RF, Nandi A, Su Y, Reiman EM, Chen K. Molecular imaging of the association between serotonin degeneration and beta-amyloid deposition in mild cognitive impairment. Neuroimage Clin 2023; 37:103322. [PMID: 36680976 PMCID: PMC9869478 DOI: 10.1016/j.nicl.2023.103322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Degeneration of the serotonin system has been observed in Alzheimer's disease (AD) and in mild cognitive impairment (MCI). In transgenic amyloid mouse models, serotonin degeneration is detected prior to widespread cortical beta-amyloid (Aβ) deposition, also suggesting that serotonin degeneration may be observed in preclinical AD. METHODS The differences in the distribution of serotonin degeneration (reflected by the loss of the serotonin transporter, 5-HTT) relative to Aβ deposition was measured with positron emission tomography in a group of individuals with MCI and a group of healthy older adults. A multi-modal partial least squares (mmPLS) algorithm was applied to identify the spatial covariance pattern between 5-HTT availability and Aβ deposition. RESULTS Forty-five individuals with MCI and 35 healthy older adults were studied, 22 and 27 of whom were included in the analyses who were "amyloid positive" and "amyloid negative", respectively. A pattern of lower cortical, subcortical and limbic 5-HTT availability and higher cortical Aβ deposition distinguished the MCI from the healthy older control participants. Greater expression of this pattern was correlated with greater deficits in memory and executive function in the MCI group, not in the control group. CONCLUSION A spatial covariance pattern of lower 5-HTT availability and Aβ deposition was observed to a greater extent in an MCI group relative to a control group and was associated with cognitive impairment in the MCI group. The results support the application of mmPLS to understand the neurochemical changes associated with Aβ deposition in the course of preclinical AD.
Collapse
Affiliation(s)
- Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Najlla Nassery
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda F Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitri Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| |
Collapse
|
4
|
Smith GS, Workman CI, Protas H, Su Y, Savonenko A, Kuwabara H, Gould NF, Kraut M, Joo JH, Nandi A, Avramopoulos D, Reiman EM, Chen K. Positron emission tomography imaging of serotonin degeneration and beta-amyloid deposition in late-life depression evaluated with multi-modal partial least squares. Transl Psychiatry 2021; 11:473. [PMID: 34518514 PMCID: PMC8437937 DOI: 10.1038/s41398-021-01539-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Depression in late-life is associated with increased risk of cognitive decline and development of all-cause dementia. The neurobiology of late-life depression (LLD) may involve both neurochemical and neurodegenerative mechanisms that are common to depression and dementia. Transgenic amyloid mouse models show evidence of early degeneration of monoamine systems. Informed by these preclinical data, the hypotheses were tested that a spatial covariance pattern of higher beta-amyloid (Aβ) and lower serotonin transporter availability (5-HTT) in frontal, temporal, and parietal cortical regions would distinguish LLD patients from healthy controls and the expression of this pattern would be associated with greater depressive symptoms. Twenty un-medicated LLD patients who met DSM-V criteria for major depression and 20 healthy controls underwent PET imaging with radiotracers for Aβ ([11C]-PiB) and 5-HTT ([11C]-DASB). A voxel-based multi-modal partial least squares (mmPLS) algorithm was applied to the parametric PET images to determine the spatial covariance pattern between the two radiotracers. A spatial covariance pattern was identified, including higher Aβ in temporal, parietal and occipital cortices associated with lower 5-HTT in putamen, thalamus, amygdala, hippocampus and raphe nuclei (dorsal, medial and pontine), which distinguished LLD patients from controls. Greater expression of this pattern, reflected in summary 5-HTT/Aβ mmPLS subject scores, was associated with higher levels of depressive symptoms. The mmPLS method is a powerful approach to evaluate the synaptic changes associated with AD pathology. This spatial covariance pattern should be evaluated further to determine whether it represents a biological marker of antidepressant treatment response and/or cognitive decline in LLD patients.
Collapse
Affiliation(s)
- Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda F Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitri Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| |
Collapse
|
5
|
Drop M, Canale V, Chaumont-Dubel S, Kurczab R, Satała G, Bantreil X, Walczak M, Koczurkiewicz-Adamczyk P, Latacz G, Gwizdak A, Krawczyk M, Gołębiowska J, Grychowska K, Bojarski AJ, Nikiforuk A, Subra G, Martinez J, Pawłowski M, Popik P, Marin P, Lamaty F, Zajdel P. 2-Phenyl-1 H-pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT 6 Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chem Neurosci 2021; 12:1228-1240. [PMID: 33705101 PMCID: PMC8041276 DOI: 10.1021/acschemneuro.1c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
Serotonin type 6
receptor (5-HT6R) has gained particular
interest as a promising target for treating cognitive deficits, given
the positive effects of its antagonists in a wide range of memory
impairment paradigms. Herein, we report on degradation of the 1H-pyrrolo[3,2-c]quinoline scaffold
to provide the 2-phenyl-1H-pyrrole-3-carboxamide,
which is devoid of canonical indole-like skeleton and retains recognition
of 5-HT6R. This modification has changed the compound’s
activity at 5-HT6R-operated signaling pathways from neutral
antagonism to inverse agonism. The study identified compound 27 that behaves as an inverse agonist of the 5-HT6R at the Gs and Cdk5 signaling pathways. Compound 27 showed high selectivity and metabolic stability and was brain penetrant.
Finally, 27 reversed scopolamine-induced memory decline
in the novel object recognition test and exhibited procognitive properties
in the attentional set-shifting task in rats. In light of these findings, 27 might be considered for further evaluation as a new cognition-enhancing
agent, while 2-phenyl-1H-pyrrole-3-carboxamide might
be used as a template for designing 5-HT6R inverse agonists.
Collapse
Affiliation(s)
- Marcin Drop
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vittorio Canale
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Anna Gwizdak
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Martyna Krawczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
6
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
7
|
Virtual screening-driven discovery of dual 5-HT 6/5-HT 2A receptor ligands with pro-cognitive properties. Eur J Med Chem 2019; 185:111857. [PMID: 31734022 DOI: 10.1016/j.ejmech.2019.111857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
Abstract
A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.
Collapse
|
8
|
Bostancıklıoğlu M. Optogenetic stimulation of serotonin nuclei retrieve the lost memory in Alzheimer's disease. J Cell Physiol 2019; 235:836-847. [PMID: 31332785 DOI: 10.1002/jcp.29077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
How are memories stored and retrieved? It was one of the most discussed questions in the past century by neuroscientists. Leading studies of the period brought two different explanations to this question: The first statement considers memory as a physiological change in the brain and suggest that the retrieval of memory is only occurred by the same physiologic changes observed during the memory formation, while the second suggests that memory is a psychic mood stored in mind and the retrieval of memory is occurred by mystical energy fluctuations. Although the exact reason and the pathogenesis of Alzheimer's disease have not yet been fully understood, the approaches that centered the retrieval strategy of lost memory constitutes the basis of the treatment strategies in Alzheimer's disease today. The majority of treatment studies has based on the manipulation of the cholinergic system; however, although serotonin has mnemonic effects, its role in the pathogenesis of Alzheimer's disease has not been investigated as much as the cholinergic system. Here we show how serotonin affects the pathogenesis of Alzheimer's disease in a comprehensive perspective and we suggest that the optogenetics manipulation of serotonin nuclei retrieve the lost memory by closing the inward-rectifier potassium channel Kir2 on the memory engram cells. Also, we raise the possible effects of serotonin on the memory engram cells and the interactions between the amyloid-centric hypothesis of Alzheimer's disease and the memory engram hypothesis to explain the pathophysiology of memory loss in Alzheimer's disease.
Collapse
|
9
|
Kruk JS, Bermeo S, Skarratt KK, Fuller SJ, Duque G. The Effect of Antidepressants on Mesenchymal Stem Cell Differentiation. J Bone Metab 2018; 25:43-51. [PMID: 29564305 PMCID: PMC5854822 DOI: 10.11005/jbm.2018.25.1.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Use of antidepressant medications has been linked to detrimental impacts on bone mineral density and osteoporosis; however, the cellular basis behind these observations remains poorly understood. The effect does not appear to be homogeneous across the whole class of drugs and may be linked to affinity for the serotonin transporter system. In this study, we hypothesized that antidepressants have a class- and dose-dependent effect on mesenchymal stem cell (MSC) differentiation, which may affect bone metabolism. Methods Human MSCs (hMSCs) were committed to differentiate when either adipogenic or osteogenic media was added, supplemented with five increasing concentrations of amitriptyline (0.001–10 µM), venlafaxine (0.01–25 µM), or fluoxetine (0.001–10 µM). Alizarin red staining (mineralization), alkaline phosphatase (osteoblastogenesis), and oil red O (adipogenesis) assays were performed at timed intervals. In addition, cell viability was assessed using a MTT. Results We found that fluoxetine had a significant inhibitory effect on mineralization. Furthermore, adipogenic differentiation of hMSC was affected by the addition of amitriptyline, venlafaxine, and fluoxetine to the media. Finally, none of the tested medications significantly affected cell survival. Conclusions This study showed a divergent effect of three antidepressants on hMSC differentiation, which appears to be independent of class and dose. As fluoxetine and amitriptyline, but not venlafaxine, affected both osteoblastogenesis and adipogenesis, this inhibitory effect could be associated to the high affinity of fluoxetine to the serotonin transporter system.
Collapse
Affiliation(s)
- Jeffrey S Kruk
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Sandra Bermeo
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia.,Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Kristen K Skarratt
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Stephen J Fuller
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Gustavo Duque
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Ouyang QQ, Zhao S, Li SD, Song C. Application of Chitosan, Chitooligosaccharide, and Their Derivatives in the Treatment of Alzheimer's Disease. Mar Drugs 2017; 15:E322. [PMID: 29112116 PMCID: PMC5706020 DOI: 10.3390/md15110322] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Classic hypotheses of Alzheimer's disease (AD) include cholinergic neuron death, acetylcholine (ACh) deficiency, metal ion dynamic equilibrium disorder, and deposition of amyloid and tau. Increased evidence suggests neuroinflammation and oxidative stress may cause AD. However, none of these factors induces AD independently, but they are all associated with the formation of Aβ and tau proteins. Current clinical treatments based on ACh deficiency can only temporarily relieve symptoms, accompanied with many side-effects. Hence, searching for natural neuroprotective agents, which can significantly improve the major symptoms and reverse disease progress, have received great attention. Currently, several bioactive marine products have shown neuroprotective activities, immunomodulatory and anti-inflammatory effects with low toxicity and mild side effects in laboratory studies. Recently, chitosan (CTS), chitooligosaccharide (COS) and their derivatives from exoskeletons of crustaceans and cell walls of fungi have shown neuroprotective and antioxidative effects, matrix metalloproteinase inhibition, anti-HIV and anti-inflammatory properties. With regards to the hypotheses of AD, the neuroprotective effect of CTS, COS, and their derivatives on AD-like changes in several models have been reported. CTS and COS exert beneficial effects on cognitive impairments via inhibiting oxidative stress and neuroinflammation. They are also a new type of non-toxic β-secretase and AChE inhibitor. As neuroprotective agents, they could reduce the cell membrane damage caused by copper ions and decrease the content of reactive oxygen species. This review will focus on their anti-neuroinflammation, antioxidants and their inhibition of β-amyloid, acetylcholinesterase and copper ions adsorption. Finally, the limitations and future work will be discussed.
Collapse
Affiliation(s)
- Qian-Qian Ouyang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China.
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shannon Zhao
- American Studies and Ethnicity, University of Southern California, Los Angeles, CA 90089, USA.
| | - Si-Dong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
11
|
A tricyclic antidepressant, amoxapine, reduces amyloid-β generation through multiple serotonin receptor 6-mediated targets. Sci Rep 2017; 7:4983. [PMID: 28694424 PMCID: PMC5504036 DOI: 10.1038/s41598-017-04144-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/09/2017] [Indexed: 11/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a major and devastating neurodegenerative disease, and the amyloid-β (Aβ) hypothesis is still the central theory for AD pathogenesis. Meanwhile, another major mental illness, depression, is one of the risk factors for AD. From a high-throughput screening (HTS), amoxapine, a typical secondary amine tricyclic antidepressant (TCA), was identified to reduce Aβ production. A follow-up investigation on antidepressants showed that most of the TCAs harbour similar activity. Previous studies have indicated that TCAs improve cognitive function in AD mouse models as well as in preliminary clinical data; however, the underlying mechanism is controversial, and the effect on Aβ is elusive. Thus, we developed a secondary screening to determine the molecular target of amoxapine, and serotonin receptor 6 (HTR6) was identified. Knockdown of HTR6 reduced the amoxapine’s effect, while the HTR6 antagonist SB258585 mimicked the activity of amoxapine. Further mechanistic study showed that amoxapine and SB258585 reduced Aβ generation through multiple HTR6-mediated targets, including β-arrestin2 and CDK5. Taken together, our study suggests that amoxapine, though no longer a first-line drug for the treatment of depression, may be beneficial for AD and further structural modification of TCAs may lead to desirable therapeutic agents to treat both AD and depression.
Collapse
|
12
|
Ivachtchenko AV, Okun I, Aladinskiy V, Ivanenkov Y, Koryakova A, Karapetyan R, Mitkin O, Salimov R, Ivashchenko A. AVN-492, A Novel Highly Selective 5-HT6R Antagonist: Preclinical Evaluation. J Alzheimers Dis 2017; 58:1043-1063. [DOI: 10.3233/jad-161262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Ilya Okun
- ChemDiv Inc (Retired), SanDiego, CA, USA
| | - Vladimir Aladinskiy
- Moscow Institute of Physics and Technology(State University), Dolgoprudny, Moscow Region, RussianFederation
| | - Yan Ivanenkov
- Moscow Institute of Physics and Technology(State University), Dolgoprudny, Moscow Region, RussianFederation
- Department of Chemistry, Moscow State University, Moscow, Russian Federation
| | - Angela Koryakova
- Chemical Diversity Research Institute, Khimki, Moscow Region, Russian Federation
| | - Ruben Karapetyan
- Chemical Diversity Research Institute, Khimki, Moscow Region, Russian Federation
| | - Oleg Mitkin
- Chemical Diversity Research Institute, Khimki, Moscow Region, Russian Federation
| | | | - Andrey Ivashchenko
- Chemical Diversity Research Institute, Khimki, Moscow Region, Russian Federation
| |
Collapse
|
13
|
Activation and blockade of serotonin6 receptors in the dorsal hippocampus enhance T maze and hole-board performance in a unilateral 6-hydroxydopamine rat model of Parkinson's disease. Brain Res 2016; 1650:184-195. [DOI: 10.1016/j.brainres.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
|
14
|
The selective 5-HT 6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment. Neurobiol Learn Mem 2016; 133:100-117. [DOI: 10.1016/j.nlm.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
|
15
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Magierski R, Sobow T. Serotonergic drugs for the treatment of neuropsychiatric symptoms in dementia. Expert Rev Neurother 2016; 16:375-87. [PMID: 26886148 DOI: 10.1586/14737175.2016.1155453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Behavioral and psychological symptoms of dementia (known also as neuropsychiatric symptoms) are essential features of Alzheimer's disease and related dementias. The near universal presence of neuropsychiatric symptoms in dementia (up to 90% of cases) has brought significant attention of clinicians and experts to the field. Non-pharmacological and pharmacological interventions are recommended for various types of neuropsychiatric symptoms. However, most pharmacological interventions for the treatment of behavioral and psychological symptoms of dementia are used off-label in many countries. Cognitive decline and neuropsychiatric symptoms can be linked to alterations in multiple neurotransmitter systems, so modification of abnormalities in specific systems may improve clinical status of patients with neuropsychiatric symptoms. Use of serotonergic compounds (novel particles acting on specific receptors and widely acting drugs) in the treatment of neuropsychiatric symptoms is reviewed.
Collapse
Affiliation(s)
- Radoslaw Magierski
- a Department of Old Age Psychiatry and Psychotic Disorders , Medical University of Lodz , Lodz , Poland
| | - Tomasz Sobow
- b Department of Medical Psychology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
17
|
Ivachtchenko AV, Lavrovsky Y, Ivanenkov YA. AVN-211, Novel and Highly Selective 5-HT6 Receptor Small Molecule Antagonist, for the Treatment of Alzheimer's Disease. Mol Pharm 2016; 13:945-63. [PMID: 26886442 DOI: 10.1021/acs.molpharmaceut.5b00830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Within the past decade several novel targets have been indicated as key players in Alzheimer-type dementia and associated conditions, including a "frightening" memory loss as well as severe cognitive impairments. These proteins are deeply implicated in crucial cell processes, e.g., autophagy, growth and progression, apoptosis, and metabolic equilibrium. Since recently, 5-HT6R has been considered as one of the most prominent biological targets in AD drug therapy. Therefore, we investigated the potential procognitive and neuroprotective effects of our novel selective 5-HT6R antagonist, AVN-211. During an extensive preclinical evaluation the lead compound demonstrated a relatively high therapeutic potential and improved selectivity toward 5-HT6R as compared to reference drug candidates. It was thoroughly examined in different in vivo behavioral models directly related to AD and showed evident improvements in cognition and learning. In many cases, the observed effect was considerably greater than that determined for the reported drugs and drug candidates, including memantine, SB-742457, and Lu AE58054, evaluated under the same conditions. In addition, AVN-211 showed a similar or better anxiolytic efficacy than fenobam, rufinamide, lorazepam, and buspirone in an elevated plus-maze model, elevated platform, and open field tests. The compound demonstrated low toxicity and no side effects in vivo, an appropriate pharmacokinetic profile, and stability. In conclusion, AVN-211 significantly delayed or partially halted the progressive decline in memory function associated with AD, which makes it an interesting drug candidate for the treatment of neurodegenerative and psychiatric disorders. Advanced clinical trials are currently under active discussion and in high priority.
Collapse
Affiliation(s)
- Alexandre V Ivachtchenko
- Alla Chem LLC , 1835 East Hallandale Beach Boulevard, #442, Hallandale Beach, Florida 33009, United States.,Avineuro Pharmaceuticals, Inc. , 1835 East Hallandale Beach Boulevard, #442, Hallandale Beach, Florida 33009, United States
| | - Yan Lavrovsky
- R-Pharm Overseas, Inc. , 12526 High Bluff Drive, Suite #300, San Diego, California 92130, United States
| | - Yan A Ivanenkov
- Moscow Institute of Physics and Technology (State University) , 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation.,Chemistry Department, Moscow State University , Leninskie Gory, Building 1/3, GSP-1, 119991, Moscow, Russia
| |
Collapse
|
18
|
Baker NC, Fourches D, Tropsha A. Drug Side Effect Profiles as Molecular Descriptors for Predictive Modeling of Target Bioactivity. Mol Inform 2015; 34:160-70. [DOI: 10.1002/minf.201400134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/16/2014] [Indexed: 11/05/2022]
|
19
|
Staroń J, Warszycki D, Kalinowska-Tłuścik J, Satała G, Bojarski AJ. Rational design of 5-HT6R ligands using a bioisosteric strategy: synthesis, biological evaluation and molecular modelling. RSC Adv 2015. [DOI: 10.1039/c5ra00054h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bioisosteric strategy was successfully implemented with a screening protocol for new, potent 5-HT6R ligands.
Collapse
Affiliation(s)
- Jakub Staroń
- Department of Medicinal Chemistry
- Institute of Pharmacology Polish Academy of Sciences
- 31-343 Kraków
- Poland
| | - Dawid Warszycki
- Department of Medicinal Chemistry
- Institute of Pharmacology Polish Academy of Sciences
- 31-343 Kraków
- Poland
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physic
- Jagiellonian University Faculty of Chemistry
- 30-060 Kraków
- Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry
- Institute of Pharmacology Polish Academy of Sciences
- 31-343 Kraków
- Poland
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry
- Institute of Pharmacology Polish Academy of Sciences
- 31-343 Kraków
- Poland
| |
Collapse
|
20
|
Tse S, Leung L, Raje S, Seymour M, Shishikura Y, Obach RS. Disposition and Metabolic Profiling of [14C]Cerlapirdine Using Accelerator Mass Spectrometry. Drug Metab Dispos 2014; 42:2023-32. [DOI: 10.1124/dmd.114.059675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Broadstock M, Ballard C, Corbett A. Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Expert Opin Pharmacother 2014; 15:1797-810. [DOI: 10.1517/14656566.2014.936848] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Benhamú B, Martín-Fontecha M, Vázquez-Villa H, Pardo L, López-Rodríguez ML. Serotonin 5-HT6 Receptor Antagonists for the Treatment of Cognitive Deficiency in Alzheimer’s Disease. J Med Chem 2014; 57:7160-81. [DOI: 10.1021/jm5003952] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bellinda Benhamú
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Leonardo Pardo
- Laboratori
de Medicina Computacional, Unitat de Bioestadística, Facultat
de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - María L. López-Rodríguez
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
23
|
Ivachtchenko AV. Sulfonyl-containing modulators of serotonin 5-HT6receptors and their pharmacophore models. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n05abeh004371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Kołaczkowski M, Mierzejewski P, Bieńkowski P, Wesołowska A, Newman-Tancredi A. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility. Br J Pharmacol 2014; 171:973-84. [PMID: 24199650 PMCID: PMC3925036 DOI: 10.1111/bph.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/17/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. EXPERIMENTAL APPROACH We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. KEY RESULTS ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). CONCLUSIONS AND IMPLICATIONS ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia.
Collapse
Affiliation(s)
- M Kołaczkowski
- Adamed LtdCzosnów, Poland
- Faculty of Pharmacy, Jagiellonian University Collegium MedicumCracow, Poland
| | | | - P Bieńkowski
- Institute of Psychiatry and NeurologyWarsaw, Poland
| | - A Wesołowska
- Faculty of Pharmacy, Jagiellonian University Collegium MedicumCracow, Poland
| | | |
Collapse
|
25
|
The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp Brain Res 2014; 232:723-38. [PMID: 24430027 DOI: 10.1007/s00221-013-3818-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Serotonin, or 5-hydroxytryptamine (5-HT), is found to be involved in many physiological or pathophysiological processes including cognitive function. Seven distinct receptors (5-HT1-7), each with several subpopulations, have been identified for serotonin, which are different in terms of localization and downstream signaling. Because of the development of selective agonists and antagonists for these receptors as well as transgenic animal models of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has improved in recent years. A large body of evidence indicates the interplay between serotonergic transmission and other neurotransmitters including acetylcholine, dopamine, γ-aminobutyric acid (GABA) and glutamate, in the neurobiological control of learning and memory. In addition, there has been an alteration in the density of serotonergic receptors in aging and Alzheimer's disease, and serotonin modulators are found to alter the process of amyloidogenesis and exert cognitive-enhancing properties. Here, we discuss the serotonin-induced modulation of various systems involved in mnesic function including cholinergic, dopaminergic, GABAergic, glutamatergic transmissions as well as amyloidogenesis and intracellular pathways.
Collapse
|
26
|
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 2013; 31:1676-94. [DOI: 10.1016/j.biotechadv.2013.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
|
27
|
Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS One 2013; 8:e77027. [PMID: 24086766 PMCID: PMC3785432 DOI: 10.1371/journal.pone.0077027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/05/2013] [Indexed: 02/05/2023] Open
Abstract
High concentrations of reactive oxygen species (ROS) induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT) transactivates the platelet-derived growth factor (PDGF) type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H2O2 induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT. However the same concentrations of H2O2 failed to increase ERK1/2 phosphorylation. Yet, the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin blocked both 5-HT-induced PDGFβ receptor phosphorylation and ERK1/2 phosphorylation. The increases in PDGFβ receptor and ERK1/2 phosphorylation were also dependent on protein kinase C activity, likely acting upstream of NADPH oxidase. Additionally, although the ROS scavenger N-acetyl-l-cysteine abrogated 5-HT-induced PDGFβ and TrkB receptor transactivation, it was unable to prevent 5-HT-induced ERK1/2 phosphorylation. Thus, the divergence point for 5-HT-induced receptor tyrosine kinase (RTK) transactivation and ERK1/2 phosphorylation occurs at the level of NADPH oxidase in this system. The ability of 5-HT to induce the production of ROS resulting in transactivation of both PDGFβ and TrkB receptors may suggest that instead of a single GPCR to single RTK pathway, a less selective, more global RTK response to GPCR activation is occurring.
Collapse
|
28
|
Ivachtchenko AV, Golovina ES, Kadieva MG, Mitkin OD, Okun IM. 5-Ht6 Receptor Antagonists. V. Structure – Activity Relationship of (4-Phenylsulfonyloxazol-5-yl)amines. Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Kruk JS, Vasefi MS, Liu H, Heikkila JJ, Beazely MA. 5-HT1A receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells. Cell Signal 2013; 25:133-43. [DOI: 10.1016/j.cellsig.2012.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 01/23/2023]
|
30
|
Marazziti D, Baroni S, Pirone A, Giannaccini G, Betti L, Testa G, Schmid L, Palego L, Borsini F, Bordi F, Piano I, Gargini C, Castagna M, Catena-Dell'osso M, Lucacchini A. Serotonin receptor of type 6 (5-HT6) in human prefrontal cortex and hippocampus post-mortem: an immunohistochemical and immunofluorescence study. Neurochem Int 2012; 62:182-8. [PMID: 23219521 DOI: 10.1016/j.neuint.2012.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/20/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
Given the paucity of data on the distribution of serotonin (5-HT) receptors of type 6 (5-HT(6)) in the human brain, the aim of this study was to investigate their distribution in postmortem human prefrontal cortex, striatum and hippocampus by either immunohistochemical or immunofluorescence techniques. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT(6) receptor distribution was explored by the [(125)I]SB-258585 binding to brain membranes followed by immunohistochemical and immunofluorescence evaluations. A specific [(125)I]SB-258585 binding was detected in all the regions under investigation, whilst the content in the hippocampus and cortex being about 10-30 times lower than in the striatum. Immunohistochemistry and double-label immunofluorescence microscopy experiments, carried out in the prefrontal cortex and hippocampus only, since data in the striatum were already published, showed the presence of 5-HT(6) receptors in both pyramidal and glial cells of prefrontal cortex, while positive cells were mainly pyramidal neurons in the hippocampus. The heterogeneous distribution of 5-HT(6) receptors provides a preliminary explanation of how they might regulate different functions in different brain areas, such as, perhaps, brain trophism in the cortex and neuronal firing in the hippocampus. This study, taking into account all the limitations due to the postmortem model used, represents the starting point to explore the 5-HT(6) receptor functionality and its sub-cellular distribution.
Collapse
Affiliation(s)
- Donatella Marazziti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ivachtchenko AV, Ivanenkov YA. 5HT(6) receptor antagonists: a patent update. Part 1. Sulfonyl derivatives. Expert Opin Ther Pat 2012; 22:917-64. [PMID: 22816965 DOI: 10.1517/13543776.2012.709236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Among a variety of proteins included in a relatively wide GPCR family, serotonin 5HT receptors (5HT(6)Rs) are highly attractive as important biological targets with enormous clinical importance. Among this subclass, 5HT(6)R is the most recently discovered group. Available biological data clearly indicate that 5HT(6)R antagonists can be used as effective regulators in a variety of contexts, including memory formation, age-related cognitive impairments and memory deficits associated with conditions such as schizophrenia, Parkinson's disease and Alzheimer's disease. Therefore, this receptor has already attracted a considerable attention within the scientific community, due to its versatile therapeutic potential. AREAS COVERED The current paper is an update to the comprehensive review article published previously in Expert Opinion on Therapeutic Patents (see issue 20(7), 2010). Here, the main focus is on small-molecule compounds - 5HT(6) antagonists - which have been described in recent patent literature, since the end of 2009. To obtain a clear understanding of the situation and dynamic within the field of 5HT(6) ligands, having an obvious pharmaceutical potential in terms of related patents, a comprehensive search through several key patent collections have been provided. The authors describe the reported chemical classes and scaffolds in sufficient detail to provide a valuable insight in the 5HT(6)R chemistry and pharmacology. The review consists of two core parts with separate sections arranged in accordance with the main structural features of 5HT(6)R ligands. EXPERT OPINION Recent progress in the understanding of the 5HT(6) receptor function and structure includes a suggested constitutive activity for the receptor, development of a number of multimodal small molecule ligands and re-classification of many selective antagonists as pseudo-selective agents. Heterocycles with sulfonyl group and without any basic center provide sufficient supramolecular interactions and show high antagonistic activity against 5HT(6)R.
Collapse
|
32
|
Hajjo R, Setola V, Roth BL, Tropsha A. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers. J Med Chem 2012; 55:5704-19. [PMID: 22537153 DOI: 10.1021/jm2011657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure-Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT(6)R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT(6)R actives. Second, we queried chemogenomics data from the Connectivity Map ( http://www.broad.mit.edu/cmap/ ) with the gene expression profile signatures of Alzheimer's disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT(6)R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT(6)R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations.
Collapse
Affiliation(s)
- Rima Hajjo
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
33
|
Geldenhuys WJ, Darvesh AS, Dluzen DE. Dimebon attenuates methamphetamine, but not MPTP, striatal dopamine depletion. Neurochem Int 2012; 60:806-8. [PMID: 22710395 DOI: 10.1016/j.neuint.2012.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
Dimebon is an anti-histamine with central nervous system activity. In this report the effects of dimebon as a neuroprotectant in animal models of Parkinson's disease were tested as assessed in methamphetamine- and MPTP-induced striatal dopaminergic toxicity. Dimebon (1mg/kg) administered at 30 min prior to methamphetamine (40mg/kg) significantly reduced the amount of striatal dopamine depletion in mice, without altering the initial methamphetamine-induced increase in body temperature. In contrast, dimebon at either 1 or 25mg/kg administered at 30 min prior to MPTP (35 mg/kg) was unable to prevent MPTP-induced striatal dopamine loss as determined at 7 days post-methamphetamine/MPTP. These data suggest that dimebon may be exerting a neurotoxin specific neuroprotective effect upon the striatal dopaminergic system and may serve as an important tool for discriminating the mechanistic basis of these two dopaminergic neurotoxins.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | | | | |
Collapse
|
34
|
Witten L, Bang-Andersen B, Nielsen SM, Miller S, Christoffersen CT, Stensbøl TB, Brennum LT, Arnt J. Characterization of [3H]Lu AE60157 ([3H]8-(4-methylpiperazin-1-yl)-3-phenylsulfonylquinoline) binding to 5-hydroxytryptamine6 (5-HT6) receptors in vivo. Eur J Pharmacol 2012; 676:6-11. [DOI: 10.1016/j.ejphar.2011.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 11/06/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
|
35
|
Distribution of Serotonin Receptor of Type 6 (5-HT6) in Human Brain Post-mortem. A Pharmacology, Autoradiography and Immunohistochemistry Study. Neurochem Res 2012; 37:920-7. [DOI: 10.1007/s11064-011-0684-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
|
36
|
Nirogia RVS, Kambhampati R, Daulatabad AV, Gudla P, Shaikh M, Achanta PK, Shinde AK, Dubey PK. Design, synthesis and pharmacological evaluation of conformationally restricted N-arylsulfonyl-3-aminoalkoxy indoles as a potential 5-HT6 receptor ligands. J Enzyme Inhib Med Chem 2011; 26:341-9. [PMID: 21524149 DOI: 10.3109/14756366.2010.510471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of novel conformationally restricted N(1)-arylsulfonyl-3-aminoalkoxy indoles were designed and synthesized as 5-HT(6) receptor (5-HT(6)R) ligands. Many of the synthesized compounds have moderate in vitro-binding affinities at 5-HT(6)R. The lead compound 8b (% inhibition = 97.2 at 1 μM) from this series has good pharmacokinetic profile in male Wister rats and is active in animal model of cognition like Morris water maze. The details of chemistry, SAR, pharmacokinetics and pharmacological data constitute the subject matter of this report.
Collapse
Affiliation(s)
- Ramakrishna V S Nirogia
- Discovery Research-Medicinal Chemistry, Suven Life Sciences Ltd, Serene Chambers, Banjara Hills, Hyderabad, India.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
van Loevezijn A, Venhorst J, Iwema Bakker WI, de Korte CG, de Looff W, Verhoog S, van Wees JW, van Hoeve M, van de Woestijne RP, van der Neut MAW, Borst AJM, van Dongen MJP, de Bruin NMWJ, Keizer HG, Kruse CG. N′-(Arylsulfonyl)pyrazoline-1-carboxamidines as Novel, Neutral 5-Hydroxytryptamine 6 Receptor (5-HT6R) Antagonists with Unique Structural Features. J Med Chem 2011; 54:7030-54. [DOI: 10.1021/jm200466r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnold van Loevezijn
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Jennifer Venhorst
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Wouter I. Iwema Bakker
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Cor G. de Korte
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Wouter de Looff
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Stefan Verhoog
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Jan-Willem van Wees
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Martijn van Hoeve
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Rob P. van de Woestijne
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Martina A. W. van der Neut
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Alice J. M. Borst
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Maria J. P. van Dongen
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Natasja M. W. J. de Bruin
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Hiskias G. Keizer
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| | - Chris G. Kruse
- Abbott Healthcare Products B.V. (formerly Solvay Pharmaceuticals B.V.), C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands
| |
Collapse
|
38
|
Liem-Moolenaar M, Rad M, Zamuner S, Cohen AF, Lemme F, Franson KL, van Gerven JMA, Pich EM. Central nervous system effects of the interaction between risperidone (single dose) and the 5-HT6 antagonist SB742457 (repeated doses) in healthy men. Br J Clin Pharmacol 2011; 71:907-16. [PMID: 21223356 DOI: 10.1111/j.1365-2125.2011.03902.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Several lines of evidence suggest a possible role of 5-HT(6) receptor antagonists in dementia or cognitive dysfunction of schizophrenia. SB-742457 is a potent 5-HT(6) antagonist and has shown efficacy in different animal models of cognitive impairment. It is currently in development as a cognitive enhancer. Risperidone, commonly used to control agitation and psychotic features in both schizophrenia and Alzheimer's disease, is a D(2)/5-HT(2A ) antagonist with low affinity for 5-HT(6) receptors and limited effects on cognitive parameters. WHAT THIS STUDY ADDS • As the combination of risperidone and SB-742457 may constitute a reasonable combination in cognitively impaired patients, pharmacodynamic interaction effects were investigated in this study. The only significant drug-drug interaction was a small increase of electroencephalogram (EEG) alpha and beta bands, which might suggest mild arousing activity of SB-742457 on the central nervous system-depressant effects of risperidone. The clinical relevance of these findings in patients remains to be established. Additionally, this study provided an extensive multidimensional pharmacodynamic profile of risperidone in healthy volunteers, showing that this antipsychotic suppresses motor performance (eye-hand coordination, finger tapping and postural stability), alertness, memory and neurophysiological functions (saccadic eye movements and EEG power spectrum). AIM Several lines of evidence suggest a possible role of 5-HT(6 ) receptor antagonists in cognitive dysfunction of schizophrenia. Atypical antipsychotics, such as risperidone, are currently used in these disorders. Therefore, the pharmacological interactions between the 5-HT(6) antagonist SB-742457 and risperidone were investigated in the light of possible co-medication. METHODS A randomized, double-blind, two-way crossover design was used to study the interaction between multiple doses SB-742457 50 mg and a single dose risperidone 2 mg in 18 healthy subjects. RESULTS Treatment was well tolerated. The most common adverse event was somnolence in 83% during the combination vs. 50% of subjects after risperidone, 32% after placebo and 11% after SB-742457. Combination treatment produced a statistically significant increase in the maximum plasma concentration of risperidone and had no effect on SB-742457 pharmacokinetics. Risperidone decreased saccadic peak velocity, finger tapping, adaptive tracking, subjective alertness, delayed word recognition and body sway and increased electroencephalogram (EEG) theta power and prolactin. The only pharmacodynamic interaction of risperidone and SB-742457 was an increase of absolute EEG alpha (ratio = 1.25, 95% CI = 1.11, 1.40, P= 0.0004) and beta power (ratio = 1.14, 95% CI = 1.03, 1.27, P= 0.016). No significant effects of SB-742457 alone were found. CONCLUSION The pharmacokinetic interactions between SB-742457 and risperidone detected in this study were not clinically relevant. The increase in EEG alpha and beta power is incompatible with enhanced risperidone activity, but could point to mild arousing effects of the combination. Most pharmacodynamic changes of risperidone are consistent with previously reported data. The potential cognitive effects of SB-742457 remain to be established.
Collapse
|
39
|
Abstract
Mounting evidence accumulated over the past few years indicates that the neurotransmitter serotonin plays a significant role in cognition. As a drug target, serotonin receptors have received notable attention due in particular to the role of several serotonin-receptor subclasses in cognition and memory. The intimate anatomical and neurochemical association of the serotonergic system with brain areas that regulate memory and learning has directed current drug discovery programmes to focus on this system as a major therapeutic drug target. Thus far, none of these programmes has yielded unambiguous data that suggest that any of the new drug entities possesses disease-modifying properties, and significantly more research in this promising area of investigation is required. Compounds are currently being investigated for activity against serotonin 5-HT(1), 5-HT(4) and 5-HT(6) receptors. This review concludes that most work done in the development of selective serotonin receptor ligands is in the pre-clinical or early clinical phase. Also, while many of these compounds will likely find application as adjuvant therapy in the symptomatic treatment of Alzheimer's disease, there are currently only a few drug entities with activity against serotonin receptors that may offer the potential to alter the progression of the disease.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, USA
| | | |
Collapse
|
40
|
Rigidized 1-aryl sulfonyl tryptamines: Synthesis and pharmacological evaluation as 5-HT6 receptor ligands. Bioorg Med Chem Lett 2011; 21:4577-80. [DOI: 10.1016/j.bmcl.2011.05.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 11/23/2022]
|
41
|
Menuet C, Borghgraef P, Matarazzo V, Gielis L, Lajard AM, Voituron N, Gestreau C, Dutschmann M, Van Leuven F, Hilaire G. Raphé tauopathy alters serotonin metabolism and breathing activity in terminal Tau.P301L mice: possible implications for tauopathies and Alzheimer's disease. Respir Physiol Neurobiol 2011; 178:290-303. [PMID: 21763469 DOI: 10.1016/j.resp.2011.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/14/2011] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
Abstract
Tauopathies, including Alzheimer's disease are the most frequent neurodegenerative disorders in elderly people. Patients develop cognitive and behaviour defects induced by the tauopathy in the forebrain, but most also display early brainstem tauopathy, with oro-pharyngeal and serotoninergic (5-HT) defects. We studied these aspects in Tau.P301L mice, that express human mutant tau protein and develop tauopathy first in hindbrain, with cognitive, motor and upper airway defects from 7 to 8 months onwards, until premature death before age 12 months. Using plethysmography, immunohistochemistry and biochemistry, we examined the respiratory and 5-HT systems of aging Tau.P301L and control mice. At 8 months, Tau.P301L mice developed upper airway dysfunction but retained normal respiratory rhythm and normal respiratory regulations. In the following weeks, Tau.P301L mice entered terminal stages with reduced body weight, progressive limb clasping and lethargy. Compared to age 8 months, terminal Tau.P301L mice showed aggravated upper airway dysfunction, abnormal respiratory rhythm and abnormal respiratory regulations. In addition, they showed severe tauopathy in Kolliker-Fuse, raphé obscurus and raphé magnus nuclei but not in medullary respiratory-related areas. Although the raphé tauopathy concerned mainly non-5-HT neurons, the 5-HT metabolism of terminal Tau.P301L mice was altered. We propose that the progressive raphé tauopathy affects the 5-HT metabolism, which affects the 5-HT modulation of the respiratory network and therefore the breathing pattern. Then, 5-HT deficits contribute to the moribund phenotype of Tau.P301L mice, and possibly in patients suffering from tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clément Menuet
- Maturation, Plasticity, Physiology and Pathology of Respiration (MP3-Respiration), Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Faculté Saint Jérôme (Service 362), 13397 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Borsini F, Bordi F, Riccioni T. 5-HT6 pharmacology inconsistencies. Pharmacol Biochem Behav 2011; 98:169-72. [DOI: 10.1016/j.pbb.2010.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 10/27/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
43
|
Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov 2011; 6:109-127. [PMID: 21532928 PMCID: PMC3083031 DOI: 10.1517/17460441.2011.547189] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION: Microdialysis is an important in vivo sampling technique, useful in the assay of extracellular tissue fluid. The technique has both pre-clinical and clinical applications but is most widely used in neuroscience. The in vivo microdialysis technique allows measurement of neurotransmitters such as acetycholine (ACh), the biogenic amines including dopamine (DA), norepinephrine (NE) and serotonin (5-HT), amino acids such as glutamate (Glu) and gamma aminobutyric acid (GABA), as well as the metabolites of the aforementioned neurotransmitters, and neuropeptides in neuronal extracellular fluid in discrete brain regions of laboratory animals such as rodents and non-human primates. AREAS COVERED: In this review we present a brief overview of the principles and procedures related to in vivo microdialysis and detail the use of this technique in the pre-clinical measurement of drugs designed to be used in the treatment of chemical addiction, neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and as well as psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. This review offers insight into the tremendous utility and versatility of this technique in pursuing neuropharmacological investigations as well its significant potential in rational drug discovery. EXPERT OPINION: In vivo microdialysis is an extremely versatile technique, routinely used in the neuropharmacological investigation of drugs used for the treatment of neurological disorders. This technique has been a boon in the elucidation of the neurochemical profile and mechanism of action of several classes of drugs especially their effects on neurotransmitter systems. The exploitation and development of this technique for drug discovery in the near future will enable investigational new drug candidates to be rapidly moved into the clinical trial stages and to market thus providing new successful therapies for neurological diseases that are currently in demand.
Collapse
Affiliation(s)
- Altaf S. Darvesh
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Psychiatry, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Richard T. Carroll
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Werner J. Geldenhuys
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Gary A. Gudelsky
- Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jochen Klein
- Chemistry, Biochemistry, Pharmacy, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, D-60438, Germany
| | - Charles K. Meshul
- Behavioral Neuroscience, Pathology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Portland Veterans Affairs Research Center, Portland, OR 97239, USA
| | - Cornelis J. Van der Schyf
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| |
Collapse
|
44
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Meneses A, Pérez-García G, Ponce-Lopez T, Castillo C. 5-HT6 Receptor Memory and Amnesia: Behavioral Pharmacology – Learning and Memory Processes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 96:27-47. [DOI: 10.1016/b978-0-12-385902-0.00002-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Nirogi RV, Deshpande AD, Kambhampati R, Badange RK, Kota L, Daulatabad AV, Shinde AK, Ahmad I, Kandikere V, Jayarajan P, Dubey P. Indole-3-piperazinyl derivatives: Novel chemical class of 5-HT6 receptor antagonists. Bioorg Med Chem Lett 2011; 21:346-9. [DOI: 10.1016/j.bmcl.2010.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/08/2010] [Accepted: 11/01/2010] [Indexed: 02/01/2023]
|
47
|
|
48
|
Nirogi RVS, Kothmirkar P, Kambhampati R, Konda JB, Arepalli S, Pamuleti NG, Deshpande AD, Bandyala T, Shinde AK, Dubey PK. Novel and Potent 5-Piperazinyl Methyl-N 1-aryl Sulfonyl Indole Derivatives as 5-HT6 Receptor Ligands. ACS Med Chem Lett 2010; 1:340-4. [PMID: 24900216 DOI: 10.1021/ml100101u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/06/2010] [Indexed: 11/30/2022] Open
Abstract
The exclusive distribution of 5-HT6 receptors in the brain regions associated with learning and memory makes it an ideal target for cognitive disorders. A novel series of 5-piperazinyl methyl-N 1-aryl sulfonyl indoles were designed and synthesized as 5-HT6R ligands. Most of the synthesized compounds are potent when tested by in vitro radioligand binding assay. The lead compound from the series does not have the CYP liabilities and is active in an animal model of cognition.
Collapse
Affiliation(s)
- Ramakrishna V. S. Nirogi
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Prabhakar Kothmirkar
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Ramasastri Kambhampati
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Jagadish Babu Konda
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Sobhanadri Arepalli
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Narasimhareddy G. Pamuleti
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Amol D. Deshpande
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Trinathreddy Bandyala
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Anil K. Shinde
- Discovery Research, Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - P. K. Dubey
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad
| |
Collapse
|
49
|
Ivachtchenko AV, Ivanenkov YA, Tkachenko SE. 5-hydroxytryptamine subtype 6 receptor modulators: a patent survey. Expert Opin Ther Pat 2010; 20:1171-96. [DOI: 10.1517/13543776.2010.494661] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Nirogi RV, Daulatabad AV, Parandhama G, Mohammad S, Sastri K, Shinde AK, Dubey P. Synthesis and pharmacological evaluation of aryl aminosulfonamide derivatives as potent 5-HT6 receptor antagonists. Bioorg Med Chem Lett 2010; 20:4440-3. [DOI: 10.1016/j.bmcl.2010.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/20/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
|