1
|
Mroziak M, Kozłowski G, Kołodziejczyk W, Pszczołowska M, Walczak K, Beszłej JA, Leszek J. Dendrimers-Novel Therapeutic Approaches for Alzheimer's Disease. Biomedicines 2024; 12:1899. [PMID: 39200363 PMCID: PMC11351976 DOI: 10.3390/biomedicines12081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer's disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system.
Collapse
Affiliation(s)
- Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | | | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
2
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04257-7. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
3
|
Jiang X, Song Y, Lv C, Li Y, Feng X, Zhang H, Chen Y, Wang Q. Mushroom-derived bioactive components with definite structures in alleviating the pathogenesis of Alzheimer's disease. Front Pharmacol 2024; 15:1373660. [PMID: 38835656 PMCID: PMC11148366 DOI: 10.3389/fphar.2024.1373660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Alzheimer's disease (AD) is a complicated neurodegenerative condition with two forms: familial and sporadic. The familial presentation is marked by autosomal dominance, typically occurring early in individuals under 65 years of age, while the sporadic presentation is late-onset, occurring in individuals over the age of 65. The majority of AD cases are characterized by late-onset and sporadic. Despite extensive research conducted over several decades, there is a scarcity of effective therapies and strategies. Considering the lack of a cure for AD, it is essential to explore alternative natural substances with higher efficacy and fewer side effects for AD treatment. Bioactive compounds derived from mushrooms have demonstrated significant potential in AD prevention and treatment by different mechanisms such as targeting amyloid formation, tau, cholinesterase dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, neurotrophic factors, ER stress, excitotoxicity, and mitochondrial dysfunction. These compounds have garnered considerable interest from the academic community owing to their advantages of multi-channel, multi-target, high safety and low toxicity. This review focuses on the various mechanisms involved in the development and progression of AD, presents the regulatory effects of bioactive components with definite structure from mushroom on AD in recent years, highlights the possible intervention pathways of mushroom bioactive components targeting different mechanisms, and discusses the clinical studies, limitations, and future perspectives of mushroom bioactive components in AD prevention and treatment.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Song
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
- Koch Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Changshun Lv
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yinghui Li
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiangru Feng
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hao Zhang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yujuan Chen
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
4
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
5
|
Madar P, Nagalapur P, Chaudhari S, Sharma D, Koparde A, Buchade R, Kshirsagar S, Uttekar P, Jadhav S, Chaudhari P. The Unveiling of Therapeutic Targets for Alzheimer's Disease: An Integrative Review. Curr Top Med Chem 2024; 24:850-868. [PMID: 38424435 DOI: 10.2174/0115680266282492240220101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.
Collapse
Affiliation(s)
- Pratiksha Madar
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Pooja Nagalapur
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Devesh Sharma
- Department of Biotechnology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Akshada Koparde
- Department of Pharmaceutical Chemistry, Krishna Foundation's Jaywant Institute of Pharmacy, Malkapur, Karad, India
| | - Rahul Buchade
- Department of Pharmaceutical Chemistry, Indira College of Pharmacy, Tathwade, Pune, India
| | - Sandip Kshirsagar
- Department of Pharmaceutical Chemistry, Dr. D Y Patil College of Pharmacy, Pune, India
| | - Pravin Uttekar
- Department of Pharmacuetics, Savitribai Phule Pune University, Pune, India
| | - Shailaja Jadhav
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Praveen Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
6
|
Mahnashi MH, Ashraf M, Alhasaniah AH, Ullah H, Zeb A, Ghufran M, Fahad S, Ayaz M, Daglia M. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer's disease: In Vitro, In Vivo and In Silico approaches. Biomed Pharmacother 2023; 165:115144. [PMID: 37437376 DOI: 10.1016/j.biopha.2023.115144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Ashraf
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia.
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Thakur A, Bogati S, Pandey S. Attempts to Develop Vaccines Against Alzheimer's Disease: A Systematic Review of Ongoing and Completed Vaccination Trials in Humans. Cureus 2023; 15:e40138. [PMID: 37425610 PMCID: PMC10329479 DOI: 10.7759/cureus.40138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
In this systematic review, we evaluate the safety, tolerability, and immunogenicity of vaccination efforts against Alzheimer's disease (AD) in human subjects from both ongoing and completed vaccination trials. Databases like PubMed, Embase, and Scopus were used to identify relevant articles on completed vaccination trials whereas the clinicaltrials.gov database was used for identifying ongoing clinical trials for vaccination against AD in humans until January 2022. Only interventional randomized or non-randomized clinical trials which reported on the safety and immunogenicity of vaccine against AD in humans were included. Cochrane risk of bias tool-2 (RoB-2) or risk of bias in non-randomized studies- of intervention (ROBINS-I) was used for risk of bias assessment as appropriate. A narrative descriptive synthesis of the findings was done. Sixteen randomized/non-randomized clinical trials (phase I: six and phase II: 10) for seven different types of vaccines against AD were identified comprising a total of 2080 participants. Apart from the development of meningoencephalitis in 6% of patients receiving AN1792 in an interrupted phase II trial, the rest of the trial reported promising results on the safety and immunogenicity of vaccines. While only a subset of reported adverse events was treatment related, none of the fatalities reported during the trial were considered related to vaccine administration. The serological response rate ranged from 100% (4/16 trials) to 19.7% in an interrupted trial. Although current trials show promising results, adequately powered phase III studies are needed to conclusively establish the safety, immunogenicity and therapeutic efficacy of vaccines.
Collapse
Affiliation(s)
- Ajit Thakur
- Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, NPL
| | - Sunil Bogati
- Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, NPL
| | - Sagar Pandey
- Internal Medicine, One Brooklyn Health System Interfaith Medical Center, Brooklyn, USA
| |
Collapse
|
8
|
Gade AC, Murahari M, Pavadai P, Kumar MS. Virtual Screening of a Marine Natural Product Database for In Silico Identification of a Potential Acetylcholinesterase Inhibitor. Life (Basel) 2023; 13:1298. [PMID: 37374081 DOI: 10.3390/life13061298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease is characterized by amyloid-beta aggregation and neurofibrillary tangles. Acetylcholinesterase (AChE) hydrolyses acetylcholine and induces amyloid-beta aggregation. Acetylcholinesterase inhibitors (AChEI) inhibit this aggregation by binding to AChE, making it a potential target for the treatment of AD. In this study, we have focused on the identification of potent and safe AChEI from the Comprehensive Marine Natural Product Database (CMNPD) using computational tools. For the screening of CMNPD, a structure-based pharmacophore model was generated using a structure of AChE complexed with the co-crystallized ligand galantamine (PDB ID: 4EY6). The 330 molecules that passed through the pharmacophore filter were retrieved, their drug-likeness was determined, and they were then subjected to molecular docking studies. The top ten molecules were selected depending upon their docking score and were submitted for toxicity profiling. Based on these studies, molecule 64 (CMNPD8714) was found to be the safest and was subjected to molecular dynamics simulations and density functional theory calculations. This molecule showed stable hydrogen bonding and stacked interactions with TYR341, mediated through a water bridge. In silico results can be correlated with in vitro studies for checking its activity and safety in the future.
Collapse
Affiliation(s)
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Maushmi Shailesh Kumar
- Somaiya Institute of Research and Consultancy, Somaiya Vidyavihar University, Mumbai 400077, India
| |
Collapse
|
9
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Liang Y, Wang L. Carthamus tinctorius L.: A natural neuroprotective source for anti-Alzheimer's disease drugs. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115656. [PMID: 36041691 DOI: 10.1016/j.jep.2022.115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a multicausal neurodegenerative disease clinically characterized by generalized dementia. The pathogenic process of AD not only is progressive and complex but also involves multiple factors and mechanisms, including β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. As the first-line treatment for AD, cholinesterase inhibitors can, to a certain extent, relieve AD symptoms and delay AD progression. Nonetheless, the current treatment strategies for AD are far from meeting clinical expectations, and more options for AD treatment should be applied in clinical practice. AIM OF THE REVIEW The aim of this review was to investigate published reports of C. tinctorius L. and its active constituents in AD treatment through a literature review. MATERIALS AND METHODS Information was retrieved from scientific databases including Web of Science, ScienceDirect, Scopus, Google Scholar, Chemical Abstracts Services and books, PubMed, dissertations and technical reports. Keywords used for the search engines were "Honghua" or "Carthamus tinctorius L." or "safflower" in conjunction with "(native weeds OR alien invasive)"AND "Chinese herbal medicine". RESULTS A total of 47 literatures about C. tinctorius L. and its active constituents in AD treatment through signaling pathways, immune cells, and disease-related mediators and systematically elucidates potential mechanisms from the point of anti-Aβ aggregation, suppressing tau protein hyperphosphorylation, increasing cholinergic neurotransmitters levels, inhibiting oxidative stress, anti-neuroinflammation, ameliorating synaptic plasticity, and anti-apoptosis. CONCLUSIONS Chinese herbal medicine (CHM) is a treasure endowed by nature to mankind. Emerging studies have confirmed that CHM and its active constituents play a positive role in AD treatment. Carthamus tinctorius L., the most commonly used CHM, can be used with medicine and food, with the effect of activating blood circulation and eliminating blood stasis. In the paper, we have concluded that the existing therapeutic mechanisms of C. tinctorius L. and summarized the potential mechanisms of C. tinctorius L. and its active constituents in AD treatment through a literature review.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
11
|
Rajput A, Pingale P, Dhapte-Pawar V. Nasal delivery of neurotherapeutics via nanocarriers: Facets, aspects, and prospects. Front Pharmacol 2022; 13:979682. [PMID: 36176429 PMCID: PMC9513345 DOI: 10.3389/fphar.2022.979682] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the neurological ailments which continue to represent a major public health challenge, owing to increased life expectancy and aging population. Progressive memory loss and decrease in cognitive behavior, owing to irreversible destruction of neurons along with expensive therapeutic interventions, call for an effective, alternate, yet affordable treatment for Alzheimer’s disease. Safe and effective delivery of neurotherapeutics in Alzheimer’s like central nervous system (CNS) disorders still remains elusive despite the major advances in both neuroscience and drug delivery research. The blood–brain barrier (BBB) with its tight endothelial cell layer surrounded by astrocyte foot processes poses as a major barrier for the entry of drugs into the brain. Nasal drug delivery has emerged as a reliable method to bypass this blood–brain barrier and deliver a wide range of neurotherapeutic agents to the brain effectively. This nasal route comprises the olfactory or trigeminal nerves originating from the brain and terminating into the nasal cavity at the respiratory epithelium or olfactory neuroepithelium. They represent the most direct method of noninvasive entry into the brain, opening the most suitable therapeutic avenue for treatment of neurological diseases. Also, drugs loaded into nanocarriers can have better interaction with the mucosa that assists in the direct brain delivery of active molecules bypassing the BBB and achieving rapid cerebrospinal fluid levels. Lipid particulate systems, emulsion-based systems, vesicular drug delivery systems, and other nanocarriers have evolved as promising drug delivery approaches for the effective brain delivery of anti-Alzheimer’s drugs with improved permeability and bioavailability via the nasal route. Charge, size, nature of neurotherapeutics, and formulation excipients influence the effective and targeted drug delivery using nanocarriers via the nasal route. This article elaborates on the recent advances in nanocarrier-based nasal drug delivery systems for the direct and effective brain delivery of the neurotherapeutic molecules. Additionally, we have attempted to highlight various experimental strategies, underlying mechanisms in the pathogenesis and therapy of central nervous system diseases, computational approaches, and clinical investigations pursued so far to attain and enhance the direct delivery of therapeutic agents to the brain via the nose-to-brain route, using nanocarriers.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES’s Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik, India
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
- *Correspondence: Vividha Dhapte-Pawar, ,
| |
Collapse
|
12
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
13
|
Sacco S, Falquero S, Bouis C, Akkaya M, Gallard J, Pichot A, Radice G, Bazin F, Montestruc F, Hiance-Delahaye A, Rebillat AS. Modified cued recall test in the French population with Down syndrome: A retrospective medical records analysis. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2022; 66:690-703. [PMID: 35726628 DOI: 10.1111/jir.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adults with Down syndrome (DS) are at increased risk of developing Alzheimer's disease (AD) due to genetic predisposition. Identification of patients with AD is difficult since intellectual disabilities (ID) may confound diagnosis. The objective of this study was to evaluate the ability of the French version of the modified cued recall test (mCRT) to distinguish between subjects with and without AD in the adult DS population. METHODS This was a retrospective, single-centre, medical records study including data between March 2014 and July 2020. Adults aged ≥30 years with DS who had at least one mCRT record available were eligible. Age, sex and ID level were extracted, and subjects were attributed to three groups: patients with AD, patients with co-occurring conditions that may impact cognitive function and subjects without AD. mCRT scores, adjusted by sex, age and ID level, were compared between groups. The optimal cut-off value to distinguish between patients with and without AD was determined using the receiver operating characteristic curve. The impact of age and ID level on mCRT scores was assessed. RESULTS Overall, 194 patients with DS were included: 12 patients with AD, 94 patients with co-occurring conditions and 88 healthy subjects. Total recall scores were significantly lower (P < 0.0001) in patients with AD compared with healthy subjects. The optimal cut-off value to discriminate between patients with AD and healthy subjects was 22, which compares well with the cut-off value of 23 originally reported for the English version of the mCRT. Patients aged 30-44 years had higher mCRT total recall scores compared with patients aged ≥45 years (P = 0.0221). Similarly, patients with mild ID had higher mCRT scores compared with patients with severe ID (P < 0.0001). INTERPRETATION The mCRT is a sensitive tool that may help in the clinical diagnosis of AD in subjects with DS. Early recognition of AD is paramount to deliver appropriate interventions to this vulnerable population.
Collapse
Affiliation(s)
- S Sacco
- Institut Jérôme Lejeune, Paris, France
| | | | - C Bouis
- Institut Jérôme Lejeune, Paris, France
| | - M Akkaya
- Institut Jérôme Lejeune, Paris, France
| | - J Gallard
- Institut Jérôme Lejeune, Paris, France
| | - A Pichot
- Institut Jérôme Lejeune, Paris, France
| | - G Radice
- Institut Jérôme Lejeune, Paris, France
| | - F Bazin
- Department of Statistics, eXYSTAT, Paris, France
| | - F Montestruc
- Department of Statistics, eXYSTAT, Paris, France
| | | | | |
Collapse
|
14
|
Morsy A, Maddeboina K, Gao J, Wang H, Valdez J, Dow LF, Wang X, Trippier PC. Functionalized Allopurinols Targeting Amyloid-Binding Alcohol Dehydrogenase Rescue Aβ-Induced Mitochondrial Dysfunction. ACS Chem Neurosci 2022; 13:2176-2190. [PMID: 35802826 DOI: 10.1021/acschemneuro.2c00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common dementia affecting one in nine people over 65. Only a handful of small-molecule drugs and the anti-β amyloid (Aβ) antibody aducanumab are approved to treat AD. However, they only serve to reduce symptoms of advanced disease. Novel treatments administered early in disease progression before the accumulation of Aβ and tau reaches the threshold where neuroinflammation is triggered and irreversible neuronal damage occurs are more likely to provide effective therapy. There is a growing body of evidence implying that mitochondrial dysfunction occurs at an early stage of AD pathology. The mitochondrial enzyme amyloid-binding alcohol dehydrogenase (ABAD) binds to Aβ potentiating toxicity. Moreover, ABAD has been shown to be overexpressed in the same areas of the brain most affected by AD. Inhibiting the Aβ-ABAD protein-protein interaction without adversely affecting normal enzyme turnover is hypothesized to be a potential treatment strategy for AD. Herein, we conduct structure-activity relationship studies across a series of functionalized allopurinol derivatives to determine their ability to inhibit Aβ-mediated reduction of estradiol production from ABAD. The lead compound resulting from these studies possesses potent activity with no toxicity up to 100 μM, and demonstrates an ability to rescue defective mitochondrial metabolism in human SH-SY5Y cells and rescue both defective mitochondrial metabolism and morphology ex vivo in primary 5XFAD AD mouse model neurons.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ju Gao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Hezhen Wang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas79106, United States
| | - Juan Valdez
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas79106, United States
| | - Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
15
|
García Marín ID, Camarillo López RH, Martínez OA, Padilla-Martínez II, Correa-Basurto J, Rosales-Hernández MC. New compounds from heterocyclic amines scaffold with multitarget inhibitory activity on Aβ aggregation, AChE, and BACE1 in the Alzheimer disease. PLoS One 2022; 17:e0269129. [PMID: 35657793 PMCID: PMC9165844 DOI: 10.1371/journal.pone.0269129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
The preset neurodegenerations in Alzheimer disease (AD) are due to several mechanisms such as amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, neurofibrillary tangles, cholinergic dysfunction, among others. The aim of this work was to develop multitarget molecules for the treatment of AD. Therefore, a family of 64 molecules was designed based on ligand structure pharmacophores able to inhibit the activity of beta secretase (BACE1) and acetylcholinesterase (AChE) as well as to avoid amyloid beta (Aβ1–42) oligomerization. The backbone of designed molecules consisted of a trisubstituted aromatic ring, one of the substituents was a heterocyclic amine (piperidine, morpholine, pyrrolidine or N-methyl pyrrolidine) separated from the aromatic system by three carbon atoms. The set of compounds was screened in silico employing molecular docking calculations and chemoinformatic analyses. Based on Gibbs free energy of binding, binding mode and in silico predicted toxicity results, three of the best candidates were selected, synthesized, and evaluated in vitro; F3S4-m, F2S4-m, and F2S4-p. All three compounds prevented Aβ1–42 aggregation (F3S4-m in 30.5%, F2S4-p in 42.1%, and F2S4-m in 60.9%). Additionally, inhibitory activity against AChE (ki 0.40 μM and 0.19 μM) and BACE1 (IC50 15.97 μM and 8.38 μM) was also observed for compounds F2S4-m and F3S4-m, respectively. Despite the BACE IC50 results demonstrated that all compounds are very less potent respect to peptidomimetic inhibitor (PI-IV IC50 3.20 nM), we can still say that F3S4-m is capable to inhibit AChE and BACE1.
Collapse
Affiliation(s)
- Iohanan Daniel García Marín
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Raúl Horacio Camarillo López
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Dirección Académica de Ingenierías Civil, Mecánica, Química, Ambiental y Sustentabilidad, Universidad Tecnológica de México, Campus Sur, Ciudad de México, México
| | - Oscar Aurelio Martínez
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Itzia Irene Padilla-Martínez
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- * E-mail:
| |
Collapse
|
16
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
17
|
He M, Fan M, Peng Z, Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur J Med Chem 2021; 221:113546. [PMID: 34023737 DOI: 10.1016/j.ejmech.2021.113546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Hydroxypyranone and hydroxypyridinone are important oxygen-containing or nitrogen-containing heterocyclic nucleus and attracted increasing attention in medicinal chemistry and drug discovery over the past decade. Previous literature reports revealed that hydroxypyranone and hydroxypyridinone derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, antioxidant, anticonvulsant, and anti-diabetic activities. In this review, we systematically summarized the literature reported biological activities of hydroxypyranone and hydroxypyridinone derivatives. In particular, we focus on their biological activity, structure-activity relationship (SAR), mechanism of action, and interaction mechanisms with the target. The collected information is expected to provide rational guidance for the development of clinically useful agents from these pharmacophores.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.
| |
Collapse
|
18
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Pirolla NFF, Batista VS, Dias Viegas FP, Gontijo VS, McCarthy CR, Viegas C, Nascimento-Júnior NM. Alzheimer's Disease: Related Targets, Synthesis of Available Drugs, Bioactive Compounds Under Development and Promising Results Obtained from Multi-target Approaches. Curr Drug Targets 2021; 22:505-538. [PMID: 32814524 DOI: 10.2174/1389450121999200819144544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
We describe herein the therapeutic targets involved in Alzheimer's disease as well as the available drugs and their synthetic routes. Bioactive compounds under development are also exploited to illustrate some recent research advances on the medicinal chemistry of Alzheimer's disease, including structure-activity relationships for some targets. The importance of multi-target approaches, including some examples from our research projects, guides new perspectives in search of more effective drug candidates. This review comprises the period between 2001 and early 2020.
Collapse
Affiliation(s)
- Natália F F Pirolla
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Victor S Batista
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Flávia Pereira Dias Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Vanessa Silva Gontijo
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Caitlin R McCarthy
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Claudio Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Nailton M Nascimento-Júnior
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| |
Collapse
|
20
|
Mahomoodally F, Abdallah HH, Suroowan S, Jugreet S, Zhang Y, Hu X. In silico Exploration of Bioactive Phytochemicals Against Neurodegenerative Diseases Via Inhibition of Cholinesterases. Curr Pharm Des 2021; 26:4151-4162. [PMID: 32178608 DOI: 10.2174/1381612826666200316125517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders are estimated to become the second leading cause of death worldwide by 2040. Despite the widespread use of diverse allopathic drugs, these brain-associated disorders can only be partially addressed and long term treatment is often linked with dependency and other unwanted side effects. Nature, believed to be an arsenal of remedies for any illness, presents an interesting avenue for the development of novel neuroprotective agents. Interestingly, inhibition of cholinesterases, involved in the breakdown of acetylcholine in the synaptic cleft, has been proposed to be neuroprotective. This review therefore aims to provide additional insight via docking studies of previously studied compounds that have shown potent activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro. Indeed, the determination of potent plant-based ligands for this purpose through in silico methods enables the elimination of lengthy and costly traditional methods of drug discovery. Herein, a literature search was conducted to identify active phytochemicals which are cholinesterase inhibitors. Following which in silico docking methods were applied to obtain docking scores. Compound structures were extracted from online ZINC database and optimized using AM1 implemented in gaussian09 software. Noteworthy ligands against AChE highlighted in this study include: 19,20-dihydroervahanine A and 19, 20-dihydrotabernamine. Regarding BChE inhibition, the best ligands were found to be 8-Clavandurylkaempferol, Na-methylepipachysamine D; ebeiedinone; and dictyophlebine. Thus, ligand optimization between such phytochemicals and cholinesterases coupled with in vitro, in vivo studies and randomized clinical trials can lead to the development of novel drugs against neurodegenerative disorders.
Collapse
Affiliation(s)
- Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Hassan H Abdallah
- Chemistry Department, College of Education, Salahaddin University, 44002 Erbil, Iraq
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xuebo Hu
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Ma D, Luo Y, Huang R, Zhao Z, Wang Q, Li L, Zhang L. Cornel Iridoid Glycoside Suppresses Tau Hyperphosphorylation and Aggregation in a Mouse Model of Tauopathy through Increasing Activity of PP2A. Curr Alzheimer Res 2020; 16:1316-1331. [PMID: 31902362 DOI: 10.2174/1567205017666200103113158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/12/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND rTg4510 mice are transgenic mice expressing P301L mutant tau and have been developed as an animal model of tauopathy including Alzheimer's Disease (AD). Cornel Iridoid Glycoside (CIG) is an active ingredient extracted from Cornus officinalis, a traditional Chinese herb. The purpose of the present study was to investigate the effects of CIG on tau pathology and underlying mechanisms using rTg4510 mice. METHODS The cognitive functions were detected by Morris water maze and objective recognition tests. Western blotting and immunofluorescence were conducted to measure the levels of phosphorylated tau and related proteins. Serine/threonine phosphatase assay was applied to detect the activity of protein phosphatase 2A (PP2A). RESULTS Intragastric administration of CIG for 3 months improved learning and memory abilities, prevented neuronal and synapse loss, halted brain atrophy, elevated levels of synaptic proteins, protected cytoskeleton, reduced tau hyperphosphorylation and aggregation in the brain of rTg4510 mice. In the mechanism studies, CIG increased the activity of PP2A, elevated the methylation of PP2A catalytic C (PP2Ac) at leucine 309, decreased the phosphorylation of PP2Ac at tyrosine 307, and increased protein expression of leucine carboxyl methyltransferase 1 (LCMT-1), protein tyrosine phosphatase 1B (PTP1B), and protein phosphatase 2A phosphatase activator (PTPA) in the brain of rTg4510 mice. CONCLUSION CIG might have the potential to treat tauopathy such as AD via activating PP2A.
Collapse
Affiliation(s)
- Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yi Luo
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rui Huang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Zirun Zhao
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, United States
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
22
|
Yuan J, Meloni BP, Shi T, Bonser A, Papadimitriou JM, Mastaglia FL, Zhang C, Zheng M, Gao J. The Potential Influence of Bone-Derived Modulators on the Progression of Alzheimer's Disease. J Alzheimers Dis 2020; 69:59-70. [PMID: 30932886 DOI: 10.3233/jad-181249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone, the major structural scaffold of the human body, has recently been demonstrated to interact with several other organ systems through the actions of bone-derived cells and bone-derived cell secretory proteins. Interestingly, the brain is one organ that appears to fall into this interconnected network. Furthermore, the fact that osteoporosis and Alzheimer's disease are two common age-related disorders raises the possibility that these two organ systems are interconnected in terms of disease pathogenesis. This review focuses on the latest evidence demonstrating the impact of bone-derived cells and bone-derived proteins on the central nervous system, and on how this may be relevant in the progression of Alzheimer's disease and for the identification of novel therapeutic approaches to treat this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jun Yuan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Tianxing Shi
- Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Bonser
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - John M Papadimitriou
- Pathwest Laboratories and Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Mezeiova E, Chalupova K, Nepovimova E, Gorecki L, Prchal L, Malinak D, Kuca K, Soukup O, Korabecny J. Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:772-800. [PMID: 30819078 DOI: 10.2174/1567205016666190228122956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
24
|
Sepehri N, Mohammadi‐Khanaposhtani M, Asemanipoor N, Hosseini S, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Taslimi P, Sadeghian N, Gulcin I. Synthesis, characterization, molecular docking, and biological activities of coumarin–1,2,3‐triazole‐acetamide hybrid derivatives. Arch Pharm (Weinheim) 2020; 353:e2000109. [DOI: 10.1002/ardp.202000109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park Tehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center Alborz University of Medical Sciences Karaj Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| |
Collapse
|
25
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
26
|
Myrtus communis subsp. communis improved cognitive functions in ovariectomized diabetic rats. Gene 2020; 744:144616. [PMID: 32222531 DOI: 10.1016/j.gene.2020.144616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
AIM The purpose of this study was to investigate the possible effects of Myrtus communis subsp. communis (MC) on cognitive impairment in ovariectomized diabetic rats. MATERIAL AND METHOD Female Sprague-Dawley rats were divided into 5 groups consisting of 15 rats each; Control (C), Diabetes (D), Ovariectomy and diabetes (OVX + D), Ovariectomy, diabetes and donepezil (OVX + D + Don), Ovariectomy, diabetes and Myrtus communis subsp. communis (OVX + D + MC). Blood glucose measurements were made at the beginning and end of the experiments. The animals underwent the novel object recognition test (NORT) and their performance was evaluated. In hippocampal tissues; amyloid beta (Aβ) and neprilysin levels, acetylcholinesterase (AChE), and choline acetyltransferase (ChAT) activities, polysialylated neural cell adhesion molecule (PSA-NCAM), α7 subunit of neuronal nicotinic acetylcholine receptor (α7-nAChR) and brain derived neurotrophic factor (BDNF) gene expressions were examined. RESULTS Animals with ovariectomy and diabetes showed increased levels of blood glucose, AChE activity and Aβ levels, and decreased neprilysin levels, ChAT activity, α7-nAChR, PSA-NCAM and BDNF gene expressions in parallel with a decrease in NORT performance score. On the other hand, in the MC-treated OVX + D group, there was a significant decrease observed in blood glucose levels and AChE activities while there was improvement in NORT performances and an increase in hippocampal ChAT activity, neprilysin levels, α7-nAChR, PSA-NCAM and BDNF expressions. CONCLUSION These results suggest that MC extract could improve cognitive and neuronal functions with its anticholinesterase and antihyperglycemic properties.
Collapse
|
27
|
A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice. Pharmaceutics 2020; 12:pharmaceutics12030284. [PMID: 32235699 PMCID: PMC7151078 DOI: 10.3390/pharmaceutics12030284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo efficacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockade.
Collapse
|
28
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
29
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis. Molecules 2019; 24:E4410. [PMID: 31816853 PMCID: PMC6930470 DOI: 10.3390/molecules24234410] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.
Collapse
Affiliation(s)
- Jéssika P. Teixeira
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Alexandre A. de Castro
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Flávia V. Soares
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
31
|
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. Int J Mol Sci 2019; 20:E5090. [PMID: 31615073 PMCID: PMC6834216 DOI: 10.3390/ijms20205090] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.
Collapse
Affiliation(s)
- Sudip Dhakal
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Naufal Kushairi
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Chia Wei Phan
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
32
|
Croteau E, Castellano CA, Richard MA, Fortier M, Nugent S, Lepage M, Duchesne S, Whittingstall K, Turcotte ÉE, Bocti C, Fülöp T, Cunnane SC. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease. J Alzheimers Dis 2019; 64:551-561. [PMID: 29914035 DOI: 10.3233/jad-180202] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. OBJECTIVE To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. METHODS Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. RESULTS Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. CONCLUSION Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.
Collapse
Affiliation(s)
- Etienne Croteau
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marie Anne Richard
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Fortier
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Scott Nugent
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Duchesne
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, QC, Canada.,Department of Radiology, Université Laval, Québec, QC, Canada
| | | | - Éric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
33
|
Arya R, Gupta SP, Paliwal S, Sharma S, Madan K, Chauhan M. Pharmacophore Modeling and Docking Studies to Investigate Potential Leads for the Development of β -Secretase APP Cleavage Enzyme-1 (BACE-1) Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666181023110736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer’s disease is a medical condition with detrimental brain health. It is
majorly diagnosed in aging individuals plaque in β) characterized by accumulated Amyloidal beta (A
1 BACE) 1 secretase APP cleavage enzyme βneurological areas. The ) is the target of choice that can
be exploited to find drugs against Alzheimer’s disease.
Methods:
A series of BACE-1 inhibitors with reported binding constant were considered for the development
of a feature based pharmacophore model.
Results:
The good correlation coefficient (r=0.91) and RMSD of 0.93 was observed with 30 compounds
in training set. The model was validated internally (r2test=0.76) as well as externally by Fischer validation.
The pharmacophore based virtual screening retrieved compounds that were docked and biologically
evaluated.
Conclusion:
The three structurally diverse molecules were tested by in-vitro method. The pyridine
derivative with highest fit value (6.9) exhibited IC50 value of 2.70 µM and thus was found to be the most
promising lead molecule as BACE-1 inhibitor.
Collapse
Affiliation(s)
- Richa Arya
- Banasthali University, 304022, Banasthali, (Raj.), India
| | - Satya Prakash Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, 250005, Meerut, India
| | | | - Swapnil Sharma
- Banasthali University, 304022, Banasthali, (Raj.), India
| | - Kirtika Madan
- Banasthali University, 304022, Banasthali, (Raj.), India
| | - Monika Chauhan
- Banasthali University, 304022, Banasthali, (Raj.), India
| |
Collapse
|
34
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
35
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
36
|
Manchikalapudi AL, Chilakala RR, Kalia K, Sunkaria A. Evaluating the Role of Microglial Cells in Clearance of Aβ from Alzheimer's Brain. ACS Chem Neurosci 2019; 10:1149-1156. [PMID: 30609357 DOI: 10.1021/acschemneuro.8b00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ever increasing incidence of Alzheimer's diseases (AD) has been reported all over the globe, and practically no drug is currently available for its treatment. In the past 15 years, not a single drug came out of clinical trials. The researchers have yet to discover a drug that could specifically target AD; in fact, the drugs that are about to launch in the global market either belong to natural compounds or are already approved drugs targeting other diseases. So, we need to shift our focus on finding novel targets which are more specific and could either detect or inhibit the disease progression at a very early stage. Microglia are the only resident innate immune cells of the brain that are originated from erythromyeloid progenitors. They migrate to the brain during early embryonic development, although their number is less (∼5 to 10%), but they could act as guardians of the brain. It has been shown that the extracellular deposits of Aβ are continuously phagocytosed by microglia in healthy individuals, but this ability would decrease with age and lead to development of AD. In this review, we have explored the possibility of whether microglial cells could be utilized as an early predictor of the AD progression. Here, we discuss the innate immune response of microglial cells, the factors affecting microglia response, microglial receptors to which Aβ could bind, and microglial phenotype markers. Last, we conclude with a list of available AD therapeutics along with their mechanism.
Collapse
Affiliation(s)
| | - Rajasekhar Reddy Chilakala
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| |
Collapse
|
37
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
38
|
Piemontese L, Tomás D, Hiremathad A, Capriati V, Candeias E, Cardoso SM, Chaves S, Santos MA. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's drug candidates. J Enzyme Inhib Med Chem 2018; 33:1212-1224. [PMID: 30160188 PMCID: PMC6127844 DOI: 10.1080/14756366.2018.1491564] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 02/08/2023] Open
Abstract
A new series of multifunctional hybrids, based on the structure of the donepezil (DNP) drug, have been developed and evaluated as potential anti Alzheimer's disease (AD) agents. The rationale of this study was the conjugation of a benzylpiperidine/benzylpiperazine moiety with derivatives of bioactive heterocyclics (benzimidazole or benzofuran), to mimic the main structure of DNP and to endow the hybrids with additional relevant properties such as inhibition of amyloid beta (Aβ) peptide aggregation, antioxidant activity and metal chelation. Overall, they showed good activity for AChE inhibition (IC50=4.0-30.0 μΜ) and moderate ability for inhibition of Aβ1-42 self-mediated aggregation. The hybrids containing chelating groups showed improvement in the inhibition of Cu-induced Aβ42 aggregation and the antioxidant capacity. Moreover, neuroprotective effects of these compounds were evidenced in neuroblastoma cells after Aβ1-42 induced toxicity. Structure-activity relationship allowed the identification of some promising compounds and the main determinant structural features for the targeted properties.
Collapse
Affiliation(s)
- Luca Piemontese
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Consortium C.I.N.M.P.I.S, Bari, Italy
| | - Daniel Tomás
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Asha Hiremathad
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Consortium C.I.N.M.P.I.S, Bari, Italy
| | - Emanuel Candeias
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra M. Cardoso
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M. Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Cheng G, Xu P, Zhang M, Chen J, Sheng R, Ma Y. Resveratrol-maltol hybrids as multi-target-directed agents for Alzheimer’s disease. Bioorg Med Chem 2018; 26:5759-5765. [DOI: 10.1016/j.bmc.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
|
40
|
Panagaki T, Gengler S, Hölscher C. The Novel DA–CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1ΔE9 Mouse Model. J Alzheimers Dis 2018; 66:195-218. [DOI: 10.3233/jad-180584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Theodora Panagaki
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Simon Gengler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
41
|
Shrivastava SK, Sinha SK, Srivastava P, Tripathi PN, Sharma P, Tripathi MK, Tripathi A, Choubey PK, Waiker DK, Aggarwal LM, Dixit M, Kheruka SC, Gambhir S, Shankar S, Srivastava RK. Design and development of novel p-aminobenzoic acid derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2018; 82:211-223. [PMID: 30326403 DOI: 10.1016/j.bioorg.2018.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Based on the quantitative structure-activity relationship (QSAR), some novel p-aminobenzoic acid derivatives as promising cholinesterase enzyme inhibitors were designed, synthesized, characterized and evaluated to enhance learning and memory. The in vitro enzyme kinetic study of the synthesized compounds revealed the type of inhibition on the respective acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vivo studies of the synthesized compounds exhibited significant reversal of cognitive deficits in the animal models of amnesia as compared to standard drug donepezil. Further, the ex vivo studies in the specific brain regions like the hippocampus, hypothalamus, and prefrontal cortex regions also exhibited AChE inhibition comparable to standard donepezil. The in silico molecular docking and dynamics simulations studies of the most potent compound 22 revealed the consensual interactions at the active site pocket of the AChE.
Collapse
Affiliation(s)
- Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India.
| | - Saurabh K Sinha
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Prabhash N Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Manish K Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Avanish Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Priyanka K Choubey
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Digambar K Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Lalit M Aggarwal
- Department of Radiotherapy & Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221 005, India
| | - Manish Dixit
- Department of Nuclear Medicine, SGPGIMS, Raebareli Road, Lucknow 226014, UP, India
| | - Subhash C Kheruka
- Department of Nuclear Medicine, SGPGIMS, Raebareli Road, Lucknow 226014, UP, India
| | - Sanjay Gambhir
- Department of Nuclear Medicine, SGPGIMS, Raebareli Road, Lucknow 226014, UP, India
| | - Sharmila Shankar
- Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Natural Peptides in Drug Discovery Targeting Acetylcholinesterase. Molecules 2018; 23:molecules23092344. [PMID: 30217053 PMCID: PMC6225273 DOI: 10.3390/molecules23092344] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylcholinesterase-inhibitory peptide has gained much importance since it can inhibit acetylcholinesterase (AChE) and increase the availability of acetylcholine in cholinergic synapses, enhancing cholinergic transmission in pharmacological treatment of Alzheimer’s disease (AD). Natural peptides have received considerable attention as biologically important substances as a source of AChE inhibitors. These natural peptides have high potential pharmaceutical and medicinal values due to their bioactivities as neuroprotective and neurodegenerative treatment activities. These peptides have attracted great interest in the pharmaceutical industries, in order to design potential peptides for use in the prophylactic and therapy purposes. Some natural peptides and their derivatives have high commercial values and have succeeded in reaching the pharmaceutical market. A large number of peptides are already in preclinical and clinical pipelines for treatment of various diseases. This review highlights the recent researches on the various natural peptides and future prospects for AD management.
Collapse
|
43
|
Chufarova N, Czarnecka K, Skibiński R, Cuchra M, Majsterek I, Szymański P. New tacrine-acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2018; 351:e1800050. [DOI: 10.1002/ardp.201800050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Nina Chufarova
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy; Medical University of Lodz; Lodz Poland
| | - Kamila Czarnecka
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy; Medical University of Lodz; Lodz Poland
| | - Robert Skibiński
- Faculty of Pharmacy, Department of Medicinal Chemistry; Medical University of Lublin; Lublin Poland
| | - Magda Cuchra
- Department of Clinical Chemistry and Biochemistry; Medical University of Lodz; Lodz Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry; Medical University of Lodz; Lodz Poland
| | - Paweł Szymański
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy; Medical University of Lodz; Lodz Poland
| |
Collapse
|
44
|
Gupta SK, Mesharam MK, Krishnamurthy S. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 2018; 43:263-276. [PMID: 29872015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electromagnetic radiation (EMR) can induce or modulate several neurobehavioral disorders. Duration and frequency of exposure of EMR is critical to develop cognitive disorders. Even though EMR-2450 is widely used, its effects on cognition in relation to mitochondrial function and apoptosis would provide better understanding of its pathophysiological effects. Therefore, a comparative study of different frequencies of EMR exposure would give valuable information on effects of discrete frequencies of EMR on cognition. Male rats were exposed to EMR (900, 1800 and 2450 MHz) every day for 1 h for 28 consecutive days. The cognitive behavior in terms of novel arm entries in Y-maze paradigm was evaluated every week after 1 h to last EMR exposure. Animals exposed to EMR-2450 MHz exhibited significant cognitive deficits. EMR- 2450 MHz caused loss of mitochondrial function and integrity, an increase in amyloid beta expression. There was release of cytochrome-c and activation of apoptotic factors such as caspase-9 and -3 in the hippocampus. Further, there was decrease in levels of acetylcholine, and increase in activity of acetyl cholinesterase, indicating impairment of cholinergic system. Therefore, exposure of EMR-2450 in rats caused cognitive deficit with related pathophysiological changes in mitochondrial and cholinergic function, and amyloidogenesis.
Collapse
Affiliation(s)
- Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
45
|
Gupta SK, Mesharam MK, Krishnamurthy S. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 2018. [DOI: 10.1007/s12038-018-9744-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Maity S, Pal S, Sardar S, Sepay N, Parvej H, Begum S, Dalui R, Das N, Pradhan A, Halder UC. Inhibition of amyloid fibril formation of β-lactoglobulin by natural and synthetic curcuminoids. NEW J CHEM 2018. [DOI: 10.1039/c8nj03194k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aggregation of proteins has been associated with several aspects of daily life, including food processing, blood coagulation and many neurodegenerative infections.
Collapse
|
47
|
Rüb U, Stratmann K, Heinsen H, Seidel K, Bouzrou M, Korf HW. Alzheimer's Disease: Characterization of the Brain Sites of the Initial Tau Cytoskeletal Pathology Will Improve the Success of Novel Immunological Anti-Tau Treatment Approaches. J Alzheimers Dis 2017; 57:683-696. [PMID: 28269779 DOI: 10.3233/jad-161102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) represents the most frequent neurodegenerative disease of the human brain worldwide. Currently practiced treatment strategies for AD only include some less effective symptomatic therapeutic interventions, which unable to counteract the disease course of AD. New therapeutic attempts aimed to prevent, reduce, or remove the extracellular depositions of the amyloid-β protein did not elicit beneficial effects on cognitive deficits or functional decline of AD. In view of the failure of these amyloid-β-based therapeutic trials and the close correlation between the brain pathology of the cytoskeletal tau protein and clinical AD symptoms, therapeutic attention has since shifted to the tau cytoskeletal protein as a novel drug target. The abnormal hyperphosphorylation and intraneuronal aggregation of this protein are early events in the evolution of the AD-related neurofibrillary pathology, and the brain spread of the AD-related tau aggregation pathology may possibly follow a corruptive protein templating and seeding-like mechanism according to the prion hypothesis. Accordingly, immunotherapeutic targeting of the tau aggregation pathology during the very early pre-tangle phase is currently considered to represent an effective and promising therapeutic approach for AD. Recent studies have shown that the initial immunoreactive tau aggregation pathology already prevails in several subcortical regions in the absence of any cytoskeletal changes in the cerebral cortex. Thus, it may be hypothesized that the subcortical brain regions represent the "port of entry" for the pathogenetic agent from which the disease ascends anterogradely as an "interconnectivity pathology".
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Katharina Stratmann
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Helmut Heinsen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department of Pathology, Ageing Brain Study Group, University of São Paulo Medical School, São Paulo, Brazil
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Mohamed Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
48
|
Synthesis and biological assessment of racemic benzochromenopyrimidinetriones as promising agents for Alzheimer's disease therapy. Future Med Chem 2017; 9:715-721. [DOI: 10.4155/fmc-2017-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Due to the complex nature of Alzheimer's disease, there is a renewed search for multitarget directed drugs. Results: This paper describes the synthesis and in vitro biological evaluation of six racemic 13-aryl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-triones (1a–6a), and six racemic 15-aryl-8,9,10,11,12,15-hexahydro-14H-benzo[6′,7′]chromeno[2′,3:4,5] pyr-imido [1,2-a]azepine-5,14,16-triones (1b–6b), showing antioxidant and cholinesterase inhibitory capacity. Among these compounds, 13-phenyl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-trione (1a) is a nonhepatotoxic at 300 μmol/l dose concentration, and a selective EeAChE inhibitor showing good antioxidant power. Conclusion: A new family of racemic benzochromenopyrimidinetriones has been investigated for their potential use in the treatment of Alzheimer's disease.
Collapse
|
49
|
Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents. J CHEM-NY 2017. [DOI: 10.1155/2017/8587260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that is associated with the elderly. The current therapy that is used to treat AD is based mainly on the administration of acetylcholinesterase (AChE) inhibitors. Due to their low efficacy there is a considerable need for other therapeutic strategies. Considering that the malfunctions of different, but interconnected, biochemical complex pathways play an important role in the pathogenesis of this disease, a promising therapy may consist in administration of drugs that act on more than a target on biochemical scenery of AD. In this work, the synthesis and evaluation of xanthone and flavone derivatives as antioxidants with AChE inhibitory activity were accomplished. Among the obtained compounds, Mannich bases3and14showed capacity to inhibit AChE and antioxidant property, exerting dual activity. Moreover, for the most promising AChE inhibitors, docking studies on the target have been performed aiming to predict the binding mechanism. The results presented here may help to identify new xanthone and flavone derivatives as dual anti-Alzheimer agents with AChE inhibitory and antioxidant activities.
Collapse
|
50
|
Murakami K, Tokuda M, Suzuki T, Irie Y, Hanaki M, Izuo N, Monobe Y, Akagi KI, Ishii R, Tatebe H, Tokuda T, Maeda M, Kume T, Shimizu T, Irie K. Monoclonal antibody with conformational specificity for a toxic conformer of amyloid β42 and its application toward the Alzheimer's disease diagnosis. Sci Rep 2016; 6:29038. [PMID: 27374357 PMCID: PMC4931470 DOI: 10.1038/srep29038] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/14/2016] [Indexed: 12/15/2022] Open
Abstract
Amyloid β-protein (Aβ42) oligomerization is an early event in Alzheimer’s disease (AD). Current diagnostic methods using sequence-specific antibodies against less toxic fibrillar and monomeric Aβ42 run the risk of overdiagnosis. Hence, conformation-specific antibodies against neurotoxic Aβ42 oligomers have garnered much attention for developing more accurate diagnostics. Antibody 24B3, highly specific for the toxic Aβ42 conformer that has a turn at Glu22 and Asp23, recognizes a putative Aβ42 dimer, which forms stable and neurotoxic oligomers more potently than the monomer. 24B3 significantly rescues Aβ42-induced neurotoxicity, whereas sequence-specific antibodies such as 4G8 and 82E1, which recognizes the N-terminus, do not. The ratio of toxic to total Aβ42 in the cerebrospinal fluid of AD patients is significantly higher than in control subjects as measured by sandwich ELISA using antibodies 24B3 and 82E1. Thus, 24B3 may be useful for AD diagnosis and therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maki Tokuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Suzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yumi Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naotaka Izuo
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoko Monobe
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ken-Ichi Akagi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryotaro Ishii
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Harutsugu Tatebe
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|