1
|
Saldanha I, Betson M, Vrettou C, Paxton E, Nixon J, Tennant P, Ritchie A, Matthews KR, Morrison LJ, Torr SJ, Cunningham LJ. Consistent detection of Trypanosoma brucei but not T. congolense DNA in faeces of experimentally infected cattle. Sci Rep 2024; 14:4158. [PMID: 38378867 PMCID: PMC10879203 DOI: 10.1038/s41598-024-54857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.
Collapse
Affiliation(s)
- Isabel Saldanha
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Martha Betson
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Edith Paxton
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - James Nixon
- Large Animal Research and Imaging Facility, University of Edinburgh, Edinburgh, UK
| | - Peter Tennant
- Large Animal Research and Imaging Facility, University of Edinburgh, Edinburgh, UK
| | - Adrian Ritchie
- Large Animal Research and Imaging Facility, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute of Immunology and Infection, University of Edinburgh, Edinburgh, UK
| | | | - Stephen J Torr
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lucas J Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
2
|
Imboumy-Limoukou RK, Biteghe-Bi-Essone JC, Lendongo Wombo JB, Lekana-Douki SE, Rougeron V, Ontoua SS, Oyegue-Liabagui LS, Mbani Mpega Ntigui CN, Kouna LC, Lekana-Douki JB. Detection of Plasmodium falciparum in Saliva and Stool Samples from Children Living in Franceville, a Highly Endemic Region of Gabon. Diagnostics (Basel) 2023; 13:3271. [PMID: 37892092 PMCID: PMC10606300 DOI: 10.3390/diagnostics13203271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Due to the difficulty of obtaining blood samples, which is the invasive method that is currently used for the detection of Plasmodium spp., alternative diagnostic sampling methods that are effective and non-invasive are needed, particularly for long-term studies. Saliva and stool samples from malaria-infected individuals contain trace amounts of Plasmodium DNA and therefore could be used as alternatives. Malaria was screened using rapid diagnosis tests and confirmed via microscopy. Nested PCR tests targeting the Plasmodium falciparum-specific STEVOR gene were performed for blood, saliva and stool samples that were positive for malaria. Three hundred sixty-seven (367) children were enrolled and eighty (22.22%) were confirmed to be positive for malaria. Matched blood, saliva and stool samples were available for 35 children. By using blood smears as the gold standard for the diagnosis of malaria, our study indicates that Plasmodium DNA was more detectable in blood (100%) than in saliva (22.86%) and stools (14.29%). Applying qPCR to the STEVOR gene to detect Plasmodium falciparum DNA in saliva and stool samples cannot be considered as an alternative to the current malaria detection processes using blood specimens.
Collapse
Affiliation(s)
- Roméo Karl Imboumy-Limoukou
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
| | - Jean-Claude Biteghe-Bi-Essone
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
| | - Judicael Boris Lendongo Wombo
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
- Laboratoire de Biologie Moléculaire et Cellulaire (LABMC), Université des Sciences et Techniques de Masuku, Franceville BP 943, Gabon
| | - Sonia Etenna Lekana-Douki
- Unité des Maladies Virales Emergentes (UMVE), Centre International de Recherches Médicales de Franceville, Franceville BP 769, Gabon;
| | - Virginie Rougeron
- MIVEGEC, IRD, CNRS, University of Montpellier, 34900 Montpellier, France;
| | - Steede-Seinnat Ontoua
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
- Ecole Doctoral Régional en Infectiologie Tropical, Franceville BP 876, Gabon
| | - Lydie Sandrine Oyegue-Liabagui
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
- Ecole Doctoral Régional en Infectiologie Tropical, Franceville BP 876, Gabon
| | - Cherone Nancy Mbani Mpega Ntigui
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
- Ecole Doctoral Régional en Infectiologie Tropical, Franceville BP 876, Gabon
| | - Lady Charlène Kouna
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
| | - Jean-Bernard Lekana-Douki
- Unité Evolution Epidémiologie et Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; (J.-C.B.-B.-E.); (J.B.L.W.); (S.-S.O.); (L.S.O.-L.); (C.N.M.M.N.); (L.C.K.); (J.-B.L.-D.)
- Département de Parasitologie-Mycologie, Université des Sciences de la Santé, Libreville BP 4008, Gabon
| |
Collapse
|
3
|
Sam J, Shamsusah NA, Ali AH, Hod R, Hassan MR, Agustar HK. Prevalence of simian malaria among macaques in Malaysia (2000–2021): A systematic review. PLoS Negl Trop Dis 2022; 16:e0010527. [PMID: 35849568 PMCID: PMC9292078 DOI: 10.1371/journal.pntd.0010527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background The aim of Malaysia to eliminate malaria nationwide by 2020 seems need to be prolonged. Whilst Malaysia has successfully eliminated human malaria transmission, simian malaria parasites such as Plasmodium knowlesi, P. cynomolgi, P. inui and P. cynomolgi are the emerging cause of malaria in humans. The epidemiological study of simian malaria in primates provides useful information in identifying the risk of human-macaques Plasmodium infection. Methodology/Principal findings This study was performed to gather all available data in terms of simian malaria epidemiology study among macaques in Malaysia over the last two decades. This systematic review was conducted according to the PRISMA guidelines to select appropriate articles as references. Data searches were performed through international databases such as Google Scholar, PubMed, CrossRef, Scopus, Web of Science and Science Direct for original articles published from 2000 until 2021. The review identified seven simian malaria epidemiology studies in Malaysia over the 20-year study period. Most studies were conducted in Peninsular Malaysia (5/7; 71%) followed by East Malaysia (2/7; 29%). All studies showed positive detection of Plasmodium parasites in macaques. The most prevalent Plasmodium species in macaques was P. inui (49.27%) and the least prevalent was P. fieldi (4.76%). The prevalence of simian malaria was higher in East Malaysia compared to Peninsular Malaysia. The mono, dual and triple infection types were the most common among macaques. Conclusion/Significance The non-human primates like macaques are the reservoir of simian plasmodium in Malaysia. Hence, the study of host epidemiology is an important insight to public health management as there is a high occurrence of simian malaria in Malaysia. The right measurement can be taken as well to prevent the transmission of simian malaria from macaques to humans. Macaques are the most abundant primates in south east Asia including Malaysia. Due to deforestation, macaques came closer to human settlements searching for food. Macaques like the long-tailed and pig-tailed harbouring several Plasmodium species that can cause zoonotic malaria in humans. Close contact of human and macaques cause zoonotic transmission of simian malaria. The simian plasmodium such as P. knowlesi, P. inui and P. cynomolgi have been found infecting humans in Malaysia; mainly in East Malaysia (Borneo). Zoonotic malaria poses great risk to public health as prolonged in treatment often lead to fatal outcomes. Hence the knowledge of prevalence and diversity is important to access, this can therefore enlighten the authorities to plan a control strategy that will minimize the zoonotic transmission between non-human primate host to human. This systematic review has summarised all publish data of macaques-plasmodium infection from the year 2000–2021 by using PRISMA guidelines. Our result showed that P. inui (49.27%) is the most prevalent Plasmodium species found in macaques, followed by P. cynomolgi (33.05%) and P. knowlesi (26.86%). Simian plasmodium prevalent was also found higher in East Malaysia (97.0%) compared to Peninsular Malaysia (45.18%). The significant increase of simian malaria incidences in human have jeopardized the national malaria elimination programme. Hence, this study provides a compact insight into the plasmodium epidemiology of macaques in Malaysia.
Collapse
Affiliation(s)
- Janeeca Sam
- Department of Bioscience and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nadia Aqilla Shamsusah
- Department of Earth Sciences and Environment, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- * E-mail: (HKA); (RH)
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail: (HKA); (RH)
| |
Collapse
|
4
|
Brown R, Salgado-Lynn M, Jumail A, Jalius C, Chua TH, Vythilingam I, Ferguson HM. Exposure of Primate Reservoir Hosts to Mosquito Vectors in Malaysian Borneo. ECOHEALTH 2022; 19:233-245. [PMID: 35553290 PMCID: PMC9276546 DOI: 10.1007/s10393-022-01586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in Malaysia. Characterization of exposure to mosquito vectors is essential for assessment of the force of infection within wild simian populations, however few methods exist to do so. Here we demonstrate the use of thermal imaging and mosquito magnet independence traps (MMIT) to assess the abundance, diversity and infection rates in mosquitoes host seeking near long-tailed macaque (Macaca fasicularis) sleeping sites in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. The primary Plasmodium knowlesi vector, Anopheles balabacensis, was trapped at higher abundance near sleeping sites than control trees. Although none of the An. balabacensis collected (n = 15) were positive for P. knowlesi by PCR screening, two were infected with another simian malaria Plasmodium inui. Analysis of macaque stools from sleeping sites confirmed a high prevalence of Plasmodium infection, suspected to be P. inui. Recently, natural transmission of P. inui has been detected in humans and An. cracens in Peninsular Malaysia. The presence of P. inui in An. balabacensis here and previously in human-biting collections highlight its potential for spillover from macaques to humans in Sabah. We advocate the use of MMITs for non-invasive sampling of mosquito vectors that host seek on wild simian populations.
Collapse
Affiliation(s)
- Rebecca Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine and Hygiene, Liverpool, L3 5QA, UK.
| | - Milena Salgado-Lynn
- Danau Girang Field Centre C/O Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah, Malaysia
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, Cardiff, UK
- Wildlife Health, Genetic and Forensic Laboratory, Kampung Potuki, Kota Kinabalu, Sabah, Malaysia
| | - Amaziasizamoria Jumail
- Danau Girang Field Centre C/O Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah, Malaysia
| | - Cyrlen Jalius
- Wildlife Health, Genetic and Forensic Laboratory, Kampung Potuki, Kota Kinabalu, Sabah, Malaysia
| | - Tock-Hing Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Rougeron V, Daron J, Fontaine MC, Prugnolle F. Evolutionary history of Plasmodium vivax and Plasmodium simium in the Americas. Malar J 2022; 21:141. [PMID: 35505431 PMCID: PMC9066938 DOI: 10.1186/s12936-022-04132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. Plasmodium vivax is the most prevalent human-infecting species in the Americas. However, the origins of this parasite in this continent are still debated. Similarly, it is now accepted that the existence of Plasmodium simium is explained by a P. vivax transfer from humans to monkey in America. However, many uncertainties still exist concerning the origin of the transfer and whether several transfers occurred. In this review, the most recent studies that addressed these questions using genetic and genomic approaches are presented.
Collapse
Affiliation(s)
- Virginie Rougeron
- International Research Laboratory, REHABS, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
| | - Josquin Daron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900, rue Jean-François Breton, 34900, Montpellier, France
| | - Michael C Fontaine
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900, rue Jean-François Breton, 34900, Montpellier, France.,Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Franck Prugnolle
- International Research Laboratory, REHABS, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
| |
Collapse
|
6
|
Köster PC, Renelies-Hamilton J, Dotras L, Llana M, Vinagre-Izquierdo C, Prakas P, Sneideris D, Dashti A, Bailo B, Lanza M, Jiménez-Mejías A, Muñoz-García C, Muadica AS, González-Barrio D, Rubio JM, Fuentes I, Ponce-Gordo F, Calero-Bernal R, Carmena D. Molecular Detection and Characterization of Intestinal and Blood Parasites in Wild Chimpanzees ( Pan troglodytes verus) in Senegal. Animals (Basel) 2021; 11:ani11113291. [PMID: 34828022 PMCID: PMC8614354 DOI: 10.3390/ani11113291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Western chimpanzees are currently listed as a Critically Endangered subspecies. Human encroachment has taken a toll on this great ape due to fragmented habitat and the exchange of pathogens. This epidemiological study investigated the occurrence and genetic diversity of intestinal and blood parasites in faecal samples from wild chimpanzees living in the Dindefelo Community Nature Reserve, Senegal. We paid special attention to potential human-driven sources of infection and transmission pathways. Potential diarrhoea-causing protist parasites (e.g., Cryptosporidium spp., Giardia duodenalis, Entamoeba histolytica) were detected at low infection rates (and densities) or absent, whereas commensals (Entamoeba dispar) or protist of uncertain pathogenicity (Blastocystis sp.) were far more abundant. We detected Sarcocystis spp. in chimpanzee faeces. Blood protist parasites such as Plasmodium spp. and Trypanosoma brucei spp. (the etiological agents of malaria and sleeping sickness, respectively, in humans) were also found at low prevalences, but microfilariae of the nematode Mansonella perstans were frequently found. Molecular analyses primarily revealed host-adapted species/genotypes and an apparent absence of gastrointestinal clinical manifestations in infected chimpanzees. Zoonotic events of still unknown frequency and directionality may have taken part between wild chimpanzees and humans sharing natural habitats and resources. Abstract Wild chimpanzee populations in West Africa (Pan troglodytes verus) have dramatically decreased as a direct consequence of anthropogenic activities and infectious diseases. Little information is currently available on the epidemiology, pathogenic significance, and zoonotic potential of protist species in wild chimpanzees. This study investigates the occurrence and genetic diversity of intestinal and blood protists as well as filariae in faecal samples (n = 234) from wild chimpanzees in the Dindefelo Community Nature Reserve, Senegal. PCR-based results revealed the presence of intestinal potential pathogens (Sarcocystis spp.: 11.5%; Giardia duodenalis: 2.1%; Cryptosporidium hominis: 0.9%), protist of uncertain pathogenicity (Blastocystis sp.: 5.6%), and commensal species (Entamoeba dispar: 18.4%; Troglodytella abrassarti: 5.6%). Entamoeba histolytica, Enterocytozoon bieneusi, and Balantioides coli were undetected. Blood protists including Plasmodium malariae (0.4%), Trypanosoma brucei (1.3%), and Mansonella perstans (9.8%) were also identified. Sanger sequencing analyses revealed host-adapted genetic variants within Blastocystis, but other parasitic pathogens (C. hominis, P. malariae, T. brucei, M. perstans) have zoonotic potential, suggesting that cross-species transmission between wild chimpanzees and humans is possible in areas where both species overlap. Additionally, we explored potential interactions between intestinal/blood protist species and seasonality and climate variables. Chimpanzees seem to play a more complex role on the epidemiology of pathogenic and commensal protist and nematode species than initially anticipated.
Collapse
Affiliation(s)
- Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Justinn Renelies-Hamilton
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark;
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal; (L.D.); (M.L.)
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal; (L.D.); (M.L.)
| | | | - Petras Prakas
- Nature Research Centre, LT-08412 Vilnius, Lithuania; (P.P.); (D.S.)
| | | | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Marta Lanza
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Alejandra Jiménez-Mejías
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Carlota Muñoz-García
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Aly S. Muadica
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
- Departamento de Ciências e Tecnologia, Universidade Licungo, Quelimane 106, Mozambique
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - José M. Rubio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Isabel Fuentes
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
| | - Francisco Ponce-Gordo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rafael Calero-Bernal
- Salud Veterinaria y Zoonosis (SALUVET), Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.C.-B.); (D.C.)
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, 28220 Majadahonda, Spain; (P.C.K.); (A.D.); (B.B.); (M.L.); (A.J.-M.); (C.M.-G.); (A.S.M.); (D.G.-B.); (J.M.R.); (I.F.)
- Correspondence: (R.C.-B.); (D.C.)
| |
Collapse
|
7
|
Carrillo-Bilbao G, Martin-Solano S, Saegerman C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021; 10:1009. [PMID: 34451473 PMCID: PMC8400055 DOI: 10.3390/pathogens10081009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Understanding which non-human primates (NHPs) act as a wild reservoir for blood-borne pathogens will allow us to better understand the ecology of diseases and the role of NHPs in the emergence of human diseases in Ecuador, a small country in South America that lacks information on most of these pathogens. Methods and principal findings: A systematic review was carried out using PRISMA guidelines from 1927 until 2019 about blood-borne pathogens present in NHPs of the Neotropical region (i.e., South America and Middle America). Results: A total of 127 publications were found in several databases. We found in 25 genera (132 species) of NHPs a total of 56 blood-borne pathogens in 197 records where Protozoa has the highest number of records in neotropical NHPs (n = 128) compared to bacteria (n = 12) and viruses (n = 57). Plasmodium brasilianum and Trypanosoma cruzi are the most recorded protozoa in NHP. The neotropical primate genus with the highest number of blood-borne pathogens recorded is Alouatta sp. (n = 32). The use of non-invasive samples for neotropical NHPs remains poor in a group where several species are endangered or threatened. A combination of serological and molecular techniques is common when detecting blood-borne pathogens. Socioecological and ecological risk factors facilitate the transmission of these parasites. Finally, a large number of countries remain unsurveyed, such as Ecuador, which can be of public health importance. Conclusions and significance: NHPs are potential reservoirs of a large number of blood-borne pathogens. In Ecuador, research activities should be focused on bacteria and viruses, where there is a gap of information for neotropical NHPs, in order to implement surveillance programs with regular and effective monitoring protocols adapted to NHPs.
Collapse
Affiliation(s)
- Gabriel Carrillo-Bilbao
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
- Facultad de Filosofía y Letras y Ciencias de la Educación, Universidad Central del Ecuador, 170521 Quito, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, 171103 Sangolquí, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
8
|
Carrillo Bilbao GA, Navarro JC, Garigliany MM, Martin-Solano S, Minda E, Benítez-Ortiz W, Saegerman C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021; 10:791. [PMID: 34206700 PMCID: PMC8308908 DOI: 10.3390/pathogens10070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Malaria is a disease caused by hemoparasites of the Plasmodium genus. Non-human primates (NHP) are hosts of Plasmodium sp. around the world. Several studies have demonstrated that Plasmodium sp. emerged from Africa. However, little information is currently available about Plasmodium falciparum in the neotropical NHP and even less in Ecuador. Indeed, the objective of our study was to identify by molecular phylogenetic analyses the Plasmodium species associated with NHP from the Western Amazon region of Ecuador, and to design a molecular taxonomy protocol to use in the NHP disease ecology. Methods: We extracted DNA from faecal samples (n = 26) from nine species of captive (n = 19) and free-ranging (n = 7) NHP, collected from 2011 to 2019 in the Western Amazon region of Ecuador. Results: Using a pan-Plasmodium PCR, we obtained one positive sample from an adult female Leontocebus lagonotus. A maximum likelihood phylogenetic analysis showed that this sequence unequivocally clustered with Plasmodium falciparum. Conclusions: The identification of Plasmodium sp. in NHP of the Ecuadorian Amazon would be essential to identify their role as potential zoonotic reservoirs, and it is also important to identify their origin in wildlife and their transmission in captive NHP.
Collapse
Affiliation(s)
- Gabriel Alberto Carrillo Bilbao
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador;
| | - Mutien-Marie Garigliany
- Department of Pathology, Fundamental and Applied Research for Animal and Health (FARAH) Center, Liège University, B-4000 Liège, Belgium;
- Department of Animal Pathology, Liège University, B-4000 Liège, Belgium
| | - Sarah Martin-Solano
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Elizabeth Minda
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Washington Benítez-Ortiz
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
9
|
Buery JC, de Alencar FEC, Duarte AMRDC, Loss AC, Vicente CR, Ferreira LM, Fux B, Medeiros MM, Cravo P, Arez AP, Cerutti Junior C. Atlantic Forest Malaria: A Review of More than 20 Years of Epidemiological Investigation. Microorganisms 2021; 9:132. [PMID: 33430150 PMCID: PMC7826787 DOI: 10.3390/microorganisms9010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
In the south and southeast regions of Brazil, cases of malaria occur outside the endemic Amazon region near the Atlantic Forest in some coastal states, where Plasmodium vivax is the recognized parasite. Characteristics of cases and vectors, especially Anopheles (Kerteszia) cruzii, raise the hypothesis of a zoonosis with simians as reservoirs. The present review aims to report on investigations of the disease over a 23-year period. Two main sources have provided epidemiological data: the behavior of Anopheles vectors and the genetic and immunological aspects of Plasmodium spp. obtained from humans, Alouatta simians, and Anopheles spp. mosquitoes. Anopheles (K.) cruzii is the most captured species in the forest canopy and is the recognized vector. The similarity between P. vivax and Plasmodium simium and that between Plasmodium malariae and Plasmodium brasilianum shared between simian and human hosts and the involvement of the same vector in the transmission to both hosts suggest interspecies transfer of the parasites. Finally, recent evidence points to the presence of Plasmodium falciparum in a silent cycle, detected only by molecular methods in asymptomatic individuals and An. (K.) cruzii. In the context of malaria elimination, it is paramount to assemble data about transmission in such non-endemic low-incidence areas.
Collapse
Affiliation(s)
- Julyana Cerqueira Buery
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | | | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, Brazil;
- Superintendência de Controle de Endemias do Estado de São Paulo, São Paulo 01027-000, Brazil
| | - Ana Carolina Loss
- Instituto Nacional da Mata Atlântica, Santa Teresa 29650-000, Brazil;
| | - Creuza Rachel Vicente
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Lucas Mendes Ferreira
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Blima Fux
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Márcia Melo Medeiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Pedro Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Ana Paula Arez
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Crispim Cerutti Junior
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| |
Collapse
|
10
|
Monteiro EF, Fernandez-Becerra C, Araujo MDS, Messias MR, Ozaki LS, Duarte AMRDC, Bueno MG, Catao-Dias JL, Chagas CRF, Mathias BDS, dos Santos MG, Santos SV, Holcman MM, de Souza JC, Kirchgatter K. Naturally Acquired Humoral Immunity against Malaria Parasites in Non-Human Primates from the Brazilian Amazon, Cerrado and Atlantic Forest. Pathogens 2020; 9:pathogens9070525. [PMID: 32610598 PMCID: PMC7399928 DOI: 10.3390/pathogens9070525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Non-human primates (NHPs) have been shown to be infected by parasites of the genus Plasmodium, the etiological agent of malaria in humans, creating potential risks of zoonotic transmission. Plasmodium brasilianum, a parasite species similar to P. malariae of humans, have been described in NHPs from Central and South America, including Brazil. The merozoite surface protein 1 (MSP1), besides being a malaria vaccine candidate, is highly immunogenic. Due to such properties, we tested this protein for the diagnosis of parasite infection. We used recombinant proteins of P. malariae MSP1, as well as of P. falciparum and P. vivax, for the detection of antibodies anti-MSP1 of these parasite species, in the sera of NHPs collected in different regions of Brazil. About 40% of the NHP sera were confirmed as reactive to the proteins of one or more parasite species. A relatively higher number of reactive sera was found in animals from the Atlantic Forest than those from the Amazon region, possibly reflecting the former more intense parasite circulation among NHPs due to their proximity to humans at a higher populational density. The presence of Plasmodium positive NHPs in the surveyed areas, being therefore potential parasite reservoirs, needs to be considered in any malaria surveillance program.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain;
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Badalona, Spain
| | - Maisa da Silva Araujo
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil;
| | | | - Luiz Shozo Ozaki
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Marina Galvão Bueno
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rio de Janeiro, Rio de Janeiro, RJ 21040-900, Brazil;
| | - Jose Luiz Catao-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP 05508-270, Brazil;
| | - Carolina Romeiro Fernandes Chagas
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo, São Paulo, SP 04301-905, Brazil;
- Institute of Ecology, Nature Research Centre, Vilnius 08412, Lithuania
| | - Bruno da Silva Mathias
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Mayra Gomes dos Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
| | - Stéfanie Vanessa Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
- Departamento de Anatomia Patológica, AC Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Marcia Moreira Holcman
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Julio Cesar de Souza
- Departamento de Medicina Veterinária, Fundação Universidade Regional de Blumenau, Blumenau, SC 89012-900, Brazil;
- Projeto Bugio, Centro de Pesquisas Biológicas, Indaial, SC 89130-000, Brazil
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
- Correspondence:
| |
Collapse
|
11
|
Optimizing a Noninvasive Oral Sampling Technique for Semicaptive Neotropical Primates in Peru. J Wildl Dis 2020. [DOI: 10.7589/2018-10-248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
McDermott D, Mendoza AP, Smiley-Evans T, Zavaleta M, Da’Dara AA, Alarcón JO, Bello R, Vidal PS, Rosenbaum M. Optimizing a Noninvasive Oral Sampling Technique for Semicaptive Neotropical Primates in Peru. J Wildl Dis 2020; 56:192-196. [PMID: 31298968 PMCID: PMC9333555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disease surveillance in Neotropical primates (NP) is limited by the difficulties associated with anesthetizing NP for sample collection in remote settings. Our objective was to optimize a noninvasive method of oral sampling from semicaptive NP in Peru. We offered 40 NP at Taricaya Rescue Centre in Madre de Dios, Peru ropes coated in various attractants and measured variables (acceptance of the rope, chewing time, and volume of fluid eluted from ropes) that may affect sample acquisition and quality. We preserved samples by direct freezing in liquid nitrogen or by storing samples in RNA stabilization reagent at room temperature. Sample integrity was measured by testing for mammalian cytochrome b with the use of conventional PCR. The NP successfully chewed on a rope in 82% (125/152) of trials. Overall sample integrity was high, with 96% (44/46) of samples (both directly frozen and stored in stabilization reagent) testing positive for cytochrome b. The number of times that an individual NP was exposed to the rope procedure and NP age were associated with higher acceptance rates and the NP successfully chewing on the rope. We conclude that ropes serve as a feasible noninvasive method of obtaining oral samples from NP at rescue centers and could be used in future studies to evaluate population genetics and for pathogen surveillance for population health monitoring.
Collapse
Affiliation(s)
- Darby McDermott
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., North Grafton, Massachusetts 01536, USA
| | - A. Patricia Mendoza
- Department of Biology, University of Missouri–St. Louis, 1 University Blvd., St. Louis, Missouri 63121, USA
| | - Tierra Smiley-Evans
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 944 Garrod Dr., Davis, California 95616, USA
| | - Milagros Zavaleta
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Instituto de Medicina Tropical, Universidad Nacional Mayor de San Marcos, Jiron Jose Santos Chocano 199, Bellavista 07006, Lima, Perú
| | - Akram A. Da’Dara
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., North Grafton, Massachusetts 01536, USA
| | - Jorge O. Alarcón
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Instituto de Medicina Tropical, Universidad Nacional Mayor de San Marcos, Jiron Jose Santos Chocano 199, Bellavista 07006, Lima, Perú
| | - Raul Bello
- Kawsay Biological Station, Kawsay Center, Av. 26 de Diciembre 472, Puerto Maldonado, Madre de Dios 17001, Perú
| | - Paola Santa Vidal
- Taricaya Rescue Center, Taricaya Ecoreserve, Casilla Postal N62 Serpost, Puerto Maldonado, Madre de Dios 17001, Perú
| | - Marieke Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., North Grafton, Massachusetts 01536, USA
| |
Collapse
|
13
|
Rondón S, León C, Link A, González C. Prevalence of Plasmodium parasites in non-human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malar J 2019; 18:276. [PMID: 31426810 PMCID: PMC6700793 DOI: 10.1186/s12936-019-2910-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Parasites from the genus Plasmodium, the aetiological agent of malaria in humans, can also infect non-human primates (NHP), increasing the potential risk of zoonotic transmission with its associated global public health concerns. In Colombia, there are no recent studies on Plasmodium spp. infecting free-ranging NHP. Thus, this study aimed to determine the diversity of Plasmodium species circulating in fragmented forests in central Colombia, both in Anopheles mosquitoes and in the four sympatric NHP in the region (Ateles hybridus, Cebus versicolor, Alouatta seniculus and Aotus griseimembra), in order to evaluate the risk of infection to humans associated with the presence of sylvatic hosts and vectors infected with Plasmodium spp. METHODS Overall, there were collected 166 fecal samples and 25 blood samples from NHP, and 442 individuals of Anopheles spp. DNA extraction, nested PCR using mitochondrial (cox3 gene) and ribosomal (18S rDNA) primers, electrophoresis and sequencing were conducted in order to identify Plasmodium spp. from the samples. RESULTS Plasmodium falciparum was detected in two fecal samples of Alouatta seniculus, while Plasmodium vivax/simium infected Ateles hybridus, Cebus versicolor and Alouatta seniculus. Co-infections with P. vivax/simium and Plasmodium malariae/brasilianum were found in three individuals. The highest prevalence from blood samples was found for Plasmodium malariae/brasilianum in two Alouatta seniculus while Plasmodium vivax/simium was most prevalent in fecal samples, infecting four individuals of Alouatta seniculus. Seven Anopheles species were identified in the study site: Anopheles (Anopheles) punctimacula, Anopheles (An.) malefactor, Anopheles (Nyssorhynchus) oswaldoi, Anopheles (Nys.) triannulatus, Anopheles (An.) neomaculipalpus, Anopheles (Nys.) braziliensis and Anopheles (Nys.) nuneztovari. Infection with P. vivax/simium was found in An. nuneztovari, An. neomaculipalpus, and An. triannulatus. Furthermore, An. oswaldoi and An. triannulatus were found infected with P. malariae/brasilianum. The effect of fragmentation and distance to the nearest town measured in five forests with different degrees of fragmentation was not statistically significant on the prevalence of Plasmodium in NHP, but forest fragmentation did have an effect on the Minimum Infection Rate (MIR) in Anopheles mosquitoes. CONCLUSIONS The presence of Plasmodium spp. in NHP and Anopheles spp. in fragmented forests in Colombia has important epidemiological implications in the human-NHP interface and the associated risk of malaria transmission.
Collapse
Affiliation(s)
- Silvia Rondón
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 N° 18ª-12, Bogotá, Colombia.
| | - Cielo León
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 N° 18ª-12, Bogotá, Colombia
| | - Andrés Link
- Laboratorio de Ecología de Bosques Tropicales y Primatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Cra. 1 N° 18ª-12, Bogotá, Colombia
- Fundación Proyecto Primates, Cra. 11a N° 91-55, Apartamento 202, Bogotá, Colombia
| | - Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 N° 18ª-12, Bogotá, Colombia
| |
Collapse
|