1
|
Oliveira RN, Meleiro LADC, Quilty B, McGuinness GB. Release of natural extracts from PVA and PVA-CMC hydrogel wound dressings: a power law swelling/delivery. Front Bioeng Biotechnol 2024; 12:1406336. [PMID: 39165402 PMCID: PMC11333833 DOI: 10.3389/fbioe.2024.1406336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction PVA hydrogels present many characteristics of the ideal dressing, although without antimicrobial properties. The present work aims to study the physical, mechanical and release characteristics of hydrogel wound dressings loaded with either of two natural herbal products, sage extract and dragon's blood. Methods Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and tensile mechanical testing were used to investigate the structure and properties of the gels. Swelling and degradation tests were conducted according to ISO 10993-9. Release characteristics were studied using UV Spectrophotometry. Results PVA matrices incorporating sage extract or dragon's blood (DB) present hydrogen bonding between these components. PVA-CMC hydrogels containing sage present similar spectra to PVA-CMC alone, probably indicating low miscibility or interaction between the matrix and sage. The opposite is found for DB, which exhibits more pronounced interference with crystallinity than sage. DB and NaCMC negatively affect Young's modulus and failure strength. All samples appear to reach equilibrium swelling degree (ESD) in 24 h. The addition of DB and sage to PVA increases the gels' swelling capacity, indicating that the substances likely separate PVA chains. The inclusion of CMC contributes to high media uptake. The kinetics profile of media uptake for 4 days is described by a power-law model, which is correlated to the drug delivery mechanism. Discussion A PVA-CMC gel incorporating 15% DB, the highest amount tested, shows the most favorable characteristics for flavonoid delivery, as well as flexibility and swelling capacity.
Collapse
Affiliation(s)
- Renata Nunes Oliveira
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Augusto da Cruz Meleiro
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brid Quilty
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
2
|
Homer WJA, Lisnenko M, Hauzerova S, Heczkova B, Gardner AC, Kostakova EK, Topham PD, Jencova V, Theodosiou E. Thermally Stabilised Poly(vinyl alcohol) Nanofibrous Materials Produced by Scalable Electrospinning: Applications in Tissue Engineering. Polymers (Basel) 2024; 16:2079. [PMID: 39065397 PMCID: PMC11281220 DOI: 10.3390/polym16142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Electrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents. Despite the small differences in the PVA chemical structure, the changes in the material properties were substantial. The higher degree of hydrolysis resulted in non-woven supports with thinner fibres (285 ± 81 nm c.f. 399 ± 153 nm) that were mechanically stronger by 62% (±11%) and almost twice as more crystalline than those from 98% hydrolysed PVA. Although prolonged heat treatment (16 h) did not influence fibre morphology, it reduced the crystallinity and tensile strength for both sets of materials. All samples demonstrated a lack or very low degree of haemolysis (<5%), and there were no notable changes in their anticoagulant activity (≤3%). Thrombus formation, on the other hand, increased by 82% (±18%) for the 98% hydrolysed samples and by 71% (±10%) for the 99% hydrolysed samples, with heat treatment up to 16 h, as a direct consequence of the preservation of the fibrous morphology. 3T3 mouse fibroblasts showed the best proliferation on scaffolds that were thermally stabilised for 4 and 8 h. Overall these scaffolds show potential as 'greener' alternatives to other electrospun tissue engineering materials, especially in cases where they may be used as delivery vectors for heat tolerant additives.
Collapse
Affiliation(s)
- W. Joseph A. Homer
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Bohdana Heczkova
- Department of Haematology, Regional Hospital Liberec, 460 01 Liberec, Czech Republic;
| | - Adrian C. Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, UK;
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Eva K. Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Paul D. Topham
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Aston Advanced Materials Research Centre, Aston University, Birmingham B4 7ET, UK
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Eirini Theodosiou
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
3
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
4
|
Ye J, Liu L, Lan W, Xiong J. Targeted release of soybean peptide from CMC/PVA hydrogels in simulated intestinal fluid and their pharmacokinetics. Carbohydr Polym 2023; 310:120713. [PMID: 36925260 DOI: 10.1016/j.carbpol.2023.120713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) hydrogels loaded with soybean peptide (SPE) were fabricated via a freeze-thaw method. These hydrogels conquer barriers in simulated gastric fluid (SGF), and then release SPE in simulated intestinal fluid (SIF). The results of in vitro SPE release from these hydrogels showed that in SGF only a little of the SPE released, but in SIF the SPE was completely released. The released SPE had scavenging rates for DPPH and ABTS free radicals of 41.68 and 31.43 %. The pharmacokinetic model of SPE release from the hydrogels in SIF was studied. When the hydrogels are moved from SGF to SIF, the sorption of the shrinkage hydrogel network is entirely controlled by stress-induced relaxations. There are swollen and shrunken regions during SPE release. For SPE release into the SIF, SPE has to be freed from the weak bonds in the swollen regions by changes in the conformation of CMC and PVA. The release rate of SPE was found to be governed by the diffusion and swelling rate of the shrinkage hydrogel network. The Korsmeyer-Peppas equation diffusion exponents (n) for SPE release from the hydrogels are >2.063, indicating a super case II transport. These data demonstrate CMC/PVA hydrogels have potential applications in oral peptide delivery.
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Luying Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Lang S, Du Y, Ma L, Bai Y, Ji Y, Liu G. Multifunctional and Tunable Coacervate Powders to Enable Rapid Hemostasis and Promote Infected Wound Healing. Biomacromolecules 2023; 24:1839-1854. [PMID: 36924317 DOI: 10.1021/acs.biomac.3c00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hemostatic powders provide an important treatment approach for time-sensitive hemorrhage control. Conventional hemostatic powders are challenged by the lack of tissue adhesiveness, insufficient hemostatic efficacy, limited infection control, and so forth. This study develops a hemostatic powder from tricomponent GTP coacervates consisting of gelatin, tannic acid (TA), and poly(vinyl alcohol) (PVA). The physical cross-linking by TA results in facile preparation, good storage stability, ease of application to wounds, and removal, which provide good potential for clinical translation. When rehydrated, the coacervate powders rapidly form a cohesive layer with interconnected microporous structure, competent flexibility, switchable wet adhesiveness, and antibacterial properties, which facilitate the hemostatic efficacy for treating irregular, noncompressible, or bacteria-infected wounds. Compared to commercial hemostats, GTP treatment results in significantly accelerated hemostasis in a liver puncture model (∼19 s, >30% reduction in the hemostatic time) and in a tail amputation model (∼38 s, >60% reduction in the hemostatic time). In the GTP coacervates, gelatin functioned as the biodegradable scaffold, while PVA introduced the flexible segments to enable shape-adaptability and interfacial interactions. Furthermore, TA contributed to the physical cross-linking, adhesiveness, and antibacterial performance of the coacervates. The study explores the tunability of GTP coacervate powders to enhance their hemostatic and wound healing performances.
Collapse
Affiliation(s)
- Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Ji
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Zaidi SAS, Kwan CE, Mohan D, Harun S, Luthfi AAI, Sajab MS. Evaluating the Stability of PLA-Lignin Filament Produced by Bench-Top Extruder for Sustainable 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1793. [PMID: 36902909 PMCID: PMC10004467 DOI: 10.3390/ma16051793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As additive manufacturing continues to evolve, there is ongoing discussion about ways to improve the layer-by-layer printing process and increase the mechanical strength of printed objects compared to those produced by traditional techniques such as injection molding. To achieve this, researchers are exploring ways of enhancing the interaction between the matrix and filler by introducing lignin in the 3D printing filament processing. In this work, research has been conducted on using biodegradable fillers of organosolv lignin, as a reinforcement for the filament layers in order to enhance interlayer adhesion by using a bench-top filament extruder. Briefly, it was found that organosolv lignin fillers have the potential to improve the properties of polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing. By incorporating different formulations of lignin with PLA, it was found that using 3 to 5% lignin in the filament leads to an improvement in the Young's modulus and interlayer adhesion in 3D printing. However, an increment of up to 10% also results in a decrease in the composite tensile strength due to the lack of bonding between the lignin and PLA and the limited mixing capability of the small extruder.
Collapse
Affiliation(s)
- Siti Aisyah Syazwani Zaidi
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Cham Eng Kwan
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Denesh Mohan
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Shuhaida Harun
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
7
|
Capanema NSV, Mansur AAP, Carvalho IC, Carvalho SM, Mansur HS. Bioengineered Water-Responsive Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Hybrids for Wound Dressing and Skin Tissue Engineering Applications. Gels 2023; 9:166. [PMID: 36826336 PMCID: PMC9956280 DOI: 10.3390/gels9020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The burden of chronic wounds is growing due to the increasing incidence of trauma, aging, and diabetes, resulting in therapeutic problems and increased medical costs. Thus, this study reports the synthesis and comprehensive characterization of water-responsive hybrid hydrogels based on carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) using citric acid (CA) as the chemical crosslinking agent, with tunable physicochemical properties suitable to be applied as a wound dressing for soft tissue engineering applications. They were produced through an eco-friendly process under mild conditions. The hydrogels were designed and produced with flexible swelling degree properties through the selection of CMC molecular mass (Mw = 250 and 700 kDa) and degree of functionalization (DS = 0.81), degree of hydrolysis of PVA (DH > 99%, Mw = 84-150 kDa) associated with synthesis parameters, CMC/PVA ratio and extension of chemical crosslinking (CA/CMC:PVA ratio), for building engineered hybrid networks. The results demonstrated that highly absorbent hydrogels were produced with swelling degrees ranging from 100% to 5000%, and gel fraction from 40% to 80%, which significantly depended on the concentration of CA crosslinker and the presence of PVA as the CMC-based network modifier. The characterizations indicated that the crosslinking mechanism was mostly associated with the chemical reaction of CA carboxylic groups with hydroxyl groups of CMC and PVA polymers forming ester bonds, rendering a hybrid polymeric network. These hybrid hydrogels also presented hydrophilicity, permeability, and structural features dependent on the degree of crosslinking and composition. The hydrogels were cytocompatible with in vitro cell viability responses of over 90% towards model cell lines. Hence, it is envisioned that this research provides a simple strategy for producing biocompatible hydrogels with tailored properties as wound dressings for assisting chronic wound healing and skin tissue engineering applications.
Collapse
Affiliation(s)
- Nádia Sueli Vieira Capanema
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Alexandra Ancelmo Piscitelli Mansur
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Isadora Cota Carvalho
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Agrícola, Universidade Federal de Lavras, UFLA, Lavras 37203-202, MG, Brazil
- Centro Universitário de Lavras, UNILAVRAS, Lavras 37203-593, MG, Brazil
| | - Sandhra Maria Carvalho
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Herman Sander Mansur
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
8
|
Homer WJA, Lisnenko M, Gardner AC, Kostakova EK, Valtera J, Wall IB, Jencova V, Topham PD, Theodosiou E. Assessment of thermally stabilized electrospun poly(vinyl alcohol) materials as cell permeable membranes for a novel blood salvage device. BIOMATERIALS ADVANCES 2022; 144:213197. [PMID: 36462387 DOI: 10.1016/j.bioadv.2022.213197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The use of Intraoperative Cell Salvage (ICS) is currently limited in oncological surgeries, due to safety concerns associated with the ability of existing devices to successfully remove circulating tumour cells. In this work, we present the first stages towards the creation of an alternative platform to current cell savers, based on the extremely selective immunoaffinity membrane chromatography principle. Non-woven membranes were produced via electrospinning using poly(vinyl alcohol) (PVA), and further heat treated at 180 °C to prevent their dissolution in aqueous environments and preserve their fibrous morphology. The effects of the PVA degree of hydrolysis (DH) (98 % vs 99 %), method of electrospinning (needleless DC vs AC), and heat treatment duration (1-8 h) were investigated. All heat treated supports maintained their cytocompatibility, whilst tensile tests indicated that the 99 % hydrolysed DC electrospun mats were stronger compared to their 98 % DH counterparts. Although, and at the described conditions, AC electrospinning produced fibres with more than double the diameter compared to those from DC electrospinning, it was not chosen for subsequent experiments because it is still under development. Evidence of unimpeded passage of SY5Y neuroblastoma cells and undiluted defibrinated sheep's blood in flow-through filtration experiments confirmed the successful creation of 3D networks with minimum resistance to mass transfer and lack of non-specific cell binding to the base material, paving the way for the development of novel, highly selective ICS devices for tumour surgeries.
Collapse
Affiliation(s)
- W Joseph A Homer
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Maxim Lisnenko
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Adrian C Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK; College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Eva K Kostakova
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Jan Valtera
- Dpt. Of Textile Machine Design, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Ivan B Wall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Vera Jencova
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Paul D Topham
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Eirini Theodosiou
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
9
|
da Costa Silva V, do Nascimento TG, Mergulhão NLON, Freitas JD, Duarte IFB, de Bulhões LCG, Dornelas CB, de Araújo JX, dos Santos J, Silva ACA, Basílio ID, Goulart MOF. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022; 27:6959. [PMID: 36296550 PMCID: PMC9609202 DOI: 10.3390/molecules27206959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
The main objectives of this study were to develop and characterize hydrophilic polymeric membranes impregnated with poly-lactic acid (PLA) nanoparticles (NPs) combined with red propolis (RP). Ultrasonic-assisted extraction was used to obtain 30% (w/v) red propolis hydroalcoholic extract (RPE). The NPs (75,000 g mol-1) alone and incorporated with RP (NPRP) were obtained using the solvent emulsification and diffusion technique. Biopolymeric hydrogel membranes (MNPRP) were obtained using carboxymethylcellulose (CMC) and NPRP. Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenols (TPC) and flavonoids contents (TFC), and antioxidant activity through the radical scavenging assay with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric reducing antioxidant power (FRAP). The identification and quantification of significant RP markers were performed through UPLC-DAD. The NPs were evaluated for particle size, polydispersity index, and zeta potential. The TPC for RPE, NPRP, and MNPRP was 240.3 ± 3.4, 191.7 ± 0.3, and 183.4 ± 2.1 mg EGA g-1, while for TFC, the value was 37.8 ± 0.9, 35 ± 3.9, and 26.8 ± 1.9 mg EQ g-1, respectively. Relevant antioxidant activity was also observed by FRAP, with 1400.2 (RPE), 1294.2 (NPRP), and 696.2 µmol Fe2+ g-1 (MNPRP). The primary markers of RP were liquiritigenin, isoliquiritigenin, and formononetin. The particle sizes were 194.1 (NPs) and 361.2 nm (NPRP), with an encapsulation efficiency of 85.4%. Thermal analysis revealed high thermal stability for the PLA, nanoparticles, and membranes. The DSC revealed no interaction between the components. FTIR allowed for characterizing the RPE encapsulation in NPRP and CMC for the MNPRP. The membrane loaded with NPRP, fully characterized, has antioxidant capacity and may have application in the treatment of skin wounds.
Collapse
Affiliation(s)
- Valdemir da Costa Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Ticiano G. do Nascimento
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Johnnatan D. Freitas
- Department of Chemistry, Federal Institute of Education, Science and Technology, Alagoas, Maceio 57035-660, AL, Brazil
| | - Ilza Fernanda B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | | | - Camila B. Dornelas
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - João Xavier de Araújo
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Jucenir dos Santos
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Anielle C. A. Silva
- Physics Institute, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Irinaldo D. Basílio
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Marilia O. F. Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| |
Collapse
|
10
|
Orellana-Barrasa J, Ferrández-Montero A, Ferrari B, Pastor JY. Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers (Basel) 2022; 14:polym14163361. [PMID: 36015618 PMCID: PMC9416607 DOI: 10.3390/polym14163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The physical ageing of polylactic acid (PLA) is a phenomenon that changes the material’s properties over time. This ageing process is highly dependent on ambient variables, such as temperature and humidity. For PLA, the ageing is noticeable even at room temperatures, a process commonly referred to as natural ageing. Stopping the ageing by freezing the material can be helpful to preserve the properties of the PLA and stabilise it at any time during its storage until it is required for testing. However, it is essential to demonstrate that the PLA’s mechanical properties are not degraded after defrosting the samples. Four different methods for stopping the ageing (anti-ageing processes) are analysed in this paper—all based on freezing and defrosting the PLA samples. We determine the temperature and ambient water vapor influence during the freezing and defrosting process using desiccant and zip bags. The material form selected is PLA filaments (no bulk material or scaffold structures) printed at 190 °C with diameters between 400 and 550 µm and frozen at −24 °C in the presence or absence of a desiccant. The impact of the anti-ageing processes on PLA’s ageing and mechanical integrity is studied regarding the thermal, mechanical and fractographical properties. In conclusion, an anti-ageing process is defined to successfully stop the natural ageing of the PLA for an indefinite length of time. This process does not affect the mechanical properties or the structural integrity of the PLA. As a result, large quantities of this material can be produced in a single batch and be safely stored to be later characterised under the same manufacturing and ageing conditions, which is currently a limiting factor from an experimental point of view as polymeric filament properties can show significant variety from batch to batch.
Collapse
Affiliation(s)
- Jaime Orellana-Barrasa
- Centro de Investigación en Materiales Estructurales (CIME), Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence:
| | | | - Begoña Ferrari
- Instituto de Cerámica y Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - José Ygnacio Pastor
- Centro de Investigación en Materiales Estructurales (CIME), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Serbezeanu D, Vlad-Bubulac T, Onofrei MD, Doroftei F, Hamciuc C, Ipate AM, Anisiei A, Lisa G, Anghel I, Şofran IE, Popescu V. Phosphorylated Poly(vinyl alcohol) Electrospun Mats for Protective Equipment Applications. NANOMATERIALS 2022; 12:nano12152685. [PMID: 35957115 PMCID: PMC9370101 DOI: 10.3390/nano12152685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022]
Abstract
The development of intelligent materials for protective equipment applications is still growing, with enormous potential to improve the safety of personnel functioning in specialized professions, such as firefighters. The design and production of such materials by the chemical modification of biodegradable semisynthetic polymers, accompanied by modern manufacturing techniques such as electrospinning, which may increase specific properties of the targeted material, continue to attract the interest of researchers. Phosphorus-modified poly(vinyl alcohol)s have been, thus, synthesized and utilized to prepare environmentally friendly electrospun mats. Poly(vinyl alcohol)s of three different molecular weights and degrees of hydrolysis were phosphorylated by polycondensation reaction in solution in the presence of phenyl dichlorophosphate in order to enhance their flame resistance and thermal stability. The thermal behavior and the flame resistance of the resulting phosphorus-modified poly(vinyl alcohol) products were investigated by thermogravimetric analysis and by cone calorimetry at a micro scale. Based on the as-synthesized phosphorus-modified poly(vinyl alcohol)s, electrospun mats were successfully fabricated by the electrospinning process. Rheology studies were performed to establish the optimal conditions of the electrospinning process, and scanning electron microscopy investigations were undertaken to observe the morphology of the phosphorus-modified poly(vinyl alcohol) electrospun mats.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
- Correspondence:
| | - Mihaela Dorina Onofrei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Corneliu Hamciuc
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Alina-Mirela Ipate
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania
| | - Ion Anghel
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Ioana-Emilia Şofran
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Vasilica Popescu
- Department of Chemical Engineering in Textiles and Leather, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
12
|
Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass. Int J Biol Macromol 2022; 203:369-378. [PMID: 35104474 DOI: 10.1016/j.ijbiomac.2022.01.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Duckweed (DW) is a highly small, free-floating aquatic plant. It grows and reproduces rapidly, comprises mainly protein and carbohydrate, and has substantial potential as a feedstock to produce bioplastics due to its renewability and having very little impact on the food chain. The aim of this work was to analyze the effect of DW biomass on the characteristics and properties of bio-based and biodegradable plastics based on a poly(lactic acid)/thermoplastic cassava starch (PLA/TPS) blend. Various amounts of DW biomass were compounded with PLA and TPS in a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The obtained PLA/TPS blends filled with DW biomass exhibited a lower melt flow ability, higher moisture content, and increased surface hydrophilicity than the neat PLA/TPS blend. Incorporation of DW with low concentrations of 2.3 and 4.6 wt% increased the tensile strength, Young's modulus, and hardness of the PLA/TPS blend. Moisture and glycerol from DW and TPS played important roles in reducing the Tg, Tcc, Tm, and Td of PLA in the blends. The current work demonstrated that DW could be used as a biofiller for PLA/TPS blends, and the resulting PLA/TPS blends filled with DW biomass have potential in manufacturing injection-molded articles for sustainable, biodegradable, and short-term use.
Collapse
|
13
|
Velez AAI, Reyes E, Diaz-Barrios A, Santos F, Fernández Romero AJ, Tafur JP. Properties of the PVA-VAVTD KOH Blend as a Gel Polymer Electrolyte for Zinc Batteries. Gels 2021; 7:gels7040256. [PMID: 34940316 PMCID: PMC8702166 DOI: 10.3390/gels7040256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Rechargeable zinc-air batteries are promising for energy storage and portable electronic applications because of their good safety, high energy density, material abundance, low cost, and environmental friendliness. A series of alkaline gel polymer electrolytes formed from polyvinyl alcohol (PVA) and different amounts of terpolymer composed of butyl acrylate, vinyl acetate, and vinyl neodecanoate (VAVTD) was synthesized applying a solution casting technique. The thin films were doped with KOH 12M, providing a higher amount of water and free ions inside the electrolyte matrix. The inclusion of VAVTD together with the PVA polymer improved several of the electrical properties of the PVA-based gel polymer electrolytes (GPEs). X-ray diffraction (XRD), thermogravimetric analysis (TGA), and attenuated total reflectance- Fourier-transform infrared spectroscopy (ATR-FTIR) tests, confirming that PVA chains rearrange depending on the VAVTD content and improving the amorphous region. The most conducting electrolyte film was the test specimen 1:4 (PVA-VAVTD) soaked in KOH solution, reaching a conductivity of 0.019 S/cm at room temperature. The temperature dependence of the conductivity agrees with the Arrhenius equation and activation energy of ~0.077 eV resulted, depending on the electrolyte composition. In addition, the cyclic voltammetry study showed a current intensity increase at higher VAVTD content, reaching values of 310 mA. Finally, these gel polymer electrolytes were tested in Zn-air batteries, obtaining capacities of 165 mAh and 195 mAh for PVA-T4 and PVA-T5 sunk in KOH, respectively, at a discharge current of -5 mA.
Collapse
Affiliation(s)
- Alisson A. Iles Velez
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
| | - Edwin Reyes
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
| | - Antonio Diaz-Barrios
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
| | - Florencio Santos
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain;
| | - Antonio J. Fernández Romero
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain;
- Correspondence: (A.J.F.R.); (J.P.T.)
| | - Juan P. Tafur
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100650, Ecuador; (A.A.I.V.); (E.R.); (A.D.-B.)
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain;
- Correspondence: (A.J.F.R.); (J.P.T.)
| |
Collapse
|
14
|
Viamonte-Aristizábal S, García-Sancho A, Arrabal Campos FM, Martínez-Lao JA, Fernández I. Synthesis of high molecular weight L-Polylactic acid (PLA) by reactive extrusion at a pilot plant scale: Influence of 1,12-dodecanediol and di(trimethylol propane) as initiators. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Liu Z, Lu H, Zhang H, Li L. Poly (vinyl alcohol)/polylactic acid blend film with enhanced processability, compatibility, and mechanical property fabricated via melt processing. J Appl Polym Sci 2021. [DOI: 10.1002/app.51204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaogang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd. Nanjing China
| | - Hongchao Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
| | - Huili Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd. Nanjing China
| | - Li Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd. Nanjing China
| |
Collapse
|
16
|
Hemmatian T, Seo KH, Yanilmaz M, Kim J. The Bacterial Control of Poly (Lactic Acid) Nanofibers Loaded with Plant-Derived Monoterpenoids via Emulsion Electrospinning. Polymers (Basel) 2021; 13:3405. [PMID: 34641220 PMCID: PMC8512816 DOI: 10.3390/polym13193405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/03/2023] Open
Abstract
Plant-derived monoterpenoids have been shown to possess various biological effects, providing a scientific basis for their potential usage as antibacterial agents. Therefore, considering problems surrounding bacteria's antibacterial resistance, the utilization of natural antimicrobial compounds such as monoterpenoids in different industries has gained much attention. The aim of this study was to fabricate and characterize various concentrations of plant-derived monoterpenoids, geraniol (G) and carvacrol (C), loaded into poly(lactic acid) (PLA) nanofibers via emulsion electrospinning. The antibacterial activities of the fabricated nanofibers were evaluated using three types of antibacterial assays (inhibition zone tests, live/dead bacterial cell assays, and antibacterial kinetic growth assays). Among the samples, 10 wt% carvacrol-loaded PLA nanofibers (C10) had the most bactericidal activity, with the widest inhibition zone of 5.26 cm and the highest visible dead bacteria using the inhibition zone test and live/dead bacterial cell assay. In order to quantitatively analyze the antibacterial activities of 5 wt% carvacrol-loaded PLA nanofibers (C5), C10, 5 wt% geraniol-loaded PLA nanofibers (G5), and 10 wt% geraniol-loaded PLA nanofibers (G10) against E. coli and S.epidermidis, growth kinetic curves were analyzed using OD600. For the results, we found that the antibacterial performance was as follows: C10 > C5 > G10 > G5. Overall, carvacrol or geraniol-loaded PLA nanofibers are promising antibacterial materials for improving fiber functionality.
Collapse
Affiliation(s)
- Tahmineh Hemmatian
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (T.H.); (K.H.S.)
| | - Kwon Ho Seo
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (T.H.); (K.H.S.)
| | - Meltem Yanilmaz
- Textile Engineering, Istanbul Technical University, Istanbul 34467, Turkey;
| | - Juran Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (T.H.); (K.H.S.)
| |
Collapse
|
17
|
An In Vitro Study of Antibacterial Properties of Electrospun Hypericum perforatum Oil-Loaded Poly(lactic Acid) Nonwovens for Potential Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growth of population and increase in diseases that cause an enormous demand for biomedical material consumption is a pointer to the pressing need to develop new sustainable biomaterials. Electrospun materials derived from green polymers have gained popularity in recent years for biomedical applications such as tissue engineering, wound dressings, and drug delivery. Among the various bioengineering materials used in the synthesis of a biodegradable polymer, poly(lactic acid) (PLA) has received the most attention from researchers. Hypericum perforatum oil (HPO) has antimicrobial activity against a variety of bacteria. This study aimed to investigate the development of an antibacterial sustainable material based on PLA by incorporating HPO via a simple, low-cost electrospinning method. Chemical, morphological, thermal, thickness and, air permeability properties, and in vitro antibacterial activity of the electrospun nonwoven fabric were investigated. Scanning electron microscopy (SEM) was used to examine the morphology of the electrospun nonwoven fabric, which had bead-free morphology ultrafine fibers. Antibacterial tests revealed that the Hypericum perforatum oil-loaded poly(lactic acid) nonwoven fabrics obtained had high antibacterial efficiency against Escherichia coli and Staphylococcus aureus, indicating a strong potential for use in biomedical applications.
Collapse
|
18
|
Andrade J, González-Martínez C, Chiralt A. Effect of phenolic acids on the properties of films from Poly (vinyl alcohol) of different molecular characteristics. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Gürler N, Paşa S, Erdoğan Ö, Cevik O. Physicochemical Properties for Food Packaging and Toxicity Behaviors Against Healthy Cells of Environmentally Friendly Biocompatible Starch/Citric Acid/Polyvinyl Alcohol Biocomposite Films. STARCH-STARKE 2021. [DOI: 10.1002/star.202100074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nedim Gürler
- Department of Food Process Tunceli Vocational School Munzur University Tunceli Turkey
| | - Salih Paşa
- Faculty of Education Department of Science Afyon Kocatepe University Afyonkarahisar Turkey
| | - Ömer Erdoğan
- School of Medicine Department of Biochemistry Aydın Adnan Menderes University Aydın Turkey
| | - Ozge Cevik
- School of Medicine Department of Biochemistry Aydın Adnan Menderes University Aydın Turkey
| |
Collapse
|
20
|
Development, Characterization and Cell Viability Inhibition of PVA Spheres Loaded with Doxorubicin and 4'-Amino-1-Naphthyl-Chalcone (D14) for Osteosarcoma. Polymers (Basel) 2021; 13:polym13162611. [PMID: 34451151 PMCID: PMC8401585 DOI: 10.3390/polym13162611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are naturally occurring polyphenols with known anticancer activity against a variety of tumor cell lines, including osteosarcoma (OS). In this paper, we present the preparation and characterization of spheres (~2 mm) from polyvinyl alcohol (PVA) containing a combination of 4′-Amino-1-Naphthyl-Chalcone (D14) and doxorubicin, to act as a new polymeric dual-drug anticancer delivery. D14 is a potent inhibitor of osteosarcoma progression and, when combined with doxorubicin, presents a synergetic effect; hence, physically crosslinked PVA spheres loaded with D14 and doxorubicin were prepared using liquid nitrogen and six freeze–thawing cycles. Physical-chemical characterization using a scanning electron microscope (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) presented that the drugs were incorporated into the spheres via weak interactions between the drugs and the polymeric chains, resulting in overall good drug stability. The cytotoxicity activity of the PVA spheres co-encapsulating both drugs was tested against the U2OS human osteosarcoma cell line by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay, and compared to the spheres carrying either D14 or doxorubicin alone. The co-delivery showed a cytotoxic effect 2.6-fold greater than doxorubicin alone, revealing a significant synergistic effect with a coefficient of drug interaction (CDI) of 0.49. The obtained results suggest this developed PVA sphere as a potential dual-drug delivery system that could be used for the prominent synergistic anticancer activity of co-delivering D14 and doxorubicin, providing a new potential strategy for improved osteosarcoma treatment.
Collapse
|
21
|
Ahmed W, Siraj S, Al-Marzouqi AH. Comprehensive Characterization of Polymeric Composites Reinforced with Silica Microparticles Using Leftover Materials of Fused Filament Fabrication 3D Printing. Polymers (Basel) 2021; 13:polym13152423. [PMID: 34372025 PMCID: PMC8348735 DOI: 10.3390/polym13152423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Silica exhibits properties such that its addition into polymeric materials can result in an enhanced overall quality and improved characteristics and as a result silica has been widely used as a filler material for improving the rheological properties of polymeric materials. The usage of polymers in three-dimensional printing technology has grown exponentially, which has increased the amount of waste produced during this process. Several polymers, such as polypropylene (PP), polyvinyl alcohol (PVA), polylactic acid (PLA), and nylon, are applied in this emerging technology. In this study, the effect of the addition of silica as a filler on the mechanical, thermal, and bulk density properties of the composites prepared from the aforementioned polymeric waste was studied. In addition, the morphology of the composite materials was characterized via scanning electron microscopy. The composite samples were prepared with various silica concentrations using a twin extruder followed by hot compression. Generally, the addition of silica increased the tensile strength of the polymers. For instance, the tensile strength of PVA with 5 wt% filler increased by 76 MPa, whereas those of PP and PLA with 10 wt% filler increased by 7.15 and 121.03 MPa, respectively. The crystallinity of the prepared composite samples ranged from 14% to 35%, which is expected in a composite system. Morphological analysis revealed the random dispersion of silica particles and agglomerate formation at high silica concentrations. The bulk density of the samples decreased with increased amount of filler addition. The addition of silica influenced the changes in the characteristics of the polymeric materials. Furthermore, the properties presented in this study can be used to further study the engineering design, transportation, and production processes, promoting the recycling and reuse of such waste in the same technology with the desired properties.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| | - Sidra Siraj
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| | - Ali H. Al-Marzouqi
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| |
Collapse
|
22
|
Abbas H, El-Deeb NM, Zewail M. PLA-coated Imwitor ® 900 K-based herbal colloidal carriers as novel candidates for the intra-articular treatment of arthritis. Pharm Dev Technol 2021; 26:682-692. [PMID: 33952085 DOI: 10.1080/10837450.2021.1920617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although there are several treatments for rheumatoid arthritis (RA), outcomes are unsatisfactory and often associated with many side effects. We attempted to improve RA therapeutic outcomes by intra-articular administration of dual drug-loaded poly(lactic) acid (PLA)-coated herbal colloidal carriers (HCCs). Curcumin (CU) and resveratrol (RES) were loaded into HCCs because of their safety and significant anti-inflammatory activity. HCCs were prepared using a high-pressure, hot homogenization technique and evaluated in vitro and in vivo using a complete Freund's adjuvant-induced arthritis model. Transmission electron microscope (TEM) evaluated coating selected formulations with PLA, which increased particle sizes from 52 to 89.14 nm. The entrapment efficiency of both formulations was approximately 76%. HCCs significantly increased the amount of RES and CU released compared with the drug suspensions alone. The in vivo treated groups showed a significant improvement in joint healing. PLA-coated HCCs, followed by uncoated HCCs, yielded the highest reductions in knee diameter, myeloperoxidase (MPO) levels, and tumor necrosis factor-alpha (TNFα) levels. Histological examination of the dissected joints revealed that PLA-coated HCCs followed by uncoated HCCs exhibited the most significant joint healing effects. Our results demonstrate the superiority of intra-articularly administered HCCs to suppress RA progression compared with RES or CU suspensions alone.
Collapse
Affiliation(s)
- Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| |
Collapse
|
23
|
Chrysafi I, Ainali NM, Bikiaris DN. Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Lactic Acid) and Its Copolymers with Poly(Hexylene Succinate). Polymers (Basel) 2021; 13:1365. [PMID: 33922002 PMCID: PMC8122458 DOI: 10.3390/polym13091365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Ιn this work, new block poly(lactic acid)-block-poly(hexylene succinate) (PLA-b-PHSu) copolymers, in different mass ratios of 95/05, 90/10 and 80/20 w/w, are synthesized and their thermal and mechanical behavior are studied. Thermal degradation and thermal stability of the samples were examined by Thermogravimetric Analysis (TGA), while thermal degradation kinetics was applied to better understand this process. The Friedman isoconversional method and the "model fitting method" revealed accurate results for the activation energy and the reaction mechanisms (nth order and autocatalysis). Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) was used to provide more details of the degradation process with PHSu's mechanism being the β-hydrogen bond scission, while on PLA the intramolecular trans-esterification processes domains. PLA-b-PHSu copolymers decompose also through the β-hydrogen bond scission. The mechanical properties have also been tested to understand how PHSu affects PLA's structure and to give more information about this new material. The tensile measurements gave remarkable results as the elongation at break increases as the content of PHSu increases as well. The study of the thermal and mechanical properties is crucial, to examine if the new material fulfills the requirements for further investigation for medical or other possible uses that might come up.
Collapse
Affiliation(s)
- Iouliana Chrysafi
- Laboratory of Advanced Materials and Devices, Department of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Nina Maria Ainali
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| |
Collapse
|
24
|
Ghaffari-Bohlouli P, Zahedi P, Shahrousvand M. Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. Int J Biol Macromol 2020; 165:2363-2377. [DOI: 10.1016/j.ijbiomac.2020.10.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
|
25
|
Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Tampau A, González-Martínez C, Chiralt A. Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Dadras Chomachayi M, Jalali‐arani A, Urreaga JM. The effect of silk fibroin nanoparticles on the morphology, rheology, dynamic mechanical properties, and toughness of poly(lactic acid)/poly(ε‐caprolactone) nanocomposite. J Appl Polym Sci 2020. [DOI: 10.1002/app.49232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Azam Jalali‐arani
- Department of Polymer Engineering & Color TechnologyAmirkabir University of Technology Tehran Iran
| | - Joaquín Martínez Urreaga
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, E.T.S.I. IndustrialesUniversidad Politécnica de Madrid Madrid Spain
- Grupo de Investigación “Polímeros: Caracterización y Aplicaciones (POLCA)” (Unidad Asociada ICTP‐CSIC), E.T.S.I. IndustrialesUniversidad Politécnica de Madrid Madrid Spain
| |
Collapse
|
28
|
Acik G, Karatavuk AO. Synthesis, properties and biodegradability of cross-linked amphiphilic Poly(vinyl acrylate)-Poly(tert-butyl acrylate)s by photo-initiated radical polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers (Basel) 2020; 12:polym12020497. [PMID: 32102448 PMCID: PMC7077722 DOI: 10.3390/polym12020497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/26/2022] Open
Abstract
Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films.
Collapse
|
30
|
Chen X, Taguchi T. Enhanced Skin Adhesive Property of Hydrophobically Modified Poly(vinyl alcohol) Films. ACS OMEGA 2020; 5:1519-1527. [PMID: 32010825 PMCID: PMC6990645 DOI: 10.1021/acsomega.9b03305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
Hydrophobically modified poly(vinyl alcohol) (hm-PVA) films with various alkyl chain lengths were prepared. Their surface/mechanical properties, cytocompatibility, and porcine skin adhesion strength were evaluated. hm-PVAs had 10 °C higher glass transition temperature than poly(vinyl alcohol) (PVA) (33.4 ± 2.5 °C). The water contact angle of the hm-PVA films increased with alkyl chain length and/or hydrophobic group modification ratio. The tensile strength of the hm-PVA films decreased with increasing alkyl chain length and/or hydrophobic group modification ratio. hm-PVA with short chain lengths (4 mol % propanal-modified PVA; 4C3-PVA) had low cytotoxicity compared with long alkyl chain length hm-PVAs (4 mol % hexanal and nonanal-modified PVA; 4C6-PVA and 4C9-PVA). The 4C3-PVA film had the highest porcine skin adhesion strength. Thus, the 4C3-PVA film is promising as an adhesive for wearable medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Biomaterials
Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Biomaterials
Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- E-mail: . Phone: +81-29-851-4498. Fax: +81-29-860-4752
| |
Collapse
|
31
|
Design and evaluation of Konjac glucomannan-based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues. Int J Biol Macromol 2020; 143:30-40. [DOI: 10.1016/j.ijbiomac.2019.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
32
|
Ghaffari-Bohlouli P, Hamidzadeh F, Zahedi P, Shahrousvand M, Fallah-Darrehchi M. Antibacterial nanofibers based on poly(l-lactide-co-d,l-lactide) and poly(vinyl alcohol) used in wound dressings potentially: a comparison between hybrid and blend properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:219-243. [DOI: 10.1080/09205063.2019.1683265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Hamidzadeh
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, Iran
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
33
|
Kim T, Han G, Jung Y. Facile Fabrication of Polyvinyl Alcohol/Edge-Selectively Oxidized Graphene Composite Fibers. MATERIALS 2019; 12:ma12213525. [PMID: 31661788 PMCID: PMC6861959 DOI: 10.3390/ma12213525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
Graphene derivatives are effective nanofillers for the enhancement of the matrix mechanical properties; nonetheless, graphene oxide (GO), reduced GO, and exfoliated graphene all present distinct advantages and disadvantages. In this study, polyvinyl alcohol (PVA) composite fibers have been prepared using a recently reported graphene derivative, i.e., edge-selectively oxidized graphene (EOG). The PVA/EOG composite fibers were simply fabricated via conventional wet-spinning methods; thus, they can be produced at the commercial level. X-ray diffractometry, scanning electron microscopy, and two-dimensional wide-angle X-ray scattering analyses were conducted to evaluate the EOG dispersibility and alignment in the PVA matrix. The tensile strength of the PVA/EOG composite fibers was 631.4 MPa at an EOG concentration of 0.3 wt %, which is 31.4% higher compared with PVA-only fibers (480.6 MPa); compared with PVA composite fibers made with GO, which is the most famous water-dispersible graphene derivative, the proposed PVA/EOG ones exhibited about 10% higher tensile strength. Therefore, EOG can be considered an effective nanofiller to enhance the strength of PVA fibers without additional thermal or chemical reduction processes.
Collapse
Affiliation(s)
- Taehoon Kim
- Composites Research Division, Korea Institute of Materials Science, Changwon 51508, Korea.
| | - Gayeong Han
- Composites Research Division, Korea Institute of Materials Science, Changwon 51508, Korea.
| | - Yeonsu Jung
- Composites Research Division, Korea Institute of Materials Science, Changwon 51508, Korea.
| |
Collapse
|
34
|
Santos F, Tafur JP, Abad J, Fernández Romero AJ. Structural modifications and ionic transport of PVA-KOH hydrogels applied in Zn/Air batteries. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Neres Santos AM, Duarte Moreira AP, Piler Carvalho CW, Luchese R, Ribeiro E, McGuinness GB, Fernandes Mendes M, Nunes Oliveira R. Physically Cross-Linked Gels of PVA with Natural Polymers as Matrices for Manuka Honey Release in Wound-Care Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E559. [PMID: 30781788 PMCID: PMC6416547 DOI: 10.3390/ma12040559] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
Abstract
Manuka honey is a well-known natural material from New Zealand, considered to have properties beneficial for burn treatment. Gels created from polyvinyl alcohol (PVA) blended with natural polymers are potential burn-care dressings, combining biocompatibility with high fluid uptake. Controlled release of manuka honey from such materials is a possible strategy for improving burn healing. This work aimed to produce polyvinyl alcohol (PVA), PVA⁻sodium carboxymethylcellulose (PVA-CMC), PVA⁻gelatin (PVA-G), and PVA⁻starch (PVA-S) cryogels infused with honey and to characterize these materials physicochemically, morphologically, and thermally, followed by in vitro analysis of swelling capacity, degradation/weight loss, honey delivery kinetics, and possible activity against Staphylococcus aureus. The addition of honey to PVA led to many PVA crystals with defects, while PVA⁻starch⁻honey and PVA⁻sodium carboxymethylcellulose⁻honey (PVA-CMC-H) formed amorphous gels. PVA-CMC presented the highest swelling degree of all. PVA-CMC-H and PVA⁻gelatin⁻honey presented the highest swelling capacities of the honey-laden samples. Weight loss/degradation was significantly higher for samples containing honey. Layers submitted to more freeze⁻thawing cycles were less porous in SEM images. With the honey concentration used, samples did not inhibit S. aureus, but pure manuka honey was bactericidal and dilutions superior to 25% honey were bacteriostatic, indicating the need for higher concentrations to be more effective.
Collapse
Affiliation(s)
| | | | - Carlos W Piler Carvalho
- Brazilian Agricultural Research Corporation/Embrapa Food Technology, Brasília 70770-901, Brazil.
| | - Rosa Luchese
- Department of food engineering, UFRRJ, Seropédica-RJ 23890-000, Brazil.
| | - Edlene Ribeiro
- Department of food engineering, UFRRJ, Seropédica-RJ 23890-000, Brazil.
| | - Garrett B McGuinness
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.
| | | | - Renata Nunes Oliveira
- Postgraduate Program of Chemical Engineering/DEQ, UFRRJ, Seropédica-RJ 23890-000, Brazil.
| |
Collapse
|
36
|
Mohamed El-Hadi A, Alamri HR. The New Generation from Biomembrane with Green Technologies for Wastewater Treatment. Polymers (Basel) 2018; 10:E1174. [PMID: 30961099 PMCID: PMC6403578 DOI: 10.3390/polym10101174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
A biopolymer of polylactic acid (PLLA)/polypropylene carbonate (PPC)/poly (3-hydroxybutrate) (PHB)/triethyl citrate (TEC) blends was prepared by the solution-casting method at different proportions. The thermal characteristics were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). PHB and TEC were added to improve the interfacial adhesion, crystallization behavior, and mechanical properties of the immiscible blend from PLLA and PPC (20%). The addition of more than 20% of PPC as an amorphous part hindered the crystallization of PLLA. PPC, PHB, and TEC also interacted with the PLLA matrix, which reduced the glass transition temperature (Tg), the cold crystallization temperature (Tcc), and the melting point (Tm) to about 53, 57 and 15 °C, respectively. The Tg shifted from 60 to 7 °C; therefore, the elongation at break improved from 6% (pure PLLA) to 285% (PLLA blends). In this article, biomembranes of PLLA with additives were developed and made by an electrospinning process. The new generation from biopolymer membranes can be used to absorb suspended pollutants in the water, which helps in the purification of drinking water in the household.
Collapse
Affiliation(s)
- Ahmed Mohamed El-Hadi
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Al-Abidiyya, P.O. Box 13174, Makkah 21955, Saudi Arabia.
- Department of Basic Science, Higher Institute of Engineering and Technology, El Arish, North Sinai 9004, Egypt.
| | - Hatem Rashad Alamri
- Physics Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|