1
|
Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients 2021; 14:nu14010078. [PMID: 35010953 PMCID: PMC8746757 DOI: 10.3390/nu14010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (−10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1β, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Physical Education Office, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Li Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan;
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| | - Cheng-Chen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| |
Collapse
|
2
|
Murao M, Imano T, Akiyama J, Kawakami T, Nakajima M. Effect of single bout downhill running on the serum irisin concentrations in rats. Growth Factors 2019; 37:257-262. [PMID: 32200682 DOI: 10.1080/08977194.2020.1742118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to characterize the effect of different running modes on serum irisin concentrations in rats. A total of 18, 10-week-old rats were divided into three groups; control group, 16° uphill running group (concentric exercise; CON) and, -16° downhill running group (eccentric exercise; ECC). The running group's rats ran on the inclined treadmill at 16 m/min, for a total of 90 min. Blood was drawn from the rats, 48 h after running, after which the rats were anesthetized. The serum concentrations of irisin were measured using enzyme-linked immunosorbent assays. Vastus intermedius was collected for immunohistochemical analysis. After multiple comparisons, the ECC showed a significantly high serum irisin concentration (ECC: 28.42 ± 6.31 ng/ml, CON: 21.27 ± 3.03 ng/ml) and a larger irisin antibody reactive cross-sectional area in vastus intermedius compared to the CON (p < 0.05). This is the first study to reveal that single bout downhill running increases serum irisin concentrations in rats.
Collapse
Affiliation(s)
- Masanobu Murao
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| | - Tetsuo Imano
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
- Department of Physical Therapy, Fukuyama Medical College, Fukuyama, Japan
| | - Junichi Akiyama
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| | - Teruhiko Kawakami
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| | - Masaaki Nakajima
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| |
Collapse
|
3
|
Nichenko AS, Southern WM, Tehrani KF, Qualls AE, Flemington AB, Mercer GH, Yin A, Mortensen LJ, Yin H, Call JA. Mitochondrial-specific autophagy linked to mitochondrial dysfunction following traumatic freeze injury in mice. Am J Physiol Cell Physiol 2019; 318:C242-C252. [PMID: 31721614 DOI: 10.1152/ajpcell.00123.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to interrogate the link between mitochondrial dysfunction and mitochondrial-specific autophagy in skeletal muscle. C57BL/6J mice were used to establish a time course of mitochondrial function and autophagy induction after fatigue (n = 12), eccentric contraction-induced injury (n = 20), or traumatic freeze injury (FI, n = 28); only FI resulted in a combination of mitochondrial dysfunction, i.e., decreased mitochondrial respiration, and autophagy induction. Moving forward, we tested the hypothesis that mitochondrial-specific autophagy is important for the timely recovery of mitochondrial function after FI. Following FI, there is a significant increase in several mitochondrial-specific autophagy-related protein contents including dynamin-related protein 1 (Drp1), BCL1 interacting protein (BNIP3), Pink1, and Parkin (~2-fold, P < 0.02). Also, mitochondrial-enriched fractions from FI muscles showed microtubule-associated protein light chain B1 (LC3)II colocalization suggesting autophagosome assembly around the damaged mitochondrial. Unc-51 like autophagy activating kinase (Ulk1) is considered necessary for mitochondrial-specific autophagy and herein we utilized a mouse model with Ulk1 deficiency in adult skeletal muscle (myogenin-Cre). While Ulk1 knockouts had contractile weakness compared with littermate controls (-27%, P < 0.02), the recovery of mitochondrial function was not different, and this may be due in part to a partial rescue of Ulk1 protein content within the regenerating muscle tissue of knockouts from differentiated satellite cells in which Ulk1 was not genetically altered via myogenin-Cre. Lastly, autophagy flux was significantly less in injured versus uninjured muscles (-26%, P < 0.02) despite the increase in autophagy-related protein content. This suggests autophagy flux is not upregulated to match increases in autophagy machinery after injury and represents a potential bottleneck in the clearance of damaged mitochondria by autophagy.
Collapse
Affiliation(s)
- Anna S Nichenko
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - W Michael Southern
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | | | - Anita E Qualls
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | | | - Grant H Mercer
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Luke J Mortensen
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
4
|
He F, Chuang CC, Zhou T, Jiang Q, Sedlock DA, Zuo L. Redox correlation in muscle lengthening and immune response in eccentric exercise. PLoS One 2018; 13:e0208799. [PMID: 30589838 PMCID: PMC6307742 DOI: 10.1371/journal.pone.0208799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022] Open
Abstract
This study was designed to examine the potential involvement of reactive oxygen species in skeletal muscle dysfunction linked with stretching in a mouse model and to explore the effects of combined antioxidant intake on peripheral leukocyte apoptosis following eccentrically-biased downhill runs in human subjects. In the mouse model, diaphragmatic muscle was stretched by 30% of its optimal length, followed by 5-min contraction. Muscle function and extracellular reactive oxygen species release was measured ex vivo. In human models, participants performed two trials of downhill running either with or without antioxidant supplementation, followed by apoptotic assay of inflammatory cells in the blood. The results showed that stretch led to decreased muscle function and prominent ROS increase during muscle contraction. In human models, we observed an elevation in circulating leukocyte apoptosis 24-48 hours following acute downhill runs. However, there is an attenuated leukocyte apoptosis following the second bout of downhill run. Interestingly, the combination of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) supplementation attenuated the decrease in B-cell lymphoma 2 (Bcl-2) at 24 hours following acute downhill running. These data collectively suggest that significant ROS formation can be induced by muscle-lengthening associated with eccentric exercise, which is accompanied by compromised muscle function. The combination of antioxidants supplementation appears to have a protective role via the attenuation of decrease in anti-apoptotic protein.
Collapse
Affiliation(s)
- Feng He
- Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States of America
- Department of Kinesiology, California State University-Chico, Chico, CA, United States of America
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Qing Jiang
- Department of Nutrition Science, College of Health and Human Science, Purdue University, West Lafayette, IN, United States of America
| | - Darlene A. Sedlock
- Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (LZ); (DAS)
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States of America
- Molecular Physiology and Biophysics Laboratory, College of Arts and Sciences, University of Maine, Presque Isle, ME, United States of America
- * E-mail: (LZ); (DAS)
| |
Collapse
|
5
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
6
|
Rodrigues-Krause J, Farinha JB, Ramis TR, Boeno FP, Dos Santos GC, Krause M, Reischak-Oliveira A. Cardiorespiratory responses of a dance session designed for older women: A cross sectional study. Exp Gerontol 2018; 110:139-145. [PMID: 29879448 DOI: 10.1016/j.exger.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dancing has been increasingly used as a type of exercise intervention to improve cardiovascular fitness of older people. However, it is unclear which may be the exercise intensity of the dance sessions. OBJECTIVE To describe cardiorespiratory responses of a dance session for older women, and to identify intensity zones in relation to peak oxygen consumption (VO2peak), first and second ventilatory thresholds (VT1 and VT2). METHODS Ten women (66 ± 5 yrs., BMI 27 ± 4) were examined on three occasions: Familiarization, maximum effort and dance sessions. Incremental treadmill test: 5 km/h, 2% slope each min, until maximum effort. Dance class (60 min): warm-up (20 min), across-the-floor (10 min), choreography (15 min), show (10 min) and cool-down (5 min). Ventilatory parameters were measured continuously (breath-by-breath). RESULTS VO2 (mL·kg-1·min-1): Maximum effort: VO2peak (23.3 ± 4.3), VT1 (17.2 ± 3.5) and VT2 (20.9 ± 3.4). Dancing: warm-up (12.8 ± 2.4, ~55%VO2peak), across-the-floor (14.2 ± 2.4 ~62%VO2peak), choreography (14.6 ± 3.2 ~63%VO2peak) and show (16.1 ± 3.3, ~69% VO2peak). Show was similar to VT1. CONCLUSIONS Cardiorespiratory demands of a dance class for older women are at low aerobic intensity. Show was similar to VT1, indicating that a dance class may be modulated to improve aerobic fitness, at least at initial stages of training.
Collapse
Affiliation(s)
- Josianne Rodrigues-Krause
- Federal University of Rio Grande do Sul, School of Physical Education, Physioterapy and Dance, Porto Alegre, RS, Brazil.
| | - Juliano Boufleur Farinha
- Federal University of Rio Grande do Sul, School of Physical Education, Physioterapy and Dance, Porto Alegre, RS, Brazil
| | - Thiago Rozales Ramis
- Federal University of Rio Grande do Sul, School of Physical Education, Physioterapy and Dance, Porto Alegre, RS, Brazil
| | - Francesco Pinto Boeno
- Federal University of Rio Grande do Sul, School of Physical Education, Physioterapy and Dance, Porto Alegre, RS, Brazil
| | - Gabriela Cristina Dos Santos
- Federal University of Rio Grande do Sul, School of Physical Education, Physioterapy and Dance, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alvaro Reischak-Oliveira
- Federal University of Rio Grande do Sul, School of Physical Education, Physioterapy and Dance, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Yfanti C, Tsiokanos A, Fatouros IG, Theodorou AA, Deli CK, Koutedakis Y, Jamurtas AZ. Chronic Eccentric Exercise and Antioxidant Supplementation: Effects on Lipid Profile and Insulin Sensitivity. J Sports Sci Med 2017; 16:375-382. [PMID: 28912655 PMCID: PMC5592289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Eccentric exercise has been shown to exert beneficial effects in both lipid profile and insulin sensitivity. Antioxidant supplementation during chronic exercise is controversial as it may prevent the physiological training-induced adaptations. The aim of this study was to investigate: 1) the minimum duration of the eccentric exercise training required before changes on metabolic parameters are observed and 2) whether antioxidant supplementation during training would interfere with these adaptations. Sixteen young healthy men were randomized into the Vit group (1 g of vitamin C and 400 IU vitamin E daily) and the placebo (PL) group. Subjects received the supplementation for 9 weeks. During weeks 5-9 all participants went through an eccentric exercise training protocol consisting of two exercise sessions (5 sets of 15 eccentric maximal voluntary contractions) per week. Plasma triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoproteins (Apo A1, Apo B and Lpa) and insulin sensitivity (HOMA) were assessed before the supplementation (week 0), at weeks 5, 6, 7, 8 and 9. TG, TC and LDL were significantly lower compared to pre supplementation at both weeks 8 and 9 (P<0.05) in both groups. HDL was significantly elevated after 4 weeks of training (p < 0.005) in both groups. There was no effect of the antioxidant supplementation in any of the variables. There was no effect of either the training or the supplementation protocol in apolipoproteins levels and insulin sensitivity. A minimum duration of 3 weeks of eccentric exercise training is required before beneficial effects in lipid profile can be observed in healthy young men. Concomitant antioxidant supplementation does not interfere with the training-induced adaptations.
Collapse
Affiliation(s)
- Christina Yfanti
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Athanasios Tsiokanos
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Ioannis G Fatouros
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH) at Trikala, Greece, Center for Research and Technology Hellas (CERTH) at Thessaloniki
| | | | - Chariklia K Deli
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH) at Trikala, Greece, Center for Research and Technology Hellas (CERTH) at Thessaloniki
| | - Yiannis Koutedakis
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH) at Trikala, Greece, Center for Research and Technology Hellas (CERTH) at Thessaloniki
- School of Sports, Performing Arts and Leisure, University of Wolverhampton, United Kingdom
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH) at Trikala, Greece, Center for Research and Technology Hellas (CERTH) at Thessaloniki
| |
Collapse
|
8
|
Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles. Gene 2016; 584:180-4. [DOI: 10.1016/j.gene.2016.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 11/19/2022]
|
9
|
Intermittent bout exercise training down-regulates age-associated inflammation in skeletal muscles. Exp Gerontol 2015; 72:261-8. [PMID: 26545590 DOI: 10.1016/j.exger.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022]
Abstract
Aging is characterized by the progressive decline in mass and function of the skeletal muscle along with increased susceptibility to inflammation, oxidative stress, and atrophy. In this study, we investigate the effect of intermittent bout and single bout exercise training on inflammatory molecules in young (3 months) and old (22 months) male Sprague-Dawley rats. The rats were divided into 6 groups. Young and old rats were randomly assigned for control and two exercise training groups, single bout (S type): 30 min/day, 5 days/week for 6 weeks and intermittent bout (I type): three times for 10 min/day, 5 days/week for 6 weeks respectively. The exercise training was carried out by a treadmill at a speed of 15m/min (young) or 10 m/min (old) with a slope of 5°. After 48 h of the final exercise bout, muscle samples were collected for biochemical assay. I type exercise training reduced the serum levels of inflammatory molecules such as interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) in old rats. By contrast, interleukin-4 (IL-4) and superoxide dismutase (SOD) were elevated. Consequently in skeletal muscles, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased significantly in the old group of I type. However, the matrix metalloproteinase-2 (MMP-2) level had no positive effects. Also, phosphorylation of mammalian target of rapamycin (p-mTOR) and myogenic differentiation (MyoD) were increased markedly in S and I types of old rats. These results suggest that I type exercise training appears more effective to reduce age-associated inflammatory molecules, and may recommend in regulating against chronic complicated disease induced by aging.
Collapse
|
10
|
Veeranki S, Tyagi SC. Role of hydrogen sulfide in skeletal muscle biology and metabolism. Nitric Oxide 2014; 46:66-71. [PMID: 25461301 DOI: 10.1016/j.niox.2014.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmitter). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H(+) ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
11
|
The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 2013; 24:393-406. [PMID: 23893731 DOI: 10.1007/s12640-013-9405-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Both clinical and laboratory studies have demonstrated that different types of physical exercise may alleviate Parkinsonism yet evidence for complete restoration of motor function and biomarker integrity are difficult to identify. MPTP (1 × 30 mg/kg, s.c., 4 groups) or saline (vehicle 1 × 5 ml/kg, s.c., 1 group) were administered in a single dose regime over three consecutive weeks on Fridays. Three MPTP groups were given four 30-min periods/week (Mondays to Thursdays), of these two groups, MPTP + Exer + M(i) and MPTP + Exer + M(ii); the former were introduced to exercise and Milmed (oral injection) on the week following the 1st MPTP injection and the latter on the Monday prior to the 1st injection of MPTP onwards. One MPTP group, MPTP + Exer, was given access to exercise (running wheels) from the week following the 1st MPTP injection onwards. The fourth MPTP group, MPTP-NoEx, and the Vehicle group were only given access to exercise on a single day each week (Wednesdays, exercise test) from the week following the 1st MPTP injection onwards. The exercise/exercise + Milmed regime was maintained for a further 9 weeks. It was observed that exercise by itself ameliorated MPTP-induced deficits regarding motor function and dopamine loss only partially whereas in the groups combining exercise with twice weekly dosages of Milmed the MPTP-induced deficits were abolished by the 10th week of the intervention. The three main conclusions that were drawn from correlational analyses of individual mice were: (i) that DA integrity was observed to be a direct function of ability to express running exercise in a treadmill wheel-running arrangement, and (ii) that DA integrity was observed to be a direct function of the capacity for motor performance as measured by spontaneous motor activity and subthreshold L-Dopa (5 mg/kg) induced activity in the motor activity test chambers, and (iii) that the extent to which running exercise in a running wheel was predictive of later motor performance in the activity test chambers was highly convincing.
Collapse
|