1
|
Zhao FY, Li L, Xu P, Zhang WJ, Kennedy GA, Zheng Z, Wang YM, Yue LP, Ho YS, Fu QQ, Conduit R. Inadequate Evidence for Acupuncture as an Alternative or Adjunct to Antidepressants/Psychotherapy for Postpartum Depression: A Bayesian Systematic Review and Network Meta-Analysis. Neuropsychiatr Dis Treat 2024; 20:1741-1755. [PMID: 39323936 PMCID: PMC11423827 DOI: 10.2147/ndt.s484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Background Acupuncture is popular in the treatment of mental illness. This study determined its feasibility and role in managing postpartum depression (PPD) using a network meta-analysis. Methods We systematically searched seven databases up to May 2024 for randomized controlled trials (RCTs) appraising acupuncture's efficacy and safety against waitlist-control, placebo, standard control, or as an add-on treatment. Cochrane criteria were followed. Results Thirteen studies encompassing 872 participants underwent analysis. Both pairwise and network meta-analysis indicated that acupuncture, psychotherapy, and antidepressants were comparable in clinical efficacy rate and in reducing Hamilton Depression Scale and Edinburgh Postnatal Depression Scale scores. Acupuncture and psychotherapy also effectively mitigated concurrent anxiety symptoms. Combining acupuncture with antidepressants augmented therapeutic efficacy and reduced reported gastrointestinal adverse effects associated with antidepressant use. Acupuncture combined with psychotherapy offered similar benefits with superior safety profile. However, the quality of evidence ranged from very low to low due to significant risks of bias and limited sample sizes. The efficacy of psychotherapy and the combination of acupuncture and psychotherapy might be underestimated, as most RCTs used supportive therapy or individual counseling as positive controls instead of recommended approaches like interpersonal psychotherapy (IPT) or cognitive behavioral therapy (CBT) per PPD guidelines. Conclusion Current evidence precludes strong recommendations of administering acupuncture in PPD. Rigorous RCTs are essential to validate promising outcomes observed in comparisons between acupuncture, antidepressants, and their combined application. It remains inconclusive whether acupuncture's antidepressive effect is specific or non-specific. Given that psychotherapy is a recommended first-line treatment, investigating the potential efficacy enhancement of combining acupuncture with IPT/CBT is paramount to ascertain the preferred therapeutic approach for PPD.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, People's Republic of China
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Li Li
- Shanghai Changning Center for Disease Control and Prevention, Shanghai, 200335, People's Republic of China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, People's Republic of China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, People's Republic of China
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People's Republic of China
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
2
|
Kaurani L, Besse M, Methfessel I, Methi A, Zhou J, Pradhan R, Burkhardt S, Kranaster L, Sartorius A, Habel U, Grözinger M, Fischer A, Wiltfang J, Zilles-Wegner D. Baseline levels of miR-223-3p correlate with the effectiveness of electroconvulsive therapy in patients with major depression. Transl Psychiatry 2023; 13:294. [PMID: 37699900 PMCID: PMC10497550 DOI: 10.1038/s41398-023-02582-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
There is a strong medical need to develop suitable biomarkers to improve the diagnosis and treatment of depression, particularly in predicting response to certain therapeutic approaches such as electroconvulsive therapy (ECT). MicroRNAs are small non-coding RNAs that have the ability to influence the transcriptome as well as proteostasis at the systems level. Here, we investigate the role of circulating microRNAs in depression and response prediction towards ECT. Of the 64 patients with treatment-resistant major depression (MDD) who received ECT treatment, 62.5% showed a response, defined as a reduction of ≥50% in the MADRS total score from baseline. We performed smallRNA sequencing in blood samples that were taken before the first ECT, after the first and the last ECT. The microRNAome was compared between responders and non-responders. Co-expression network analysis identified three significant microRNA modules with reverse correlation between ECT- responders and non-responders, that were amongst other biological processes linked to inflammation. A candidate microRNA, namely miR-223-3p was down-regulated in ECT responders when compared to non-responders at baseline. In line with data suggesting a role of miR-223-3p in inflammatory processes we observed higher expression levels of proinflammatory factors Il-6, Il-1b, Nlrp3 and Tnf-α in ECT responders at baseline when compared to non-responders. ROC analysis of confirmed the diagnostic power of miR-223-3p demarcating ECT-responders from non-responder subjects (AUC = 0.76, p = 0.0031). Our data suggest that miR-223-3p expression and related cytokine levels could serve as predictors of response to ECT in individuals with treatment-resistant depressive disorders.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Isabel Methfessel
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Jiayin Zhou
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Laura Kranaster
- Department of Psychiatry, Vitos Klinikum Heppenheim, 64646, Heppenheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim and University of Heidelberg, 68159, Mannheim, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
- Cluster of Excellence MBExC, University of Göttingen & University Medical Center Goettingen, 37075, Göttingen, Germany.
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
- Clincal Science Group, German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
| |
Collapse
|
3
|
Sun Z, Chen S, Zhang H, Gu X, Ge H, Chen J. Changes of Serum C-Reactive Protein Level in Patients With Depressive Disorders After Treatment With Agomelatine Combined With Aerobic Exercise and Its Significance. Clin Neuropharmacol 2023; 46:192-197. [PMID: 37748002 DOI: 10.1097/wnf.0000000000000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Depressive disorders constitute a series of debilitating diseases. This study investigated the therapeutic effect of agomelatine (AG) combined with aerobic exercise (AE) on patients with moderate-severe depression (MSD) and the changes of the serum C-reactive protein (CRP) level in patients after treatment as well as its significance. METHODS A total of 178 MSD patients were randomly assigned to the AG group (N = 90) and AG + AE group (N = 88). The severity of depressive disorders and anhedonia was assessed using the Hamilton Rating Scale for Depression (HAM-D), Beck Depression Inventory, and Snaith-Hamilton Pleasure Scale scores. The serum CRP level in MSD patients was detected by turbidity assay. Patients were defined as remitters, responders, and nonresponders according to the HAM-D 17 score, and the treatment efficacy was analyzed, followed by evaluation of the serum CRP level in patients with different treatment responses. Finally, the adverse reactions of patients during treatment were statistically analyzed. RESULTS After treatment, the HAM-D, Beck Depression Inventory, and Snaith-Hamilton Pleasure Scale scores and the serum CRP level of the 2 groups were reduced, and changes in the AG + AE group was more significant than that in the AG group. The clinical efficacy of the AG + AE group was better than that of the AG group. After treatment, the serum levels of CRP in remitters and responders were reduced, but not significantly in nonresponders. The incidence of adverse events in the AG + AE group was lower than that in the AG group. CONCLUSION AG + AE reduced the serum level of CRP in MSD patients and had good therapeutic effects on MSD patients.
Collapse
Affiliation(s)
- Zhuping Sun
- Psychosomatic Department, Shanghai Changning Mental Health Center
| | | | | | - Xiaoqing Gu
- Rehabilitation Department, Shanghai Changning Mental Health Center
| | - Haiyan Ge
- Psychiatry Department, Shanghai Xuhui Mental Health Center
| | - Jinglei Chen
- Psychiatry Department, Shanghai Huangpu Mental Health Center, Shanghai, China
| |
Collapse
|
4
|
Tseng PT, Chen YW, Zeng BY, Zeng BS, Hung CM, Sun CK, Cheng YS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Lin PY, Liang CS, Hsu CW, Chu CS, Suen MW, Li CT. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials. Alzheimers Res Ther 2023; 15:20. [PMID: 36698219 PMCID: PMC9875424 DOI: 10.1186/s13195-023-01164-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dementia [i.e., Alzheimer disease (AD)], the most common neurodegenerative disease, causes profound negative impacts on executive function and quality of life. Available pharmacological treatments often fail to achieve satisfactory outcomes. Noninvasive brain stimulation (NIBS) techniques, which focally modify cortical function and enhance synaptic long-term potentiation, are potentially beneficial for the cognition in patients with AD. The aim of the current network meta-analysis (NMA) was to evaluate the efficacy and safety of different NIBS interventions in patients with AD through NMA. METHODS Only randomized controlled trials (RCTs) examining NIBS interventions in patients with AD had been included. All NMA procedures were performed under the frequentist model. The primary and secondary outcomes were changes in cognitive function and quality of life, respectively. RESULTS Nineteen RCTs (639 participants) were included. The mean treatment and follow-up durations were 5.7 and 10.5 weeks, respectively. The combination of cathodal tDCS of the left dorsolateral prefrontal cortex and anodal tDCS over the right supraorbital region (c-tDCS-F3 + a-tDCS-Fp2) was associated with a significant beneficial effect on cognition compared with sham controls (standardized mean difference=2.43, 95% confidence interval=0.61-4.26, n=12 and 11). It was also associated with the greatest beneficial effect on cognition among all the investigated NIBS approaches. All the methods were well tolerated with regard to the safety profile, as reflected in the rates of adverse events or local discomfort, as well as acceptability, as indicated by dropout rate. CONCLUSIONS The present findings provide evidence of the benefits of NIBS, especially tDCS, for beneficial effect on cognition in patients with AD. However, because of few studies included, this effect was not replicated yet in the other studies. Therefore, future larger-scale and longer follow-up duration RCTs should be warranted. TRIAL REGISTRATION PROSPERO CRD42020209516. The current study had been approved by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center (TSGHIRB No. B-109-29).
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan ,grid.412036.20000 0004 0531 9758Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan ,grid.252470.60000 0000 9263 9645Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan ,grid.278247.c0000 0004 0604 5314Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan ,grid.412036.20000 0004 0531 9758Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan
| | - Bing-Yan Zeng
- grid.411447.30000 0004 0637 1806Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Syuan Zeng
- grid.411447.30000 0004 0637 1806Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- grid.411447.30000 0004 0637 1806Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- grid.411447.30000 0004 0637 1806Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Kaohsiung, Taiwan
| | - Brendon Stubbs
- grid.13097.3c0000 0001 2322 6764Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK ,grid.5115.00000 0001 2299 5510Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F. Carvalho
- grid.414257.10000 0004 0540 0062Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC Australia
| | - Andre R. Brunoni
- grid.11899.380000 0004 1937 0722Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da USP, São Paulo, Brazil ,grid.11899.380000 0004 1937 0722Departamento de Ciências Médicas, Faculdade de Medicina da USP, São Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Kaohsiung, Taiwan ,grid.411508.90000 0004 0572 9415Mind-Body Interface Laboratory (MBI-Lab), China Medical University and Hospital, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- grid.19188.390000 0004 0546 0241Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan ,grid.412094.a0000 0004 0572 7815Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- grid.452620.7Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- grid.260565.20000 0004 0634 0356Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Pao-Yen Lin
- grid.145695.a0000 0004 1798 0922Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- grid.260565.20000 0004 0634 0356Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- grid.145695.a0000 0004 1798 0922Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Sheng Chu
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.415011.00000 0004 0572 9992Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- grid.252470.60000 0000 9263 9645Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Gender Equality Education and Research Center, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ta Li
- grid.278247.c0000 0004 0604 5314Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.278247.c0000 0004 0604 5314Functional Neuroimaging and Brain Stimulation Lab, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267 Taiwan
| |
Collapse
|
5
|
Brunoni AR, Valiengo L, Gallucci-Neto J. Interventional psychiatry: 13 reasons why. BRAZILIAN JOURNAL OF PSYCHIATRY 2022; 44. [PMCID: PMC9851768 DOI: 10.47626/1516-4446-2022-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2024]
Affiliation(s)
- Andre R. Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Serviço de Cetamina, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- Serviço de Eletroconvulsoterapia, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- Departamento de Medicina Interna e Departamento de Psiquiatria, Faculdade de Medicina da USP, São Paulo, SP, Brazil
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Serviço de Cetamina, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
| | - Jose Gallucci-Neto
- Serviço de Cetamina, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- Serviço de Eletroconvulsoterapia, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Fang F, Godlewska B, Cho RY, Savitz SI, Selvaraj S, Zhang Y. Effects of escitalopram therapy on functional brain controllability in major depressive disorder. J Affect Disord 2022; 310:68-74. [PMID: 35500684 DOI: 10.1016/j.jad.2022.04.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Antidepressant drugs are the mainstay of treatment for patients with major depressive disorders (MDD). Given the critical role of the underlying neural control mechanism in the physiopathology of depression, this study aims to investigate the effects of escitalopram, a type of antidepressant drug, on the changes of functional brain controllability throughout the escitalopram treatment for MDD. We collected resting-state functional magnetic resonance imaging data from 20 unmedicated major depressive patients at baseline (visit 1, pre-treatment), one week (visit 2, 1-week after the onset of the treatment) and six weeks (visit 3, after the 6-week escitalopram treatment). Our results revealed that the global average and modal controllability of MDD patients were significantly larger and smaller, respectively, compared to healthy subjects (P < 0.01). Furthermore, the modal controllability rank of the frontoparietal network in depression patients was also significantly smaller than the healthy subjects (P < 0.01). However, throughout the escitalopram treatment, the global average and modal controllability, and the controllability of the default mode network and frontoparietal network of MDD patients were consistently changed to the healthy subjects' level. Our results also showed that the changes of global average and modal controllability measures can predict the improvements of clinical scores of the MDD patients as the escitalopram treatment advanced (P < 0.05). In conclusion, this study reveals promising brain controllability-based biomarkers to mechanistically understand and predict the effects of the escitalopram treatment for depression and maybe extended to predict and understand the effects of other interventions for other neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Feng Fang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Beata Godlewska
- Department of Psychiatry, Medical Sciences Division, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Menninger Clinic, Houston, TX, USA
| | - Sean I Savitz
- Department of Neurology, The McGovern Medical School of UT Health Houston, Houston, TX, USA
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The McGovern Medical School of UT Health Houston, Houston, TX, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
7
|
Cho H, Razza LB, Borrione L, Bikson M, Charvet L, Dennis-Tiwary TA, Brunoni AR, Sudbrack-Oliveira P. Transcranial Electrical Stimulation for Psychiatric Disorders in Adults: A Primer. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:19-31. [PMID: 35746931 PMCID: PMC9063596 DOI: 10.1176/appi.focus.20210020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial electrical stimulation (tES) comprises noninvasive neuromodulation techniques that deliver low-amplitude electrical currents to targeted brain regions with the goal of modifying neural activities. Expanding evidence from the past decade, specifically using transcranial direct current simulation and transcranial alternating current stimulation, presents promising applications of tES as a treatment for psychiatric disorders. In this review, the authors discuss the basic technical aspects and mechanisms of action of tES in the context of clinical research and practice and review available evidence for its clinical use, efficacy, and safety. They also review recent advancements in use of tES for the treatment of depressive disorders, schizophrenia, substance use disorders, and obsessive-compulsive disorder. Findings largely support growing evidence for the safety and efficacy of tES in the treatment of patients with resistance to existing treatment options, particularly demonstrating promising treatment outcomes for depressive disorders. Future directions of tES research for optimal application in clinical settings are discussed, including the growing home-based, patient-friendly methods and the potential pairing with existing pharmacological or psychotherapeutic treatments for enhanced outcomes. Finally, neuroimaging advancements may provide more specific mapping of brain networks, aiming at more precise tES therapeutic targeting in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Hyein Cho
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Lais B Razza
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Lucas Borrione
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Marom Bikson
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Leigh Charvet
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Tracy A Dennis-Tiwary
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Andre R Brunoni
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| | - Pedro Sudbrack-Oliveira
- Department of Psychology, Graduate Center, and Department of Psychology, Hunter College, City University of New York, New York City (Cho, Dennis-Tiwary); Department and Institute of Psychiatry and Service of Interdisciplinary Neuromodulation, Faculty of Medicine, University of São Paulo, São Paulo, Brazil (Razza, Borrione, Brunoni, Sudbrack-Oliveira); Department of Biomedical Engineering, City College of New York, City University of New York, New York City (Bikson); Department of Neurology, Grossman School of Medicine, New York University, New York City (Charvet); Department of Internal Medicine, Faculty of Medicine, University of São Paulo, and University Hospital, University of São Paulo, São Paulo, Brazil (Brunoni)
| |
Collapse
|
8
|
Chen X, Zhang T, Shan X, Yang Q, Zhang P, Zhu H, Jiang F, Liu C, Li Y, Li W, Xu J, Shen H. High-frequency repetitive transcranial magnetic stimulation alleviates the cognitive side effects of electroconvulsive therapy in major depression. Front Psychiatry 2022; 13:1002809. [PMID: 36262627 PMCID: PMC9575950 DOI: 10.3389/fpsyt.2022.1002809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The retrospective study aimed to explore the difference in mood outcomes and cognitive function between high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) over dorsolateral prefrontal cortex (DLPFC) and electroconvulsive therapy in major depression disorder (MDD) patients and to examine the improvement of HF-rTMS on cognitive impairment evoked by electroconvulsive therapy (ECT). MATERIALS AND METHODS A total of 116 participants with MDD, who completed a 4-week follow-up assessment, were enrolled. The cohort consisted of 26 cases classed as control, 46 participants administrated with HF-rTMS (HF-rTMS group), 22 patients treated with ECT (ECT group), and 23 cases treated with HF-rTMS and ECT at the course of hospitalization (HF-rTMS + ECT group). Medication was kept constant as well in all participants. The 17-item Hamilton Depression Rating Scale for Depression (HAMD-17) and 14-item Hamilton Anxiety Rating Scale (HAMA-14) were used to assess depression and anxiety, respectively. Montreal Cognitive Assessment (MoCA) was to elevate cognitive function. RESULTS No statistical significance was found for baseline in sociodemographic, characteristics of depression, anxiety and cognition, and psychopharmaceutic dosages among control, HF-rTMS, ECT, and HF-rTMS + ECT groups (p > 0.05). Compared with baseline level, total scores of HAMD-17 and HAMA-14 significantly decreased at the end of 4 weeks after treatment (p < 0.001). Furthermore, the decline in scores of HAMD-17 and its sleep disorder and retardation factors from baseline to post-treatment was greater in HF-rTMS, ECT, and HF-rTMS + ECT group than in control (p < 0.05), and there was a significant difference between control and HF-rTMS group in the decline of psychological factor of HAMA-14 (p < 0.01). ECT treatment evoked total score of MoCA to decrease significantly at the end of 4-week after intervention (p < 0.001), and the decline in scores of MoCA and its delayed recall and language performances from baseline to post-treatment was greater in ECT than control, HF-rTMS, and HF-rTMS + ECT (p < 0.05). CONCLUSION High-frequency repetitive transcranial magnetic stimulation improved psychological anxiety and ameliorated the cognition impairment evoked by ECT though it had the same anti-depressant efficacy as ECT.
Collapse
Affiliation(s)
- Xing Chen
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Tongtong Zhang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Xiaoyan Shan
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Qun Yang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Peiyun Zhang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Haijiao Zhu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Fei Jiang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Chao Liu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Yanzhong Li
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Weijun Li
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Jian Xu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Hongmei Shen
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Adjunctive Nonconvulsive Electrotherapy for Patients with Depression: a Systematic Review. Psychiatr Q 2021; 92:1645-1656. [PMID: 34159503 DOI: 10.1007/s11126-021-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
The efficacy and safety of adjunctive nonconvulsive electrotherapy (NET) for patients with depression are undetermined. This systematic review was conducted to examine the efficacy and safety of adjunctive NET for patients with depression. Chinese (WanFang and Chinese Journal Net) and English (PubMed, EMBASE, PsycINFO and the Cochrane Library) databases were systematically searched from their inception until Jan 27, 2021 by three independent investigators. One randomized controlled trial (RCT) with 3 treatment arms (n = 108) and two observational studies (single-group, before-after design, n = 31) were included. In the RCT, the antidepressant efficacy of NET on depression was similar to that of electroconvulsive therapy (ECT) (P > 0.05) but with significantly fewer neurocognitive impairments as measured by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) (P < 0.05). In two observational studies, the 17-item Hamilton Depression Rating Scale (HAMD-17) scores decreased significantly from baseline to post-NET (all Ps < 0.05), without adverse neurocognitive effects. In the RCT, adverse drug reactions (ADRs) were not separately reported among the 3 treatment arms but a similar rate of discontinuation was reported. The currently available limited evidence from 3 studies suggests that NET as an adjunctive treatment may be a safe, well-tolerated, effective therapy for depression without serious neurocognitive impairments.
Collapse
|
10
|
Dandekar MP, Diaz AP, Rahman Z, Silva RH, Nahas Z, Aaronson S, Selvaraj S, Fenoy AJ, Sanches M, Soares JC, Riva-Posse P, Quevedo J. A narrative review on invasive brain stimulation for treatment-resistant depression. ACTA ACUST UNITED AC 2021; 44:317-330. [PMID: 34468549 PMCID: PMC9169472 DOI: 10.1590/1516-4446-2021-1874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
While most patients with depression respond to pharmacotherapy and psychotherapy, about one-third will present treatment resistance to these interventions. For patients with treatment-resistant depression (TRD), invasive neurostimulation therapies such as vagus nerve stimulation, deep brain stimulation, and epidural cortical stimulation may be considered. We performed a narrative review of the published literature to identify papers discussing clinical studies with invasive neurostimulation therapies for TRD. After a database search and title and abstract screening, relevant English-language articles were analyzed. Vagus nerve stimulation, approved by the U.S. Food and Drug Administration as a TRD treatment, may take several months to show therapeutic benefits, and the average response rate varies from 15.2-83%. Deep brain stimulation studies have shown encouraging results, including rapid response rates (> 30%), despite conflicting findings from randomized controlled trials. Several brain regions, such as the subcallosal-cingulate gyrus, nucleus accumbens, ventral capsule/ventral striatum, anterior limb of the internal capsule, medial-forebrain bundle, lateral habenula, inferior-thalamic peduncle, and the bed-nucleus of the stria terminalis have been identified as key targets for TRD management. Epidural cortical stimulation, an invasive intervention with few reported cases, showed positive results (40-60% response), although more extensive trials are needed to confirm its potential in patients with TRD.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Alexandre P Diaz
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ritele H Silva
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott Aaronson
- Clinical Research Programs, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Sudhakar Selvaraj
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Albert J Fenoy
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Deep Brain Stimulation Program, Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
11
|
Razza LB, De Smet S, Moffa A, Sudbrack-Oliveira P, Vanderhasselt MA, Brunoni AR. Follow-up effects of transcranial direct current stimulation (tDCS) for the major depressive episode: A systematic review and meta-analysis. Psychiatry Res 2021; 302:114024. [PMID: 34058716 DOI: 10.1016/j.psychres.2021.114024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Transcranial Direct Current Stimulation (tDCS) is an effective treatment during the acute phase of a major depressive episode (MDE), although the evidence for its follow-up efficacy is mixed. A systematic review and meta-analysis were performed. MEDLINE/PubMed, Scopus (EMBASE), Web of Science, Cochrane Library and additional sources were searched from inception to April 29, 2021. Studies that followed up adults treated with tDCS during an MDE - using (interventional) and/or not using (observational) tDCS in the follow-up period were included. The primary outcome was the Hedges' g for the follow-up depression scores. Small study effects and sources of heterogeneity were explored. 427 studies were retrieved and 11 trials (13 datasets, n = 311) were included, most presenting moderate bias. Results showed a follow-up depression improvement (k = 13, g = -0.81, 95% confidence interval [CI]: -1.28; -0.34, I² = 84.0%), which was probably driven by the interventional studies (k = 7, g= -1.12, 95% CI: -1.84; -0.40, I² = 87.1%). No predictor of response was associated with the outcome. No risk of publication bias was found. Significant between-study heterogeneity may have influenced the overall results. Our findings suggest that tDCS produces effects beyond the intervention period during MDEs. Maintenance sessions are advised in future research.
Collapse
Affiliation(s)
- Laís B Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| | - Adriano Moffa
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Pedro Sudbrack-Oliveira
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - André R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Medicina Interna, Faculdade de Medicina Universidade de São Paulo e Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000, São Paulo, Brazil
| |
Collapse
|
12
|
Pacheco F, Guiomar R, Brunoni AR, Buhagiar R, Evagorou O, Roca-Lecumberri A, Poleszczyk A, Lambregtse-van den Berg M, Caparros-Gonzalez RA, Fonseca A, Osório A, Soliman M, Ganho-Ávila A. Efficacy of non-invasive brain stimulation in decreasing depression symptoms during the peripartum period: A systematic review. J Psychiatr Res 2021; 140:443-460. [PMID: 34147932 DOI: 10.1016/j.jpsychires.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) techniques have been suggested as alternative treatments to decrease depression symptoms during the perinatal period. These include brain stimulation techniques that do not require surgery and that are nonpharmacological and non-psychotherapeutic. NIBS with evidence of antidepressant effects include repetitive transcranial magnetic stimulation (rTMS), transcranial electric stimulation (TES) and electroconvulsive therapy (ECT). OBJECTIVES This systematic review aims to summarize evidence on NIBS efficacy, safety and acceptability in treating peripartum depression (PPD). METHODS We included randomized, non-randomized and case reports, that used NIBS during pregnancy and the postpartum. The reduction of depressive symptoms and neonatal safety were the primary and co-primary outcomes, respectively. RESULTS rTMS shows promising results for the treatment of PPD, with clinically significant decreases in depressive symptoms between baseline and end of treatment and overall good acceptability. Although the safety profile for rTMS is adequate in the postpartum, caution is warranted during pregnancy. In TES, evidence on efficacy derives mostly from single-arm studies, compromising the encouraging findings. Further investigation is necessary concerning ECT, as clinical practice relies on clinical experience and is only described in low-quality case-reports. LIMITATIONS The reduced number of controlled studies, the lack of complete datasets and the serious/high risk of bias of the reports warrant cautious interpretations. CONCLUSIONS AND IMPLICATIONS Existing evidence is limited across NIBS techniques; comparative studies are lacking, and standard stimulation parameters are yet to be established. Although rTMS benefits from the most robust research, future multicenter randomized clinical trials are needed to determine the position of each NIBS strategy within the pathways of care.
Collapse
Affiliation(s)
- Francisca Pacheco
- University of Coimbra, Faculty of Psychology and Educational Sciences, Coimbra, Portugal
| | - Raquel Guiomar
- Center for Research in Neuropsychology and Cognitive-Behavior Interventions, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Andre R Brunoni
- Department of Internal Medicine and Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Olympia Evagorou
- University General Hospital of Alexandroupolis, Department of Psychiatry, Greece
| | - Alba Roca-Lecumberri
- Perinatal Mental Health Unit, Psychiatry and Clinical Psychology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Mijke Lambregtse-van den Berg
- Departments of Psychiatry and Child & Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Ana Fonseca
- University of Coimbra, Faculty of Psychology and Educational Sciences, Coimbra, Portugal; Center for Research in Neuropsychology and Cognitive-Behavior Interventions, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Osório
- Graduate Program on Developmental Disorders, Center for Biological and Health Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Mahmoud Soliman
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive-Behavior Interventions, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Borrione L, Klein I, Razza LB, Suen P, Brunoni AR. Use of app-based psychological interventions in combination with home-use transcranial direct current stimulation for the treatment of major depressive disorder: A case series. J Affect Disord 2021; 288:189-190. [PMID: 33906101 DOI: 10.1016/j.jad.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Lucas Borrione
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.
| | - Izio Klein
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Lais B Razza
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Paulo Suen
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Goerigk SA, Padberg F, Chekroud A, Kambeitz J, Bühner M, Brunoni AR. Parsing the antidepressant effects of non-invasive brain stimulation and pharmacotherapy: A symptom clustering approach on ELECT-TDCS. Brain Stimul 2021; 14:906-912. [PMID: 34048940 DOI: 10.1016/j.brs.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) presents small antidepressant efficacy at group level and considerable inter-individual variability of response. Its heterogeneous effects bring the need to investigate whether specific groups of patients submitted to tDCS could present comparable or larger improvement compared to pharmacotherapy. Aggregate measurements might be insufficient to address its effects. OBJECTIVE /Hypothesis: To determine the efficacy of tDCS, compared to pharmacotherapy and placebo, in depressive symptom clusters. METHODS Data from ELECT-TDCS (Escitalopram versus Electrical Direct-Current Therapy for Treating Depression Clinical Study, ClinicalTrials.gov, NCT01894815), in which antidepressant-free, depressed patients were randomized to receive 22 bifrontal tDCS (2 mA, 30 min) sessions (n = 94), escitalopram 20 mg/day (n = 91), or placebo (n = 60) over 10 weeks. Agglomerative hierarchical clustering identified "sleep/insomnia", "core depressive", "guilt/anxiety", and "atypical" clusters that were the dependent measure. Trajectories were estimated using linear mixed regression models. Effect sizes are expressed in raw HAM-D units. P-values were adjusted for multiple comparisons. RESULTS For core depressive symptoms, escitalopram was superior to tDCS (ES = -0.56; CI95% = -0.94 to -0.17, p = .009), which was superior to placebo (ES = 0.49; CI95% = 0.06 to 0.92, p = .042). TDCS but not escitalopram was superior to placebo in sleep/insomnia symptoms (ES = 0.87; CI95% = 0.22 to 1.52, p = .015). Escitalopram but not tDCS was superior to placebo in guilt/anxiety symptoms (ES = 1.66; CI95% = 0.58 to 2.75, p = .006). No active intervention was superior to placebo for atypical symptoms. CONCLUSIONS Pharmacotherapy and non-invasive brain stimulation produce distinct effects in depressive symptoms. TDCS or escitalopram could be chosen according to specific clusters of symptoms for a bigger response. TRIAL REGISTRATION ClinicalTrials.gov, NCT01894815.
Collapse
Affiliation(s)
- Stephan A Goerigk
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany; Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University, Leopoldstraße 13, 80802, Munich, Germany; Hochschule Fresenius, University of Applied Sciences, Infanteriestraße 11A, 80797, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Adam Chekroud
- Department of Psychiatry, Yale University, New Haven, CT, 06520, USA; Spring Health, New York, NY, 10001, USA
| | - Joseph Kambeitz
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Markus Bühner
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University, Leopoldstraße 13, 80802, Munich, Germany
| | - Andre R Brunoni
- Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, 05403-000, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000, São Paulo, Brazil; Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, R Dr Ovidio Pires de Campos 785, 2o andar, 05403-000, São Paulo, Brazil.
| |
Collapse
|
15
|
Non-invasive cortical stimulation: Transcranial direct current stimulation (tDCS). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:1-22. [PMID: 34446242 DOI: 10.1016/bs.irn.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a re-emerging non-invasive brain stimulation technique that has been used in animal models and human trials aimed to elucidate neurophysiology and behavior interactions. It delivers subthreshold electrical currents to neuronal populations that shift resting membrane potential either toward depolarization or hyperpolarization, depending on stimulation parameters and neuronal orientation in relation to the induced electric field (EF). Although the resulting cerebral EFs are not strong enough to induce action potentials, spontaneous neuronal firing in response to inputs from other brain areas is influenced by tDCS. Additionally, tDCS induces plastic synaptic changes resembling long-term potentiation (LTP) or long-term depression (LTD) that outlast the period of stimulation. Such properties place tDCS as an appealing intervention for the treatment of diverse neuropsychiatric disorders. Although findings of clinical trials are preliminary for most studied conditions, there is already convincing evidence regarding its efficacy for unipolar depression. The main advantages of tDCS are the absence of serious or intolerable side effects and the portability of the devices, which might lead in the future to home-use applications and improved patient care. This chapter provides an up-to-date overview of a number tDCS relevant topics such as mechanisms of action, contemporary applications and safety. Furthermore, we propose ways to further develop tDCS research.
Collapse
|
16
|
Lin YY, Chang CC, Huang CCY, Tzeng NS, Kao YC, Chang HA. Efficacy and neurophysiological predictors of treatment response of adjunct bifrontal transcranial direct current stimulation (tDCS) in treating unipolar and bipolar depression. J Affect Disord 2021; 280:295-304. [PMID: 33221715 DOI: 10.1016/j.jad.2020.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/19/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although add-on transcranial direct current stimulation (tDCS) is a promising intervention for treating unipolar (UD) and bipolar depression (BD), its moderate antidepressant efficacy urges research into biomarkers for predicting therapeutic response and achieving highly targeted applications. METHODS This open-label trial enrolled UD (N=58) and BD (N=22) patients who had failed 1 or more trials of adequate pharmacologic interventions (ClinicalTrials.gov ID: NCT03287037). Bifrontal tDCS (anode/cathode: F3/F4) was applied using a 2 mA current for 20 min, twice daily, for 5 consecutive weekdays. Depression was measured with Hamilton Depression Rating Scale-17 (HAMD) at baseline, after 10-session stimulation, 1- and 4-week follow-ups. Heart rate (HR) and heart rate variability (HRV) was measured at baseline, during the initial 5 min of the 1st session, after 10-session stimulation, 1- and 4-week follow-ups. Cognitive performance and other outcomes were also assessed. RESULTS Bifrontal tDCS rapidly and equally improved depression in both groups. The effects persisted until the end of the trial. Both groups had similar improvements in cognitive performance, anxiety, and psychosocial functioning. Compared with baseline, increased vagally-mediated HRV was observed one month after tDCS for both groups. A positive correlation was found between HR deceleration within the 1st session and treatment response after 10-session tDCS only among UD patients, explaining 20% of the variance. CONCLUSION tDCS as an adjunct therapy is effective for both UD and BD. Data suggest that the greater the increase in parasympathetic signaling during the 1st session, the better the clinical response after 10-session tDCS for UD patients.
Collapse
Affiliation(s)
- Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
17
|
Suen PJC, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F, Mezger E, Bulubas L, Keeser D, Deng ZD, Brunoni AR. Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 2021; 271:101-110. [PMID: 32279145 PMCID: PMC8100980 DOI: 10.1007/s00406-020-01127-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention investigated for the treatment of depression. Clinical results have been heterogeneous, partly due to the variability of electric field (EF) strength in the brain owing to interindividual differences in head anatomy. Therefore, we investigated whether EF strength was correlated with behavioral changes in 16 depressed patients using simulated electric fields in real patient data from a controlled clinical trial. We hypothesized that EF strength in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), brain regions implicated in depression pathophysiology, would be associated with changes in depression, mood and anxiety scores. SimNIBS were used to simulate individual electric fields based on the MRI structural T1-weighted brain scans of depressed subjects. Linear regression models showed, at the end of the acute treatment phase, that simulated EF strength was inversely associated with negative affect in the bilateral ACC (left: β = - 160.463, CI [- 291.541, - 29.385], p = 0.021; right: β = - 189.194, CI [- 289.479, - 88.910], p = 0.001) and DLPFC (left: β = - 93.210, CI [- 154.960, - 31.461], p = 0.006; right: β = - 82.564, CI [- 142.867, - 22.262], p = 0.011) and with depression scores in the left ACC (β = - 156.91, CI [- 298.51, - 15.30], p = 0.033). No association between positive affect or anxiety scores, and simulated EF strength in the investigated brain regions was found. To conclude, our findings show preliminary evidence that EF strength simulations might be associated with further behavioral changes in depressed patients, unveiling a potential mechanism of action for tDCS. Further studies should investigate whether individualization of EF strength in key brain regions impact clinical response.
Collapse
Affiliation(s)
- Paulo J. C. Suen
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Doll
- Department of Psychology, University of Münster, Münster, Germany
| | | | - Geraldo Busatto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA) and Laboratory of Psychiatric Neuroimaging, Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Lais B. Razza
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Service of Interdisciplinary Neuromodulation, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Instituto de Psiquiatria, R Dr Ovidio Pires de Campos 785, 2o andar, Ala Sul, São Paulo, CEP 05403-000, Brazil
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,Department of Clinical Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andre R. Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Service of Interdisciplinary Neuromodulation, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Instituto de Psiquiatria, R Dr Ovidio Pires de Campos 785, 2o andar, Ala Sul, São Paulo, CEP 05403-000, Brazil,Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo and Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, São Paulo 05508-000, Brazil
| |
Collapse
|