1
|
Niyazova NN, Huseynova IM. The Antioxidant Defense System of Tomato ( Solanum lycopersicum L.) Varieties under Drought Stress and upon Post-Drought Rewatering. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1146-1157. [PMID: 38981707 DOI: 10.1134/s0006297924060130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 07/11/2024]
Abstract
Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.
Collapse
Affiliation(s)
- Naima N Niyazova
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan
| | - Irada M Huseynova
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
- Department of Molecular Biology and Biotechnologies, Baku State University, Baku, AZ1148, Azerbaijan
| |
Collapse
|
2
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|