1
|
Mandal S, Mondal C, Lyndem LM. Probiotics: an alternative anti-parasite therapy. J Parasit Dis 2024; 48:409-423. [PMID: 39145362 PMCID: PMC11319687 DOI: 10.1007/s12639-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
This paper review about probiotic effects and mechanism of action against the gut and non-gut helminths and protozoan parasites. Gastrointestinal parasitic infections are considered a serious health problem and are widely distributed globally. The disease process which emanates from this parasite infection provides some of the many public and veterinary health problems in the tropical and sub-tropical countries. Prevention and control of the parasite disease is through antihelmintic and anti-protozoan drugs, but, due to the increasing emergence of such drug resistance, eradication of parasite infestation in human and livestock still lingers a challenge, which requires the development of new alternative strategies. The use of beneficial microorganisms i.e. probiotics is becoming interesting due to their prophylactic application against several diseases including parasite infections. Recent studies on the interactions between probiotics, parasites and host immune cells using animal models and in vitro culture systems has increased considerably and draw much attention, yet the mechanisms of actions mediating the positive effects of these beneficial microorganisms on the hosts remain unexplored. Therefore, the aim of the present review is to summarize the latest findings on the probiotic research against the gut and non-gut parasites of significance.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Chandrani Mondal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Larisha M. Lyndem
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| |
Collapse
|
2
|
de Mendonça DR, Couto LFM, Pureza LH, Martins DB, Soares VE, Ferreira LL, Fioravanti MCS, Bastos TSA, da Cunha PHJ, Lopes WDZ. First record of a possible trypanotolerant cattle breed in Latin America: Parasitological, serological, and clinical aspects. Vet Parasitol Reg Stud Reports 2024; 54:101090. [PMID: 39237241 DOI: 10.1016/j.vprsr.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024]
Abstract
Trypanosoma vivax infections are endemic in Africa, where they provoke trypanosomosis against which some local taurine breeds are tolerant and are thus named trypanotolerant. In Latin America, T. vivax was imported in 1919, since when it has been responsible for periodic outbreaks of the disease. This study assessed whether a South American taurine breed resilient to several parasitic and infectious diseases (Curraleiro Pé-Duro-CPD) can meet trypanotolerant criteria (control parasite proliferation, prevent anemia, survive without treatment, and maintain productivity). Three groups were established, each consisting of six animals (Group 1: CPD-infected; Group 2: Holstein/Gyr-infected; Group 3: Holstein/Gyr-uninfected, negative control). Groups 1 and 2 were infected with T. vivax on Day 0 and evaluated until day 532. Throughout the experimental period, parasitological (Woo and Brener), molecular (cPCR), serological (enzyme-linked immunosorbent assay - ELISA, indirect fluorescent antibody test - IFAT, immunochromatographic assay - IA), and clinical (hemogram, fever, weight loss) aspects were evaluated. During the acute phase of the disease, T. vivax was initially detected in Holstein/Gyr. Notably, the CPD animals restored their packed cell volume (PCV) values to the normal range 74 days after inoculations. In the chronic phase, two of the six CPD animals were positive by cPCR until D + 522 following immunosuppression with dexamethasone. Regarding serological aspects, the two CPD animals had positive tests until D + 532. The absence of T. vivax in blood during the chronic phase did not correspond to "self-cure". Holstein/Gyr animals exhibited fever on more evaluation days than CPD animals. Both breeds experienced weight loss, with Holstein/Gyr animals losing significantly more weight. On D + 25, the Holstein/Gyr group required treatment. During the 532 days, none of the CPD animals required treatment, even after being sensitized with dexamethasone. Animals from Group 3 tested negative for T. vivax throughout the experiment. This study demonstrated that CPD cattle fulfill the mentioned trypanotolerant criteria.
Collapse
Affiliation(s)
| | | | - Luana Hernandez Pureza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Danieli Brolo Martins
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lorena Lopes Ferreira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Welber Daniel Zanetti Lopes
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Novello G, Souza FF, Canisso IF. Platelet-Rich Plasma Proteome of Mares Susceptible to Persistent-Breeding-Induced Endometritis Differs from Resistant Mares. Animals (Basel) 2024; 14:2100. [PMID: 39061562 PMCID: PMC11273647 DOI: 10.3390/ani14142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Persistent-breeding-induced endometritis (PBIE) is the leading cause of subfertility and poor reproductive efficiency in mares. Platelet-rich plasma (PRP) treatment has been shown to mitigate PBIE, reduce uterine infections, and improve fertility in mares. However, the proteome of PRP in mares, particularly those susceptible to PBIE, remains unknown. This study aimed to fill this knowledge gap by comparing the most abundant proteins present in PRP prepared from mares with histories of being susceptible or resistant to PBIE. The study involved twelve light-breed mares: seven susceptible and five resistant to PBIE. A complete blood count and physical examination were performed on each mare before blood drawing to ensure good health. The PRP was prepared following collection in a blood transfusion bag and double centrifugation. Platelet counts in the PRP were compared across the groups. The PRP was cryopreserved in liquid nitrogen until proteomics could be completed. Physical parameters and complete blood cell counts were within normal ranges. The platelet counts for resistant (561 ± 152 × 103) and susceptible mares (768 ± 395 × 103) differed (p < 0.05). One hundred and five proteins were detected in all mares, and four proteins were more abundant in resistant mares (p < 0.05). The proteins were apolipoprotein C-II, serpin family G member 1, protection of telomeres protein 1, and non-specific serine/threonine protein kinase. All these proteins are linked to the immune response. These results suggest that PRP prepared from mares resistant to PBIE may be more beneficial in mitigating PBIE in mares, offering a promising avenue for improving equine reproductive health. However, this remains to be determined with in vivo studies.
Collapse
Affiliation(s)
- Guilherme Novello
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
| | - Igor F. Canisso
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (G.N.); (F.F.S.)
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61822, USA
| |
Collapse
|
4
|
Wendo JK, Mbaria JM, Nyariki JN, Isaac AO. Ginkgo biloba attenuated detrimental inflammatory and oxidative events due to Trypanosoma brucei rhodesiense in mice treated with melarsoprol. PLoS Negl Trop Dis 2024; 18:e0012103. [PMID: 38620045 PMCID: PMC11045140 DOI: 10.1371/journal.pntd.0012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/25/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.
Collapse
Affiliation(s)
- Janet Khatenje Wendo
- The University of Nairobi, Department of Public Health, Pharmacology and Toxicology, Kangemi (Nairobi), Kenya
- The Technical University of Kenya, Department of Pharmaceutical Sciences and Technology, Nairobi, Kenya
| | - James Mucunu Mbaria
- The University of Nairobi, Department of Public Health, Pharmacology and Toxicology, Kangemi (Nairobi), Kenya
| | - James Nyabuga Nyariki
- The Technical University of Kenya, Department of Biochemistry and Biotechnology, Nairobi, Kenya
| | - Alfred Orina Isaac
- The Technical University of Kenya, Department of Pharmaceutical Sciences and Technology, Nairobi, Kenya
| |
Collapse
|
5
|
Linciano P, Pozzi C, Tassone G, Landi G, Mangani S, Santucci M, Luciani R, Ferrari S, Santarem N, Tagliazucchi L, Cordeiro-da-Silva A, Tonelli M, Tondi D, Bertarini L, Gul S, Witt G, Moraes CB, Costantino L, Costi MP. The discovery of aryl-2-nitroethyl triamino pyrimidines as anti-Trypanosoma brucei agents. Eur J Med Chem 2024; 264:115946. [PMID: 38043491 DOI: 10.1016/j.ejmech.2023.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Pteridine reductase 1 (PTR1) is a catalytic protein belonging to the folate metabolic pathway in Trypanosmatidic parasites. PTR1 is a known target for the medicinal chemistry development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. In previous studies, new nitro derivatives were elaborated as PTR1 inhibitors. The compounds showing a diamino-pyrimidine core structure were previously developed but they showed limited efficacy. Therefore, a new class of phenyl-, heteroaryl- and benzyloxy-nitro derivatives based on the 2-nitroethyl-2,4,6-triaminopyrimidine scaffold were designed and tested. The compounds were assayed for their ability to inhibit T. brucei and L. major PTR1 enzymes and for their antiparasitic activity towards T. brucei and L. infantum parasites. To understand the structure-activity relationships of the compounds against TbPTR1, the X-ray crystallographic structure of the 2,4,6-triaminopyrimidine (TAP) was obtained and molecular modelling studies were performed. As a next step, only the most effective compounds against T. brucei were then tested against the amastigote cellular stage of T. cruzi, searching for a broad-spectrum antiprotozoal agent. An early ADME-Tox profile evaluation was performed. The early toxicity profile of this class of compounds was investigated by measuring their inhibition of hERG and five cytochrome P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4), cytotoxicity towards A549 cells and mitochondrial toxicity. Pharmacokinetic studies (SNAP-PK) were performed on selected compounds using hydroxypropyl-β-cyclodextrins (50 % w/v) to preliminarily study their plasma concentration when administered per os at a dose of 20 mg/kg. Compound 1p, showed the best pharmacodynamic and pharmacokinetic properties, can be considered a good candidate for further bioavailability and efficacy studies.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Nuno Santarem
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge ViterboFerreira 228, 4050-313 Porto, Portugal
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy; Clinical and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 278, 41125, Modena, Italy
| | - Anabela Cordeiro-da-Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugual; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge ViterboFerreira 228, 4050-313 Porto, Portugal
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-100, Campinas, SP, Brazil
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
6
|
Razavi SM, Yaghoobpour T, Nazifi S. A review on acute phase response in parasitic blood diseases of ruminants. Res Vet Sci 2023; 165:105055. [PMID: 37862863 DOI: 10.1016/j.rvsc.2023.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Parasitic blood diseases (theileriosis, babesiosis, anaplasmosis, and trypanosomiasis) are common in regions where the distributions of the hosts, parasites, and vectors are convergent. They endanger animal production, and a few are also harmful to public health. The acute phase reaction (APR) is a complex, non-specific reaction that occurs in various events, including surgical trauma, infection, stress, inflammation, and neoplasia. To understand pathogenesis, we must study APR effects and acute phase proteins (APPs) alterations in naturally occurring and experimental infections. The elevation of haptoglobin (Hp), Serum amyloid A (SAA), and fibrinogen concentrations was markedly significant in bovine and ovine theileriosis. Hp, SAA, ceruloplasmin, and fibrinogen concentrations in anaplasmosis were dramatically elevated. A significant increase in SAA was observed in bovine babesiosis, while ovine babesiosis showed a significant rise in sialic acid levels. In cases of trypanosomiasis caused by T. vivax, there have been reports of elevated levels of Hp, complement C3, and antitrypsin. Improving our understanding of APR could result in more effective methods for diagnosis, treatment, control, and eradication of diseases. The article provides an overview of APPs alterations and other inflammation-related parameters (some cytokines, adenosine deaminase, and sialic acids) in parasitic blood diseases of ruminants.
Collapse
Affiliation(s)
- Seyed Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Tina Yaghoobpour
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
7
|
Mitalo NS, Waiganjo NN, Mokua Mose J, Bosire DO, Oula JO, Orina Isaac A, Nyabuga Nyariki J. Coinfection with Schistosoma mansoni Enhances Disease Severity in Human African Trypanosomiasis. J Trop Med 2023; 2023:1063169. [PMID: 37954132 PMCID: PMC10637842 DOI: 10.1155/2023/1063169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human African trypanosomiasis (HAT) and schistosomiasis are neglected parasitic diseases found in the African continent. This study was conducted to determine how primary infection with Schistosoma mansoni affects HAT disease progression with a secondary infection with Trypanosoma brucei rhodesiense (T.b.r) in a mouse model. Methods Female BALB-c mice (6-8 weeks old) were randomly divided into four groups of 12 mice each. The different groups were infected with Schistosoma mansoni (100 cercariae) and Trypanosoma brucei rhodesiense (5.0 × 104) separately or together. Twenty-one days after infection with T.b.r, mice were sacrificed and samples were collected for analysis. Results The primary infection with S. mansoni significantly enhanced successive infection by the T.b.r; consequently, promoting HAT disease severity and curtailing host survival time. T.b.r-induced impairment of the neurological integrity and breach of the blood-brain barrier were markedly pronounced on coinfection with S. mansoni. Coinfection with S. mansoni and T.b.r resulted in microcytic hypochromic anemia characterized by the suppression of RBCs, hematocrit, hemoglobin, and red cell indices. Moreover, coinfection of the mice with the two parasites resulted in leukocytosis which was accompanied by the elevation of basophils, neutrophils, lymphocytes, monocytes, and eosinophils. More importantly, coinfection resulted in a significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, creatinine, urea, and uric acid, which are the markers of liver and kidney damage. Meanwhile, S. mansoni-driven dyslipidemia was significantly enhanced by the coinfection of mice with T.b.r. Moreover, coinfection with S. mansoni and T.b.r led to a strong immune response characterized by a significant increase in serum TNF-α and IFN-γ. T.b.r infection enhanced S. mansoni-induced depletion of cellular-reduced glutathione (GSH) in the brain and liver tissues, indicative of lethal oxidative damage. Similarly, coinfection resulted in a significant rise in nitric oxide (NO) and malondialdehyde (MDA) levels. Conclusion Primary infection with S. mansoni exacerbates disease severity of secondary infection with T.b.r in a mouse model that is associated with harmful inflammatory response, oxidative stress, and organ injury.
Collapse
Affiliation(s)
- Nancy S. Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Naomi N. Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - David O. Bosire
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James O. Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
8
|
Bairy G, Ozzin-Kholy Zolipou CO, Nzoumbou-Boko R. In vitro trypanocidal activity of extracts and compounds isolated from Vitellaria paradoxa. BMC Complement Med Ther 2023; 23:346. [PMID: 37770899 PMCID: PMC10540432 DOI: 10.1186/s12906-023-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Vitellaria paradoxa is used in traditional medicine for the treatment of various diseases in tropical countries; however, nothing is known about its anti-trypanosomal activity. Human African trypanosomiasis is a neglected tropical disease of Sub-Saharan Africa's poorest rural regions, and the efficacy of its treatment remains a challenge. This study investigates the as-yet-unknown trypanocidal activity of this plant. METHODS V. paradoxa, commonly known as shea tree, was selected for study based on an ethnobotanical investigation. Ultrasonicated extracts from bark and seeds were successively treated with ethyl acetate and water. Column chromatography, NMR spectroscopy and mass spectrometry were used to identify isolated compounds. Purified trypanosomes (Trypanosoma brucei brucei) were incubated with serial dilutions of the extracts and isolated compounds at 37 °C in 5% CO2 for 24 h. Parasite viability was evaluated under a microscope. RESULTS The ethyl acetate extracts of the bark showed the higher in vitro trypanocidal activity against T. brucei brucei with median inhibitory concentration (IC50) of 3.25 µg/mL. However, the triterpene 1α,2β,3β,19α-tretrahydroxyurs-12-en-28-oic acid and the pentadecanoic acid isolated from the ethyl acetate extract of the seeds showed in vitro trypanocidal activity with IC50 of 11.30 and 70.1 µM, respectively. CONCLUSION The results obtained contribute to the validation of the traditional medicinal use of V. paradoxa. Our results encourage further investigations of this plant, mainly with respect to its in vivo efficacy and toxicity.
Collapse
Affiliation(s)
- Guerisson Bairy
- Department of Organic Chemistry, University of Yaoundé 1, B.O Box 812, Yaoundé, Cameroon
| | - Cyrille Oliver Ozzin-Kholy Zolipou
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic
- Laboratoire des Sciences Biologiques et Agronomiques pour le Développement, Faculté des Sciences, Université de Bangui, BP 1450, Bangui, RCA, Central African Republic
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic.
- Laboratoire de Biochimie, Faculté des Sciences, Université de Bangui, BP 1450, Bangui, RCA, Central African Republic.
| |
Collapse
|
9
|
Kitwan L, Makobe C, Mdachi R, Maranga DN, Isaac AO, Nyariki JN. Coenzyme Q 10 prevented Trypanosoma brucei rhodesiense-mediated breach of the blood brain barrier, inflammation and organ damage in late stage of Human African Trypanosomiasis. J Parasit Dis 2023; 47:167-184. [PMID: 36910316 PMCID: PMC9998817 DOI: 10.1007/s12639-022-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
During the late stage of Human African Trypanosomiasis (HAT), there is severe cytokine-driven inflammation, oxidative stress and organ damage. Controlling inflammation and oxidative damage presents unique therapeutic opportunities to improve treatment outcome. The current study sought to determine the putative impact of Coenzyme-Q10 (Co-Q10), a potent antioxidant and anti-inflammatory, on adverse inflammatory and oxidative events during Trypanosoma brucei rhodesiense (T.b.r) infection. Group one constituted the control; the second group was infected with T.b.r; the third group was orally administered with 200 mg/kg Co-Q10 for two weeks; thereafter, Co-Q10 administration continued after infection with T.b.r. Co-Q10 improved the survival rate of infected mice and prevented full blown parasite driven splenomegaly and hepatomegaly. Co-Q10 prevented characteristic T.b.r-driven breach of the blood brain barrier and improved neurological integrity among T.b.r infected mice. Co-Q10 protected from T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia. T.b.r-induced oxidative stress in the vital organs was assuaged following exposure to Co-Q10. Co-Q10 blocked T.b.r-induced derangement of high density lipoprotein and triglyceride levels. Co-Q10 significantly abrogated T.b.r-driven elevation of serum TNF-α and IFN-γ levels. Moreover, T.b.r-induced kidney and liver damage was assuaged by Co-Q10 administration. Co-Q10 administration downregulated T.b.r-induced elevation of uric acid and C-reactive protein. Likewise, T.b.r infected mice receiving Co-Q10 exhibited normal brain architecture. In conclusion, treatment with Co-Q10 may be useful in protecting against T.b.r-mediated organ injury, lethal inflammation and oxidative stress commonly present in severe late stage HAT; and presents unique opportunities for an adjunct therapy for late stage HAT.
Collapse
Affiliation(s)
- Lynn Kitwan
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Celestine Makobe
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Raymond Mdachi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | | | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| |
Collapse
|
10
|
Anyogu DC, Shoyinka SVO, Ihedioha JI. Brain and pituitary-adrenal lesions of Trypanosoma brucei brucei and Trypanosoma congolense infections in the West African Dwarf rams: Is trypanotolerance overrated? Vet Pathol 2022; 59:773-781. [PMID: 35656928 DOI: 10.1177/03009858221100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trypanosomosis of the West African Dwarf (WAD) sheep is often neglected due to emphasis on trypanotolerance. Nevertheless, significant pathological changes may occur in tissues of infected WAD sheep. The purpose of this study was to evaluate the brain, pituitary, and adrenal lesions of Trypanosoma brucei brucei (Tbb) and Trypanosoma congolense (Tc) infections in WAD rams. Fifteen WAD rams were infected intraperitoneally with Tbb or Tc (106 trypanosomes/animal) or were uninfected controls (5 rams per group). Adrenocorticotrophic hormone (ACTH) and cortisol were assayed in serum by enzyme immunoassay technique. The brain, pituitary, and adrenal glands were processed for histopathology. Serum ACTH levels of infected rams were significantly (P < .05) higher than that of controls on days 14 and 70 post infection (PI). Serum cortisol levels of infected rams were significantly (P < .05) higher than that of controls only on day 14 PI. Mortality was 60% in Tbb- and 40% in Tc-infected rams. The brain of the infected groups showed chromatolysis of cortical neurons and Purkinje cells with severe encephalitis. Degenerative, necrotic, and inflammatory changes were seen in the pituitary and adrenal glands of the infected rams. Adrenal corticomedullary ratio was significantly (P < .05) higher in Tc-infected rams than controls. Based on the high mortality levels, likely due to severe encephalitis, the WAD sheep may not be regarded as trypanotolerant.
Collapse
|
11
|
A Preliminary Study on the Relationship between Parasitaemia and Cytokine Expression of Peripheral Blood Cells in Trypanosoma vivax-Experimentally Infected Cattle. Animals (Basel) 2021; 11:ani11113191. [PMID: 34827923 PMCID: PMC8614243 DOI: 10.3390/ani11113191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Infections by Trypanosoma vivax in livestock have been reported with increasing frequency worldwide. Nevertheless, information regarding the immune response during the infection is scarce. Regarding that, cytokines play an important role as inflammation modulators, influencing the outcome of trypanosomosis. This study aimed to evaluate host cytokine production during T. vivax infection, in order to assess the increase or decrease of selected cytokines with the cattle’s ability to control the infection. While animals that showed an increase in IL-6 and IFNγ managed T. vivax parasitaemia satisfactorily, cattle that showed reduction of IL-1β, IL-2 and TNFα did not control the parasite multiplication. The presented results are preliminary and shed some light on the role of cytokines during T. vivax-infection. Abstract Trypanosoma vivax outbreaks have been reported with increasing frequency worldwide, causing significant economic losses in livestock. Though several studies have suggested that cytokine responses may influence infection caused by Trypanosoma sp., their exact role remains unclear and may vary according to the animal species and parasite strain. The present study aimed to evaluate cytokine expression of peripheral blood cells from three Girolando dairy cows experimentally infected with T. vivax. For this purpose, blood samples were collected prior to the inoculation on the day of inoculation (D0), the day after inoculation (D1), and then every seven days up to 119 days after infection (DAI). Each animal presented a unique pattern of cytokine expression. While a tendency of a Th1 cytokine response was observed during the patent phase (presence of circulating parasites), an increase of Th2 cytokine expression was found at the beginning of the sub-patent phase (low parasitaemia or aparasitaemic periods). In animals that presented a better control of parasitaemia, IL-6 and IFNγ increased during most of the trial period. On the other hand, the cow that presented reduction of IL-1β, IL-2, and TNFα during the entire period did not control parasitaemia properly. A balance between the Th1 and Th2 profile is beneficial for parasite control and animal health. The results found in the present study are a first step towards elucidating the dynamics of cattle’s inflammatory response against T. vivax, requiring future studies focusing on the role of key cytokines on the controlling of parasitaemia in different stages of bovine trypanosomosis.
Collapse
|
12
|
Rivera-Correa J, Verdi J, Sherman J, Sternberg JM, Raper J, Rodriguez A. Autoimmunity to phosphatidylserine and anemia in African Trypanosome infections. PLoS Negl Trop Dis 2021; 15:e0009814. [PMID: 34587165 PMCID: PMC8505006 DOI: 10.1371/journal.pntd.0009814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Anemia caused by trypanosome infection is poorly understood. Autoimmunity during Trypanosoma brucei infection was proposed to have a role during anemia, but the mechanisms involved during this pathology have not been elucidated. In mouse models and human patients infected with malaria parasites, atypical B-cells promote anemia through the secretion of autoimmune anti-phosphatidylserine (anti-PS) antibodies that bind to uninfected erythrocytes and facilitate their clearance. Using mouse models of two trypanosome infections, Trypanosoma brucei and Trypanosoma cruzi, we assessed levels of autoantibodies and anemia. Our results indicate that acute T. brucei infection, but not T. cruzi, leads to early increased levels of plasma autoantibodies against different auto antigens tested (PS, DNA and erythrocyte lysate) and expansion of atypical B cells (ABCs) that secrete these autoantibodies. In vitro studies confirmed that a lysate of T. brucei, but not T. cruzi, could directly promote the expansion of these ABCs. PS exposure on erythrocyte plasma membrane seems to be an important contributor to anemia by delaying erythrocyte recovery since treatment with an agent that prevents binding to it (Annexin V) ameliorated anemia in T. brucei-infected mice. Analysis of the plasma of patients with human African trypanosomiasis (HAT) revealed high levels of anti-PS antibodies that correlated with anemia. Altogether these results suggest a relation between autoimmunity against PS and anemia in both mice and patients infected with T. brucei.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College of City University of New York, New York, United States of America
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| | - Jeremy M Sternberg
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jayne Raper
- Department of Biological Sciences, Hunter College of City University of New York, New York, United States of America
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, United States of America
| |
Collapse
|
13
|
Gupta SK, Ponte-Sucre A, Bencurova E, Dandekar T. An Ebola, Neisseria and Trypanosoma human protein interaction census reveals a conserved human protein cluster targeted by various human pathogens. Comput Struct Biotechnol J 2021; 19:5292-5308. [PMID: 34745452 PMCID: PMC8531761 DOI: 10.1016/j.csbj.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Filovirus ebolavirus (ZE; Zaire ebolavirus, Bundibugyo ebolavirus), Neisseria meningitidis (NM), and Trypanosoma brucei (Tb) are serious infectious pathogens, spanning viruses, bacteria and protists and all may target the blood and central nervous system during their life cycle. NM and Tb are extracellular pathogens while ZE is obligatory intracellular, targetting immune privileged sites. By using interactomics and comparative evolutionary analysis we studied whether conserved human proteins are targeted by these pathogens. We examined 2797 unique pathogen-targeted human proteins. The information derived from orthology searches of experimentally validated protein-protein interactions (PPIs) resulted both in unique and shared PPIs for each pathogen. Comparing and analyzing conserved and pathogen-specific infection pathways for NM, TB and ZE, we identified human proteins predicted to be targeted in at least two of the compared host-pathogen networks. However, four proteins were common to all three host-pathogen interactomes: the elongation factor 1-alpha 1 (EEF1A1), the SWI/SNF complex subunit SMARCC2 (matrix-associated actin-dependent regulator of chromatin subfamily C), the dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (RPN1), and the tubulin beta-5 chain (TUBB). These four human proteins all are also involved in cytoskeleton and its regulation and are often addressed by various human pathogens. Specifically, we found (i) 56 human pathogenic bacteria and viruses that target these four proteins, (ii) the well researched new pandemic pathogen SARS-CoV-2 targets two of these four human proteins and (iii) nine human pathogenic fungi (yet another evolutionary distant organism group) target three of the conserved proteins by 130 high confidence interactions.
Collapse
Affiliation(s)
- Shishir K Gupta
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Alicia Ponte-Sucre
- Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Escuela Luis Razetti, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Hermann-Schell-Str. 7, 97074 Würzburg, Germany
| | - Elena Bencurova
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
14
|
Dias-Guerreiro T, Palma-Marques J, Mourata-Gonçalves P, Alexandre-Pires G, Valério-Bolas A, Gabriel Á, Nunes T, Antunes W, da Fonseca IP, Sousa-Silva M, Santos-Gomes G. African Trypanosomiasis: Extracellular Vesicles Shed by Trypanosoma brucei brucei Manipulate Host Mononuclear Cells. Biomedicines 2021; 9:biomedicines9081056. [PMID: 34440259 PMCID: PMC8394715 DOI: 10.3390/biomedicines9081056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
African trypanosomiasis or sleeping sickness is a zoonotic disease caused by Trypanosoma brucei, a protozoan parasite transmitted by Glossina spp. (tsetse fly). Parasite introduction into mammal hosts triggers a succession of events, involving both innate and adaptive immunity. Macrophages (MΦ) have a key role in innate defence since they are antigen-presenting cells and have a microbicidal function essential for trypanosome clearance. Adaptive immune defence is carried out by lymphocytes, especially by T cells that promote an integrated immune response. Like mammal cells, T. b. brucei parasites release extracellular vesicles (TbEVs), which carry macromolecules that can be transferred to host cells, transmitting biological information able to manipulate cell immune response. However, the exact role of TbEVs in host immune response remains poorly understood. Thus, the current study examined the effect elicited by TbEVs on MΦ and T lymphocytes. A combined approach of microscopy, nanoparticle tracking analysis, multiparametric flow cytometry, colourimetric assays and detailed statistical analyses were used to evaluate the influence of TbEVs in mouse mononuclear cells. It was shown that TbEVs can establish direct communication with cells of innate and adaptative immunity. TbEVs induce the differentiation of both M1- and M2-MΦ and elicit the expansion of MHCI+, MHCII+ and MHCI+MHCII+ MΦ subpopulations. In T lymphocytes, TbEVs drive the overexpression of cell-surface CD3 and the nuclear factor FoxP3, which lead to the differentiation of regulatory CD4+ and CD8+ T cells. Moreover, this study indicates that T. b. brucei and TbEVs seem to display opposite but complementary effects in the host, establishing a balance between parasite growth and controlled immune response, at least during the early phase of infection.
Collapse
Affiliation(s)
- Tatiana Dias-Guerreiro
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Patrícia Mourata-Gonçalves
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Graça Alexandre-Pires
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (G.A.-P.); (I.P.d.F.)
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Áurea Gabriel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Laboratório de Imagem Nano-Morfológica e Espectroscopia de Raios-X, 1100-471 Lisboa, Portugal;
| | - Isabel Pereira da Fonseca
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (G.A.-P.); (I.P.d.F.)
| | - Marcelo Sousa-Silva
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
- Centro de Ciências da Saúde, Departamento de Analises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
- Correspondence: ; Tel.: +351-21-365-26-00; Fax: +351-21-363-21-05
| |
Collapse
|
15
|
Wei R, Li X, Wang X, Zhang N, Wang Y, Zhang X, Gong P, Li J. Trypanosoma evansi evades host innate immunity by releasing extracellular vesicles to activate TLR2-AKT signaling pathway. Virulence 2021; 12:2017-2036. [PMID: 34348595 PMCID: PMC8344757 DOI: 10.1080/21505594.2021.1959495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Surra, one of the most important animal diseases with economic consequences in Asia and South America, is caused by Trypanosoma evansi. However, the mechanism of immune evasion by T. evansi has not been extensively studied. In the present study, T. evansi extracellular vesicles (TeEVs) were characterized and the role of TeEVs in T. evansi infection were examined. The results showed that T. evansi and TeEVs could activate TLR2-AKT pathway to inhibit the secretions of IL-12p40, IL-6, and TNF-α in mouse BMDMs. TLR2−/- mice and mice with a blocked AKT pathway were more resistant to T. evansi infection than wild type (WT) mice, with a significantly lower infection rate, longer survival time and less parasite load, as well as an increased secretion level of IL-12p40 and IFN-γ. Kinetoplastid membrane protein-11 (KMP-11) of TeEVs could activate AKT pathway and inhibit the productions of IL-12p40, TNF-α, and IL-6 in vitro. TeEVs and KMP-11 could inhibit the productions of IL-12p40 and IFN-γ, promote T. evansi proliferation and shorten the survival time of infected mice in vivo. In conclusion, T. evansi could escape host immune response through inhibiting the productions of inflammatory cytokines via secreting TeEVs to activate TLR2-AKT pathway. KMP-11 in TeEVs was involved in promoting T. evansi infection. Extracellular vesicles (EVs) secreted by Trypanosoma evansi (T. evansi) activate the TLR2-AKT signaling pathway to inhibit the production of inflammatory cytokines, thereby escaping the host’s immune response. Kinetoplastid membrane protein-11 (KMP-11) in EVs is related to the promotion of T.evansi infection via AKT pathway.
Collapse
Affiliation(s)
- Ran Wei
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
16
|
Okolo CC, Nweze NE, Eze IJ. Hematobiochemical and Immunological Responses of Rats Treated with Multi-strain Probiotics and Infected with Trypanosoma brucei. Probiotics Antimicrob Proteins 2021; 12:952-960. [PMID: 31617160 DOI: 10.1007/s12602-019-09592-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The effects of treatment with probiotics on the immunological and hematobiochemical changes in Trypanosoma brucei infection were investigated. Probiotic strains used are Bifidobacterium BB-12, Lactobacillus acidophilus LA-5, Lactobacillus delbrueckii LBY-27, Lactobacillus paracasei LC-01, and Streptococcus thermophilus STY-31. Thirty rats randomly assigned to five groups were used in the experiment. Groups A to C received 1 × 109 CFU, 5 × 109 CFU, and 10 × 109 CFU of the multi-strain probiotics daily and respectively from day 0 post-supplementation (PS) to termination. Group D and E were the infected and uninfected controls respectively. On day seven PS, groups A to D were challenged intraperitoneally with approximately 1 × 106 trypanosomes. Parasitemia, nitric oxide level, hematobiochemical parameters, and antibody titer to heterologous antigen stimulation were monitored post-infection. By days 7 and 16 PS, probiotics-treated groups had significantly lower (p < 0.05) mean creatinine concentration than the controls; however, on day 7 PS, there were no significant variations in the leukocyte counts (LC), total erythrocyte counts (TEC), and the packed cell volume (PCV) in all experimental groups. Following infection, by day 16 PS, the pre-patent period, parasitemia levels, and antibody titer were similar in all infected groups. Furthermore, the probiotics-treated groups and the infected control had significantly lower PCV, TEC, and LC values when compared to the uninfected control, and probiotics treated groups (A and C) had only marginally lower nitric oxide levels than the infected control. Treatment with the probiotic strains gave a creatinine-lowering effect, was innocuous to the hematopoietic system, but was not sufficiently immunostimulatory in trypanosomosis.
Collapse
Affiliation(s)
| | | | - Ifeanyi James Eze
- Department of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, 410001, Nigeria
| |
Collapse
|
17
|
Dermal bacterial LPS-stimulation reduces susceptibility to intradermal Trypanosoma brucei infection. Sci Rep 2021; 11:9856. [PMID: 33972588 PMCID: PMC8110744 DOI: 10.1038/s41598-021-89053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
Infections with Trypanosoma brucei sp. are established after the injection of metacyclic trypomastigotes into the skin dermis by the tsetse fly vector. The parasites then gain access to the local lymphatic vessels to infect the local draining lymph nodes and disseminate systemically via the bloodstream. Macrophages are considered to play an important role in host protection during the early stage of systemic trypanosome infections. Macrophages are abundant in the skin dermis, but relatively little is known of their impact on susceptibility to intradermal (ID) trypanosome infections. We show that although dermal injection of colony stimulating factor 1 (CSF1) increased the local abundance of macrophages in the skin, this did not affect susceptibility to ID T. brucei infection. However, bacterial LPS-stimulation in the dermis prior to ID trypanosome infection significantly reduced disease susceptibility. In vitro assays showed that LPS-stimulated macrophage-like RAW264.7 cells had enhanced cytotoxicity towards T. brucei, implying that dermal LPS-treatment may similarly enhance the ability of dermal macrophages to eliminate ID injected T. brucei parasites in the skin. A thorough understanding of the factors that reduce susceptibility to ID injected T. brucei infections may lead to the development of novel strategies to help reduce the transmission of African trypanosomes.
Collapse
|
18
|
Vergkizi S, Nikolakakis I. Bacillus Calmette-Guérin (BCG) vaccine generates immunoregulatory cells in the cervical lymph nodes in guinea pigs injected intra dermally. Vaccine 2020; 38:7629-7637. [PMID: 33071000 PMCID: PMC7562966 DOI: 10.1016/j.vaccine.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/14/2023]
Abstract
This work demonstrates the presence of immune regulatory cells in the cervical lymph nodes draining Bacillus Calmette-Guérin (BCG) vaccinated site on the dorsum of the ear in guinea pigs. It is shown that whole cervical lymph node cells did not proliferate in vitro in the presence of soluble mycobacterial antigens (PPD or leprosin) despite being responsive to whole mycobacteria. Besides, T cells from these lymph nodes separated as a non-adherent fraction on a nylon wool column, proliferated to PPD in the presence of autologous antigen presenting cells. Interestingly, addition of as low as 20% nylon wool adherent cells to these, sharply decreased the proliferation by 83%. Looking into what cells in the adherent fraction suppressed the proliferation, it was found that neither the T cell nor the macrophage enriched cell fractions of this population individually showed suppressive effect, indicating that their co-presence was necessary for the suppression. Since BCG induced granulomas resolve much faster than granulomas induced by other mycobacteria such as Mycobacterium leprae the present experimental findings add to the existing evidence that intradermal BCG vaccination influences subsequent immune responses in the host and may further stress upon its beneficial role seen in Covid-19 patients.
Collapse
Affiliation(s)
- Souzan Vergkizi
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
19
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Alfituri OA, Bradford BM, Paxton E, Morrison LJ, Mabbott NA. Influence of the Draining Lymph Nodes and Organized Lymphoid Tissue Microarchitecture on Susceptibility to Intradermal Trypanosoma brucei Infection. Front Immunol 2020; 11:1118. [PMID: 32582198 PMCID: PMC7283954 DOI: 10.3389/fimmu.2020.01118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Infection of the mammalian host with African trypanosomes begins when the tsetse fly vector injects the parasites into the skin dermis during blood feeding. After injection into the skin, trypanosomes first accumulate in the draining lymph node before disseminating systemically. Whether this early accumulation within the draining lymph node is important for the trypanosomes to establish infection was not known. Lymphotoxin-β-deficient mice (LTβ-/- mice) lack most secondary lymphoid tissues, but retain the spleen and mesenteric lymph nodes. These mice were used to test the hypothesis that the establishment of infection after intradermal (ID) T. brucei infection would be impeded in the absence of the skin draining lymph nodes. However, LTβ-/- mice revealed greater susceptibility to ID T. brucei infection than wild-type mice, indicating that the early accumulation of the trypanosomes in the draining lymph nodes was not essential to establish systemic infection. Although LTβ-/- mice were able to control the first parasitemia wave as effectively as wild-type mice, they were unable to control subsequent parasitemia waves. LTβ-/- mice also lack organized B cell follicles and germinal centers within their remaining secondary lymphoid tissues. As a consequence, LTβ-/- mice have impaired immunoglobulin (Ig) isotype class-switching responses. When the disturbed microarchitecture of the B cell follicles in the spleens of LTβ-/- mice was restored by reconstitution with wild-type bone marrow, their susceptibility to ID T. brucei infection was similar to that of wild-type control mice. This effect coincided with the ability to produce significant serum levels of Ig isotype class-switched parasite-specific antibodies. Thus, our data suggest that organized splenic microarchitecture and the production of parasite-specific Ig isotype class-switched antibodies are essential for the control of ID African trypanosome infections.
Collapse
Affiliation(s)
- Omar A Alfituri
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Barry M Bradford
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
22
|
Evaluation of the Immunoprotective Potential of Recombinant Paraflagellar Rod Proteins of Trypanosoma evansi in Mice. Vaccines (Basel) 2020; 8:vaccines8010084. [PMID: 32059486 PMCID: PMC7157580 DOI: 10.3390/vaccines8010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Trypanosomosis, caused by Trypanosoma evansi, is an economically significant disease of livestock. Systematic antigenic variation by the parasite has undermined prospects for the development of a protective vaccine that targets the immunodominant surface antigens, encouraging exploration of alternatives. The paraflagellar rod (PFR), constituent proteins of the flagellum, are prominent non-variable vaccine candidates for T. evansi owing to their strategic location. Two major PFR constituent proteins, PFR1 (1770bp) and PFR2 (1800bp), were expressed using Escherichia coli. Swiss albino mice were immunized with the purified recombinant TePFR1 (89KDa) and TePFR2 (88KDa) proteins, as well as with the mix of the combined proteins at equimolar concentrations, and subsequently challenged with virulent T. evansi. The PFR-specific humoral response was assessed by ELISA. Cytometric bead-based assay was used to measure the cytokine response and flow cytometry for quantification of the cytokines. The recombinant TePFR proteins induced specific humoral responses in mice, including IgG1 followed by IgG2a and IgG2b. A balanced cytokine response induced by rTePFR 1 and 2 protein vaccination associated with extended survival and improved control of parasitemia following lethal challenge. The observation confirms the immunoprophylactic potential of the covert antigens of T. evansi.
Collapse
|
23
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
24
|
Neopterin and CXCL-13 in Diagnosis and Follow-Up of Trypanosoma brucei gambiense Sleeping Sickness: Lessons from the Field in Angola. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6070176. [PMID: 31886231 PMCID: PMC6914994 DOI: 10.1155/2019/6070176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Human African Trypanosomiasis may become manageable in the next decade with fexinidazole. However, currently stage diagnosis remains difficult to implement in the field and requires a lumbar puncture. Our study of an Angolan cohort of T. b. gambiense-infected patients used other staging criteria than those recommended by the WHO. We compared WHO criteria (cell count and parasite identification in the CSF) with two biomarkers (neopterin and CXCL-13) which have proven potential to diagnose disease stage or relapse. Biological, clinical, and neurological data were analysed from a cohort of 83 patients. A neopterin concentration below 15.5 nmol/L in the CSF denoted patients with stage 1 disease, and a concentration above 60.31 nmol/L characterized patients with advanced stage 2 (trypanosomes in CSF and/or cytorachia higher than 20 cells) disease. CXCL-13 levels below 91.208 pg/mL denoted patients with stage 1 disease, and levels of CXCL-13 above 395.45 pg/mL denoted patients with advanced stage 2 disease. Values between these cut-offs may represent patients with intermediate stage disease. Our work supports the existence of an intermediate stage in HAT, and CXCL-13 and neopterin levels may help to characterize it.
Collapse
|
25
|
Variable Surface Glycoprotein from Trypanosoma brucei Undergoes Cleavage by Matrix Metalloproteinases: An in silico Approach. Pathogens 2019; 8:pathogens8040178. [PMID: 31597256 PMCID: PMC6963732 DOI: 10.3390/pathogens8040178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
In order to survive as extracellular parasites in the mammalian host environment, Trypanosoma brucei has developed efficient mechanisms of immune system evasion, which include the abundant expression of a variable surface glycoprotein (VSG) coat. VSGs are anchored in the parasite membrane by covalent C-terminal binding to glycosylphosphatidylinositol and may be periodically removed by a phospholipase C (PLC) and a major surface protein (TbMSP). VSG molecules show extraordinary antigenic diversity and a comparative analysis of protein sequences suggests that conserved elements may be a suitable target against African trypanosomiasis. However, the cleavage mechanisms of these molecules remain unclear. Moreover, in protozoan infections, including those caused by Trypanosoma brucei, it is possible to observe an increased expression of the matrix metalloproteinases (MMPs). To address the cleavage mechanism of VSGs, the PROSPER server was used for the identification of VSG sequence cleavage sites. After data compilation, it was observed that 64 VSG consensus sequences showed a high conservation of hydrophobic residues, such as valine (V), methionine (M), leucine (L) and isoleucine (I) in the fifth position—the exact location of the cleavage site. In addition, the PROSPER server identified conserved cleavage site portions of VSG proteins recognized by three matrix metalloproteases (gelatinases: MMP-2, MMP-3 and MMP-9). However, further biological studies are needed in order to analyze and confirm this prediction.
Collapse
|
26
|
Cespuglio R, Amrouni D, Raymond EF, Bouteille B, Buguet A. Cerebral inducible nitric oxide synthase protein expression in microglia, astrocytes and neurons in Trypanosoma brucei brucei-infected rats. PLoS One 2019; 14:e0215070. [PMID: 30995270 PMCID: PMC6469759 DOI: 10.1371/journal.pone.0215070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 11/18/2022] Open
Abstract
To study the anatomo-biochemical substrates of brain inflammatory processes, Wistar male rats were infected with Trypanosoma brucei brucei. With this reproducible animal model of human African trypanosomiasis, brain cells (astrocytes, microglial cells, neurons) expressing the inducible nitric oxide synthase (iNOS) enzyme were revealed. Immunohistochemistry was achieved for each control and infected animal through eight coronal brain sections taken along the caudorostral axis of the brain (brainstem, cerebellum, diencephalon and telencephalon). Specific markers of astrocytes (anti-glial fibrillary acidic protein), microglial cells (anti-integrin alpha M) or neurons (anti-Neuronal Nuclei) were employed. The iNOS staining was present in neurons, astrocytes and microglial cells, but not in oligodendrocytes. Stained astrocytes and microglial cells resided mainly near the third cavity in the rostral part of brainstem (periaqueductal gray), diencephalon (thalamus and hypothalamus) and basal telencephalon. Stained neurons were scarce in basal telencephalon, contrasting with numerous iNOS-positive neuroglial cells. Contrarily, in dorsal telencephalon (neocortex and hippocampus), iNOS-positive neurons were plentiful, contrasting with the marked paucity of labelled neuroglial (astrocytes and microglial) cells. The dual distribution between iNOS-labelled neuroglial cells and iNOS-labelled neurons is a feature that has never been described before. Functionalities attached to such a divergent distribution are discussed.
Collapse
Affiliation(s)
- Raymond Cespuglio
- Neuroscience Research Centre of Lyon (CRNL), Neurochem, Faculty of Medicine, Claude-Bernard Lyon-1 University, Lyon, France
- Sechenov 1st Moscow State Medical University, Laboratory of Psychiatric Neurobiology, Moscow, Russia
| | - Donia Amrouni
- Neuroscience Research Centre of Lyon (CRNL), Neurochem, Faculty of Medicine, Claude-Bernard Lyon-1 University, Lyon, France
| | - Elizabeth F. Raymond
- Faculty of Medicine, team EA 4171, Claude-Bernard Lyon-1 University, Lyon, France
| | - Bernard Bouteille
- Department of Parasitology, Dupuytren University Hospital, Limoges, France
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, Villeurbanne, France
| |
Collapse
|
27
|
Moreno CJG, Temporão A, Torres T, Sousa Silva M. Trypanosoma brucei Interaction with Host: Mechanism of VSG Release as Target for Drug Discovery for African Trypanosomiasis. Int J Mol Sci 2019; 20:ijms20061484. [PMID: 30934540 PMCID: PMC6471236 DOI: 10.3390/ijms20061484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.
Collapse
Affiliation(s)
- Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
| | - Adriana Temporão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal.
| | - Taffarel Torres
- Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural de Semi-árido, Mossoró 59625-900, Brazil.
| | - Marcelo Sousa Silva
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
28
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
29
|
Diminazene aceturate (Berenil) downregulates Trypanosoma congolense-induced proinflammatory cytokine production by altering phosphorylation of MAPK and STAT proteins. Immunol Res 2018; 67:84-92. [DOI: 10.1007/s12026-018-9040-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Rivas F, Medeiros A, Rodríguez Arce E, Comini M, Ribeiro CM, Pavan FR, Gambino D. New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium tuberculosis. J Inorg Biochem 2018; 187:73-84. [PMID: 30055398 DOI: 10.1016/j.jinorgbio.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/26/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022]
Abstract
Searching for prospective agents against infectious diseases, four new ferrocenyl derivatives, [M(L)(dppf)4](PF6), with M = Pd(II) or Pt(II), dppf = 1,1'-bis(dipheny1phosphino) ferrocene and HL = tropolone (HTrop) or hinokitiol (HHino), were synthesized and characterized. Complexes and ligands were evaluated against the bloodstream form of T. brucei, L. infantum amastigotes, M. tuberculosis (MTB) sensitive strain and MTB clinical isolates. Complexes showed a significant increase of the anti-T. brucei activity with respect to the free ligands (>28- and >46-fold for Trop and 6- and 22-fold for Hino coordinated to Pt-dppf and Pd-dppf, respectively), yielding IC50 values < 5 μM. The complexes proved to be more potent than the antitrypanosomal drug Nifurtimox. The new ferrocenyl derivatives were more selective towards the parasite than the free ligands. The Pt compounds were less toxic on J774 murine macrophages (mammalian cell model), than the Pd ones, showing selectivity index values (SI = IC50 murine macrophage/IC50T. brucei) up to 23. Generation of the {M-dppf} compounds lead to a slightly positive impact on the anti-leishmanial potency. Although the ferrocenyl derivatives were more active on sensitive MTB than the free ligands (MIC90 = 9.88-14.73 μM), they showed low selectivity towards the pathogen. Related to the mechanism of action, the antiparasitic effect cannot be ascribed to an interference of the compounds with the thiol-redox homeostasis of the pathogen. Fluorescence measurements pointed at DNA as a probable target of the new compounds. [Pt(Trop)(dppf)](PF6) and [Pt(Hino)(dppf)](PF6) could be considered prospective anti-T. brucei agents that deserve further research.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Esteban Rodríguez Arce
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | | | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
31
|
Silva Pereira S, Casas-Sánchez A, Haines LR, Ogugo M, Absolomon K, Sanders M, Kemp S, Acosta-Serrano Á, Noyes H, Berriman M, Jackson AP. Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs. Genome Res 2018; 28:1383-1394. [PMID: 30006414 PMCID: PMC6120623 DOI: 10.1101/gr.234146.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Moses Ogugo
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kihara Absolomon
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Steve Kemp
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Álvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| |
Collapse
|
32
|
Manivel G, Meyyazhagan A, Durairaj D R, Piramanayagam S. Genome-wide analysis of Excretory/Secretory proteins in Trypanosoma brucei brucei: Insights into functional characteristics and identification of potential targets by immunoinformatics approach. Genomics 2018; 111:1124-1133. [PMID: 30006035 DOI: 10.1016/j.ygeno.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/28/2022]
Abstract
Trypanosoma brucei brucei (T.b.brucei) is an extra-cellular parasite that causes Animal African Trypanosomiasis (AAT) disease in animals. Till day, this disease is more difficult to treat and control due to lack of efficient vaccines and early diagnosis of the parasite infection. T.b.brucei Excretory/Secretory (ES) proteins were involved in pathogenesis and key for understanding the host-parasite interactions. Functions of T.b.brucei's ES proteins were poorly investigated and experimental identification is expensive and time-consuming. Bioinformatics approaches are cost-effective by facilitating the experimental analysis of potential drug targets for parasitic diseases. Here we applied several bioinformatics tools to predict and functionalize the annotation of 1104 ES proteins and immunoinformatics approaches carried out to predict and evaluate the epitopes in T.b.brucei. Secretory information, functional annotations and potential epitopes of each ES proteins were available at http://tbb.insilico.in. This study provides functional information of T.b.brucei for experimental studies to identify potential targets for diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Gowdham Manivel
- Department of Bioinformatics, Bharathiar University, Coimbatore, India.
| | - Arun Meyyazhagan
- Cytogenetics Department, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Ruban Durairaj D
- Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
33
|
Odeniran PO, Ademola IO. A meta-analysis of the prevalence of African animal trypanosomiasis in Nigeria from 1960 to 2017. Parasit Vectors 2018; 11:280. [PMID: 29720251 PMCID: PMC5930763 DOI: 10.1186/s13071-018-2801-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African animal trypanosomiasis is an economically significant disease that affects the livestock industry in Nigeria. It is caused by several parasites of the genus Trypanosoma. National estimates of the disease prevalence in livestock and tsetse flies are lacking, therefore a systematic review and meta-analysis were performed to understand the trend of the disease prevalence over the years. METHODS Publications were screened in Web of Science, Ovid MEDLINE, Global Health, EMBASE and PubMed databases. Using four-stage (identification, screening, eligibility and inclusion) process in the PRIMSA checklist, only studies that met the inclusion criteria for AAT and tsetse infections were analysed. Point estimates prevalence and subgroup analyses based on diagnostic techniques in livestock were evaluated at 95% confidence interval (CI). RESULTS A total of 74 eligible studies published between 1960 and 2017 were selected for meta-analysis. This covers the six geopolitical zones, involving a total of 53,924 animals. The overall prevalence of AAT was 16.1% (95% CI: 12.3-20.3%). Based on diagnostic techniques, the prevalence of AAT in cattle was highest in PCR followed by serology and microscopy while the highest prevalence in pigs was observed with serology. Out of 12,552 tsetse flies examined from 14 eligible studies, an overall prevalence of 17.3% (95% CI: 4.5-36.0%) and subgroup prevalence of 49.7% (95% CI: 30.7-68.8%), 11.5% (95% CI: 6.1-18.5) and 4.5% (95% CI: 1.8-8.8%) in G. morsitans, G. tachinoides and G. palpalis, respectively, were observed using the random effects-model. CONCLUSIONS The prevalence of trypanosomes in both vectors and animal hosts was high in Nigeria. Therefore, further research on risk factors, seasonal and transhumance effects, vectoral capacity and competence are warranted for an effective control of AAT in Nigeria.
Collapse
Affiliation(s)
- Paul Olalekan Odeniran
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Isaiah Oluwafemi Ademola
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
34
|
Abstract
This study assessed the virulence of Trypanosoma evansi, the causative agent of camel trypanosomiasis (surra), affecting mainly camels among other hosts in Africa, Asia and South America, with high mortality and morbidity. Using Swiss white mice, we assessed virulence of 17 T. evansi isolates collected from surra endemic countries. We determined parasitaemia, live body weight, packed cell volume (PCV) and survivorship in mice, for a period of 60 days' post infection. Based on survivorship, the 17 isolates were classified into three virulence categories; low (31-60 days), moderate (11-30 days) and high (0-10 days). Differences in survivorship, PCV and bodyweights between categories were significant and correlated (P < 0.05). Of the 10 Kenyan isolates, four were of low, five moderate and one (Type B) of high virulence. These findings suggest differential virulence between T. evansi isolates. In conclusion, these results show that the virulence of T. evansi may be region specific, the phenotype of the circulating parasite should be considered in the management of surra. There is also need to collect more isolates from other surra endemic regions to confirm this observation.
Collapse
|
35
|
The Deadly Dance of B Cells with Trypanosomatids. Trends Parasitol 2017; 34:155-171. [PMID: 29089182 DOI: 10.1016/j.pt.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023]
Abstract
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections.
Collapse
|
36
|
Black SJ, Mansfield JM. Prospects for vaccination against pathogenic African trypanosomes. Parasite Immunol 2017; 38:735-743. [PMID: 27636100 DOI: 10.1111/pim.12387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/14/2016] [Indexed: 11/27/2022]
Abstract
African trypanosomes cause human and animal African trypanosomiases, which are chronic, debilitating and often fatal diseases of people and livestock in sub-Saharan Africa. The extracellular protozoan parasites are exemplars of antigenic variation. They direct host-protective B-cell and T-cell immune responses towards hypervariable components of their variable surface glycoprotein coat and evade immune elimination by generating new surface coat antigenic variants at a rate that supersedes immune destruction. This results in recurring waves of parasitemia, tissue invasion and escalating immunopathology in trypanosomiasis-susceptible hosts. Here, we discuss the possibility that host control of African trypanosomes might be improved by immunization with conserved VSG peptides and invariant surface glycoproteins. Infection-induced T-cell recall responses to these typically poorly expressed or nonimmunogenic parasite components induce tissue phagocytes to produce microbicidal materials that kill trypanosomes. Preliminary data that support this immune-enhancing vaccine strategy are discussed, as are host and parasite interactions that might downregulate the protective responses. These include infection-induced immunosuppression and increasing virulence of infecting parasites over time.
Collapse
Affiliation(s)
- S J Black
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Amherst, MA, USA
| | - J M Mansfield
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
37
|
Applicability of plant-based products in the treatment ofTrypanosoma cruziandTrypanosoma bruceiinfections: a systematic review of preclinicalin vivoevidence. Parasitology 2017; 144:1275-1287. [DOI: 10.1017/s0031182017000634] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARYChagas disease and sleeping sickness are neglected tropical diseases closely related to poverty, for which the development of plant-derived treatments has not been a promising prospect. Thus, we systematicaly review the preclinicalin vivoevidence on the applicability of plant-based products in the treatment ofTrypanosoma cruziandTrypanosoma bruceiinfections. Characteristics such as disease models, treatments, toxicological safety and methodological bias were analysed. We recovered 66 full text articles from 16 countries investigating 91 plant species. The disease models and treatments were highly variable. Most studies used native (n= 36, 54·54%) or exotic (n= 30, 45·46%) plants with ethnodirected indication (n= 45, 68·18%) for trypanosomiasis treatment. Complete phytochemical screening and toxicity assays were reported in only 15 (22·73%) and 32 (48·49%) studies, respectively. The currently available preclinical evidence is at high risk of bias. The absence of or incomplete characterization of animal models, treatment protocols, and phytochemical/toxicity analyses impaired the internal validity of the individual studies. Contradictory results of a same plant species compromise the external validity of the evidence, making it difficult determine the effectiveness, safety and biotechnological potential of plant-derived products in the development of new anti-infective agents to treatT. cruziandT. bruceiinfections.
Collapse
|
38
|
Silva-Barrios S, Stäger S. Protozoan Parasites and Type I IFNs. Front Immunol 2017; 8:14. [PMID: 28154565 PMCID: PMC5243830 DOI: 10.3389/fimmu.2017.00014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022] Open
Abstract
For many years, the role of interferon (IFN)-I has been characterized primarily in the context of viral infections. However, regulatory functions mediated by IFN-I have also been described against bacterial infections and in tumor immunology. Only recently, the interest in understanding the immune functions mediated by IFN-I has dramatically increased in the field of protozoan infections. In this review, we discuss the discrete role of IFN-I in the immune response against major protozoan infections: Plasmodium, Leishmania, Trypanosoma, and Toxoplasma.
Collapse
Affiliation(s)
- Sasha Silva-Barrios
- INRS-Institut Armand Frappier, Center for Host-Parasite Interactions , Laval, QC , Canada
| | - Simona Stäger
- INRS-Institut Armand Frappier, Center for Host-Parasite Interactions , Laval, QC , Canada
| |
Collapse
|
39
|
Ponte-Sucre A. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction. Front Microbiol 2016; 7:2126. [PMID: 28082973 PMCID: PMC5183608 DOI: 10.3389/fmicb.2016.02126] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma brucei rhodesiense and T. brucei gambiense, the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host–parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, Luis Razetti School of Medicine, Faculty of Medicine, Universidad Central de Venezuela Caracas, Venezuela
| |
Collapse
|
40
|
Krishnamoorthy P, Sengupta PP, Das S, Ligi M, Shome BR, Rahman H. Cytokine gene expression and pathology in mice experimentally infected with different isolates of Trypanosoma evansi. Exp Parasitol 2016; 170:168-176. [PMID: 27702553 DOI: 10.1016/j.exppara.2016.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Aim of the present study was to assess the cytokine gene expression in liver, kidney and spleen and histopathological changes in mice infected with buffalo and dog isolates of Trypanosoma evansi. Forty-four Swiss albino mice was divided into eleven groups of four mice each and injected subcutaneously with 1 × 105 trypanosomes of buffalo and dog isolate to twenty mice each, four mice served as control. Mice were examined for clinical signs, blood smear for trypanosome counts. Blood for PCR, liver, kidney, spleen, heart, lung, testis and abdominal muscle for histopathology and liver, kidney, spleen for cytokine gene expression studies, were collected. Mice showed dullness, lethargy, hunched back, sluggish movements on D4 and D5 in buffalo and dog isolate, respectively. Parasite count in blood varied between the two isolates of T. evansi. By PCR, trypanosome DNA was detected on D1 and D2 for buffalo and dog isolate, respectively. Splenomegaly was observed in mice infected with buffalo isolate but not with dog isolate. Histopathological changes were observed in liver, kidney, spleen and heart of mice but no changes in testis and abdominal muscles. Blood vessels of liver, heart, lung showed presence of trypanosomes in mice infected with buffalo isolate but not for dog isolate. Cytokine gene expression of IL-2, IL-4, IL-6, IL-12, TNF-α and IFN-γ increased in liver, kidney and spleen in both these isolates. However, the buffalo isolate exhibited pronounced increase in cytokine gene expression when compare to dog isolate of T. evansi. Anti-inflammatory cytokine gene IL-10 showed 50-60 and 10-20 folds increment in buffalo and dog isolates, respectively. This is the first report of IL-4, IL-6, IL-10 and IL-12 cytokine changes in mice infected with T. evansi. A variation in pathogenicity between buffalo and dog isolates was recorded indicating buffalo isolate of T. evansi remained more pathogenic in mice.
Collapse
Affiliation(s)
- P Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India.
| | - P P Sengupta
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - Sangita Das
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - M Ligi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - B R Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| | - H Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Formerly Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru, 560 064, Karnataka, India
| |
Collapse
|
41
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
42
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
43
|
Effects of experimental Trypanosoma evansi infection on pregnancy in Yankasa ewes. Theriogenology 2015; 85:862-869. [PMID: 26643605 DOI: 10.1016/j.theriogenology.2015.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Twenty pregnant Yankasa ewes were assigned to three groups to determine the effect of Trypanosoma evansi infection on pregnancy. Groups A and B comprising seven ewes each were infected with approximately 1.0 × 10(6) cells of T evansi per ewe through venepuncture at the second and third trimesters of pregnancy, respectively. Group C comprising six ewes served as uninfected control. There was slight pyrexia in the infected groups (groups A and B) but was absent in group C. The mean body weight, glucose concentration, and packed cell volume of ewes in group A were not significantly different from those in group C throughout the study. There was also no significant difference in mean glucose concentration between groups B and C. However, in group B, mean body weight was significantly (P < 0.05) lower compared to group C at week 2 and from week 4 post infection (pi) till the end of the study; the packed cell volume also significantly (P < 0.05) decreased but at weeks 4 and 6 pi. The mean plasma protein of ewes in group A was significantly (P < 0.05) increased compared to those of group C at weeks 7, 11 pi and thereafter till the end of the study. On the contrary, the plasma protein of ewes in group B decreased significantly (P < 0.05) compared to those in group C at weeks 2 and 6 pi. There were no reproductive losses throughout the study. This was characterized by insignificant differences in the gestation length between ewes in the infected groups (groups A and B) compared with those in group C. However, there were significant (P < 0.05) decreases in lamb birth weights of ewes in group B compared with ewes in groups A and C. Mice inoculation with blood from infected ewes postpartum was parasitemic 18 to 25 days pi, for ewes in group B, whereas none of the mice in groups A and C were parasitemic. Lambs born from the infected groups (groups A and B) were also aparasitemic for 40 days postpartum. It was therefore concluded that the T evansi isolate used caused mild trypanosomosis when infected at third trimester, whereas ewes infected at second trimester were resistant.
Collapse
|
44
|
Acute-phase protein behavior in dairy cattle herd naturally infected with Trypanosoma vivax. Vet Parasitol 2015; 211:141-5. [DOI: 10.1016/j.vetpar.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022]
|
45
|
Camejo MI, Spencer LM, Núñez A. TNF-alpha in bulls experimentally infected with Trypanosoma vivax: a pilot study. Vet Immunol Immunopathol 2014; 162:192-7. [PMID: 25464824 DOI: 10.1016/j.vetimm.2014.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
There are few studies about the immune response during trypanosomosis in cattle. The objective of this research was to evaluate the effect of experimental infection with Trypanosoma vivax (T. vivax) on serum levels of TNF-alpha in bulls and its relationship to hematocrit, body temperature and parasitemia. Two adult crossbred bulls were infected experimentally with T. vivax and two were used as controls. The bulls were evaluated during a 64 day period in terms of temperature, hematocrit, and parasitemia. Serum TNF-alpha levels were determined by ELISA, using an antibody specific for bovine. TNF-alpha in serum began rising on the seventh day after infection and reached a peak on day 40 of post-infection, then dropped. The lowest hematocrit levels corresponded to the upper levels of TNF-alpha, for each animal. In conclusion, the experimental infection of cattle with T. vivax promotes the release of TNF-alpha, demonstrating a pro-inflammatory immune response to this hemotropic parasite. Moreover, the lowest hematocrit levels coincide with high concentrations of TNF-alpha, suggesting that this cytokine can be linked to the observed anemia during the course of infection by T. vivax in cattle.
Collapse
Affiliation(s)
- María I Camejo
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela.
| | - Lilian M Spencer
- Departamento de Biología Celular, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela
| | - Armando Núñez
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela; Facultad de Ciencias Veterinarias, Universidad Nacional Experimental Rómulo Gallegos, San Juan de Los Morros, Estado Guárico, Venezuela
| |
Collapse
|
46
|
Holzmuller P, Grébaut P, Semballa S, Gonzatti MI, Geiger A. Proteomics: a new way to improve human African trypanosomiasis diagnosis? Expert Rev Proteomics 2014; 10:289-301. [DOI: 10.1586/epr.13.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Capewell P, Clucas C, DeJesus E, Kieft R, Hajduk S, Veitch N, Steketee PC, Cooper A, Weir W, MacLeod A. The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense. PLoS Pathog 2013; 9:e1003686. [PMID: 24098129 PMCID: PMC3789759 DOI: 10.1371/journal.ppat.1003686] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/22/2013] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma brucei gambiense causes 97% of all cases of African sleeping sickness, a fatal disease of sub-Saharan Africa. Most species of trypanosome, such as T. b. brucei, are unable to infect humans due to the trypanolytic serum protein apolipoprotein-L1 (APOL1) delivered via two trypanosome lytic factors (TLF-1 and TLF-2). Understanding how T. b. gambiense overcomes these factors and infects humans is of major importance in the fight against this disease. Previous work indicated that a failure to take up TLF-1 in T. b. gambiense contributes to resistance to TLF-1, although another mechanism is required to overcome TLF-2. Here, we have examined a T. b. gambiense specific gene, TgsGP, which had previously been suggested, but not shown, to be involved in serum resistance. We show that TgsGP is essential for resistance to lysis as deletion of TgsGP in T. b. gambiense renders the parasites sensitive to human serum and recombinant APOL1. Deletion of TgsGP in T. b. gambiense modified to uptake TLF-1 showed sensitivity to TLF-1, APOL1 and human serum. Reintroducing TgsGP into knockout parasite lines restored resistance. We conclude that TgsGP is essential for human serum resistance in T. b. gambiense. Trypanosoma brucei gambiense causes 97% of all cases of African sleeping sickness, a fatal disease of sub-Saharan Africa. Most species of trypanosome, such as T. b. brucei, are unable to infect humans due to trypanolytic factors in human serum. Understanding how T. b. gambiense overcomes these factors and infects humans is of major importance in the fight against this disease. Previous work indicated that a failure to take up some trypanolytic factors by T. b. gambiense contributes to resistance, although other mechanisms are involved. Here, we have examined a T. b. gambiense specific gene, TgsGP, for involvement in resistance to human serum. We show that TgsGP is essential for resistance to lysis as deletion of TgsGP in T. b. gambiense renders the parasites sensitive to most trypanolytic factors. TgsGP deletion in T. b. gambiense modified to overcome the sub-species trait to reduce uptake of some trypanolytic factors resulted in sensitivity to all trypanolytic factors. Reintroducing TgsGP into these knockout parasite lines restored resistance. We conclude that TgsGP is essential for human serum resistance in T. b. gambiense.
Collapse
Affiliation(s)
- Paul Capewell
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Eric DeJesus
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicola Veitch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pieter C. Steketee
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anneli Cooper
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Bossard G, Cuny G, Geiger A. Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control? Biofactors 2013; 39:407-14. [PMID: 23553721 DOI: 10.1002/biof.1100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/01/2013] [Indexed: 01/09/2023]
Abstract
Human African trypanosomiasis (HAT) is caused by trypanosomes of the species Trypanosoma brucei and belongs to the neglected tropical diseases. Presently, WHO has listed 36 countries as being endemic for sleeping sickness. No vaccine is available, and disease treatment is difficult and has life-threatening side effects. Therefore, there is a crucial need to search for new therapeutic targets against the parasite. Trypanosome excreted-secreted proteins could be promising targets, as the total secretome was shown to inhibit, in vitro, host dendritic cell maturation and their ability to induce lymphocytic allogenic responses. The secretome was found surprisingly rich in various proteins and unexpectedly rich in diverse peptidases, covering more than ten peptidase families or subfamilies. Given their abundance, one may speculate that they would play a genuine role not only in classical "housekeeping" tasks but also in pathogenesis. The paper reviews the deleterious role of proteases from trypanosomes, owing to their capacity to degrade host circulating or structural proteins, as well as proteic hormones, causing severe damage and preventing host immune response. In addition, proteases account for a number of drug targets, such drugs being used to treat severe diseases such AIDS. This review underlines the importance of secreted proteins and especially of secreted proteases as potential targets in HAT-fighting strategies. It points out the need to conduct further investigations on the specific role of each of these various proteases in order to identify those playing a central role in sleeping sickness and would be suitable for drug targeting.
Collapse
Affiliation(s)
- Géraldine Bossard
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | |
Collapse
|
49
|
The Trypanosoma brucei gambiense secretome impairs lipopolysaccharide-induced maturation, cytokine production, and allostimulatory capacity of dendritic cells. Infect Immun 2013; 81:3300-8. [PMID: 23798533 DOI: 10.1128/iai.00125-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma brucei gambiense, a parasitic protozoan belonging to kinetoplastids, is the main etiological agent of human African trypanosomiasis (HAT), or sleeping sickness. One major characteristic of this disease is the dysregulation of the host immune system. The present study demonstrates that the secretome (excreted-secreted proteins) of T. b. gambiense impairs the lipopolysaccharide (LPS)-induced maturation of murine dendritic cells (DCs). The upregulation of major histocompatibility complex class II, CD40, CD80, and CD86 molecules, as well as the secretion of cytokines such as tumor necrosis factor alpha, interleukin-10 (IL-10), and IL-6, which are normally released at high levels by LPS-stimulated DCs, is significantly reduced when these cells are cultured in the presence of the T. b. gambiense secretome. Moreover, the inhibition of DC maturation results in the loss of their allostimulatory capacity, leading to a dramatic decrease in Th1/Th2 cytokine production by cocultured lymphocytes. These results provide new insights into a novel efficient immunosuppressive mechanism directly involving the alteration of DC function which might be used by T. b. gambiense to interfere with the host immune responses in HAT and promote the infectious process.
Collapse
|
50
|
Serum arginase, a biomarker of treatment efficacy in human African trypanosomiasis. J Clin Microbiol 2013; 51:2379-81. [PMID: 23554207 DOI: 10.1128/jcm.03371-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Arginase serum levels were increased in human African trypanosomiasis patients and returned to control values after treatment. Arginase hydrolyzes l-arginine to l-ornithine, which is essential for parasite growth. Moreover, l-arginine depletion impairs immune functions. Arginase may be considered as a biomarker for treatment efficacy.
Collapse
|