1
|
Li L, Xu H, Hu Z, Li L. Artemisinin ameliorates thyroid function and complications in adult male hypothyroid rats via upregulation of the L1 cell adhesion molecule. Thyroid Res 2024; 17:19. [PMID: 39155377 PMCID: PMC11331813 DOI: 10.1186/s13044-024-00206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Hypothyroidism, a common worldwide syndrome caused by insufficient thyroid hormone secretion, affects number of people at different ages. Artemisinin (ART), a well-known effective agent in the treatment of malaria, also has anti-oxidative stress functions in various diseases. The L1 cell adhesion molecule exerts multiple protective roles in diseased systems. The aim of the present study was to evaluate the role of ART in adult male hypothyroid rats and the underlying mechanisms. METHODS The propylthiouracil (PTU) rat model was treated with or without 5 mg/kg ART and with or without L1 short-interfering RNA (siRNA), followed by the experiments to determine the effect of ART on thyroid function, depression and anxiety, cognition impairments, liver, kidney and heart functions, and oxidative stress. RESULTS In the current study, it was shown that ART can ameliorate thyroid function, mitigate depression and anxiety symptoms, attenuate cognition impairments, improve liver, kidney and heart functions, and inhibit oxidative stress; however, the effects exerted by ART could not be observed when L1 was silenced by L1 siRNA. CONCLUSION These results indicated that ART can upregulate the L1 cell adhesion molecule to ameliorate thyroid function and the complications in adult male hypothyroid rats, laying the foundation for ART to be a novel strategy for the treatment of hypothyroidism.
Collapse
Affiliation(s)
- Lingling Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Haifan Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University Of SouthChina, Hengyang, Hunan, 421001, China
| | - Li Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Kouhnavardi S, Cabatic M, Mañas-Padilla MC, Malabanan MA, Smani T, Cicvaric A, Muñoz Aranzalez EA, Koenig X, Urban E, Lubec G, Castilla-Ortega E, Monje FJ. miRNA-132/212 Deficiency Disrupts Selective Corticosterone Modulation of Dorsal vs. Ventral Hippocampal Metaplasticity. Int J Mol Sci 2023; 24:9565. [PMID: 37298523 PMCID: PMC10253409 DOI: 10.3390/ijms24119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.
Collapse
Affiliation(s)
- Shima Kouhnavardi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Marife-Astrid Malabanan
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41013 Seville, Spain
| | - Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Edison Alejandro Muñoz Aranzalez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department for Pharmaceutical Sciences, Josef-Holaubek-Platz 2, 2D 303, 1090 Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cell Mol Neurobiol 2022; 43:1453-1468. [PMID: 35902460 DOI: 10.1007/s10571-022-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Serotonin 5-hydroxytryptamine (5-HT) is a key neurotransmitter for the modulation and/or regulation of numerous physiological processes and psychiatric disorders (e.g., behaviors related to anxiety, pain, aggressiveness, etc.). The periaqueductal gray matter (PAG) is considered an integrating center for active and passive defensive behaviors, and electrical stimulation of this area has been shown to evoke behavioral responses of panic, fight-flight, freezing, among others. The serotonergic activity in PAG is influenced by the activation of other brain areas such as the medial hypothalamus, paraventricular nucleus of the hypothalamus, amygdala, dorsal raphe nucleus, and ventrolateral orbital cortex. In addition, activation of other receptors within PAG (i.e., CB1, Oxytocin, µ-opioid receptor (MOR), and γ-aminobutyric acid (GABAA)) promotes serotonin release. Therefore, this review aims to document evidence suggesting that the PAG-evoked behavioral responses of anxiety, panic, fear, analgesia, and aggression are influenced by the activation of 5-HT1A and 5-HT2A/C receptors and their participation in the treatment of various mental disorders.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Wilfrido Massieu esq. Manuel Stampa S/N Col. Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City, CP:07738, Mexico
| | - Kenji Valencia-Flores
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico.
- Research Unit of Psychobiology and Neurosciences (UIPyN), Psychology School, UNAM, CDMX Mexico, CP 04510, Mexico.
| |
Collapse
|
4
|
Ghaheri S, Niapour A, Sakhaie N, Sadegzadeh F, Saadati H. Postnatal depletion of serotonin affects the morphology of neurons and the function of the hippocampus in male rats. Int J Dev Neurosci 2022; 82:222-230. [PMID: 35181916 DOI: 10.1002/jdn.10174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Serotonin (5-HT) is an essential neurotransmitter for the refined organization of the cerebral cortex. Studies have suggested that altered serotonin signaling contributes to cognitive impairment and psychiatric disorders. However, the exact role of this neurotransmitter on the development of hippocampal neurons is not recognized. Here we aimed to examine the effects of the para- chlorophenylalanine (PCPA; 100mg/kg/daily, s.c during the postnatal days 10-20), a reversible inhibitor of 5-HT synthesis, on the serotonin level of the hippocampal and prefrontal cortex. We also focused on the morphology of the neurons in the hippocampus and spatial learning and memory. Our results indicated that the administration of PCPA led to a decrease in serotonin levels in the hippocampus and prefrontal cortex. Postnatal serotonin depletion also induced subtle alterations in the neuronal populations of the hippocampus and impaired spatial memory in the adulthood period of life. We found that critical developmental periods of serotonin depletion caused degeneration and swelling of neurons as well as significant neuronal loss in the hippocampal CA1, CA3, and dentate gyrus (DG) areas. Thus, serotonin, a strikingly important neurotransmitter, can affect neuronal morphology, development, and hippocampal-dependent memory.
Collapse
Affiliation(s)
- Safa Ghaheri
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Khazaei R, Seidavi A, Bouyeh M. A review on the mechanisms of the effect of silymarin in milk thistle (Silybum marianum) on some laboratory animals. Vet Med Sci 2022; 8:289-301. [PMID: 34599793 PMCID: PMC8788984 DOI: 10.1002/vms3.641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the most valuable medicinal plants is milk thistle (Silybum marianum) or martighal. An annual or biennial plant of the Asteraceae family and English name Milk thistle, a Matte green colour and prickly plant with a standing stem that can be thick, simple, or slightly branched (ramified). Its seeds contain about 70%-80% of the flavonolignans of silymarin and about 20%-30% of polymeric and oxidized polyphenolic compounds (such as tannins). Traditionally, the plant has been used to increase milk secretion, relieve menstrual cramps, lessen depression, decrease gallstones, and jaundice as well as improve functions of the liver, spleen, and kidney. This review reviews studies on the effects of adding milk thistle to quail diet. Consumption (0.5% and 1%) of milk thistle powder in the diet of Japanese quail significantly increased feed intake, body weight, and improved carcass components. Blood constituents including total protein and albumin were improved along with decreased HDL, ALT, and AST. The use of milk thistle levels (0.5% and 1.5%) significantly improved the antioxidant total of plasma. Consumption of silymarin in quail diet increased the number of white blood cells, calcium, vitamin D3, and albumin. Silymarin also decreased the relative weights of bursa of Fabricius and spleen. This review indicates that milk thistle can improve growth performance, feed conversion ratio, and immune system in quail.
Collapse
Affiliation(s)
- Roshanak Khazaei
- Department of Animal ScienceRasht BranchIslamic Azad UniversityRashtIran
| | - Alireza Seidavi
- Department of Animal ScienceRasht BranchIslamic Azad UniversityRashtIran
| | - Mehrdad Bouyeh
- Department of Animal ScienceRasht BranchIslamic Azad UniversityRashtIran
| |
Collapse
|
6
|
Lovick TA, Zangrossi H. Effect of Estrous Cycle on Behavior of Females in Rodent Tests of Anxiety. Front Psychiatry 2021; 12:711065. [PMID: 34531768 PMCID: PMC8438218 DOI: 10.3389/fpsyt.2021.711065] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are more prevalent in women than in men. In women the menstrual cycle introduces another variable; indeed, some conditions e.g., premenstrual syndrome, are menstrual cycle specific. Animal models of fear and anxiety, which form the basis for research into drug treatments, have been developed almost exclusively, using males. There remains a paucity of work using females and the available literature presents a confusing picture. One confound is the estrous cycle in females, which some authors consider, but many do not. Importantly, there are no accepted standardized criteria for defining cycle phase, which is important given the rapidly changing hormonal profile during the 4-day cycle of rodents. Moreover, since many behavioral tests that involve a learning component or that consider extinction of a previously acquired association require several days to complete; the outcome may depend on the phase of the cycle on the days of training as well as on test days. In this article we consider responsiveness of females compared to males in a number of commonly used behavioral tests of anxiety and fear that were developed in male rodents. We conclude that females perform in a qualitatively similar manner to males in most tests although there may be sex and strain differences in sensitivity. Tests based on unconditioned threatening stimuli are significantly influenced by estrous cycle phase with animals displaying increased responsiveness in the late diestrus phase of the cycle (similar to the premenstrual phase in women). Tests that utilize conditioned fear paradigms, which involve a learning component appear to be less impacted by the estrous cycle although sex and cycle-related differences in responding can still be detected. Ethologically-relevant tests appear to have more translational value in females. However, even when sex differences in behavior are not detected, the same outward behavioral response may be mediated by different brain mechanisms. In order to progress basic research in the field of female psychiatry and psychopharmacology, there is a pressing need to validate and standardize experimental protocols for using female animal models of anxiety-related states.
Collapse
Affiliation(s)
- Thelma A. Lovick
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hélio Zangrossi
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Snyder CN, Brown AR, Buffalari D. Similar tests of anxiety-like behavior yield different results: comparison of the open field and free exploratory rodent procedures. Physiol Behav 2021; 230:113246. [DOI: 10.1016/j.physbeh.2020.113246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022]
|
8
|
Saadati H, Sadegzadeh F, Sakhaie N, Panahpour H, Sagha M. Serotonin depletion during the postnatal developmental period causes behavioral and cognitive alterations and decreases BDNF level in the brain of rats. Int J Dev Neurosci 2021; 81:179-190. [PMID: 33404066 DOI: 10.1002/jdn.10087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022] Open
Abstract
A survey of the literature indicates that the developmental disruptions in serotonin (5-HT) levels can influence the brain development and the function. To the best of our knowledge, so far, there are a few studies about the effects of developmental period 5-HT depletion on cognition and behavior of adult male and female rats. Therefore, in the present study, we examined the effects of postnatal days (PND 10-20) administration of para-chlorophenylalanine (PCPA, 100 mg/kg, s.c) a 5-HT synthesis inhibitor, on anxiety-related behaviors, pain sensitivity, short-term recognition memory, and hippocampal and prefrontal cortex (PFC) brain-derived neurotrophic factor (BDNF) mRNA expression in adult male and female rats. Novel object recognition memory (NORM) and behavioral parameters (anxiety-like behaviors and pain sensitivity) were evaluated in early adulthood and after that, the hippocampi and PFC of the rat's brain were removed for the determination of BDNF mRNA expression. Our results indicated that the postnatal period administration of PCPA impaired short-term NORM. The postnatal developmental period treatment with PCPA also increased anxiety-like behaviors in the open field and elevated plus maze (EPM) tests. Postnatal PCPA treatment increased pain sensitivity in the hot plate test in both male and female rats, especially in female animals. In addition, postnatal days serotonin depletion decreased BDNF level in the hippocampus and PFC of both male and female rats. These findings demonstrate that serotonin plays the main role in neurodevelopment, cognitive functions, and behavior. Therefore, serotonergic system dysregulation during the developmental periods may have more adverse influences on the brain development of rats.
Collapse
Affiliation(s)
- Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
Cicvaric A, Sachernegg HM, Stojanovic T, Symmank D, Smani T, Moeslinger T, Uhrin P, Monje FJ. Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors. Front Cell Neurosci 2020; 13:561. [PMID: 32009902 PMCID: PMC6974453 DOI: 10.3389/fncel.2019.00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Podoplanin (Pdpn), a brain-tumor-related glycoprotein identified in humans and animals, is endogenously expressed in several organs critical for life support such as kidney, lung, heart and brain. In the brain, Pdpn has been identified in proliferative nestin-positive adult neural progenitor cells and in neurons of the neurogenic hippocampal dentate gyrus (DG), a structure associated to anxiety, critical for learning and memory functions and severely damaged in people with Alzheimer's Disease (AD). The in vivo role of Pdpn in adult neurogenesis and anxiety-like behavior remained however unexplored. Using mice with disrupted Pdpn gene as a model organism and applying combined behavioral, molecular biological and electrophysiological assays, we here show that the absence of Pdpn selectively impairs long-term synaptic depression in the neurogenic DG without affecting the CA3-Schaffer's collateral-CA1 synapses. Pdpn deletion also enhanced the proliferative capacity of DG neural progenitor cells and diminished survival of differentiated neuronal cells in vitro. In addition, mice with podoplanin gene disruption showed increased anxiety-like behaviors in experimentally validated behavioral tests as compared to wild type littermate controls. Together, these findings broaden our knowledge on the molecular mechanisms influencing hippocampal synaptic plasticity and neurogenesis in vivo and reveal Pdpn as a novel molecular target for future studies addressing general anxiety disorder and synaptic depression-related memory dysfunctions.
Collapse
Affiliation(s)
- Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannah M. Sachernegg
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Dörte Symmank
- Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville (IBiS)/University of Seville/CIBERCV, Seville, Spain
| | - Thomas Moeslinger
- Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Liu HY, Wei HJ, Wu L, Liu SM, Tang YY, Zou W, Wang CY, Zhang P, Tang XQ. BDNF-TrkB pathway mediates antidepressant-like roles of H 2 S in diabetic rats via promoting hippocampal autophagy. Clin Exp Pharmacol Physiol 2019; 47:302-312. [PMID: 31660632 DOI: 10.1111/1440-1681.13201] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/14/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2 S) plays antidepressant-like roles in diabetic rats. However, the underlying mechanisms remain unclear. Brain-derived neurotropic factor (BDNF), a neurotrophic factor, plays important regulatory roles in depression by its high-affinity tropomysin-related kinase B (TrkB) receptor. Autophagy also is implicated in modulation of depression. Previous work confirmed the modulatory roles of H2 S in BDNF protein expression and autophagy. Thus, in this study, we explored whether the BDNF-TrkB pathway mediates the antidepressant-like effects of H2 S in diabetic rats and whether this process is achieved via promoting hippocampal autophagy. We demonstrated that H2 S upregulated the expressions of BDNF and p-TrkB proteins in the hippocampus of streptozotocin (STZ)-induced diabetic rats. K252a (an inhibitor of BDNF-TrkB pathway) reversed the antidepressant-like roles of H2 S, as evidenced by the tail suspension, forced swimming, novelty suppressed feeding, and elevated plus-maze tests. Furthermore, K252a abolished H2 S-promoted hippocampal autophagy in diabetic rats, as evidenced by a decrease in the number of autolysosome, downregulation of Beclin-1 (a regulator of autophagy in the early stage of the formation of autophagosomal membranes and its level is positively correlated with autophagic activity) expression, and upregulation of P62 (a substrate of autophagic degradation and its level is inversely correlated with autophagic activity) expression, in the hippocampus of rats co-treated with NaHS and STZ. Taken together, these data indicated that the BDNF-TrkB pathway mediates the antidepressant-like roles of H2 S in diabetic rats by enhancing hippocampal autophagy.
Collapse
Affiliation(s)
- Hai-Yao Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Department of Neurology, Hengyang Center Hospital, Hengyang, China
| | - Hai-Jun Wei
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Lin Wu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Su-Mei Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Institute of Neuroscience, Medical College, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
11
|
Ribeiro DE, Casarotto PC, Spiacci AJ, Fernandes GG, Pinheiro LC, Tanus-Santos JE, Zangrossi HJ, Guimarães FS, Joca SRL, Biojone C. Activation of the TRKB receptor mediates the panicolytic-like effect of the NOS inhibitor aminoguanidine. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:232-239. [PMID: 30991078 DOI: 10.1016/j.pnpbp.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated response, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG. We observed that the repeated (7 days), but not acute (1 day), systemic administration of the NOS inhibitor aminoguanidine (AMG; 15 mg/kg/day) increased the latency to escape from the open arm of the elevated T-maze (ETM) and inhibited the number of jumps in hypoxia-induced escape reaction in rats, suggesting a panicolytic-like effect. Repeated, but not acute, AMG administration (15 mg/kg) also decreased nitrite levels and increased TRKB phosphorylation at residues Y706/7 in the dPAG. Notwithstanding the lack of AMG effect on total BDNF levels in this structure, the microinjection of the TRK antagonist K252a into the dPAG blocked the anti-escape effect of this drug in the ETM. Taken together our data suggest that the inhibition of NO production by AMG increases the levels of pTRKB, which is required for the panicolytic-like effect observed.
Collapse
Affiliation(s)
- Deidiane Elisa Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Clinical Medicine, Translational Neuropsychiatric Unit, University of Aarhus, Aarhus, Denmark
| | - Plinio Cabrera Casarotto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Neuroscience Center - HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ailton Jr Spiacci
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Gripp Fernandes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas César Pinheiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Jr Zangrossi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samia Regiane Lourenço Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Neuroscience Center - HiLIFE, University of Helsinki, Helsinki, Finland; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
da Cruz KR, Ianzer D, Turones LC, Reis LL, Camargo-Silva G, Mendonça MM, da Silva ES, Pedrino GR, de Castro CH, Costa EA, Xavier CH. Behavioral effects evoked by the beta globin-derived nonapeptide LVV-H6. Peptides 2019; 115:59-68. [PMID: 30890354 DOI: 10.1016/j.peptides.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
LVV-hemorphin-6 (LVV-h6) is bioactive peptide and is a product of the degradation of hemoglobin. Since LVV-h6 effects are possibly mediated by opioid or AT4/IRAP receptors, we hypothesized that LVV-h6 would modify behavior. We evaluated whether LVV-h6 affects: i) anxiety-like behavior and locomotion; ii) depression-like behavior; iii) cardiovascular and neuroendocrine reactivity to emotional stress. Male Wistar rats ( ± 300 g) received LVV-h6 (153 nmol/kg i.p.) or vehicle (NaCl 0.9% i.p.). We used: i) open field (OF) test for locomotion; ii) elevated plus maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) for depression-like behavior and iv) air jet for cardiovascular and neuroendocrine reactivity to stress. Diazepam (2 mg/kg i.p.) and imipramine (15 mg/kg i.p.) were used as positive control for EPM and FST, respectively. To evaluate the LVV-h6 mechanisms, we used: the antagonist of oxytocin (OT) receptors (atosiban - ATS 1 and 0.1 mg/kg i.p.); the inhibitor of tyrosine hydroxylase (Alpha-methyl-p-tyrosine - AMPT 200 mg/kg i.p.) to investigate the involvement of catecholaminergic paths; and the antagonist of opioid receptors (naltrexone - NTX 0.3 mg/kg s.c.). We found that LVV-h6: i) evoked anxiolytic-like effect; ii) evoked antidepressant-like effect in the FST; and iii) did not change the locomotion, neuroendocrine and cardiovascular responses to stress. The LVV-h6 anxiolytic-like effect was not reverted by ATS and AMPT. However, the antidepressant effects were reverted only by NTX. Hence, our findings demonstrate that LVV-h6 modulates anxiety-like behavior by routes that are not oxytocinergic, catecholaminergic or opioid. The antidepressant-like effects of LVV-h6 rely on opioid pathways.
Collapse
Affiliation(s)
- Kellen Rosa da Cruz
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Ianzer
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lilian Liz Reis
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Camargo-Silva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Michelle Mendanha Mendonça
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elder Sales da Silva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson Alves Costa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Sant’Ana AB, Vilela-Costa HH, Vicente MA, Hernandes PM, de Andrade TGCS, Zangrossi H. Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology 2019; 148:311-319. [DOI: 10.1016/j.neuropharm.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
14
|
Goodwill HL, Manzano-Nieves G, Gallo M, Lee HI, Oyerinde E, Serre T, Bath KG. Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology 2019; 44:711-720. [PMID: 30188513 PMCID: PMC6372611 DOI: 10.1038/s41386-018-0195-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
Childhood trauma and neglect influence emotional development and increase the risk for and severity of mental illness. Women have a heightened susceptibility to the effects of early life stress (ELS) and are twice as likely as men to develop debilitating, stress-associated disorders later in life, such as major depressive disorder (MDD). Until now, mouse models of depression have been largely unsuccessful at replicating the diverse symptomatology of this disease and the sex bias in vulnerability. From P4 to P11, a limited bedding model that leads to fragmented maternal care, was used to induce ELS. Early adolescent and young adult mice were tested on an array of assays to test for depressive-like behavior. This included our newly developed automated home cage behavioral recognition system, where the home cage behavior of ELS and control mice could be monitored over a continuous 5-10 day span. ELS females, but not males, exhibited depressive-like behaviors on traditional assays. These effects emerged during adolescence and became more severe in adulthood. Using the novel home cage video monitoring method, we identified robust and continuous markers of depressive-like pathology in ELS females that phenocopy many of the behavioral characteristics of depression in humans. ELS effects on home cage behavior were rapidly rescued by ketamine, a fast-acting antidepressant. Together, these findings highlight that limited bedding ELS (1) produces an early emerging, female-specific depressive phenotype that responds to a fast-acting antidepressant and (2) this model has the potential to inform sex-selective risk for the development of stress-induced mental illness.
Collapse
Affiliation(s)
- Haley L. Goodwill
- 0000 0004 1936 9094grid.40263.33Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Gabriela Manzano-Nieves
- 0000 0004 1936 9094grid.40263.33Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Meghan Gallo
- 0000 0004 1936 9094grid.40263.33Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912 USA
| | - Hye-In Lee
- 0000 0004 1936 9094grid.40263.33Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Esther Oyerinde
- 0000 0004 1936 9094grid.40263.33Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Thomas Serre
- 0000 0004 1936 9094grid.40263.33Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912 USA
| | - Kevin G. Bath
- 0000 0004 1936 9094grid.40263.33Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912 USA
| |
Collapse
|
15
|
Frias AT, Fernandes GG, Zangrossi H. GABA A/benzodiazepine receptors in the dorsal periaqueductal gray mediate the panicolytic but not the anxiolytic effect of alprazolam in rats. Behav Brain Res 2019; 364:99-105. [PMID: 30768992 DOI: 10.1016/j.bbr.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Abstract
Although the etiology of panic disorder (PD) remains elusive, accumulating evidence suggests a key role for the dorsal periaqueductal gray matter (dPAG). There is also evidence that this midbrain area is critically involved in mediation of the panicolytic effect of antidepressants, which with high potency benzodiazepines (e.g. alprazolam and clonazepam) are first line treatment for PD. Whether the dPAG is also implicated in the antipanic effect of the latter drugs is, however, still unknown. We here investigated the consequences of blocking GABAA or benzodiazepine receptors within the dPAG, with bicuculline (5 pmol) and flumazenil (80 nmol), respectively, on the panicolytic and anxiolytic effects of alprazolam (4 mg/kg). Microinjection of these antagonists fully blocked the anti-escape effect, considered as a panicolytic-like action, caused by a single systemic injection of alprazolam in male Wistar rats submitted to the elevated T-maze. These antagonists, however, did not affect the anxiolytic effect of the benzodiazepine on inhibitory avoidance acquisition and punished responding, measured in the elevated T-maze and Vogel conflict tests, respectively. Altogether, our findings show the involvement of GABAA/benzodiazepine receptors of the dPAG in the panicolytic, but not the anxiolytic effect caused by alprazolam. They also implicate the dPAG as the fulcrum of the effects of different classes of clinically effective antipanic drugs.
Collapse
Affiliation(s)
- Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil
| | - Gabriel Gripp Fernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil.
| |
Collapse
|
16
|
Yamashita PS, Rosa DS, Lowry CA, Zangrossi H. Serotonin actions within the prelimbic cortex induce anxiolysis mediated by serotonin 1a receptors. J Psychopharmacol 2018; 33:269881118817384. [PMID: 30565963 DOI: 10.1177/0269881118817384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Serotonin plays an important role in the regulation of anxiety, acting through complex modulatory mechanisms within distinct brain structures. Serotonin can act through complex negative feedback mechanisms controlling the neuronal activity of serotonergic circuits and downstream physiologic and behavioral responses. Administration of serotonin or the serotonin 1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), into the prefrontal cortex, inhibits anxiety-like responses. The prelimbic area of the prefrontal cortex regulates serotonergic neurons within the dorsal raphe nucleus and is involved in modulating anxiety-like behavioral responses. AIMS: This study aimed to investigate the serotonergic role within the prelimbic area on anxiety- and panic-related defensive behavioral responses. METHODS: We investigated the effects of serotonin within the prelimbic area on inhibitory avoidance and escape behaviors in the elevated T-maze. We also extended the investigation to serotonin 1A, 2A, and 2C receptors. RESULTS: Intra-prelimbic area injection of serotonin or 8-OH-DPAT induced anxiolytic effects without affecting escape behaviors. Previous administration of the serotonin 1A receptor antagonist, WAY-100635, into the prelimbic area counteracted the anxiolytic effects of serotonin. Neither the serotonin 2A nor the serotonin 2C receptor preferential agonists, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) and 6-chloro-2-(1-piperazinyl) pyrazine (MK-212), respectively, affected behavioral responses in the elevated T-maze. CONCLUSION: Facilitation of serotonergic signaling within the prelimbic area of rats induced an anxiolytic effect in the elevated T-maze test, which was mediated by local serotonin 1A receptors. This inhibition of anxiety-like defensive behavioral responses may be mediated by prelimbic area projections to neural systems controlling anxiety, such as the dorsal raphe nucleus or basolateral amygdala.
Collapse
Affiliation(s)
- Paula Sm Yamashita
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Daiane S Rosa
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christopher A Lowry
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
17
|
Soares MC, Gerlai R, Maximino C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: applications in the neurosciences. JOURNAL OF FISH BIOLOGY 2018; 93:170-191. [PMID: 30043474 DOI: 10.1111/jfb.13757] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Animal-focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive-stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non-trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.
Collapse
Affiliation(s)
- Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento 'Frederico Guilherme Graeff', Instituto de Estudos em Saúde e Biológicas - IESB, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
18
|
Aguilar BL, Malkova L, N'Gouemo P, Forcelli PA. Genetically Epilepsy-Prone Rats Display Anxiety-Like Behaviors and Neuropsychiatric Comorbidities of Epilepsy. Front Neurol 2018; 9:476. [PMID: 29997563 PMCID: PMC6030811 DOI: 10.3389/fneur.2018.00476] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is associated with a variety of neuropsychiatric comorbidities, including both anxiety and depression. Despite high occurrences of depression and anxiety seen in human epilepsy populations, little is known about the etiology of these comorbidities. Experimental models of epilepsy provide a platform to disentangle the contribution of acute seizures, genetic predisposition, and underlying circuit pathologies to anxious and depressive phenotypes. Most studies to date have focused on comorbidities in acquired epilepsies; genetic models, however, allow for the assessment of affective phenotypes that occur prior to onset of recurrent seizures. Here, we tested male and female genetically epilepsy-prone rats (GEPR-3s) and Sprague-Dawley controls in a battery of tests sensitive to anxiety-like and depressive-like phenotypes. GEPR-3s showed increased anxiety-like behavior in the open field test, elevated plus maze, light-dark transition test, and looming threat test. Moreover, GEPR-3s showed impaired prepulse inhibition of the acoustic startle reflex, decreased sucrose preference index, and impaired novel object recognition memory. We also characterized defense behaviors in response to stimulation thresholds of deep and intermediate layers of the superior colliculus (DLSC), but found no difference between strains. In sum, GEPR-3s showed inherited anxiety, an effect that did not differ significantly between sexes. The anxiety phenotype in adult GEPR-3s suggests strong genetic influences that may underlie both the seizure disorder and the comorbidities seen in epilepsy.
Collapse
Affiliation(s)
- Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Prosper N'Gouemo
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pediatrics, Georgetown University, Washington, DC, United States
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
19
|
Zhang P, Zeng D, Yi YL, Tang YY, Zou W, Yang XF, Wang CY, Tang XQ. β2-microglobulin induces depressive- and anxiety-like behaviors in rat. PLoS One 2018; 13:e0198027. [PMID: 29795686 PMCID: PMC5968416 DOI: 10.1371/journal.pone.0198027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 11/27/2022] Open
Abstract
β2-microglobulin (B2M), the light chain of major histocompatibility complex class I (MHC I) molecules, has been found to impair hippocampal neurogenesis. Based on the crucial role of hippocampal neurogenesis disturbance in the process of depression and anxiety, the aim of the present study is to investigate whether B2M leads to depressive- and anxiety-like behaviors. We found that 6 days after intracerebroventricular injection with B2M (0.3 μg), the immobility times of rats in the tail suspension test and the forced swimming test were increased, the swimming and climbing time in the forced swimming test was decreased, and the latency to feed in the novelty-suppressed feeding test was increased, indicating that B2M induces depressive-like behaviors. In addition, in the elevated plus maze test, B2M-treated rats displayed obvious decline in the number of entries into and the proportion of time spent in the open arm, while the number of total arm entries was no change, which indicated that B2M induces anxiety-like behaviors. Our present findings suggest that target B2M might represent a novel approach for treatment of depression and anxiety.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.,Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Dan Zeng
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.,Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yi-Li Yi
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.,Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.,Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xue-Feng Yang
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Pathophysiology, Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Lalonde R, Strazielle C. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity. Rev Neurosci 2018; 28:617-648. [PMID: 28609296 DOI: 10.1515/revneuro-2016-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
Collapse
Affiliation(s)
| | - Catherine Strazielle
- , Laboratoire 'Stress, Immunité, Pathogènes' EA 7300 and Service de Microscopie Electronique, Faculté de Médecine
| |
Collapse
|
21
|
Cicvaric A, Bulat T, Bormann D, Yang J, Auer B, Milenkovic I, Cabatic M, Milicevic R, Monje FJ. Sustained consumption of cocoa-based dark chocolate enhances seizure-like events in the mouse hippocampus. Food Funct 2018; 9:1532-1544. [PMID: 29431797 DOI: 10.1039/c7fo01668a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the consumption of caffeine and cocoa has been associated with a variety of health benefits to humans, some authors have proposed that excessive caffeine intake may increase the frequency of epileptic seizures in humans and reduce the efficiency of antiepileptic drugs. Little is known, however, about the proconvulsant potential of the sustained, excessive intake of cocoa on hippocampal neural circuits. Using the mouse as an experimental model, we examined the effects of the chronic consumption of food enriched in cocoa-based dark chocolate on motor and mood-related behaviours as well as on the excitability properties of hippocampal neurons. Cocoa food enrichment did not affect body weights or mood-related behaviours but rather promoted general locomotion and improved motor coordination. However, ex vivo electrophysiological analysis revealed a significant enhancement in seizure-like population spike bursting at the neurogenic dentate gyrus, which was paralleled by a significant reduction in the levels of GABA-α1 receptors thus suggesting that an excessive dietary intake of cocoa-enriched food might alter some of the synaptic elements involved in epileptogenesis. These data invite further multidisciplinary research aiming to elucidate the potential deleterious effects of chocolate abuse on behaviour and brain hyperexcitability.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Tanja Bulat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Daniel Bormann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Bastian Auer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Maureen Cabatic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Radoslav Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| |
Collapse
|
22
|
da Cruz KR, Turones LC, Camargo-Silva G, Gomes KP, Mendonça MM, Galdino P, Rodrigues-Silva C, Santos RAS, Costa EA, Ghedini PC, Ianzer D, Xavier CH. The hemoglobin derived peptide LVV-hemorphin-7 evokes behavioral effects mediated by oxytocin receptors. Neuropeptides 2017; 66:59-68. [PMID: 28985964 DOI: 10.1016/j.npep.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
LVV-hemorphin-7 (LVV-h7) is bioactive peptide resulting from degradation of hemoglobin β-globin chain. LVV-h7 is a specific agonist of angiotensin IV receptor. This receptor belongs to the class of insulin-regulated aminopeptidases (IRAP), which displays oxytocinase activity. Herein, our aims were to assess whether: i) LVV-h7 modifies centrally organized behavior and cardiovascular responses to stress and ii) mechanisms underlying LVV-h7 effects involve activation of oxytocin (OT) receptors, probably as result of reduction of IRAP proteolytic activity upon OT. Adult male Wistar rats (270-370g) received (i.p.) injections of LVV-h7 (153nmol/kg), or vehicle (0.1ml). Different protocols were used: i) open field (OP) test for locomotor/exploratory activities; ii) Elevated Plus Maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) test for depression-like behavior and iv) air jet for cardiovascular reactivity to acute stress exposure. Diazepam (2mg/kg) and imipramine (15mg/kg) were used as positive control for EPM and FST, respectively. The antagonist of OT receptors (OTr), atosiban (1 and 0,1mg/kg), was used to determine the involvement of oxytocinergic paths. We found that LVV-h7: i) increased the number of entries and the time spent in open arms of the maze, an indicative of anxiolysis; ii) provoked antidepressant effect in the FS test; and iii) increased the exploration and locomotion; iv) did not change the cardiovascular reactivity and neuroendocrine responses to acute stress. Also, increases in locomotion and the antidepressant effects evoked by LVV-h7 were reverted by OTr antagonist. We conclude that LVV-h7 modulates behavior, displays antidepressant and anxiolytic effects that are mediated in part by oxytocin receptors.
Collapse
Affiliation(s)
- Kellen Rosa da Cruz
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Camargo-Silva
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Karina Pereira Gomes
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Michelle Mendanha Mendonça
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Pablinny Galdino
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Christielly Rodrigues-Silva
- Laboratory of Pharmacology and Molecular Biochemistry, Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo Cesar Ghedini
- Laboratory of Pharmacology and Molecular Biochemistry, Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Ianzer
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos Henrique Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
23
|
Bardo A, Borel A, Meunier H, Guéry JP, Pouydebat E. Behavioral and functional strategies during tool use tasks in bonobos. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:125-40. [PMID: 27311774 DOI: 10.1002/ajpa.23015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 11/06/2022]
Abstract
Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in-hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in-hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in-hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities.
Collapse
Affiliation(s)
- Ameline Bardo
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Department of Ecology and Management of Biodiversity, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France
| | - Antony Borel
- Department of Prehistory, UMR 7194-CNRS-MNHN, Musée de l'Homme, Paris, 75116, France
| | - Hélène Meunier
- Primatology Center of Strasbourg University, Fort Foch, Niederhausbergen, 67207, France.,Laboratory of Cognitive and Adaptative Neuroscience, UMR 7364-CNRS/, University of Strasbourg, Strasbourg, 67000, France
| | | | - Emmanuelle Pouydebat
- Department of Ecology and Management of Biodiversity, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France
| |
Collapse
|
24
|
Näslund J, Studer E, Johansson E, Eriksson E. Effects of gonadectomy and serotonin depletion on inter-individual differences in anxiety-like behaviour in male Wistar rats. Behav Brain Res 2016; 308:160-5. [PMID: 27083304 DOI: 10.1016/j.bbr.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Previous studies in Wistar rats suggest inter-individual differences in anxiety-like behaviour as assessed using the elevated plus maze (EPM), both between sexes and among males, to be abolished by serotonin depletion. To shed further light on the influence of sex steroids and serotonin - and on the interplay between the two - on proneness for EPM-assessed anxiety in males, outbred Wistar rats were divided into those with high and low anxiety, respectively, and exposed to gonadectomy or sham operation followed by administration of a serotonin synthesis inhibitor, para-chlorophenylalanine, or saline. Whereas gonadectomy enhanced anxiety-like behaviour in low anxiety rats so that these no longer differed in this regard from the high anxiety group, serotonin depletion reversed this effect, and also reduced anxiety in the low anxiety group regardless of gonadal state. A previously observed association between high anxiety-like behaviour and high expression of the serotonin-synthesizing enzyme tryptophan hydroxylase 2 (Tph2) in the raphe was confirmed in sham-operated animals but absent in gonadectomised rats, an ANCOVA revealing a significant interactive effect of baseline anxiety and gonadal state on Tph2 expression. It is suggested that androgens may contribute to upholding inter-individual differences in anxiety-like behaviour in male rats by interacting with serotonergic neurotransmission.
Collapse
Affiliation(s)
- Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, SE 405 30 Gothenburg, Sweden.
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, SE 405 30 Gothenburg, Sweden
| | - Elin Johansson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, SE 405 30 Gothenburg, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, SE 405 30 Gothenburg, Sweden
| |
Collapse
|
25
|
Estrada VB, Matsubara NK, Gomes MV, Corrêa FMA, Pelosi GG. Noradrenaline microinjected into the dorsal periaqueductal gray matter causes anxiolytic-like effects in rats tested in the elevated T-maze. Life Sci 2016; 152:94-8. [PMID: 26968783 DOI: 10.1016/j.lfs.2016.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 11/29/2022]
Abstract
AIMS The dorsal periaqueductal gray matter (dPAG) is involved in the integration of behavioral and cardiovascular responses caused by fear and anxiety situations. Some studies suggest an involvement of noradrenergic neurotransmission in the dPAG in anxiety modulation, however, there is no evidence about its role in panic attacks. The goal of this work was to study the effect of NA microinjection in dPAG in rats submitted to the elevated T-maze (ETM). MATERIALS AND METHODS Male Wistar had a cannula implanted in the PAG where it was injected NA in the doses of 1, 3, 15, 45nmol/50nl or artificial cerebrospinal fluid previous the ETM test. KEY FINDINGS NA intra-dPAG decreased inhibitory avoidance behavior in the ETM without changing escape, indicating only an anxiolytic-like effect. Furthermore, the microinjection of NA did not change the general exploratory activity of the animals submitted to the open field test, suggesting that the anxiolytic-like effect is not due to an increase in exploratory activity. SIGNIFICANCE The results indicate an involvement of noradrenergic neurotransmission in the dPAG in defensive reactions associated with generalized anxiety, but not as main mechanisms for the panic, in rats submitted to the elevated T-maze providing support for other research aimed at improving the treatment of generalized anxiety.
Collapse
Affiliation(s)
- Viviane Batista Estrada
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Natália Kimie Matsubara
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marcus Vinicius Gomes
- Research Centre on Health Sciences, University of Northern Parana (UNOPAR), Londrina, PR, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
26
|
Estork DM, Gusmão DF, Paciencia ML, Frana SA, Díaz IE, Varella AD, Younes RN, Reis LF, Montero EF, Bernardi MM, Suffredini IB. Casinga-cheirosa organic extract impairment over Balb-c male mice behavioral phenotype. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
The effects of the dopamine stabilizer (-)-OSU6162 on aggressive and sexual behavior in rodents. Transl Psychiatry 2016; 6:e762. [PMID: 27003188 PMCID: PMC4872438 DOI: 10.1038/tp.2016.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/20/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022] Open
Abstract
The dopamine stabilizer (-)-OSU61612 dampens locomotion in rodents rendered hyperactive by exposure to a novel environment or treatment with amphetamine, but stimulates locomotion in habituated animals displaying low motor activity, tentatively exerting this profile by selectively blocking extrasynaptic D2 receptors. The major aim of the present study was to explore the possible usefulness of (-)-OSU61612 as an anti-aggressive drug. To this end, the effect of (-)-OSU61612 on isolation-induced aggression in male mice and estrous cycle-dependent aggression in female rats were studied using the resident intruder test; in addition, the possible influence of (-)-OSU61612 on sexual behavior in male mice and on elevated plus maze (EPM) performance in male rats were assessed. (-)-OSU61612 at doses influencing neither locomotion nor sexual activity reduced aggression in male mice. The effect was observed also in serotonin-depleted animals and is hence probably not caused by the antagonism of serotonin receptors displayed by the drug; refuting the possibility that it is due to 5-HT1B activation, it was also not counteracted by isamoltane. (-)-OSU61612 did not display the profile of an anxiogenic or anxiolytic drug in the EPM but caused a general reduction in activity that is well in line with the previous finding that it reduces exploratory behavior of non-habituated animals. In line with the observations in males, (-)-OSU61612 reduced estrus cycle-related aggression in female Wistar rats, a tentative animal model of premenstrual dysphoria. By stabilizing dopaminergic transmission, (-)-OSU61612 may prove useful as a well-tolerated treatment of various forms of aggression and irritability.
Collapse
|
28
|
Maraschin JC, Rangel MP, Bonfim AJ, Kitayama M, Graeff FG, Zangrossi H, Audi EA. Opiorphin causes a panicolytic-like effect in rat panic models mediated by μ-opioid receptors in the dorsal periaqueductal gray. Neuropharmacology 2016; 101:264-70. [DOI: 10.1016/j.neuropharm.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/24/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
|
29
|
Roncon CM, Almada RC, Maraschin JC, Audi EA, Zangrossi H, Graeff FG, Coimbra NC. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors. Neuropharmacology 2015; 99:620-6. [DOI: 10.1016/j.neuropharm.2015.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
|
30
|
García-Cárdenas N, Olvera-Hernández S, Gómez-Quintanar BN, Fernández-Guasti A. Male rats with same sex preference show high experimental anxiety and lack of anxiogenic-like effect of fluoxetine in the plus maze test. Pharmacol Biochem Behav 2015; 135:128-35. [DOI: 10.1016/j.pbb.2015.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/04/2023]
|
31
|
Krypotos AM, Effting M, Kindt M, Beckers T. Avoidance learning: a review of theoretical models and recent developments. Front Behav Neurosci 2015; 9:189. [PMID: 26257618 PMCID: PMC4508580 DOI: 10.3389/fnbeh.2015.00189] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Avoidance is a key characteristic of adaptive and maladaptive fear. Here, we review past and contemporary theories of avoidance learning. Based on the theories, experimental findings and clinical observations reviewed, we distill key principles of how adaptive and maladaptive avoidance behavior is acquired and maintained. We highlight clinical implications of avoidance learning theories and describe intervention strategies that could reduce maladaptive avoidance and prevent its return. We end with a brief overview of recent developments and avenues for further research.
Collapse
Affiliation(s)
- Angelos-Miltiadis Krypotos
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
| | - Marieke Effting
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
| | - Tom Beckers
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
- Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands
- Department of Psychology, KU LeuvenLeuven, Belgium
| |
Collapse
|
32
|
Casarotto PC, Santos PCD, Lucas GA, Biojone C, Pobbe RLH, Vilela-Costa HH, Joca SRL, Guimarães FS, Zangrossi H. BDNF-TRKB signaling system of the dorsal periaqueductal gray matter is implicated in the panicolytic-like effect of antidepressant drugs. Eur Neuropsychopharmacol 2015; 25:913-22. [PMID: 25840741 DOI: 10.1016/j.euroneuro.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 01/26/2023]
Abstract
A wealth of evidence implicates the BDNF-TRKB system in the therapeutic effects of antidepressant drugs (ADs) on mood disorders. However, little is known about the involvement of this system in the panicolytic property also exerted by these compounds. In the present study we evaluated the participation of the BDNF-TRKB system of the dorsal periaqueductal gray matter (DPAG), a core structure involved in the pathophysiology of panic disorder, in AD-induced panicolytic-like effects in rats. The results showed that short- (3 days) or long-term (21 days) systemic treatment with the tricyclic ADs imipramine, clomipramine or desipramine increased BDNF levels in the DPAG. Only longterm treatment with the selective serotonin reuptake inhibitor fluoxetine was able to increase BDNF levels in this structure. After 21-day treatment, fluoxetine and the three tricyclic ADs used also increased BDNF concentration in the hippocampus, a key area implicated in their mood-related actions. Neither in the DPAG nor hippocampus did long-term treatment with the standard anxiolytics diazepam, clonazepam or buspirone affect BDNF levels. Imipramine, both after short and long-term administration, and fluoxetine under the latter regimen, raised the levels of phosphorylated TRKB in the DPAG. Short-term treatment with imipramine or BDNF microinjection inhibited escape expression in rats exposed to the elevated T maze, considered as a panicolytic-like effect. This anti-escape effect was attenuated by the intra-DPAG administration of the TRK receptor antagonist k252a. Altogether, our data suggests that facilitation of the BDNF-TRKB system in the DPAG is implicated in the panicolytic effect of ADs.
Collapse
Affiliation(s)
- Plinio C Casarotto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| | - Paula C dos Santos
- Department of Ophtamology, Otorhinolaringology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| | - Guilherme A Lucas
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| | - Caroline Biojone
- Department of Physics and Chemistry, Ribeirao Preto School of Pharmaceutical Sciences, University of Sao Paulo, Brazil.
| | - Roger L H Pobbe
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| | - Heloisa H Vilela-Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| | - Samia R L Joca
- Department of Physics and Chemistry, Ribeirao Preto School of Pharmaceutical Sciences, University of Sao Paulo, Brazil.
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| | - Hélio Zangrossi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
33
|
Näslund J, Studer E, Pettersson R, Hagsäter M, Nilsson S, Nissbrandt H, Eriksson E. Differences in Anxiety-Like Behavior within a Batch of Wistar Rats Are Associated with Differences in Serotonergic Transmission, Enhanced by Acute SRI Administration, and Abolished By Serotonin Depletion. Int J Neuropsychopharmacol 2015; 18:pyv018. [PMID: 25716782 PMCID: PMC4571633 DOI: 10.1093/ijnp/pyv018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The anxiety-reducing effect of long-term administration of serotonin reuptake inhibitors is usually seen only in subjects with anxiety disorders, and such patients are also abnormally inclined to experience a paradoxical anxiety-enhancing effect of acute serotonin reuptake inhibition. These unique responses to serotonin reuptake inhibitors in anxiety-prone subjects suggest, as do genetic association studies, that inter-individual differences in anxiety may be associated with differences in serotonergic transmission. METHODS The one-third of the animals within a batch of Wistar rats most inclined to spend time on open arms in the elevated plus maze were compared with the one-third most inclined to avoid them with respect to indices of brain serotonergic transmission and how their behavior was influenced by serotonin-modulating drugs. RESULTS "Anxious" rats displayed higher expression of the tryptophan hydroxylase-2 gene and higher levels of the tryptophan hydroxylase-2 protein in raphe and also higher levels of serotonin in amygdala. Supporting these differences to be important for the behavioral differences, serotonin depletion obtained by the tryptophan hydroxylase-2 inhibitor p-chlorophenylalanine eliminated them by reducing anxiety in "anxious" but not "non-anxious" rats. Acute administration of a serotonin reuptake inhibitor, paroxetine, exerted an anxiety-enhancing effect in "anxious" but not "non-anxious" rats, which was eliminated by long-term pretreatment with another serotonin reuptake inhibitor, escitalopram. CONCLUSIONS Differences in an anxiogenic impact of serotonin, which is enhanced by acute serotonin reuptake inhibitor administration, may contribute to differences in anxiety-like behavior amongst Wistar rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden (Dr Näslund, Mr Studer, Mr Pettersson, Drs Hagsäter, Nissbrandt, and Eriksson); Institute of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden (Dr Nilsson).
| |
Collapse
|
34
|
Bagatin MC, Tozatti CSS, Abiko LA, Yamazaki DADS, Silva PRA, Perego LM, Audi EA, Seixas FAV, Basso EA, Gauze GDF. Molecular docking and panicolytic effect of 8-prenylnaringenin in the elevated T-maze. Chem Pharm Bull (Tokyo) 2014; 62:1231-7. [PMID: 25450631 DOI: 10.1248/cpb.c14-00569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of the chronic administration of a racemic mixture of 8-prenylnaringenin (8-PN) on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (SERT) reuptake inhibitor fluoxetine was used as a positive control. Rat locomotion was assessed in a circular arena following each drug treatment. The administration of racemic 8-PN for 21 d in rats increased one-way escape latencies from the ETM open arm, indicating a panicolytic effect. To evaluate the interactions of 8-PN with monoamine transporters, a docking study was performed for both the R and S configurations of 8-PN towards SERT, norepinephrine (NET) and dopamine transporters (DAT). The application of the docking protocol showed that (R)-8-PN provides greater affinity to all transporters than does the S enantiomer. This result suggests that enantiomer (R)-8-PN is the active form in the in vivo test of the racemic mixture.
Collapse
|
35
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
36
|
Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neurosci Biobehav Rev 2014; 46 Pt 3:397-406. [DOI: 10.1016/j.neubiorev.2014.03.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/05/2014] [Accepted: 03/03/2014] [Indexed: 11/21/2022]
|
37
|
Gil-Ad I, Amit BH, Hayardeni L, Tarasenko I, Taler M, Gueta RU, Weizman A. Effects of the anti-multiple sclerosis immunomodulator laquinimod on anxiety and depression in rodent behavioral models. J Mol Neurosci 2014; 55:552-60. [PMID: 25064496 DOI: 10.1007/s12031-014-0387-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022]
Abstract
Laquinimod is a novel oral immunomodulatory drug for the treatment of multiple sclerosis (MS). Considering the frequent co-morbidity of MS with anxiety and depression, we sought to assess the antidepressant and anxiolytic effects of laquinimod in mouse models. Laquinimod (0.5-25 mg/kg), fluoxetine (10 mg/kg) or vehicle were administered for 4-14 days to adult Balb/c mice, followed by behavioral tests and brain BDNF analysis. Following a 4-day administration of laquinimod (5 and 25 mg/kg), an increase in motivated behavior was observed in the forced swim test (p < 0.01 vs. controls). In the open field test, laquinimod (0.5-5 mg/kg), but not fluoxetine, significantly increased motility (p < 0.05), whereas both decreased anxiety behavior (p < 0.01), evident only for laquinimod (5 mg/kg) in the elevated plus maze (p < 0.05). Following 7 days of administration, both drugs decreased anxiety behavior in the elevated plus maze and marble burying tests (p < 0.001 and p < 0.02, respectively). After 14 days, only laquinimod (5 mg/kg) demonstrated anxiolytic efficacy in the open field test (p < 0.05), with evidence of increased BDNF in response to 5-25 mg/kg in the hippocampus, but not frontal cortex (p < 0.05). In conclusion, laquinimod may possess anxiolytic and antidepressant effects, possibly associated with hippocampal BDNF increase, offering promise for MS patients suffering from psychiatric co-morbidity.
Collapse
Affiliation(s)
- Irit Gil-Ad
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Bustamante-García R, Lira-Rocha AS, Espejo-González O, Gómez-Martínez AE, Picazo O. Anxiolytic-like effects of a new 1-N substituted analog of melatonin in pinealectomized rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:133-9. [PMID: 24495777 DOI: 10.1016/j.pnpbp.2014.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/07/2014] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
Abstract
In spite of the wide variety of drugs available for treating anxiety, this disorder continues to represent a worldwide health problem that is classified within the first 10 causes of disability. Therefore, the search continues for new antianxiety agents, particularly those not related to benzodiazepines. Even though melatonin has been prescribed as an anxiolytic drug, its use is currently limited due to its short half-life and photo-sensitivity, among other disadvantages. The present study explores the antianxiety properties of a new 1-N substituted melatonin analog, M3C, in pinealectomized rats submitted to two behavioral tests (the cumulative burying behavior paradigm and the elevated plus-maze). Results from both tests show that M3C is effective as an anxiolytic-like agent, at doses lower than any other melatonin analog previously reported. The blocking of these actions by luzindole together with the available data suggests that the anxiolytic properties of M3C are mediated by MT1 and MT2 receptors.
Collapse
Affiliation(s)
- R Bustamante-García
- Departamento de Biología, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - A S Lira-Rocha
- Departamento de Farmacia, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - O Espejo-González
- Departamento de Farmacia, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - A E Gómez-Martínez
- Departamento de Biología, Facultad de Química, UNAM, Cd. Universitaria, Coyoacán, 04510 Mexico D.F., Mexico
| | - O Picazo
- Escuela Superior de Medicina, IPN, Plan de San Luis y Díaz Mirón Col. Sto. Tomás, 11340 Mexico D.F., Mexico.
| |
Collapse
|
39
|
Segatto M, Manduca A, Lecis C, Rosso P, Jozwiak A, Swiezewska E, Moreno S, Trezza V, Pallottini V. Simvastatin treatment highlights a new role for the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and cognitive performance in rats. Neuropsychopharmacology 2014; 39:841-54. [PMID: 24108067 PMCID: PMC3924519 DOI: 10.1038/npp.2013.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to shed light on the role played by the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and memory consolidation in rodents through the inhibition of the key and rate-limiting enzyme 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) both in vivo and in vitro with simvastatin. Three-month-old male Wistar rats treated for 21 days with simvastatin or vehicle were tested in the social interaction, elevated plus-maze, and inhibitory avoidance tasks; after behavioral testing, the amygdala, hippocampus, prefrontal cortex, dorsal, and ventral striatum were dissected out for biochemical assays. In order to delve deeper into the molecular mechanisms underlying the observed effects, primary rat hippocampal neurons were used. Our results show that HMGR inhibition by simvastatin induces anxiogenic-like effects in the social interaction but not in the elevated plus-maze test, and improves memory consolidation in the inhibitory avoidance task. These effects are accompanied by imbalances in the activity of specific prenylated proteins, Rab3 and RhoA, involved in neurotransmitter release, and synaptic plasticity, respectively. Taken together, the present findings indicate that the isoprenoid/cholesterol biosynthetic pathway is critically involved in the physiological modulation of both emotional and cognitive processes in rodents.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Antonia Manduca
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Claudio Lecis
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Pamela Rosso
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Adam Jozwiak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Viviana Trezza
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | | |
Collapse
|
40
|
Abstract
Although the role of the median raphe nucleus (MRN) in the regulation of anxiety has received less attention than that of the dorsal raphe nucleus (DRN) there is substantial evidence supporting this function. Reported results with different animal models of anxiety in rats show that whereas inactivation of serotonergic neurons in the MRN causes anxiolysis, the stimulation of the same neurons is anxiogenic. In particular, studies using the elevated T-maze comparing serotonergic interventions in the MRN and in the DRN indicate that the former affect only the inhibitory avoidance task, which has been related to generalized anxiety. In contrast, similar operations in the DRN change both the inhibitory avoidance and the one-way escape task, the latter being representative of panic disorder. Simultaneous injections of 5-HT-acting drugs in the MRN and in the dorsal hippocampus (DH) suggest that the MRN-DH pathway mediates the regulatory function of the MRN in anxiety. Overall, the results discussed in this review point to a relevant role of the MRN in the regulation of anxiety, but not panic, through the 5-HT pathway that innervates the DH.
Collapse
Affiliation(s)
- Telma Gcs Andrade
- 1Department of Biological Science, São Paulo State University-UNESP, Assis, Brazil
| | | | | |
Collapse
|
41
|
Roncon CM, Biesdorf C, Coimbra NC, Audi EA, Zangrossi H, Graeff FG. Cooperative regulation of anxiety and panic-related defensive behaviors in the rat periaqueductal grey matter by 5-HT1A and μ-receptors. J Psychopharmacol 2013; 27:1141-8. [PMID: 23598399 DOI: 10.1177/0269881113485144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous results with the elevated T-maze (ETM) test indicate that the antipanic action of serotonin (5-HT) in the dorsal periaqueductal grey (dPAG) depends on the activation endogenous opioid peptides. The aim of the present work was to investigate the interaction between opioid- and serotonin-mediated neurotransmission in the modulation of defensive responses in rats submitted to the ETM. The obtained results showed that intra-dPAG administration of morphine significantly increased escape latency, a panicolytic-like effect that was blocked by pre-treatment with intra-dPAG injection of either naloxone or the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1 piperazinyl] ethyl] -N- 2- pyridinyl-ciclohexanecarboxamide maleate (WAY-100635). In addition, previous administration of naloxone antagonized both the anti-escape and the anti-avoidance (anxiolytic-like) effect of the 5-HT1A agonist (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), but did not affect the anti-escape effect of the 5-HT2A agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI). Moreover, the combination of sub-effective doses of locally administered 5-HT and morphine significantly impaired ETM escape performance. Finally, the µ-antagonist D-PHE-CYS-TYR-D-TRP-ORN-THR-PEN (CTOP) blocked the anti-avoidance as well as the anti-escape effect of 8-OHDPAT, and the association of sub-effective doses of the µ-opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate salt (DAMGO) and of 8-OHDPAT had anti-escape and anti-avoidance effects in the ETM. These results suggest a synergic interaction between the 5-HT1A and the µ-opioid receptor at post-synaptic level on neurons of the dPAG that regulate proximal defense, theoretically related to panic attacks.
Collapse
Affiliation(s)
- Camila M Roncon
- 1Department of Pharmacology and Therapeutics, State University of Maringá, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Gusmão DF, Estork DM, Paciencia ML, Díaz IE, Montero EF, Varella AD, Lima Reis LF, Younes RN, Suffredini IB, Bernardi MM. Influence of the intraperitoneal administration of antitumor Abarema auriculata extract on mice behavior. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013000600007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in behavioral models of depression and anxiety. Behav Pharmacol 2013; 24:590-7. [DOI: 10.1097/fbp.0b013e3283654258] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Gobira PH, Aguiar DC, Moreira FA. Effects of compounds that interfere with the endocannabinoid system on behaviors predictive of anxiolytic and panicolytic activities in the elevated T-maze. Pharmacol Biochem Behav 2013; 110:33-9. [DOI: 10.1016/j.pbb.2013.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/10/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023]
|
45
|
Maximino C, Puty B, Benzecry R, Araújo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 2013; 71:83-97. [DOI: 10.1016/j.neuropharm.2013.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
46
|
Maximino C, Puty B, Matos Oliveira KR, Herculano AM. Behavioral and neurochemical changes in the zebrafish leopard strain. GENES BRAIN AND BEHAVIOR 2013; 12:576-82. [PMID: 23679663 DOI: 10.1111/gbb.12047] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/15/2013] [Accepted: 05/09/2013] [Indexed: 11/27/2022]
Abstract
The zebrafish leopard phenotype (leo) displays abnormal pigmentation and shows increased anxiety-like behavior. The neurochemical changes associated with this anxious phenotype are not known. Here, we demonstrate that leo show increased anxiety-like behavior in the light/dark box and in the novel tank test. This anxious phenotype is rescued by acute treatment with a dose of a serotonin reuptake inhibitor, fluoxetine, that is inactive in wild-type animals. Moreover, leo show decreased tissue levels of serotonin, increased serotonin turnover and slightly increased monoamine oxidase activity. These results suggest that the anxious phenotype observed in leo zebrafish is caused by a decrease in serotonin uptake. This work could open an important avenue in defining the neurochemical underpinning of natural variation in anxiety disorders.
Collapse
Affiliation(s)
- C Maximino
- Departamento de Morfologia e Ciências Fisiolígicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Pará, Av. Hiléia Agrópolis do INCRA s/n, 68503-120 Marabá, Brazil
| | | | | | | |
Collapse
|
47
|
de Andrade Strauss CV, Vicente MA, Zangrossi H. Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects. Behav Brain Res 2013; 246:103-10. [DOI: 10.1016/j.bbr.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
48
|
Duarte FS, Duzzioni M, Hoeller AA, Silva NM, Ern AL, Piermartiri TC, Tasca CI, Gavioli EC, Lemos T, Carobrez AP, De Lima TCM. Anxiogenic-like profile of Wistar adult rats based on the pilocarpine model: an animal model for trait anxiety? Psychopharmacology (Berl) 2013; 227:209-19. [PMID: 23274504 DOI: 10.1007/s00213-012-2951-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/09/2012] [Indexed: 12/19/2022]
Abstract
RATIONALE There is extensive evidence indicating the influence of seizures on emotional responses observed in human and animals, but so far few studies are focusing on the behavioral profile of animals that do not have seizures despite being treated with convulsant agents. OBJECTIVES We aimed to establish the behavioral profile, biochemical, and electrographic features of rats submitted to the pilocarpine model of temporal lobe epilepsy METHODS Rats treated with pilocarpine (20 to 350 mg/kg, i.p.) that did not develop status epilepticus or spontaneous recurrent seizures were evaluated 1 month later in the elevated plus maze (EPM), T-maze (ETM), open-field (OF), and step-down avoidance tests. Electroencephalographic (EEG), glutamate uptake, and hippocampal neuronal death assays were also performed RESULTS Pilocarpine (150 or 350 mg/kg) promoted anxiogenic-like effects in rats evaluated in the EPM, ETM, and OF tests, whereas only the highest dose evoked spike-wave discharges during EEG recordings. Hippocampal theta rhythm was increased by pilocarpine 150 or 350 mg/kg and only the highest dose reduced the L-[(3)H]-glutamate uptake and cell viability on hippocampal slices. CONCLUSIONS Subconvulsant doses of pilocarpine promote long-lasting alterations on neural circuitry, reflected by an increased theta activity in the hippocampus and an anxiety-like profile of rats evaluated 1 month after the treatment which is independent of seizure occurrence and is not related to changes in glutamate uptake or hippocampal damage. These results prompt us to suggest that a systemic administration of subconvulsant doses of pilocarpine could be useful as a new tool to model trait anxiety in rats.
Collapse
Affiliation(s)
- Filipe S Duarte
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Moreira FA, Gobira PH, Viana TG, Vicente MA, Zangrossi H, Graeff FG. Modeling panic disorder in rodents. Cell Tissue Res 2013; 354:119-25. [DOI: 10.1007/s00441-013-1610-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
|
50
|
Camplesi M, Bortoli VCD, Soares VDP, Nogueira RL, Zangrossi H. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze. Braz J Med Biol Res 2012; 45:1025-30. [PMID: 22850873 PMCID: PMC3854152 DOI: 10.1590/s0100-879x2012007500124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
Abstract
The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABAA receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.
Collapse
Affiliation(s)
- M Camplesi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | | | | | | |
Collapse
|