1
|
Wilkerson RG, Winters ME. Angiotensin-Converting Enzyme Inhibitor-Induced Angioedema. Immunol Allergy Clin North Am 2023; 43:513-532. [PMID: 37394257 DOI: 10.1016/j.iac.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Angioedema is a well-recognized and potentially lethal complication of angiotensin-converting enzyme inhibitor (ACEi) therapy. In ACEi-induced angioedema, bradykinin accumulates due to a decrease in its metabolism by ACE, the enzyme that is primarily responsible for this function. The action of bradykinin at bradykinin type 2 receptors leads to increased vascular permeability and the accumulation of fluid in the subcutaneous and submucosal space. Patients with ACEi-induced angioedema are at risk for airway compromise because of the tendency for the face, lips, tongue, and airway structures to be affected. The emergency physician should focus on airway evaluation and management when treating patients with ACEi-induced angioedema.
Collapse
Affiliation(s)
- R Gentry Wilkerson
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA.
| | - Michael E Winters
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA. https://twitter.com/critcareguys
| |
Collapse
|
2
|
Gangnus T, Bartel A, Burckhardt BB. Mass spectrometric study of variation in kinin peptide profiles in nasal fluids and plasma of adult healthy individuals. J Transl Med 2022; 20:146. [PMID: 35351153 PMCID: PMC8961484 DOI: 10.1186/s12967-022-03332-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The kallikrein-kinin system is assumed to have a multifunctional role in health and disease, but its in vivo role in humans currently remains unclear owing to the divergence of plasma kinin level data published ranging from the low picomolar to high nanomolar range, even in healthy volunteers. Moreover, existing data are often restricted on reporting levels of single kinins, thus neglecting the distinct effects of active kinins on bradykinin (BK) receptors considering diverse metabolic pathways. A well-characterized and comprehensively evaluated healthy cohort is imperative for a better understanding of the biological variability of kinin profiles to enable reliable differentiation concerning disease-specific kinin profiles. METHODS To study biological levels and variability of kinin profiles comprehensively, 28 healthy adult volunteers were enrolled. Nasal lavage fluid and plasma were sampled in customized protease inhibitor prespiked tubes using standardized protocols, proven to limit inter-day and interindividual variability significantly. Nine kinins were quantitatively assessed using validated LC-MS/MS platforms: kallidin (KD), Hyp4-KD, KD1-9, BK, Hyp3-BK, BK1-8, BK1-7, BK1-5, and BK2-9. Kinin concentrations in nasal epithelial lining fluid were estimated by correlation using urea. RESULTS Circulating plasma kinin levels were confirmed in the very low picomolar range with levels below 4.2 pM for BK and even lower levels for the other kinins. Endogenous kinin levels in nasal epithelial lining fluids were substantially higher, including median levels of 80.0 pM for KD and 139.1 pM for BK. Hydroxylated BK levels were higher than mean BK concentrations (Hyp3-BK/BK = 1.6), but hydroxylated KD levels were substantially lower than KD (Hyp4-KD/KD = 0.37). No gender-specific differences on endogenous kinin levels were found. CONCLUSIONS This well-characterized healthy cohort enables investigation of the potential of kinins as biomarkers and would provide a valid control group to study alterations of kinin profiles in diseases, such as angioedema, sepsis, stroke, Alzheimer's disease, and COVID-19.
Collapse
Affiliation(s)
- Tanja Gangnus
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
Abstract
Angioedema is a well-recognized and potentially lethal complication of angiotensin-converting enzyme inhibitor (ACEi) therapy. In ACEi-induced angioedema, bradykinin accumulates due to a decrease in its metabolism by ACE, the enzyme that is primarily responsible for this function. The action of bradykinin at bradykinin type 2 receptors leads to increased vascular permeability and the accumulation of fluid in the subcutaneous and submucosal space. Patients with ACEi-induced angioedema are at risk for airway compromise because of the tendency for the face, lips, tongue, and airway structures to be affected. The emergency physician should focus on airway evaluation and management when treating patients with ACEi-induced angioedema.
Collapse
|
4
|
Azinheira Nobrega Cruz N, Stoll D, Casarini D, Bertagnolli M. Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility. Clin Sci (Lond) 2021; 135:1805-1824. [PMID: 34338772 PMCID: PMC8329853 DOI: 10.1042/cs20210284] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
In times of coronavirus disease 2019 (COVID-19), the impact of severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection on pregnancy is still unclear. The presence of angiotensin-converting enzyme (ACE) 2 (ACE2), the main receptor for SARS-CoV-2, in human placentas indicates that this organ can be vulnerable for viral infection during pregnancy. However, for this to happen, additional molecular processes are critical to allow viral entry in cells, its replication and disease manifestation, particularly in the placenta and/or feto-maternal circulation. Beyond the risk of vertical transmission, COVID-19 is also proposed to deplete ACE2 protein and its biological actions in the placenta. It is postulated that such effects may impair essential processes during placentation and maternal hemodynamic adaptations in COVID-19 pregnancy, features also observed in several disorders of pregnancy. This review gathers information indicating risks and protective features related to ACE2 changes in COVID-19 pregnancies. First, we describe the mechanisms of SARS-CoV-2 infection having ACE2 as a main entry door and current evidence of viral infection in the placenta. Further, we discuss the central role of ACE2 in physiological systems such as the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), both active during placentation and hemodynamic adaptations of pregnancy. Significant knowledge gaps are also identified and should be urgently filled to better understand the fate of ACE2 in COVID-19 pregnancies and the potential associated risks. Emerging knowledge will be able to improve the early stratification of high-risk pregnancies with COVID-19 exposure as well as to guide better management and follow-up of these mothers and their children.
Collapse
Affiliation(s)
- Nayara Azinheira Nobrega Cruz
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
- Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l’Île-de-Montréal, Montréal, Canada
| | - Danielle Stoll
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | - Mariane Bertagnolli
- Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l’Île-de-Montréal, Montréal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
5
|
Gangnus T, Burckhardt BB. Targeted LC-MS/MS platform for the comprehensive determination of peptides in the kallikrein-kinin system. Anal Bioanal Chem 2021; 413:2971-2984. [PMID: 33693976 PMCID: PMC7946403 DOI: 10.1007/s00216-021-03231-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023]
Abstract
The kallikrein-kinin system (KKS) is involved in many physiological and pathophysiological processes and is assumed to be connected to the development of clinical symptoms of angioedema or COVID-19, among other diseases. However, despite its diverse role in the regulation of physiological and pathophysiological functions, knowledge about the KKS in vivo remains limited. The short half-lives of kinins, their low abundance and structural similarities and the artificial generation of the kinin bradykinin greatly hinder reliable and accurate determination of kinin levels in plasma. To address these issues, a sensitive LC-MS/MS platform for the comprehensive and simultaneous determination of the four active kinins bradykinin, kallidin, des-Arg(9)-bradykinin and des-Arg(10)-kallidin and their major metabolites bradykinin 2-9, bradykinin 1-7 and bradykinin 1-5 was developed. This platform was validated according to the bioanalytical guideline of the US Food and Drug Administration regarding linearity, accuracy, precision, sensitivity, carry-over, recovery, parallelism, matrix effects and stability in plasma of healthy volunteers. The validated platform encompassed a broad calibration curve range from 2.0-15.3 pg/mL (depending on the kinin) up to 1000 pg/mL, covering the expected concentrations in disease states. No source-dependent matrix effects were identified, and suitable stability of the analytes in plasma was observed. The applicability of the developed platform was proven by the determination of endogenous levels in healthy volunteers, whose plasma kinin levels were successfully detected in the low pg/mL range. The established platform facilitates the investigation of kinin-mediated diseases (e.g. angioedema, COVID-19) and enables the assessment of the impact of altered enzyme activities on the formation or degradation of kinins.
Collapse
Affiliation(s)
- Tanja Gangnus
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225, Dusseldorf, Germany.
| |
Collapse
|
6
|
Moran CS, Biros E, Krishna SM, Morton SK, Sexton DJ, Golledge J. Kallikrein-1 Blockade Inhibits Aortic Expansion in a Mouse Model and Reduces Prostaglandin E2 Secretion From Human Aortic Aneurysm Explants. J Am Heart Assoc 2021; 10:e019372. [PMID: 33599139 PMCID: PMC8174241 DOI: 10.1161/jaha.120.019372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. The kinin B2 receptor agonist, bradykinin, has been implicated in AAA pathogenesis through promoting inflammation. Bradykinin is generated from high- and low-molecular-weight kininogen by the serine protease kallikrein-1. The aims of this study were first to examine the effect of neutralizing kallikrein-1 on AAA development in a mouse model and second to test how blocking kallikrein-1 affected cyclooxygenase-2 and prostaglandin E2 in human AAA explants. Methods and Results Neutralization of kallikrein-1 in apolipoprotein E-deficient (ApoE-/-) mice via administration of a blocking antibody inhibited suprarenal aorta expansion in response to angiotensin (Ang) II infusion. Kallikrein-1 neutralization decreased suprarenal aorta concentrations of bradykinin and prostaglandin E2 and reduced cyclooxygenase-2 activity. Kallikrein-1 neutralization also decreased protein kinase B and extracellular signal-regulated kinase 1/2 phosphorylation and reduced levels of active matrix metalloproteinase 2 and matrix metalloproteinase 9. Kallikrein-1 blocking antibody reduced levels of cyclooxygenase-2 and secretion of prostaglandin E2 and active matrix metalloproteinase 2 and matrix metalloproteinase 9 from human AAA explants and vascular smooth muscle cells exposed to activated neutrophils. Conclusions These findings suggest that kallikrein-1 neutralization could be a treatment target for AAA.
Collapse
Affiliation(s)
- Corey S Moran
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Erik Biros
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Smriti M Krishna
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Susan K Morton
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | | | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia.,Department of Vascular and Endovascular Surgery Townsville University Hospital Townsville Australia
| |
Collapse
|
7
|
Soley BDS, Silva LM, Mendes DAGB, Báfica A, Pesquero JB, Bader M, Witherden DA, Havran WL, Calixto JB, Otuki MF, Cabrini DA. B 1 and B 2 kinin receptor blockade improves psoriasis-like disease. Br J Pharmacol 2020; 177:3535-3551. [PMID: 32335893 DOI: 10.1111/bph.15077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The entire kallikrein-kinin system is present in the skin, and it is thought to exert a relevant role in cutaneous diseases, including psoriasis. The present study was designed to evaluate the relevance of kinin receptors in the development and progression of a model of psoriasis in mice. EXPERIMENTAL APPROACH The effects of kinin B1 and B2 receptor knockout and of kinin receptor antagonists (SSR240612C or FR173657) were assessed in a model of psoriasis induced by imiquimod in C57BL/6 mice. Severity of psoriasis was assessed by histological and immunohistochemical assays of skin, along with objective scores based on the clinical psoriasis area and severity index. KEY RESULTS Both kinin receptors were up-regulated following 6 days of imiquimod treatment. Kinin B1 and B2 receptor deficiency and the use of selective antagonists show morphological and histological improvement of the psoriasis hallmarks. This protective effect was associated with a decrease in undifferentiated and proliferating keratinocytes, decreased cellularity (neutrophils, macrophages, and CD4+ T lymphocytes), reduced γδ T cells, and lower accumulation of IL-17. The lack of B2 receptors resulted in reduced CD8+ T cells in the psoriatic skin. Relevantly, blocking kinin receptors reflected the improvement of psoriasis disease in the well-being behaviour of the mice. CONCLUSIONS AND IMPLICATIONS Kinins exerted critical roles in imiquimod-induced psoriasis. Both B1 and B2 kinin receptors exacerbated the disease, influencing keratinocyte proliferation and immunopathology. Antagonists of one or even both kinin receptors might constitute a new strategy for the clinical treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute for Biology, University of Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Deborah A Witherden
- Immunology and Microbiology, Scripps Research Institute, La Jolla, California, USA
| | - Wendy L Havran
- Immunology and Microbiology, Scripps Research Institute, La Jolla, California, USA
| | - João B Calixto
- Center of Innovation and Preclinical Studies (CIENP), Florianópolis, Brazil
| | | | | |
Collapse
|
8
|
Gangnus T, Burckhardt BB. Improving sensitivity for the targeted LC-MS/MS analysis of the peptide bradykinin using a design of experiments approach. Talanta 2020; 218:121134. [PMID: 32797891 DOI: 10.1016/j.talanta.2020.121134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
The nonapeptide bradykinin is endogenously present only in low picomolar plasma concentrations, subsequently making reliable detection using liquid chromatography coupled to mass spectrometry (LC-MS/MS) challenging. Furthermore, non-specific adsorption during sample preparation and storage can lead to unpredictable peptide losses. To overcome these issues, a design of experiments (DoE) approach was applied, which consisted of a screening to identify impacting factors, optimisation and confirmation runs. On the one hand, different injection solvent compositions and sample collection materials were investigated in order to decrease non-specific adsorption. On the other hand, the addition of modifiers, which are known to enhance the signal intensity in LC-MS/MS, to the chromatographic mobile phase was examined. Polypropylene was the most suitable material among those investigated and resulted in a factor increase of 12.0 compared to LC-MS glass. The advantages of protein low-binding polypropylene versus standard polypropylene were fully compensated by the optimisation of the injection solvent. The latter substantially contributed to a decrease of non-specific adsorption of bradykinin. In this regard, bradykinin further benefitted from an organic fraction and a high amount of formic acid. Based on the DoE results, the final optimised injection solvent-consisting of 8.7% formic acid in 49.4/5.3/36.6 water/methanol/dimethyl sulfoxide (v/v/v)-was established. Furthermore, optimisation of the mobile phase composition yielded a signal intensity increase by a factor of 7.7. The transferability of the optimisation results conducted in neat solutions were successfully confirmed in human plasma. The applicability of this approach was further supported by the successful determination of low-abundance endogenous bradykinin levels in human plasma using LC-MS/MS.
Collapse
Affiliation(s)
- Tanja Gangnus
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Dusseldorf, Universitaetsstr. 1, 40225, Dusseldorf, Germany.
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Dusseldorf, Universitaetsstr. 1, 40225, Dusseldorf, Germany.
| |
Collapse
|
9
|
Bradykinin receptors gene expression in white adipose tissue in nondiabetic patients with coronary artery disease. Coron Artery Dis 2019; 29:329-335. [PMID: 29334504 DOI: 10.1097/mca.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Adipose tissue plays a key role in cardiovascular physiology. Kinin receptors are important determinant of the effect of adiposity on endothelial function and cardiovascular function. We examined the gene expression levels of kinin receptors in the subcutaneous white adipose tissue (sWAT) of nondiabetic patients with and without coronary artery disease (CAD). PATIENTS AND METHODS We evaluated 21 patients with CAD (13 men, age: 68±8 years) and 23 patients without CAD (15 men, age: 66±5 years) who underwent catheterization through the femoral route. sWAT biopsies were obtained from the site of vessel puncture before the procedure and analyzed for bradykinin receptor type 1 (BKR1) and 2 (BKR2) gene expression by real-time quantitative PCR. RESULTS Although BKR2 expression levels did not differ significantly (413.12±532.41 in CAD patients vs. 378.33±534.45 in controls, P=NS), BKR1 expression in sWAT was significantly greater in patients with CAD (352.69±455.12 vs. 46.5±46.7, P<0.05). Notably, BKR1 gene expression levels showed a significant positive correlation with BMI (r=0.45, P<0.002) and total cholesterol levels (r=0.53, P<0.001), and a negative correlation with fasting blood glucose (r=-0.4, P=0.006). CONCLUSION There is a divergence in BKR1 gene expression in sWAT between patients with and without CAD and is associated with metabolic parameters. More studies are needed to determine the pathophysiological role of BKRs in adipogenesis, fat expansion, and atheromatous disease.
Collapse
|
10
|
Lindström M, Valkonen M, Tohmola N, Renkonen R, Strandin T, Vaheri A, Itkonen O. Plasma bradykinin concentrations during septic shock determined by a novel LC-MS/MS assay. Clin Chim Acta 2019; 493:20-24. [PMID: 30802439 DOI: 10.1016/j.cca.2019.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Bradykinin is an important mediator of inflammation and vascular permeability and could have an important role in the development of septic shock. Measurement of bradykinin by immunological methods may suffer from interference and lack of specificity. We developed and validated a liquid chromatography mass spectrometry assay (LC-MS/MS) for plasma bradykinin. METHODS We used plasma samples from healthy volunteers (n = 19) and patients with septic shock (n = 47). Stable isotope bradykinin internal standard was added to samples before solid-phase extraction and quantification by LC-MS/MS. Stability of bradykinin was studied for 12 months. RESULTS Our assay has good sensitivity (0.1 nmol/l) and a wide linear range (0.1-1000 nmol/l). Bradykinin added to plasma was stable for 12 months at -20 °C when a mixture of protease inhibitors was added at sampling but degraded during repeated freezing and thawing. Bradykinin concentration in plasma from septic shock patients (<0.1-0.6 nmol/l) did not change significantly during shock and recovery but differed slightly from that in healthy individuals (0.5-1.1 nmol/l). CONCLUSIONS Our bradykinin assay was successfully used to determine bradykinin concentrations in plasma samples. Intensive care unit patients with septic shock had low concentrations of plasma bradykinin during both shock and recovery phases.
Collapse
Affiliation(s)
- Mikael Lindström
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Miia Valkonen
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Tohmola
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | | | - Antti Vaheri
- Faculty of Medicine, University of Helsinki, Finland
| | - Outi Itkonen
- HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Abstract
Bradykinin has important physiological actions related to the regulation of blood vessel tone and renal function, and protection from ischemia reperfusion injury. However, bradykinin also contributes to pathological states such as angioedema and inflammation. Bradykinin is metabolized by many different peptidases that play a major role in the control of bradykinin levels. Peptidase inhibitor therapies such as angiotensin converting enzyme (ACE) and neprilysin inhibitors increase bradykinin levels, and the challenge for such therapies is to achieve the beneficial cardiovascular and renal effects without the adverse consequences such as angioedema that may result from increased bradykinin levels. Neprilysin also metabolizes natriuretic peptides. However, despite the potential therapeutic benefit of increased natriuretic peptide and bradykinin levels, neprilysin inhibitor therapy has only modest efficacy in essential hypertension and heart failure. Initial attempts to combine neprilysin inhibition with inhibition of the renin angiotensin system led to the development of omapatrilat, a drug that combines ACE and neprilysin inhibition. However, omapatrilat produced an unacceptably high incidence of angioedema in patients with hypertension (2.17%) in comparison with the ACE inhibitor enalapril (0.68%), although angioedema incidence was less in patients with heart failure with reduced ejection fraction (HFrEF) treated with omapatrilat (0.8%), and not different from that for enalapril therapy (0.5%). More recently, LCZ696, a drug that combines angiotensin receptor blockade and neprilysin inhibition, was approved for the treatment of HFrEF. The approval of LCZ696 therapy for HFrEF represents the first approval of long-term neprilysin inhibitor administration. While angioedema incidence was acceptably low in HFrEF patients receiving LCZ696 therapy (0.45%), it remains to be seen whether LCZ696 therapy for other conditions such as hypertension is also accompanied by an acceptable incidence of angioedema.
Collapse
Affiliation(s)
- Duncan J Campbell
- Department of Molecular Cardiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,St. Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Kallikrein in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Tillner J, Lehmann A, Paehler T, Lukacs Z, Ruf S, Sadowski T, Pinquier JL, Ruetten H. Tolerability, safety, and pharmacokinetics of the novel cathepsin A inhibitor SAR164653 in healthy subjects. Clin Pharmacol Drug Dev 2015; 5:57-68. [PMID: 27119579 DOI: 10.1002/cpdd.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/06/2015] [Indexed: 11/11/2022]
Abstract
Cathepsin A (CathA) is a lysosomal protein where it forms a stable complex with neuraminidase and ß-galactosidase. CathA also has enzymatic activity and is involved in the degradation of many peptides. CathA was recently discovered as a target for heart failure, fostering the development of CathA inhibitors with SAR164653 as a frontrunner. The first-in-man study investigated single oral doses from 20 to 800 mg of SAR164653 followed by repeat dose studies at doses up to 800 mg in healthy young and elderly subjects. SAR164653 was safe and well tolerated at doses up to 800 mg in healthy subjects, and a maximum tolerated dose could not be determined from the study. Activity of ß-galactosidase measured in leukocytes did not show any abnormalities. The tmax was 1.0 to 2.5 hours, and the t1/2 was ∼5-11 after single dosing; exposure increased less than dose proportional. Following multiple dosing, accumulation was not observed, Cmax and AUC0-24 increased in a dose-proportional manner, and t1/2 was around 14-20 hours. The novel CathA inhibitor SAR164653 was found to have a favorable safety profile in these early phase 1 studies, but further studies are required to confirm if SAR164653 is equally safe in patients undergoing long-term treatment.
Collapse
Affiliation(s)
| | - Anne Lehmann
- Sanofi-Aventis Deutschland, Frankfurt a.M., Germany
| | | | - Zoltan Lukacs
- Hamburg University Medical Center, Metabolic Laboratory, Hamburg, Germany
| | - Sven Ruf
- Sanofi-Aventis Deutschland, Frankfurt a.M., Germany
| | | | | | | |
Collapse
|
14
|
Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats. Adv Pharmacol Sci 2015; 2015:801053. [PMID: 26421009 PMCID: PMC4573425 DOI: 10.1155/2015/801053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg−1 min−1) were determined. Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P < 0.05). Infusion of 300 ng kg−1 min−1 Ang 1-7 increased RBF by 6.9 ± 1.9% in OVE group versus 0.9 ± 1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats.
Collapse
|
15
|
Aztatzi-Aguilar OG, Uribe-Ramírez M, Arias-Montaño JA, Barbier O, De Vizcaya-Ruiz A. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure. Part Fibre Toxicol 2015; 12:17. [PMID: 26113123 PMCID: PMC4482198 DOI: 10.1186/s12989-015-0094-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/15/2015] [Indexed: 01/03/2023] Open
Abstract
Background Particulate matter (PM) adverse effects on health include lung and heart damage. The renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) endocrine systems are involved in the pathophysiology of cardiovascular diseases and have been found to impact lung diseases. The aim of the present study was to evaluate whether PM exposure regulates elements of RAAS and KKS. Methods Sprague–Dawley rats were acutely (3 days) and subchronically (8 weeks) exposed to coarse (CP), fine (FP) or ultrafine (UFP) particulates using a particulate concentrator, and a control group exposed to filtered air (FA). We evaluated the mRNA of the RAAS components At1, At2r and Ace, and of the KKS components B1r, B2r and Klk-1 by RT-PCR in the lungs and heart. The ACE and AT1R protein were evaluated by Western blot, as were HO-1 and γGCSc as indicators of the antioxidant response and IL-6 levels as an inflammation marker. We performed a binding assay to determinate AT1R density in the lung, also the subcellular AT1R distribution in the lungs was evaluated. Finally, we performed a histological analysis of intramyocardial coronary arteries and the expression of markers of heart gene reprogramming (Acta1 and Col3a1). Results The PM fractions induced the expression of RAAS and KKS elements in the lungs and heart in a time-dependent manner. CP exposure induced Ace mRNA expression and regulated its protein in the lungs. Acute and subchronic exposure to FP and UFP induced the expression of At1r in the lungs and heart. All PM fractions increased the AT1R protein in a size-dependent manner in the lungs and heart after subchronic exposure. The AT1R lung protein showed a time-dependent change in subcellular distribution. In addition, the presence of AT1R in the heart was accompanied by a decrease in HO-1, which was concomitant with the induction of Acta1 and Col3a1 and the increment of IL-6. Moreover, exposure to all PM fractions increased coronary artery wall thickness. Conclusion We demonstrate that exposure to PM induces the expression of RAAS and KKS elements, including AT1R, which was the main target in the lungs and the heart.
Collapse
Affiliation(s)
- Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - José Antonio Arias-Montaño
- Departamento de Fisiología, Neurociencias y Biofísica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, C.P. 07360, Mexico.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| |
Collapse
|
16
|
Gynura procumbens causes vasodilation by inhibiting angiotensin II and enhancing bradykinin actions. J Cardiovasc Pharmacol 2013; 61:378-84. [PMID: 23328388 DOI: 10.1097/fjc.0b013e31828685b3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies showed that Gynura procumbens reduced blood pressure by blocking calcium channels and inhibiting the angiotensin-converting enzyme activity. The present experiments were to further explore the effects and mechanisms of a purer aqueous fraction (FA-I) of G. procumbens on angiotensin I (Ang I)-induced and angiotensin II (Ang II)-induced contraction of aortic rings and also on the bradykinin (BK) effect on cardiovascular system. Rat aortic rings suspended in organ chambers were used to investigate the vascular reactivity of FA-I. Effect of FA-I on BK was studied by in vitro and in vivo methods. Results show that FA-I significantly (P < 0.05) decreased the contraction evoked by Ang I and Ang II. In the presence of indomethacin (10 µM) or N-nitro-L-arginine methyl ester (0.1 µM), the inhibitory effect of FA-I on Ang II-induced contraction of aortic rings was reduced. Besides, FA-I potentiated the vasorelaxant effect and enhanced the blood pressure-lowering effect of BK. In conclusion, FA-I reduced the contraction evoked by Ang II probably via the endothelium-dependent pathways, which involve activation of the release of nitric oxide and prostaglandins. The inhibition of angiotensin-converting enzyme activity by FA-I may contribute to the potentiation of the effects of BK on cardiovascular system.
Collapse
|
17
|
Catalioto RM, Valenti C, Liverani L, Giuliani S, Maggi CA. Characterization of a novel proinflammatory effect mediated by BK and the kinin B₂ receptor in human preadipocytes. Biochem Pharmacol 2013; 86:508-20. [PMID: 23796753 DOI: 10.1016/j.bcp.2013.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/16/2022]
Abstract
Obesity and adipose tissue contribute to local and systemic inflammation. However the role of the inflammatory mediator bradykinin (BK) in this context is not known. We therefore evaluated the effect of BK on adipokines secretion in human preadipocytes during the course of differentiation and characterized the receptors involved. Results obtained from antibody array and ELISA experiments showed that several adipokines are released by human preadipocytes under basal conditions while BK specifically stimulated the production of interleukin(IL)-6 and IL-8. The effect of BK diminished with the progression of differentiation, being almost inactive on adipocytes. In preadipocytes, BK also induced a rapid and transient [Ca²⁺](i) mobilization, a rapid and sustained increase in ERK1/2 activation and enhanced forskolin-stimulated cAMP accumulation. BK was without effect on cell proliferation and viability as assessed by bromodeoxyuridine incorporation, WST-1 conversion, or lactate dehydrogenase leakage and was without effect on adipogenesis as measured by triglyceride accumulation, GPDH activity and leptin release. The B₁ receptor agonist, Lys-[des-Arg⁹]-BK, displayed poor activity or was without effect while overall BK effects were prevented by the selective B₂ receptor antagonist, fasitibant chloride, but not by the B₁ selective antagonist, Lys-[Leu⁸][des-Arg⁹]-BK. Immunoblot analysis and immunofluorescence studies showed that the kinin B₂ receptor was essentially expressed at the beginning of the differentiation program. In conclusion, human preadipocytes expressed kinin B₂ receptors linked to multiple signaling pathways, IL-6 and IL-8 production, and BK proinflammatory response in adipose tissue could be prevented by fasitibant chloride.
Collapse
Affiliation(s)
- Rose-Marie Catalioto
- Pharmacology Department, Menarini Ricerche SpA, Via Rismondo 12A, 50131 Florence, Italy.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Nurses often encounter abnormal laboratory assays that require them to investigate further to ensure that appropriate patient care is provided. A prolonged activated partial thromboplastin time (PTT) with a normal prothrombin time (PT) assay demand further examination, to rule out laboratory error or bleeding disorders. Prekallikrein deficiency is a rare coagulation deficiency that presents itself with a prolonged PTT and a normal PT. It was first identified in 4 of the 11 Fletcher family children in 1965, coincidentally when one of the Fletcher children was undergoing a workup for an adenoidectomy. Both the Fletcher parents had normal coagulation laboratory assays with no history of bleeding tendencies. The term Fletcher factor deficiency was used until Fletcher factor was later identified as plasma prekallikrein. A prekallikrein deficiency is inherited as an autosomal recessive trait. The purpose of this article is to provide a basic review for nurses on hemostasis, identify the 6 causes of a prolonged PTT with a normal or slightly prolonged PT, and to present 2 recently diagnosed adult cases, not previously reported in the medical literature.
Collapse
Affiliation(s)
- M Thomas Quail
- Department of Public Health, Bureau of Environmental Health, Commonwealth of Massachusetts, Boston, MA 02108, USA.
| |
Collapse
|
19
|
Rodrigues ES, Silva RF, Martin RP, Oliveira SM, Nakaie CR, Sabatini RA, Merino VF, Pesquero JB, Bader M, Shimuta SI. Evidence that kinin B2 receptor expression is upregulated by endothelial overexpression of B1 receptors. Peptides 2013; 42:1-7. [PMID: 23306173 DOI: 10.1016/j.peptides.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 01/27/2023]
Abstract
Bradykinin (BK) and des-Arg(9)-bradykinin (DBK) of kallikrein-kinin system exert its effects mediated by the B2 (B2R) and B1 (B1R) receptors, respectively. It was already shown that the deletion of kinin B1R or of B2R induces upregulation of the remaining receptor subtype. However studies on overexpression of B1R or B2R in transgenic animals have supported the importance of the overexpressed receptor but the expression of another receptor subtype has not been determined. Previous study described a marked vasodilatation and increased susceptibility to endotoxic shock which was associated with increased mortality in response to DBK in thoracic aorta from transgenic rat overexpressing the kinin B1R (TGR(Tie2B1)) exclusively in the endothelium. In another study, mice overexpressing B1R in multiple tissues were shown to present high susceptibility to inflammation and to lipopolysaccharide-induced endotoxic shock. Therefore the role of B2R was investigated in the thoracic aorta isolated from TGR(Tie2B1) rats overexpressing the B1R exclusively in the vascular endothelium. Our findings provided evidence for highly increased expression level of the B2R in the transgenic rats. It was reported that under endotoxic shock, these rats exhibited exaggerated hypotension, bradycardia and mortality. It can be suggested that the high mortality during the pathogenesis of endotoxic shock provoked in the transgenic TGR(Tie2B1) rats could be due to the enhanced expression of B2R associated with the overexpression of the B1R.
Collapse
Affiliation(s)
- Eliete S Rodrigues
- Department of Biophysics, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shah A, Panchatsharam S, Ashley E. Recurrent Acute Severe Pulmonary Oedema as a Presentation of Carcinoid Crisis following Cardiac Surgery. J Intensive Care Soc 2012. [DOI: 10.1177/175114371201300316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This is a case report of a 75-year-old patient with a pelvic carcinoid tumour who had valve replacements and a patent foramen ovale repair. Her postoperative course was complicated by persistent symptoms related to the carcinoid tumour. Pathophysiology and management are reviewed. Cardiac surgery for carcinoid heart surgery has significantly high morbidity and mortality. Common complications include cardiovascular instability, bronchospasm, complete heart block, gastrointestinal hypermotility and acute kidney injury. Acute pulmonary oedema can be a presenting feature of a carcinoid crisis and should be suspected in the differential diagnoses of pulmonary oedema in carcinoid heart disease patients. Octreotide remains the mainstay of treatment. Doses of up to a maximum of 200 μg/hour can be used. There is emerging evidence that catecholamines can be used safely when used in conjunction with octreotide. Good analgesia is important in suppressing sympathetic stimulation.
Collapse
Affiliation(s)
- Akshay Shah
- Senior House Officer, Intensive Care Unit
- The Heart Hospital, University College London Hospital
| | | | - Elizabeth Ashley
- Consultant Anaesthetist, Anaesthetic Department
- The Heart Hospital, University College London Hospital
| |
Collapse
|
21
|
Figueroa CD, Ehrenfeld P, Bhoola KD. Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 2012; 16:299-312. [DOI: 10.1517/14728222.2012.662957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Webb JG, Yang X, Crosson CE. Bradykinin activation of extracellular signal-regulated kinases in human trabecular meshwork cells. Exp Eye Res 2011; 92:495-501. [PMID: 21426904 DOI: 10.1016/j.exer.2011.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 12/20/2022]
Abstract
Bradykinin stimulation of B(2) kinin receptors has been shown to promote matrix metallo-proteinase (MMP) secretion from trabecular meshwork cells and to increase conventional outflow facility. Because acute secretion of MMPs can be dependent on the activity of extracellular signal-regulated MAP kinases (ERK1/2), experiments were performed to determine bradykinin effects on ERK1/2 in cultured human trabecular meshwork cells and the relationship of these effects to MMP-9 release. Treatment of cells with bradykinin produced a rapid 4-to 6-fold increase in ERK1/2 phosphorylation. Stimulation of ERK1/2 activity peaked within 2 min and then declined to control levels by 60 min. The response maximum occurred with 100nM bradykinin and the estimated EC₅₀ was 0.7nM. Treatment of cells with the B₂ kinin receptor agonist, Tyr⁸- bradykinin, also stimulated ERK1/2 phosphorylation while the B₁ agonist, Lys- [Des-Arg⁹]- bradykinin had no significant effect. In addition, activation of ERK1/2 by bradykinin or Tyr⁸- bradykinin was blocked by the selective B₂ receptor antagonist, Hoe-140. Inhibition of MAP kinase kinase (MEK) with U0126 also blocked bradykinin-induced ERK1/2 phosphorylation. Suppression of protein kinase C activity with the nonselective inhibitor, GF109203X, or by down-regulation with phorbol ester, diminished, but did not eliminate, bradykinin activation of ERK1/2. A similar decrease of ERK1/2 stimulation was observed when Src kinase was inhibited by 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Finally, blockade of bradykinin-induced ERK1/2 activation substantially reduced the peptide's action to stimulate MMP-9 release into the extracellular environment. The data demonstrate that bradykinin promotes ERK1/2 activation in human trabecular meshwork cells. The effect is mediated by B₂ kinin receptors, involves two different signaling pathways, and results in increased secretion of MMP-9.
Collapse
Affiliation(s)
- Jerry G Webb
- Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
23
|
Abstract
AbstractHistidine-rich glycoprotein (HRG), also known as histidine-proline-rich glyco-protein, is an abundant and well-characterized protein of vertebrate plasma. HRG has a multidomain structure that allows the molecule to interact with many ligands, including heparin, phospholipids, plasminogen, fibrinogen, immunoglobulin G, C1q, heme, and Zn2+. The ability of HRG to interact with various ligands simultaneously has suggested that HRG can function as an adaptor molecule and regulate numerous important biologic processes, such as immune complex/necrotic cell/pathogen clearance, cell adhesion, angiogenesis, coagulation, and fibrinolysis. The present review covers the proposed multifunctional roles of HRG with a focus on recent findings that have led to its emergence as a key regulator of immunity and vascular biology. Also included is a discussion of the striking functional similarities between HRG and other important multifunctional proteins found in plasma, such as C-reactive protein, C1q, β2 glycoprotein I, and thrombospondin-1.
Collapse
|
24
|
Zaika O, Mamenko M, O'Neil RG, Pochynyuk O. Bradykinin acutely inhibits activity of the epithelial Na+ channel in mammalian aldosterone-sensitive distal nephron. Am J Physiol Renal Physiol 2011; 300:F1105-15. [PMID: 21325499 DOI: 10.1152/ajprenal.00606.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activation of the renal kallikrein-kinin system results in natriuresis and diuresis, suggesting its possible role in renal tubular sodium transport regulation. Here, we used patch-clamp electrophysiology to directly assess the effects of bradykinin (BK) on the epithelial Na(+) channel (ENaC) activity in freshly isolated split-opened murine aldosterone-sensitive distal nephrons (ASDNs). BK acutely inhibits ENaC activity by reducing channel open probability (P(o)) in a dose-dependent and reversible manner. Inhibition of B2 receptors with icatibant (HOE-140) abolished BK actions on ENaC. In contrast, activation of B1 receptors with the selective agonist Lys-des-Arg(9)-BK failed to reproduce BK actions on ENaC. This is consistent with B2 receptors playing a critical role in mediating BK signaling to ENaC. BK has little effect on ENaC P(o) when G(q/11) was inhibited with Gp antagonist 2A. Moreover, inhibition of phospholipase C (PLC) with U73122, but not saturation of cellular cAMP levels with the membrane-permeable nonhydrolysable cAMP analog 8-cpt-cAMP, prevents BK actions on ENaC activity. This argues that BK stimulates B2 receptors with subsequent activation of G(q/11)-PLC signaling cascade to acutely inhibit ENaC activity. Activation of BK signaling acutely depletes apical PI(4,5)P(2) levels. However, inhibition of Ca(2+) pump SERCA of the endoplasmic reticulum with thapsigargin does not prevent BK signaling to ENaC. Furthermore, caffeine, while producing a similar rise in [Ca(2+)](i) as in response to BK stimulation, fails to recapitulate BK actions on ENaC. Therefore, we concluded that BK acutely inhibits ENaC P(o) in mammalian ASDN via stimulation of B2 receptors and following depletion of PI(4,5)P(2), but not increases in [Ca(2+)](i).
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | |
Collapse
|
25
|
Quantitative assay for bradykinin in rat plasma by liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal 2011; 54:557-61. [DOI: 10.1016/j.jpba.2010.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
|
26
|
Ludvigsen M, Jacobsen C, Maunsbach AB, Honoré B. Identification and characterization of novel ERC-55 interacting proteins: Evidence for the existence of several ERC-55 splicing variants; including the cytosolic ERC-55-C. Proteomics 2009; 9:5267-87. [DOI: 10.1002/pmic.200900321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Barreto SA, Chaguri LCAG, Prezoto BC, Lebrun I. Effects of three vasoactive peptides isolated from the plasma of the snake Bothrops jararaca. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:552-8. [PMID: 19358335 DOI: 10.1016/j.cbpc.2008.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Incubation of plasma from the snake Bothrops jararaca (BJP) with trypsin generated two hypotensive peptides. The primary structure of the peptides was established for three sequences as: Asn-Pro-Phe-Val-Asp-Ala (fraction 13), Ser-Lys-Pro-Asn-Met-Ser-Asp-Glu-Ser-Leu-Ala-Val-Ala-Ile (fraction 14), Asn-Pro-Phe- Val-Asp-Ala (fraction 15). These peptides display homology with fragments of albumin from Trimeresurus flavoviridis. A bolus intra-arterial injection of the purified or the synthetic peptide produced a strong and sustained vasopressor response in the anaesthetized snake B. jararaca and Wistar rats; this hypotensive effect was also potentiated by captopril, an angiotensin-converting enzyme inhibitor (0.1 mg/kg). The natural concentrations of these peptides in plasma need to be determined and could play a physiological role in snake blood pressure regulation.
Collapse
Affiliation(s)
- S A Barreto
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
28
|
|
29
|
Westermann D, Lettau O, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschöpe C. Doxorubicin cardiomyopathy-induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biol Chem 2008; 389:713-8. [PMID: 18627295 DOI: 10.1515/bc.2008.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical use of the anthracycline doxorubicin (DOX) is limited by its cardiotoxic effects, which are attributed to the induction of apoptosis. To elucidate the possible role of the kinin B1 receptor (B1R) during the development of DOX cardiomyopathy, we studied B1R knockout mice (B1R(-/-)) by investigating cardiac inflammation and apoptosis after induction of DOX-induced cardiomyopathy. DOX control mice showed cardiac dysfunction measured by pressure-volume loops in vivo. This was associated with a reduced activation state of AKT, as well as an increased bax/bcl2 ratio in Western blots, indicating cardiac apoptosis. Furthermore, mRNA levels of the proinflammatory cytokine interleukin 6 were increased in the cardiac tissue. In DOX B1R(-/-) mice, cardiac dysfunction was improved compared to DOX control mice, which was associated with normalization of the bax/bcl-2 ratio and interleukin 6, as well as AKT activation state. These findings suggest that B1R is detrimental in DOX cardiomyopathy in that it mediates the inflammatory response and apoptosis. These insights might have useful implications for future studies utilizing B1R antagonists for treatment of human DOX cardiomyopathy.
Collapse
Affiliation(s)
- Dirk Westermann
- Charité-Universitätsmedizin Berlin, Department of Cardiology and Pneumology, Campus Benjamin Franklin, D-12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Yi J, Kim C, Gelfand CA. Inhibition of Intrinsic Proteolytic Activities Moderates Preanalytical Variability and Instability of Human Plasma. J Proteome Res 2007; 6:1768-81. [PMID: 17411080 DOI: 10.1021/pr060550h] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human plasma and serum proteins are subject to intrinsic proteolytic degradation both during and after blood collection. By monitoring peptides, we investigated the stability of plasma and serum samples and the effects of anticoagulants and protease inhibitors on the plasma samples. Serum and plasma were subjected to time-course incubation, and the peptides (750-3200 Da) were extracted and analyzed with MALDI-TOF MS. Peptides of interest were further identified by MALDI-TOF/TOF MS and ESI-MS/MS analyses. Our observations indicate that plasma peptides are significantly different from serum peptides. Intrinsic proteases cause these differences between plasma and serum samples, as well as the differences among three plasma samples using either EDTA, sodium citrate, or heparin as the anticoagulant, which accounts for partial inhibitory effects on plasma proteolytic activities. Proteases and peptidases, including both aminopeptidases and carboxypeptidases, also cause time-dependent, sequential generation and digestion of the peptides in serum and all three plasmas, specifically during early sample collection and processing. Protease inhibitors within an EDTA-plasma-collection device inhibit both intrinsic plasma peptidases and proteases and moderate the time-dependent changes of the plasma peptides, including bradykinin, and complement C4- and C3- derived peptides. Our results suggest that mixing protease inhibitors immediately with blood during blood collection provides enhanced stabilization of the plasma proteome.
Collapse
Affiliation(s)
- Jizu Yi
- BD Diagnostics, One Becton Drive, Franklin Lakes, New Jersey 07417, USA
| | | | | |
Collapse
|
32
|
Riad A, Zhuo JL, Schultheiss HP, Tschöpe C. The role of the renal kallikrein-kinin system in diabetic nephropathy. Curr Opin Nephrol Hypertens 2007; 16:22-6. [PMID: 17143067 PMCID: PMC2276846 DOI: 10.1097/mnh.0b013e328011a20c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Diabetic nephropathy is one of the most common complications in diabetes mellitus. Multiple pathogenic mechanisms are now believed to contribute to this disease, including inflammatory cytokines, autacoids and oxidative stress. Numerous studies have shown that the kallikrein-kinin system may be involved in these mechanisms. This review focuses on recent research advance on the potential role of the kallikrein-kinin system in the development of diabetic nephropathy, and its clinical relevance. RECENT FINDINGS A collection of recent studies has shown that angiotensin-converting enzyme inhibitors, which inhibit angiotensin II formation and degradation of bradykinin, and vasopeptidase inhibitors attenuated the development of diabetic nephropathy in experimental animals and clinical settings. The role of the kallikrein-kinin system in diabetes is further supported by findings that diabetic nephropathy is worsened in diabetic mice lacking bradykinin B2 receptors. Although long-acting bradykinin B2 receptor agonists have been shown to have renal protective effects, their therapeutic benefits have not been well studied. SUMMARY Current experimental investigations demonstrated that pharmacological intervention of the kallikrein-kinin system improved renal conditions in diabetes mellitus. These findings suggest that the kallikrein-kinin system may be a therapeutic target in preventing and treating diabetic nephropathy.
Collapse
Affiliation(s)
- Alexander Riad
- Charité – University Medicine Berlin, Department of Cardiology, Berlin, Germany
| | - Jia Long Zhuo
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Carsten Tschöpe
- Charité – University Medicine Berlin, Department of Cardiology, Berlin, Germany
| |
Collapse
|
33
|
Pugia MJ, Valdes R, Jortani SA. Bikunin (Urinary Trypsin Inhibitor): Structure, Biological Relevance, And Measurement. Adv Clin Chem 2007; 44:223-45. [PMID: 17682344 DOI: 10.1016/s0065-2423(07)44007-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inflammatory processes, such as phagocytosis, coagulation, and vascular dilation, promote the release of serine proteases by neutrophils, macrophages, mast cells, lymphocytes, and the epithelial or endothelial cells. These proteases further facilitate the release of inflammatory cytokines and growth factors as well as take part in signal-cell proliferation through protease-activated receptors (PARs). Controlling the action of this cascade is necessary to prevent further damage to the normal tissues. One of the main anti-inflammatory response mediators is bikunin (Bik) that is responsible for inhibiting the activity of many serine proteases such as trypsin, thrombin, chymotrypsin, kallikrein, plasmin, elastase, cathepsin, Factors IXa, Xa, XIa, and XlIa. During the acute-phase response, Bik is released into plasma from proinhibitors primarily due to increased elastase activity. Bik is a glycoprotein, also referred to as urinary trypsin inhibitor, which in plasma inhibits the trypsin family of serine proteases by binding to either of the two Kunitz-binding domains. Bik also accumulates in urine. In conditions such as infection, cancer, tissue injury during surgery, kidney disease, vascular disease, coagulation, and diabetes, the concentrations of Bik in plasma and urine are increased. Several trypsin inhibitory assays for urine and immunoassays for both blood and urine have been described for measuring Bik. In addition to presenting the synthesis, structure, and pathophysiology of Bik, we will summarize various diagnostic approaches for measuring Bik. Analysis of Bik may provide a rapid approach in assessing various conditions involving the inflammatory processes.
Collapse
Affiliation(s)
- Michael J Pugia
- Siemens Medical Solutions Diagnostics, Tarrytown, New York, USA
| | | | | |
Collapse
|
34
|
Brand GD, Krause FC, Silva LP, Leite JRSA, Melo JAT, Prates MV, Pesquero JB, Santos EL, Nakaie CR, Costa-Neto CM, Bloch C. Bradykinin-related peptides from Phyllomedusa hypochondrialis. Peptides 2006; 27:2137-46. [PMID: 16797783 DOI: 10.1016/j.peptides.2006.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/28/2022]
Abstract
Bradykinin related peptides (BRPs) present in the water-soluble secretion and freshly dissected skin fragments of Phyllomedusa hypochondrialis were investigated by mass spectrometry techniques. Eighteen BRPs, along with their post-translational modifications, were characterized in the secretion by de novo MS/MS sequencing and direct MALDI imaging experiments of the frog skin. These molecules revealed strong sequence similarities to the main plasma kinin of some mammals and reptiles. Such a diversity of molecules, within the same peptide family, belonging to a single amphibian species may be related to functional specializations of these peptides and a variety of corresponding receptors that might be present in a number of different predators. Also, a novel analog, [Val]1,[Thr]6-bradykinyl-Gln,Ser had its biological activity positively detected in cell culture expressing the human bradykinin B2 receptor and in guinea pig ileum preparations.
Collapse
Affiliation(s)
- G D Brand
- Laboratório de Espectrometria de Massa, EMBRAPA, Recursos Genéticos e Biotecnologia, Brasília, DF 70770-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Inflammation is an important indicator of tissue injury. In the acute form, there is usually accumulation of fluids and plasma components in the affected tissues. Platelet activation and the appearance in blood of abnormally increased numbers of polymorphonucleocytes, lymphocytes, plasma cells and macrophages usually occur. Infectious disorders such as sepsis, meningitis, respiratory infection, urinary tract infection, viral infection, and bacterial infection usually induce an inflammatory response. Chronic inflammation is often associated with diabetes mellitus, acute myocardial infarction, coronary artery disease, kidney diseases, and certain auto-immune disorders, such as rheumatoid arthritis, organ failures and other disorders with an inflammatory component or etiology. The disorder may occur before inflammation is apparent. Markers of inflammation such as C-reactive protein (CRP) and urinary trypsin inhibitors have changed our appraisal of acute events such as myocardial infarction; the infarct may be a response to acute infection and (or) inflammation. We describe here the pathophysiology of an anti-inflammatory agent termed urinary trypsin inhibitor (uTi). It is an important anti-inflammatory substance that is present in urine, blood and all organs. We also describe the anti-inflammatory agent bikunin, a selective inhibitor of serine proteases. The latter are important in modulating inflammatory events and even shutting them down.
Collapse
|
36
|
Couture R, Girolami JP. Putative roles of kinin receptors in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2005; 500:467-85. [PMID: 15464053 DOI: 10.1016/j.ejphar.2004.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/07/2023]
Abstract
The role of endogenous kinins and their receptors in diabetes mellitus is being confirmed with the recent developments of molecular and genetic animal models. Compelling evidence suggests that the kinin B(2) receptor is organ-protective and partakes to the therapeutic effects of angiotensin 1-converting enzyme inhibitors (ACEI) and angiotensin AT(1) receptor antagonists. Benefits derive primarily from vasodilatory, antihypertensive, antiproliferative, antihypertrophic, antifibrotic, antithrombotic and antioxidant properties of kinin B(2) receptor activation. Mechanisms include the formation of nitric oxide and prostacyclin and the inhibition of NAD(P)H oxidase activity involving classical and novel signalling pathways. Kinin B(2) receptor also ameliorates insulin resistance by increasing glucose uptake and supply, and by inducing glucose transporter-4 translocation either directly or through phosphorylation of insulin receptor. The kinin B(1) receptor, which is induced by the cytokine network, growth factors and hyperglycaemia, mediates hyperalgesia, vascular hyperpermeability and leukocytes infiltration in diabetic animals. However, emerging data highlight reno- and cardio-protective effects mediated by kinin B(1) receptor under chronic ACEI therapy in diabetes mellitus. Thus, the Janus-faced of kinin receptors needs to be taken into account in future drug development. For instance, locally acting kinin B(1)/B(2) receptor agonists if used in a safe therapeutic window may represent a more rationale strategy in the prevention and management of diabetic complications. Because kinin B(2) receptor antagonists may further increase insulin resistance, the persisting dogma that restricts the development of kinin receptor analogues to antagonists (that is still relevant to abrogate pain and inflammation) needs to be revisited.
Collapse
Affiliation(s)
- Réjean Couture
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | |
Collapse
|
37
|
Norman MU, Lew RA, Smith AI, Hickey MJ. Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature. Am J Physiol Heart Circ Physiol 2003; 284:H1942-8. [PMID: 12586639 DOI: 10.1152/ajpheart.00948.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin is a vasoactive peptide that has been shown to increase the permeability of the cerebral microvasculature to blood-borne macromolecules. The two zinc metalloendopeptidases EC (EP 24.15) and EC (EP 24.16) degrade bradykinin in vitro and are highly expressed in the brain. However, the role that these enzymes play in bradykinin metabolism in vivo remains unclear. In the present study, we investigated the role of EP 24.15 and EP 24.16 in the regulation of bradykinin-induced alterations in microvascular permeability. Permeability of the cerebral microvasculature was assessed in anesthetized Sprague-Dawley rats by measuring the clearance of 70-kDa FITC dextran from the brain. Inhibition of EP 24.15 and EP 24.16 by the specific inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) resulted in the potentiation of bradykinin-induced increases in cerebral microvessel permeability. The level of potentiation was comparable to that achieved by the inhibition of angiotensin-converting enzyme. These findings provide the first evidence of an in vivo role for EP 24.15/EP 24.16 in brain function, specifically in regulating alterations in microvessel permeability induced by exogenous bradykinin.
Collapse
Affiliation(s)
- M Ursula Norman
- Baker Heart Research Institute, Melbourne, Victoria 8008, Australia
| | | | | | | |
Collapse
|
38
|
Barthelemy C, Eurin J, Lechat P, Masson F, Cortines M, Mougenot N, Soualmia H, Carayon A. The mechanism of the angiotensin-converting enzyme inhibitor quinapril is not related to bradykinin level in heart tissue. Peptides 2002; 23:1161-9. [PMID: 12126746 DOI: 10.1016/s0196-9781(02)00050-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In order to examine the effect of the angiotensin-converting enzyme inhibitor (ACEi) quinapril, we performed a sensitive and specific radioimmunoassay (RIA) to quantify bradykinin, BK-(1-9), in heart and kidney tissues. The BK-(1-9) level was unaffected in the heart of sham and water-deprived rats treated for 2h with quinapril (10mg/kg), but was significantly higher in the kidneys in the two groups. In these conditions, circulating and tissue angiotensin II (Ang II) levels were significantly decreased by quinapril. Moreover, our results indicated that acute treatment with this dose of quinapril induced kinin-mediated effects which were not related to its action on bradykinin degradation in rat hearts.
Collapse
Affiliation(s)
- Christiane Barthelemy
- Laboratoire de Biochimie médicale, IFR 14, CHU Pitié-Salpêtrière, 91 Bd de l'Hopital, 75634 Cedex 13, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Baxter GF, Ebrahim Z. Role of bradykinin in preconditioning and protection of the ischaemic myocardium. Br J Pharmacol 2002; 135:843-54. [PMID: 11861312 PMCID: PMC1573212 DOI: 10.1038/sj.bjp.0704548] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- G F Baxter
- The Hatter Institute, University College London, London.
| | | |
Collapse
|
40
|
Abstract
Kinins are among the most potent autacoids involved in inflammatory, vascular and pain processes. These short-lived peptides, including bradykinin, kallidin and T-kinin, are generated during tissue injury and noxious stimulation. However, emerging evidence also suggests that kinins are stored in neuronal elements of the central nervous system (CNS) where they are thought to play a role as neuromediators in various cerebral functions, particularly in the control of nociceptive information. Kinins exert their biological effects through the activation of two transmembrane G-protein-coupled receptors, denoted bradykinin B(1) and B(2). Whereas the B(2) receptor is constitutive and activated by the parent molecules, the B(1) receptor is generally underexpressed in normal tissues and is activated by kinins deprived of the C-terminal Arg (des-Arg(9)-kinins). The induction and increased expression of B(1) receptor occur following tissue injury or after treatment with bacterial endotoxins or cytokines such as interleukin-1 beta and tumor necrosis factor-alpha. This review summarizes the most recent data from various animal models which convey support for a role of B(2) receptors in the acute phase of the inflammatory and pain response, and for a role of B(1) receptors in the chronic phase of the response. The B(1) receptor may exert a strategic role in inflammatory diseases with an immune component (diabetes, asthma, rheumatoid arthritis and multiple sclerosis). New information is provided regarding the role of sensory mechanisms subserving spinal hyperalgesia and intrapleural neutrophil migration that occur upon B(1) receptor activation in streptozotocin-treated rats, a model of insulin-dependent diabetes mellitus in which the B(1) receptor seems to be rapidly overexpressed. Although it is widely accepted that the blockade of kinin receptors with specific antagonists could be of benefit in the treatment of somatic and visceral inflammation and pain, recent molecular and functional evidence suggests that the activation of B(1) receptors with an agonist may afford a novel therapeutic approach in the CNS inflammatory demyelinating disorder encountered in multiple sclerosis by reducing immune cell infiltration (T-lymphocytes) into the brain. Hence, the B(1) receptor may exert either a protective or detrimental effect depending on the inflammatory disease. This dual function of the B(1) receptor deserves to be investigated further.
Collapse
Affiliation(s)
- R Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | | | | | |
Collapse
|
41
|
Norman MU, Lew RA, Smith AI, Denton KM, Evans RG. Metalloendopeptidases EC 3.4.24.15 and EC 3.4.24.16 and bradykinin B2 receptors do not play important roles in renal wrap hypertension in rabbits. Clin Exp Pharmacol Physiol 2001; 28:836-41. [PMID: 11553025 DOI: 10.1046/j.1440-1681.2001.03532.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The aim of the present study was to determine the effects of the metalloendopeptidase (EP) 24.15 and 24.16 inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) on haemodynamics and renal function in conscious rabbits with two-kidney, two-wrapped hypertension. We have also examined the role of endogenous bradykinin in the maintenance phase of this form of renovascular hypertension and whether inhibition of bradykinin degradation contributes to any potential effects of JA-2. 2. In two preliminary operations, rabbits were equipped with transit-time ultrasound flow probes for measuring cardiac output (CO) and renal blood flow (RBF) and had both kidneys wrapped in cellophane. Starting 4 weeks after the last operation, rabbits underwent four studies (3-5 days apart), during which they were treated with combinations of the bradykinin B2 receptor antagonist icatibant or its vehicle (1 mL/kg bodyweight 0.9% w/v NaCl) and JA-2 or its vehicle (1 mL/kg of a 5% w/v 2-hydroxypropyl-beta-cyclodextrin, 2.5% v/v dimethylsulphoxide solution). Renal function was monitored using standard renal clearance methods. 3. Icatibant (10 microg/kg) had no significant effects on systemic haemodynamic variables (mean arterial pressure, heart rate or CO), renal haemodynamic variables (RBF or glomerular filtration rate), urine flow or sodium excretion. At 5 mg/kg plus 3 mg/kg per h, JA-2 also did not affect any of these variables, either after icatibant vehicle treatment or after icatibant treatment. 4. Our data do not support major roles for endogenous bradykinin or bradykinin degradation by EP 24.15/24.16 in the control of systemic and renal haemodynamics or renal excretory function in two-kidney, two-wrapped hypertension in rabbits.
Collapse
Affiliation(s)
- M U Norman
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| | | | | | | | | |
Collapse
|
42
|
Souza Dos Santos RA, Passaglio KT, Pesquero JB, Bader M, Simões E Silva AC. Interactions between angiotensin-(1-7), kinins, and angiotensin II in kidney and blood vessels. Hypertension 2001; 38:660-4. [PMID: 11566951 DOI: 10.1161/01.hyp.38.3.660] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heptapeptide angiotensin (Ang)-(1-7) is currently considered one of the biologically active end products of the renin-angiotensin system. The formation of Ang-(1-7) by pathways independent of Ang II generation, the selectivity of its actions, and its peculiar property of exhibiting effects that are partially opposite of those of the parent compound, Ang II, confer a unique biochemical and functional profile to this peptide. In this article, we will review novel aspects of the biological actions of Ang-(1-7), dealing with its interaction with Ang II and kinins, especially in the kidney and blood vessels.
Collapse
Affiliation(s)
- R A Souza Dos Santos
- Laboratório de Hipertensão, Instituto de Ciências Biológicas, Departamento de Pediatria, Fac. Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | |
Collapse
|