1
|
da Silva MDV, Martelossi-Cebinelli G, Yaekashi KM, Carvalho TT, Borghi SM, Casagrande R, Verri WA. A Narrative Review of the Dorsal Root Ganglia and Spinal Cord Mechanisms of Action of Neuromodulation Therapies in Neuropathic Pain. Brain Sci 2024; 14:589. [PMID: 38928589 PMCID: PMC11202229 DOI: 10.3390/brainsci14060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain arises from injuries to the nervous system in diseases such as diabetes, infections, toxicity, and traumas. The underlying mechanism of neuropathic pain involves peripheral and central pathological modifications. Peripheral mechanisms entail nerve damage, leading to neuronal hypersensitivity and ectopic action potentials. Central sensitization involves a neuropathological process with increased responsiveness of the nociceptive neurons in the central nervous system (CNS) to their normal or subthreshold input due to persistent stimuli, leading to sustained electrical discharge, synaptic plasticity, and aberrant processing in the CNS. Current treatments, both pharmacological and non-pharmacological, aim to alleviate symptoms but often face challenges due to the complexity of neuropathic pain. Neuromodulation is emerging as an important therapeutic approach for the treatment of neuropathic pain in patients unresponsive to common therapies, by promoting the normalization of neuronal and/or glial activity and by targeting cerebral cortical regions, spinal cord, dorsal root ganglia, and nerve endings. Having a better understanding of the efficacy, adverse events and applicability of neuromodulation through pre-clinical studies is of great importance. Unveiling the mechanisms and characteristics of neuromodulation to manage neuropathic pain is essential to understand how to use it. In the present article, we review the current understanding supporting dorsal root ganglia and spinal cord neuromodulation as a therapeutic approach for neuropathic pain.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Kelly Megumi Yaekashi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Thacyana T. Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-140, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil;
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Biological Sciences Center, State University of Londrina, Rod. Celso Garcia Cid Pr 445, KM 380, P.O. Box 10.011, Londrina 86057-970, PR, Brazil
| |
Collapse
|
2
|
Peiter GC, Moesch Queiroz TK, Michalkiewicz Jr EL, Chappuis RH, Luz JS, Casagrande Piovezani LH, Ferreira Silva C, Nozomi Tsutumi M, Fernandes Chaves A, Luiz RM, Façanha Wendel C, Zarpelon-Schutz AC, Teixeira KN. Lafoensia pacari alleviates intestinal damage by modulating cyclooxygenase-2: In silico and in vivo evaluation in a colitis model. World J Gastroenterol 2023; 29:2628-2641. [PMID: 37213402 PMCID: PMC10198052 DOI: 10.3748/wjg.v29.i17.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/12/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are a worldwide health problem and mainly affect young people, consequently affecting the workforce. Available treatments are often associated with side effects, and new therapeutic options are needed. For centuries, plants have represented important substrates in the field of drug development. Lafoensia pacari (L. pacari) is a plant whose pharmaceutical potential has been described, and may have biological activity relevant to the treatment of IBD symptoms.
AIM To investigate the activity of keto-alcoholic extracts of L. pacari with respect to ameliorating the inflammatory and nociceptive symptoms of acute experimental colitis in mice.
METHODS Keto-alcoholic extracts of L. pacari leaves and bark were administered to male and female Swiss mice weighing 25 g to 30 g (n = 8 male mice and n = 8 female mice). The effect of these extracts was observed in an acetic acid-induced acute experimental model of colitis with regard to antinociception/analgesia and inflammatory tissue damage. Recorded macroscopic indices included the Wallace score and the colon weight obtained using a precision scale. Mechanical hyperalgesia was determined using an electronic analgesimeter. Behavior related to overt pain was determined by quantifying the number of writhing instances within 20 min of administration of acetic acid. Molecular docking was performed using human and murine cyclooxygenase-2 (COX-2) with 3 flavonoids (ellagic acid, kaempferol, and quercetin) on the AutoDock Vina software. Analysis of variance followed by Tukey’s posttest was used with P < 0.05 indicating significance.
RESULTS In this murine model of colitis, administration of extracts from L. pacari ameliorated acetic acid-induced writhing and colitis-associated inflammatory pain. These improvements may be attributable to the reduction in edema, inflammation (e.g., ulcers, hyperemia, and bowel wall damage), and the intensity of abdominal hyperalgesia. The keto-alcoholic extracts of L. pacari leaves and bark administered at a dose of either 100 mg/kg or 300 mg/kg significantly reduced the number of writhing events when compared to the negative control (P < 0.05). Additionally, extracts of L. pacari bark also performed better than Dipyrone. Leaf extracts administered at 10 mg/kg, 30 mg/kg, and 100 mg/kg and bark extracts administered at 30 mg/kg significantly reduced or prevented the development of edema in the colon of treated mice, while mesalazine did not. Moreover, using molecular docking, we observed that the flavonoids present in L. pacari extracts bind to COX-2, an event not unique to ellagic acid.
CONCLUSION The results of this study demonstrate a potential novel application of L. pacari extracts for the reduction of inflammation and promotion of antinociception/analgesia as demonstrated by our findings in a murine model of colitis. These findings were also corroborated by in silico analyses, and suggest that L. pacari extracts may be a promising therapeutic agent in the treatment of IBD.
Collapse
Affiliation(s)
- Gabrielle Caroline Peiter
- Programa Multicêntrico de Pós-graduação em Biquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Thayene Kamyli Moesch Queiroz
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | | | | | - Jennefer Sousa Luz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
| | | | | | | | | | - Rafael Messias Luiz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
| | | | - Ana Carla Zarpelon-Schutz
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Programa Multicêntrico de Pós-graduação em Biquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
| |
Collapse
|
3
|
Fan T, Yu Y, Chen YL, Gu P, Wong S, Xia ZY, Liu JA, Cheung CW. Histone deacetylase 5-induced deficiency of signal transducer and activator of transcription-3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia 2023; 71:1099-1119. [PMID: 36579750 DOI: 10.1002/glia.24328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Yu
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yong-Long Chen
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Stanley Wong
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zheng-Yuan Xia
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chi-Wai Cheung
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
David AC, Silva LMG, Garcia Denegri ME, Leiva LCA, Silva Junior JA, Zuliani JP, Zamuner SR. Photobiomodulation therapy on local effects induced by juvenile and adult venoms of Bothrops alternatus. Toxicon 2022; 220:106941. [DOI: 10.1016/j.toxicon.2022.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
5
|
Vieira TN, Saraiva ALL, Guimarães RM, Luiz JPM, Pinto LG, de Melo Rodrigues Ávila V, Goulart LR, Cunha-Junior JP, McNaughton PA, Cunha TM, Ferreira J, Silva CR. Angiotensin type 2 receptor antagonism as a new target to manage gout. Inflammopharmacology 2022; 30:2399-2410. [PMID: 36173505 DOI: 10.1007/s10787-022-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1β release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1β levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1β levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.
Collapse
Affiliation(s)
- Thiago Neves Vieira
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - André L Lopes Saraiva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Rafaela Mano Guimarães
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mesquita Luiz
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larissa Garcia Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Veridiana de Melo Rodrigues Ávila
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Luiz Ricardo Goulart
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil
| | - Jair Pereira Cunha-Junior
- Department of Immunology, Institute of Sciences Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, 38405-318, Brazil
| | - Peter Anthony McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Pharmacology Department, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88049-900, Brazil
| | - Cassia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
- LABITOX, Post-Graduated Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlândia, Av. Pará 1720-Campus Umuarama, Jardim Umuarama-Bloco 2E-Officeroom 224, Uberlândia, MG, 38408-100, Brazil.
| |
Collapse
|
6
|
The Therapeutic Effect of Phosphopeptide P140 Attenuates Inflammation Induced by Uric Acid Crystals in Gout Arthritis Mouse Model. Cells 2022; 11:cells11233709. [PMID: 36496970 PMCID: PMC9740613 DOI: 10.3390/cells11233709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Gout is a painful form of inflammatory arthritis characterized by the deposition of monosodium urate (MSU) crystals in the joints. The aim of this study was to investigate the effect of peptide P140 on the inflammatory responses in crystal-induced mouse models of gout and cell models including MSU-treated human cells. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. Injection of MSU crystals subcutaneously into the hind paw induced edema and increased pro-inflammatory cytokines levels. Treatment with P140 effectively reduced hypernociception, the neutrophil influx, and pro-inflammatory cytokine levels in these experimental models. Furthermore, P140 modulated neutrophils chemotaxis in vitro and increased apoptosis pathways through augmented caspase 3 activity and reduced NFκB phosphorylation. Moreover, P140 increased the production of the pro-resolving mediator annexin A1 and decreased the expression of the autophagy-related ATG5-ATG12 complex and HSPA8 chaperone protein. Overall, these findings suggest that P140 exerts a significant beneficial effect in a neutrophilic inflammation observed in the model of gout that can be of special interest in the design of new therapeutic strategies.
Collapse
|
7
|
Bertozzi MM, Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA, Fattori V, Staurengo-Ferrari L, Ferraz CR, Domiciano TP, Calixto-Campos C, Borghi SM, Zarpelon AC, Cunha TM, Casagrande R, Verri WA. Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice. Brain Sci 2022; 12:brainsci12091247. [PMID: 36138983 PMCID: PMC9496717 DOI: 10.3390/brainsci12091247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.
Collapse
Affiliation(s)
- Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Talita P. Domiciano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Cassia Calixto-Campos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina 86041-120, PR, Brazil
| | - Ana C. Zarpelon
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto 14049-900, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or ; Tel.: +55-43-3371-4979; Fax: +55-43-3371-4387
| |
Collapse
|
8
|
Maresin 2 is an analgesic specialized pro-resolution lipid mediator in mice by inhibiting neutrophil and monocyte recruitment, nociceptor neuron TRPV1 and TRPA1 activation, and CGRP release. Neuropharmacology 2022; 216:109189. [PMID: 35820471 DOI: 10.1016/j.neuropharm.2022.109189] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Maresin-2 (MaR2) is a specialized pro-resolution lipid mediator (SPM) that reduces neutrophil recruitment in zymosan peritonitis. Here, we investigated the analgesic effect of MaR2 and its mechanisms in different mouse models of pain. For that, we used the lipopolysaccharide (LPS)-induced mechanical hyperalgesia (electronic version of the von Frey filaments), thermal hyperalgesia (hot plate test) and weight distribution (static weight bearing), as well as the spontaneous pain models induced by capsaicin (TRPV1 agonist) or AITC (TRPA1 agonist). Immune cell recruitment was determined by immunofluorescence and flow cytometry while changes in the pro-inflammatory mediator landscape were determined using a proteome profiler kit and ELISA after LPS injection. MaR2 treatment was also performed in cultured DRG neurons stimulated with capsaicin or AITC in the presence or absence of LPS. The effect of MaR2 on TRVP1- and TRPA1-dependent CGRP release by cultured DRG neurons was determined by EIA. MaR2 inhibited LPS-induced inflammatory pain and changes in the cytokine landscape as per cytokine array assay. MaR2 also inhibited TRPV1 and TRPA1 activation as observed by a reduction in calcium influx in cultured DRG neurons, and the number of flinches and time spent licking the paw induced by capsaicin or AITC. In corroboration, MaR2 reduced capsaicin- and AITC-induced CGRP release by cultured DRG neurons and immune cell recruitment to the paw skin close the CGRP+ fibers. In conclusion, we show that MaR2 is an analgesic SPM that acts by targeting leukocyte recruitment, nociceptor TRPV1 and TRPA1 activation, and CGRP release in mice.
Collapse
|
9
|
Barbosa AG, Tintino CD, Pessoa RT, de Lacerda Neto LJ, Martins AO, de Oliveira MR, Coutinho HD, Cruz-Martins N, Quintans Junior LJ, Wilairatana P, de Menezes IR. Anti-inflammatory and antinociceptive effect of Hyptis martiusii BENTH leaves essential oil. BIOTECHNOLOGY REPORTS 2022; 35:e00756. [PMID: 35942239 PMCID: PMC9356156 DOI: 10.1016/j.btre.2022.e00756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Andreza G.R. Barbosa
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Cícera D.M.O. Tintino
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Renata T. Pessoa
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Luiz J. de Lacerda Neto
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Anita O.B.P.B. Martins
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Maria R.C. de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), State University of Ceará (UECE), Fortaleza, Ceará, Brazil
| | - Henrique D.M. Coutinho
- Laboratory of Microbiology and Molecular Biology; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
- Corresponding authors.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Lucindo J. Quintans Junior
- Laboratory of Neuroscience and Pharmacological Assays; Department of Physiology, Federal University of Sergipe, Avenue Marechal Rondon, S/N, CEP 49100-000, São Cristóvão, Sergipe, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Corresponding authors.
| | - Irwin R.A. de Menezes
- Laboratory of Pharmacology and Molecular Chemistry; Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
- Corresponding authors.
| |
Collapse
|
10
|
Santos PD, Vieira TN, Gontijo Couto AC, Mesquita Luiz JP, Lopes Saraiva AL, Borges Linhares CR, Barbosa MF, Justino AB, Franco RR, da Silva Brum E, Oliveira SM, Dechichi P, Pivatto M, de Melo Rodrigues Ávila V, Espíndola FS, Silva CR. Stephalagine, an aporphinic alkaloid with therapeutic effects in acute gout arthritis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115291. [PMID: 35427727 DOI: 10.1016/j.jep.2022.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout is an inflammatory disease characterized by the accumulation of monosodium urate crystals (MSU) in the joints, leading to severe pain and inflammation. Stephalagine is a Brazilian Savanna aporphine alkaloid isolated from Annona crassiflora Mart. Fruit peel, that has been popularly used to treat rheumatism and have been described with antinociceptive properties. However, no studies evaluated the possible therapeutic properties of stephalagine in arthritic pain. AIM OF THE STUDY To evaluate the possible antinociceptive and anti-inflammatory effects of stephalagine in an acute gout attack in mice. MATERIALS AND METHODS Adult male wild type C57BL/6/J/UFU mice (20-25 g) were used (process number 018/17). The treated group received stephalagine (1 mg/kg, by gavage) and the vehicle group received saline (10 mL/kg, by gavage), both 1 h before the MSU crystals (100 μg/ankle joint) administration. All groups were analyzed for mechanical allodynia, thermal hyperalgesia, overt pain-like behaviors, and edema development at 2, 4, 6 and 24 h after injections. Synovial fluid and the ankle articulation from the injected joint were collected 4 h after administrations for myeloperoxidase enzyme activity, IL-1β measurement, and histological analysis. RESULTS Stephalagine had a significant antinociceptive effect on mechanical allodynia, when compared to vehicle group at 2-24 h after intra-articular injection of MSU and 2 h for spontaneous and cold thermal sensitivity. Stephalagine was also able to significantly reduce the articular edema (45 ± 1%), the activity of the myeloperoxidase enzyme (37 ± 6%), and IL-1β levels (43 ± 3%). The histological analysis confirms that stephalagine dramatically reduced the number of infiltrating inflammatory cells (75 ± 6%) in MSU injected animals. Also, stephalagine treatment did not alter the uric acid levels, xanthine oxidase activity, AST and ALT activities, urea and creatinine levels, neither cause any macroscopic changes in the mice's weight, deformations, changes in the coat, or feces. CONCLUSION Stephalagine may be an alternative for the management of gout, once it was able to induce antinociceptive and anti-inflammatory effects without causing adverse effects on the evaluated parameters.
Collapse
Affiliation(s)
- Priscilla Dias Santos
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil.
| | - Thiago Neves Vieira
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Ana Claudia Gontijo Couto
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - João Paulo Mesquita Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, (SP), Brazil
| | - André Luis Lopes Saraiva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | | | - Marília Fontes Barbosa
- Nucleus of Research on Bioactive Compounds (NPCBio), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Allisson Benatti Justino
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Rodrigo Rodrigues Franco
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, (RS), Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, (RS), Brazil
| | - Paula Dechichi
- Department of Cellular Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, 38400-902, Uberlândia, (MG), Brazil
| | - Marcos Pivatto
- Nucleus of Research on Bioactive Compounds (NPCBio), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Foued Salmen Espíndola
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil
| | - Cássia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, (MG), Brazil.
| |
Collapse
|
11
|
Heimfarth L, Rezende MM, Pereira EWM, Passos FRS, Monteiro BS, Santos TKB, Lima NT, Souza ICL, de Albuquerque Junior RLC, de Souza Siqueira Lima P, de Souza Araújo AA, Quintans Júnior LJ, Kim B, Coutinho HDM, de Souza Siqueira Quintans J. Pharmacological effects of a complex α-bisabolol/β-cyclodextrin in a mice arthritis model with involvement of IL-1β, IL-6 and MAPK. Biomed Pharmacother 2022; 151:113142. [PMID: 35623175 DOI: 10.1016/j.biopha.2022.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
Inflammatory arthritis is the most prevalent chronic inflammatory disease worldwide. The pathology of the disease is characterized by increased inflammation and oxidative stress, which leads to chronic pain and functional loss in the joints. Conventional anti-arthritic drugs used to relieve pain and other arthritic symptoms often cause severe side effects. α-bisabolol (BIS) is a sesquiterpene that exhibits high anti-inflammatory potential and a significant antinociceptive effect. This study evaluates the anti-arthritic, anti-inflammatory and antihyperalgesic effects of BIS alone and in a β-cyclodextrin (βCD/BIS) inclusion complex in a CFA-induced arthritis model. Following the intra-articular administration of CFA, male mice were treated with vehicle, BIS and βCD/BIS (50 mg/kg, p.o.) or a positive control and pain-related behaviors, knee edema and inflammatory and oxidative parameters were evaluated on days 4, 11, 18 and/or 25. Ours findings shows that the oral administration of BIS and βCD/BIS significantly attenuated spontaneous pain-like behaviors, mechanical hyperalgesia, grip strength deficit and knee edema induced by repeated injections of CFA, reducing the joint pain and functional disability associated with arthritis. BIS and βCD/BIS also inhibited the generation of inflammatory and oxidative markers in the knee and blocked MAPK in the spinal cord. In addition, ours results also showed that the incorporation of BIS in cyclodextrin as a drug delivery system improved the pharmacological profile of this substance. Therefore, these results contribute to the pharmacological knowledge of BIS and demonstrated that this terpene appears to be able to mitigate deleterious symptoms of arthritis.
Collapse
Affiliation(s)
- Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Marília Matos Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Erik Willyame Menezes Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Tiffany Karoline Barroso Santos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Natália Teles Lima
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Isana Carla Leal Souza
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Tiradentes University (UNIT), Aracaju, SE, Brazil
| | | | - Pollyana de Souza Siqueira Lima
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, Brazil.
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
12
|
Paton KF, Luo D, La Flamme AC, Prisinzano TE, Kivell BM. Sex Differences in Kappa Opioid Receptor Agonist Mediated Attenuation of Chemotherapy-Induced Neuropathic Pain in Mice. Front Pharmacol 2022; 13:813562. [PMID: 35250563 PMCID: PMC8894863 DOI: 10.3389/fphar.2022.813562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/25/2022] [Indexed: 01/24/2023] Open
Abstract
Chemotherapy-induced neuropathic pain is a common side effect for cancer patients which has limited effective treatment options. Kappa opioid receptor (KOR) agonists are a promising alternative to currently available opioid drugs due to their low abuse potential. In the current study, we have investigated the effects of Salvinorin A (SalA) analogues, 16-Ethynyl SalA, 16-Bromo SalA and ethyoxymethyl ether (EOM) SalB, and in a preclinical model of paclitaxel-induced neuropathic pain in male and female C57BL/6J mice. Using an acute dose-response procedure, we showed that compared to morphine, 16-Ethynyl SalA was more potent at reducing mechanical allodynia; and SalA, 16-Ethynyl SalA, and EOM SalB were more potent at reducing cold allodynia. In the mechanical allodynia testing, U50,488 was more potent in males and SalA was more potent in females. There were no sex differences in the acute cold allodynia testing. In the chronic administration model, treatment with U50,488 (10 mg/kg) reduced the mechanical and cold allodynia responses to healthy levels over 23 days of treatment. Overall, we have shown that KOR agonists are effective in a model of chemotherapy-induced neuropathic pain, indicating that KOR agonists could be further developed to treat this debilitating condition.
Collapse
Affiliation(s)
- Kelly F. Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Dan Luo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Anne C. La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Thomas E. Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Bronwyn M. Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- *Correspondence: Bronwyn M. Kivell,
| |
Collapse
|
13
|
Borghi SM, Bussulo SKD, Pinho-Ribeiro FA, Fattori V, Carvalho TT, Rasquel-Oliveira FS, Zaninelli TH, Ferraz CR, Casella AMB, Cunha FQ, Cunha TM, Casagrande R, Verri WA. Intense Acute Swimming Induces Delayed-Onset Muscle Soreness Dependent on Spinal Cord Neuroinflammation. Front Pharmacol 2022; 12:734091. [PMID: 35069187 PMCID: PMC8776654 DOI: 10.3389/fphar.2021.734091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Unaccustomed exercise involving eccentric contractions, high intensity, or long duration are recognized to induce delayed-onset muscle soreness (DOMS). Myocyte damage and inflammation in affected peripheral tissues contribute to sensitize muscle nociceptors leading to muscle pain. However, despite the essential role of the spinal cord in the regulation of pain, spinal cord neuroinflammatory mechanisms in intense swimming-induced DOMS remain to be investigated. We hypothesized that spinal cord neuroinflammation contributes to DOMS. C57BL/6 mice swam for 2 h to induce DOMS, and nociceptive spinal cord mechanisms were evaluated. DOMS triggered the activation of astrocytes and microglia in the spinal cord 24 h after exercise compared to the sham group. DOMS and DOMS-induced spinal cord nuclear factor κB (NFκB) activation were reduced by intrathecal treatments with glial inhibitors (fluorocitrate, α-aminoadipate, and minocycline) and NFκB inhibitor [pyrrolidine dithiocarbamate (PDTC)]. Moreover, DOMS was also reduced by intrathecal treatments targeting C-X3-C motif chemokine ligand 1 (CX3CL1), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β or with recombinant IL-10. In agreement, DOMS induced the mRNA and protein expressions of CX3CR1, TNF-α, IL-1β, IL-10, c-Fos, and oxidative stress in the spinal cord. All these immune and cellular alterations triggered by DOMS were amenable by intrathecal treatments with glial and NFκB inhibitors. These results support a role for spinal cord glial cells, via NFκB, cytokines/chemokines, and oxidative stress, in DOMS. Thus, unveiling neuroinflammatory mechanisms by which unaccustomed exercise induces central sensitization and consequently DOMS.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Centro de Pesquisa Em Ciências da Saúde, Universidade Norte do Paraná, Londrina, Brazil
| | - Sylvia K D Bussulo
- Centro de Pesquisa Em Ciências da Saúde, Universidade Norte do Paraná, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Antônio M B Casella
- Departamento de Clínica Médica, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernando Q Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago M Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Hospital Universitário, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
14
|
Castro PATS, Barbosa GM, Machanocker DH, Peres RS, Cunha TM, Cunha JE, Oliveira FFB, Ramalho FS, Russo TL, Cunha FQ, Salvini TF. Clinical-like cryotherapy in acute knee arthritis of the knee improves inflammation signs, pain, joint swelling, and motor performance in mice. PLoS One 2022; 17:e0261667. [PMID: 35061737 PMCID: PMC8782531 DOI: 10.1371/journal.pone.0261667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
To assess the effects of clinical-like cryotherapy on inflammatory signs (in vivo neutrophil migration, cytokines, and joint inflammation), pain, joint swelling, balance, and motor coordination in mice with knee arthritis. Young C57BL/6 mice were randomly divided into three groups (8 to 10 mice per group): Control group: mice with no intervention; antigen-induced arthritis (AIA) group: mice sensitized and immunized with intra-articular (i.a.) injection of methylated bovine serum albumin (mBSA); and AIA + cryotherapy group: mice sensitized, immunized with i.a. injection of mBSA, and submitted to a clinical-like cryotherapy protocol. After 21 days of sensitization, AIA and AIA + cryotherapy groups received i.a. injection of mBSA (100 μg/joint) to induce joint inflammation, and a clinical-like cryotherapy protocol was applied to AIA + cryotherapy group (crushed ice bag, two cryotherapy sessions of 20 min every two hours). Experimental analysis was conducted in the initial (immediately after i.a. injection of mBSA) and final periods (two hours after the second cryotherapy session). The number of synovial fluid neutrophils, cytokine levels, joint histology, pain, joint swelling, and motor performance were also analyzed. Our results showed that clinical-like cryotherapy in mice with acute knee arthritis reduced inflammatory signs, pain, and joint swelling, and improved balance and motor coordination.
Collapse
Affiliation(s)
- Paula A. T. S. Castro
- Department of Physical Therapy, Center of Biological Sciences and Health (CBSH), Federal University of São Carlos (UFSCAR), São Carlos, Brazil
| | - Germanna M. Barbosa
- Department of Physical Therapy, Center of Biological Sciences and Health (CBSH), Federal University of São Carlos (UFSCAR), São Carlos, Brazil
| | - Dafiner H. Machanocker
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Raphael S. Peres
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Jonathan E. Cunha
- Department of Physical Therapy, Center of Biological Sciences and Health (CBSH), Federal University of São Carlos (UFSCAR), São Carlos, Brazil
| | - Francisco F. B. Oliveira
- Department of Physical Therapy, Center of Biological Sciences and Health (CBSH), Federal University of São Carlos (UFSCAR), São Carlos, Brazil
| | - Fernando Silva Ramalho
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thiago L. Russo
- Department of Physical Therapy, Center of Biological Sciences and Health (CBSH), Federal University of São Carlos (UFSCAR), São Carlos, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tania F. Salvini
- Department of Physical Therapy, Center of Biological Sciences and Health (CBSH), Federal University of São Carlos (UFSCAR), São Carlos, Brazil
| |
Collapse
|
15
|
Liu X, He J, Gao J, Xiao Z. Fluorocitrate and neurotropin confer analgesic effects on neuropathic pain in diabetic rats via inhibition of astrocyte activation in the periaqueductal gray. Neurosci Lett 2022; 768:136378. [PMID: 34861344 DOI: 10.1016/j.neulet.2021.136378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Currently, effective treatments for diabetic neuropathic pain (DNP) are still unmet clinical needs. Activation of astrocytes in the ventrolateral region of periaqueductal gray (vlPAG) has a regulating effect on pain responses. The present study was designed to confirm that repeated intra-vlPAG injection of fluorocitrate (FC), a selective inhibitor of astrocyte activation or intraperitoneal (IP) injection of neurotropin, a widely prescribed analgesic drug for chronic pain, inhibited the activation of astrocytes in vlPAG and thus produced an analgesic effect on DNP. An in vivo model was developed to study DNP in rats. The changes in mechanical withdrawal threshold (MWT) and activation levels of astrocytes in the vlPAG were evaluated in all experimental rats. Compared with normal rats, vlPAG-based glial fibrillary acid protein (GFAP) was clearly upregulated, whereas the MWTs of DNP rats were markedly diminished. The intra-vlPAG injections of FC or IP injections of neurotropin attenuated the alterations both in MWTs and expression levels of GFAP in vlPAG in DNP rats. Collectively, these findings suggest the antinociceptive effects of FC and neurotropin in DNP rats, which were associated with suppressing the activation of astrocytes in vlPAG.
Collapse
Affiliation(s)
- Xingfeng Liu
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jie Gao
- Grade 2019, School of Anesthesiology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China.
| |
Collapse
|
16
|
Mota FVB, Coutinho FN, de Carvalho VMF, de Assis Correia JC, Bastos IVGA, Neto PPM, Ximenes RM, Brondani DJ, de Faria AR, Marchand P, da Silva TG. Antinociceptive Effects of Aza-Bicyclic Isoxazoline-Acylhydrazone Derivatives in Different Models of Nociception in Mice. Curr Top Med Chem 2022; 22:247-258. [PMID: 34986770 DOI: 10.2174/1568026622666220105102508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In a study recently published by our research group, the compounds isoxazoline-acylhydrazone derivatives R-99 and R-123 presented promising antinociceptive activity. However, the mechanism of action of this compound is still unknown. OBJECTIVE This study aimed to assess the mechanisms involved in the antinociceptive activity of these compounds in chemical models of pain. METHODS Animals were orally pretreated and evaluated in the acetic acid-, formalin-, capsaicin-, carrageenan- and Complete Freund's Adjuvant (CFA)-induced pain models in mice. The effects of the compounds after pretreatment with naloxone, prazosin, yohimbine, atropine, L-arginine, or glibenclamide were studied, using the acetic acid-induced writhing test to verify the possible involvement of opioid, α1-adrenergic, α2-adrenergic or cholinergic receptors, and nitric oxide or potassium channels pathways, respectively. RESULTS R-99 and R-123 compounds showed significant antinociceptive activity on pain models induced by acetic acid, formalin, and capsaicin. Both compounds decreased the mechanical hyperalgesia induced by carrageenan or CFA in mice. The antinociceptive effects of R-99 and R-123 on the acetic acid-induced writhing test were significantly attenuated by pretreatment with naloxone, yohimbine or atropine. R-99 also showed an attenuated response after pretreatment with atropine and glibenclamide. However, on the pretreatment with prazosin, there was no change in the animals' response to both compounds. CONCLUSION R-99 and R-123 showed antinociceptive effects related to mechanisms that involve, at least in part, interaction with the opioid and adrenergic systems and TRPV1 pathways. The compound R-99 also interacts with the cholinergic pathways and potassium channels.
Collapse
Affiliation(s)
| | - Felipe Neves Coutinho
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | | | | | | | | | - Rafael Matos Ximenes
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Dalci José Brondani
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Antônio Rodolfo de Faria
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife-PE, Brazil
| | - Pascal Marchand
- Département de Chimie Thérapeutique, University of Nantes, 22 Boulevard Bénoni Goullin, France
| | | |
Collapse
|
17
|
Crotalphine Attenuates Pain and Neuroinflammation Induced by Experimental Autoimmune Encephalomyelitis in Mice. Toxins (Basel) 2021; 13:toxins13110827. [PMID: 34822611 PMCID: PMC8624587 DOI: 10.3390/toxins13110827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.
Collapse
|
18
|
Ferrari Cervi V, Parcianello Saccol C, Henrique Marcondes Sari M, Cristóvão Martins C, Saldanha da Rosa L, Dias Ilha B, Zovico Soares F, Luchese C, Antunes Wilhelm E, Cruz L. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice. Int J Pharm 2021; 609:121144. [PMID: 34600055 DOI: 10.1016/j.ijpharm.2021.121144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to prepare pullulan films containing pomegranate seeds oil (PSO) based nanocapsules, and evaluate the formulation efficacy in the treatment of atopic dermatitis (AD)-like lesions induced by 2,4-dinitrochlorobenzene (DNCB). The Eudragit RS 100® nanocapsules (PSONC) were prepared by the interfacial precipitation of preformed polymer, whereas the films were produced by the solvent casting method. Pomegranate seed oil nanoemulsions (PSONE) were prepared by the spontaneous emulsification method for comparative reasons. Both nanosystems presented adequate mean diameter (248 ± 16 nm for PSONE and 181 ± 6 nm for PSONC), polydispersity index (below 0.2), zeta potential (-25.63 ± 1.1 mV for PSONE and + 43.13 ± 0.7 mV for PSONC) and pH in the acid range (6.77 ± 0.27 and 5.31 ± 0.17, PSONE and PSONC). By a pre-formulation study, sorbitol (6.5%) and PEG 400 (1.5%) were considered the most suitable plasticizers for developing pullulan films (6%) intending topical application. In general, pullulan films were classified as flexible and hydrophilic, with high occlusive properties, 57.6 ± 0.8%, 64.6 ± 0.8% for vehicle, PSONCF (pullulan film containing PSONC), respectively. All formulations (films and nanocarriers) presented no irritant potential in the chorioallantoic membrane test. In the in vivo model, the treatments with free PSO and PSONCF attenuated the skin injury as well as the mechanical hypernociceptive behavioral induced by DNCB exposure to mice. Importantly, the biochemical analyses provided evidence that only the treatment with PSONCF modulated the inflammatory and the oxidative stress parameters evaluated in this study. In conclusion, these data lead us to believe that PSONC incorporation into a pullulan film matrix improved the biological properties of the PSO in this AD-model.
Collapse
Affiliation(s)
- Verônica Ferrari Cervi
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Bruna Dias Ilha
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Fábio Zovico Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria CEP 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP 96010-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
19
|
Endocannabinoid System Attenuates Oxaliplatin-Induced Peripheral Sensory Neuropathy Through the Activation of CB1 Receptors. Neurotox Res 2021; 39:1782-1799. [PMID: 34792764 DOI: 10.1007/s12640-021-00442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Oxaliplatin-induced neurotoxicity is expressed as a dose-limiting peripheral sensory neuropathy (PSN). Cannabinoid substances have been investigated for the analgesic effect. This study aimed to investigate the role of cannabinoid receptors in oxaliplatin-associated PSN. Swiss male mice received nine oxaliplatin injections (2 mg/kg, i.v.). Mechanical and thermal nociceptive tests were performed for 56 days. CB1, CB2, and c-Fos expression were assessed in dorsal root ganglia (DRG), spinal cord (SC), trigeminal ganglia (TG), spinal trigeminal nucleus caudalis (Sp5C), and periaqueductal gray (PAG). Iba-1 expression was assessed in DRG and ATF3 in TG. Cannabidiol (10 mg/kg, p.o.) or a CB1/CB2 non-selective agonist (WIN 55,212-2; 0.5 mg/kg, s.c.) or AM251 (CB1 antagonist) or AM630 (CB2 antagonist) (3 mg/kg, i.p.) were injected before oxaliplatin. Oxaliplatin increased CB1 in DRG, SC, TG, Sp5C, and ventrolateral PAG, with no interference in CB2 expression. Cannabidiol increased CB1 in DRG, reduced mechanical hyperalgesia and c-Fos expression in DRG and SC. Additionally, WIN 55,212-2 increased CB1 in DRG, reduced mechanical hyperalgesia, cold allodynia and c-Fos expression in DRG and SC. CB1 blockage hastened the cold allodynia response, but the CB2 antagonist failed to modulate the oxaliplatin-induced nociceptive behavior. Oxaliplatin also increased Iba-1 in DRG, suggesting immune response modulation which was reduced by cannabidiol and enhanced by AM630. The modulation of the endocannabinoid system, through the CB1 receptor, attenuates the oxaliplatin-associated PNS. The activation of the endocannabinoid system could be considered as a therapeutic target for controlling oxaliplatin-associated neuropathy.
Collapse
|
20
|
Wilhelm EA, Soares PS, Reis AS, Motta KP, Lemos BB, Domingues WB, Blödorn EB, Araujo DR, Barcellos AM, Perin G, Soares MP, Campos VF, Luchese C. Se-[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl] 4-Chlorobenzoselenolate Attenuates Inflammatory Response, Nociception, and Affective Disorders Related to Rheumatoid Arthritis in Mice. ACS Chem Neurosci 2021; 12:3760-3771. [PMID: 34553902 DOI: 10.1021/acschemneuro.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite major advances, not all patients achieve rheumatoid arthritis (RA) remission, thus highlighting a pressing need for new therapeutic treatments. Given this scenario, this study sought to evaluate Se-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl] 4-chlorobenzoselenolate (Se-DMC) potential on a complete Freund's adjuvant (CFA)-induced unilateral arthritis model. The effects of Se-DMC (5 mg/kg; oral dose) and meloxicam (5 mg/kg; oral dose), both administered to animals daily for 14 days, on paw edema, mechanical sensitivity, neurobehavioral deficits (anxiogenic- and depressive-like behaviors), Na+/K+-ATPase activity, oxidative stress, and inflammation were evaluated in male Swiss mice exposed to CFA (intraplantar injection of 0.1 mL; 10 mg/mL). Se-DMC reduced the paw withdrawal threshold and CFA-induced paw edema. Histopathological results revealed the antiedematogenic potential of the compound, which was evidenced by lower quantities of dilated lymphatic vessels compared with the CFA group. Se-DMC reduced mRNA relative expression levels of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the hippocampus and paw of CFA mice. The CFA-induced anxiogenic- and depressive-like behaviors were reversed by Se-DMC to the control levels in the elevated plus-maze and tail suspension tests. Se-DMC reduced the paw reactive species levels and restored the superoxide dismutase (hippocampus and paw) and Na+/K+-ATPase (hippocampus) activities previously increased by CFA. Moreover, CFA administration inhibited serum creatinine kinase activity, albeit the Se-DMC effects did not appear to involve the modulation of this enzyme and were equal to or greater than meloxicam. Se-DMC attenuates CFA-induced inflammatory response, nociception, and neurobehavioral deficits in mice.
Collapse
Affiliation(s)
- Ethel A. Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Paola S. Soares
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Angélica S. Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Ketlyn P. Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Briana B. Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - William B. Domingues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Eduardo B. Blödorn
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa, CCQFA, Universidade Federal de Pelotas—UFPel, Pelotas 96010-900, Brazil
| | - Mauro P. Soares
- Laboratório Regional de Diagnóstico, Faculdade de Veterinária, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| | - Vinicius F. Campos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Genômica Estrutural, Biotecnologia, Universidade Federal de Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas 96010-900, Brazil
| |
Collapse
|
21
|
Liu Y, Liu W, Wang XQ, Wan ZH, Liu YQ, Zhang MJ. Dexmedetomidine Relieves Neuropathic Pain in Rats With Chronic Constriction Injury via the Keap1-Nrf2 Pathway. Front Cell Dev Biol 2021; 9:714996. [PMID: 34568327 PMCID: PMC8455886 DOI: 10.3389/fcell.2021.714996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
This study aimed to determine the role of dexmedetomidine (Dex) in neuropathic pain (NP) after chronic constriction injury (CCI) in a rat model as well as its underlying mechanism. First, a CCI rat model was established. After treatment with Dex, the severity of NP was ascertained by monitoring paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) at different time points. Immunohistochemical analysis was performed to determine the levels of Keap1 and Nrf2 in the spinal cord. Furthermore, the levels of Keap1–Nrf2–HO-1 pathway molecules, apoptotic proteins, and antioxidant genes in the spinal cord or isolated primary microglia were determined using quantitative polymerase chain reaction and western blotting. The release of proinflammatory cytokines was detected via enzyme-linked immunosorbent assay. To evaluate Dex-treated CCI-induced NP via the Keap1–Nrf2–HO-1 pathway, the rats were intrathecally injected with lentivirus to upregulate or downregulate the expression of Keap1. We found that Dex inhibited pathological changes and alleviated sciatic nerve pain as well as repressed inflammation, apoptosis, and redox disorders of the spinal cord in CCI rats. Keap1 protein expression was substantially downregulated, whereas Nrf2 and HO-1 expressions were significantly upregulated in the spinal cord after Dex administration. Additionally, Keap1 overexpression counteracted Dex-mediated inhibition of NP. Keap1 overexpression led to a decrease in Nrf2 and HO-1 levels as well as PWT and PWL but led to an aggravation of inflammation and antioxidant disorders and increased apoptosis. Keap1 silencing alleviated NP in rats with CCI, as evidenced by an increase in PWT and PWL. Keap1 depletion resulted in the alleviation of inflammation and spinal cord tissue injury in CCI rats. Collectively, these findings suggest that Dex inhibits the Keap1–Nrf2–HO-1-related antioxidant response, inflammation, and apoptosis, thereby alleviating NP in CCI rats.
Collapse
Affiliation(s)
- Yatao Liu
- Department of Anesthesiology and Operation, First Hospital of Lanzhou University, Lanzhou, China
| | - Wei Liu
- Department of Pathology, Lanzhou University School of Basic Medical Sciences, Lanzhou, China
| | - Xiao-Qing Wang
- Department of Anesthesiology and Operation, First Hospital of Lanzhou University, Lanzhou, China
| | - Zhan-Hai Wan
- Department of Anesthesiology and Operation, First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Qiang Liu
- Department of Anesthesiology and Operation, First Hospital of Lanzhou University, Lanzhou, China
| | - Meng-Jie Zhang
- Department of Anesthesiology and Operation, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
McCarson KE, Fehrenbacher JC. Models of Inflammation: Carrageenan- or Complete Freund's Adjuvant (CFA)-Induced Edema and Hypersensitivity in the Rat. Curr Protoc 2021; 1:e202. [PMID: 34314105 DOI: 10.1002/cpz1.202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this article are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC), Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
23
|
Ferraz CR, Carvalho TT, Fattori V, Saraiva-Santos T, Pinho-Ribeiro FA, Borghi SM, Manchope MF, Zaninelli TH, Cunha TM, Casagrande R, Clissa PB, Verri WA. Jararhagin, a snake venom metalloproteinase, induces mechanical hyperalgesia in mice with the neuroinflammatory contribution of spinal cord microglia and astrocytes. Int J Biol Macromol 2021; 179:610-619. [PMID: 33662422 DOI: 10.1016/j.ijbiomac.2021.02.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Jararhagin is a hyperalgesic metalloproteinase from Bothrops jararaca venom. In rodents, jararhagin induces nociceptive behaviors that correlate with an increase in peripheral cytokine levels. However, the role of the spinal cord glia in pain processing after peripheral stimulus of jararhagin has not been investigated. Aiming to explore this proposal, mice received intraplantar (i.pl.) injection of jararhagin and the following parameters were evaluated: hyperalgesia, spinal cord TNF-α, IL-1β levels, and CX3CR1, GFAP and p-NFκB activation. The effects of intrathecal (i.t.) injection of TNF-α soluble receptor (etanercept), IL-1 receptor antagonist (IL-1Ra), and inhibitors of NFκB (PDTC), microglia (minocycline) and astrocytes (α-aminoadipate) were investigated. Jararhagin inoculation induced cytokine production (TNF-α and IL-1β) in the spinal cord, which was reduced by treatment with PDTC (40% and 50%, respectively). Jararhagin mechanical hyperalgesia and cytokine production were inhibited by treatment with etanercept (67%), IL-1Ra (60%), PDTC (70%), minocycline (60%) and α-aminoadipate (45%). Furthermore, jararhagin induced an increase in p-NFκB, CX3CR1 and GFAP detection in the spinal cord indicating activation of NFκB, microglia and astrocytes. These results demonstrate for the first time that jararhagin-induced mechanical hyperalgesia is dependent on spinal cord activation of glial cells, consequent NFκB activation, and cytokine production in mice.
Collapse
Affiliation(s)
- Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Thacyana T Carvalho
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil; Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Marília F Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, Londrina, Parana, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
24
|
Sonza A, Sanada LS, de Oliveira LR, Bernardo-Filho M, de Sá-Caputo DDC, Zaro MA, Achaval M. Whole-body vibration mediates mechanical hypersensitivity through Aβ-fiber and C-fiber thermal sensation in a chronic pain model. Exp Biol Med (Maywood) 2021; 246:1210-1218. [PMID: 33593110 PMCID: PMC8142106 DOI: 10.1177/1535370221991147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Whole-body vibration (WBV), which is widely used as a type of exercise, involves the use of vibratory stimuli and it is used for rehabilitation and sports performance programmes. This study aimed to investigate the effect of WBV treatment in a chronic pain model after 10 WBV sessions. An animal model (chronic pain) was applied in 60 male Wistar rats (±180 g, 12 weeks old) and the animals were treated with low intensity exercise (treadmill), WBV (vibrating platform), and a combined treatment involving both. The controls on the platform were set to a frequency of 42 Hz with 2 mm peak-to-peak displacement, g ≈ 7, in a spiral mode. Before and after the vibration exposure, sensitivity was determined. Aβ-fibers-mediated mechanical sensitivity thresholds (touch-pressure) were measured using a pressure meter. C-fibers-mediated thermal perception thresholds (hot pain) were measured with a hot plate. After each session, WBV influenced the discharge of skin touch-pressure receptors, reducing mechanical sensitivity in the WBV groups (P < 0.05). Comparing the conditions "before vs. after", thermal perception thresholds (hot pain) started to decrease significantly after the third WBV session (P < 0.05). WBV decreases mechanical hyperalgesia after all sessions and thermal sensitivity after the third session with the use of WBV.
Collapse
Affiliation(s)
- Anelise Sonza
- Post-graduate Program in Physiotherapy, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis 88080-350, Brazil
- Post-graduate Program in Human Movement Sciences, UDESC, Florianópolis 88080-350, Brazil
- Post-graduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Luciana Sayuri Sanada
- Post-graduate Program in Physiotherapy, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis 88080-350, Brazil
| | - Luiza Raulino de Oliveira
- Post-graduate Program in Physiotherapy, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis 88080-350, Brazil
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Danúbia da Cunha de Sá-Caputo
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Milton Antonio Zaro
- Post-graduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Matilde Achaval
- Post-graduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| |
Collapse
|
25
|
Bernardes ACFPF, Matosinhos RC, de Paula Michel Araújo MC, Barros CH, de Oliveira Aguiar Soares RD, Costa DC, Sachs D, Saúde-Guimarães DA. Sesquiterpene lactones from Lychnophora species: Antinociceptive, anti-inflammatory, and antioxidant pathways to treat acute gout. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113738. [PMID: 33359866 DOI: 10.1016/j.jep.2020.113738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lychnophora trichocarpha and Lychnophora passerina are species used in folk medicine to treat inflammation, pain, and rheumatism. Previous studies have demonstrated the anti-inflammatory effect of ethanol extracts of these species and identified that sesquiterpene lactones contribute to this activity. AIM OF THE STUDY Gout is an acute inflammatory arthritis caused by the deposition of monosodium urate (MSU) crystals in joints. Inflammation in joints induces oxidative stress in defense cells, releasing pro-inflammatory mediators. This study has three objectives: (1) to demonstrate the effects of sesquiterpene lactones lychnopholide and eremantholide C isolated from L. trichocarpha and goyazensolide isolated from L. passerina on arthritis induced by MSU crystals in C57BL6 mice; (2) to determine whether or not these compounds can inhibit the migration of neutrophils and the release of TNF-α and IL-1β cytokines in the inflammation region; and (3) to evaluate the effects of sesquiterpene lactones on the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the cartilage of C57BL/6 mice with gouty arthritis. MATERIALS AND METHODS The anti-inflammatory, antinociceptive, and antioxidant activities of sesquiterpene lactones in C57BL/6 mice with MSU crystal-induced arthritis were evaluated. In our experimental model, the mice were injected with MSU crystals in the tibiofemoral joint to induce arthritis and then treated with indomethacin, vitamin C, and sesquiterpene lactones. Nociception was evaluated before and after inflammation induction and treatments, neutrophil migration, IL-1β and TNF-α concentrations, and SOD and CAT activities. RESULTS Sesquiterpene lactones exerted an anti-inflammatory effect by inhibiting neutrophil migration and TNF-α production. These compounds also demonstrated antinociceptive and antioxidant activities. CONCLUSION Lychnopholide, eremantholide C, and goyazensolide improved the inflammation induced by MSU crystals by inhibiting the migration of neutrophils to the inflamed area and by blocking the release of the pro-inflammatory cytokine TNF-α. In addition, sesquiterpene lactones reduced oxidative stress by activating SOD and CAT. These results suggest that sesquiterpene lactones have anti-gout activity through the inflammation, pain, and oxidative stress pathways.
Collapse
Affiliation(s)
- Ana Catharina Fernandes Pereira Ferreira Bernardes
- Laboratório de Plantas Medicinais (LAPLAMED), Programa de Pós-Graduação Em Ciências Farmacêutica (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rafaela Cunha Matosinhos
- Laboratório de Plantas Medicinais (LAPLAMED), Programa de Pós-Graduação Em Ciências Farmacêutica (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marcela Carolina de Paula Michel Araújo
- Laboratório de Plantas Medicinais (LAPLAMED), Programa de Pós-Graduação Em Ciências Farmacêutica (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Camila Helena Barros
- Laboratório de Plantas Medicinais (LAPLAMED), Programa de Pós-Graduação Em Ciências Farmacêutica (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Daniela Caldeira Costa
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Daniela Sachs
- Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, Minas Gerais, 37500-903, Brazil
| | - Dênia Antunes Saúde-Guimarães
- Laboratório de Plantas Medicinais (LAPLAMED), Programa de Pós-Graduação Em Ciências Farmacêutica (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
26
|
Gonçalves GM, Martins VDC, da Costa ARH, Fernandes TFDC, Pacheco S, Gama PE, Souza MDC, Godoy RLDO, Laureano-Melo R, Côrtes WDS, de Carvalho MG, Marinho BG. Essential oil of Myrciaria tenella (DC.) O. Berg: effects of distillation time on its chemical composition and evaluation of its anti-inflammatory and antinociceptive effects. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1899993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gabriela Mastrangelo Gonçalves
- Laboratório de Farmacologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | - Víctor de Carvalho Martins
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
- Laboratório de Cromatografia Líquida, Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brasil
| | - André Romero Henrique da Costa
- Laboratório de Farmacologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | | | - Sidney Pacheco
- Laboratório de Cromatografia Líquida, Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brasil
| | - Paola Ervatti Gama
- Laboratório de Cromatografia Gasosa, Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brasil
| | - Marcelo da Costa Souza
- Herbário RBR, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | | | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Farmacologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | - Mario Geraldo de Carvalho
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| | - Bruno Guimarães Marinho
- Laboratório de Farmacologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil
| |
Collapse
|
27
|
Cavalcanti MRM, Passos FRS, Monteiro BS, Gandhi SR, Heimfarth L, Lima BS, Nascimento YM, Duarte MC, Araujo AAS, Menezes IRA, Coutinho HDM, Zengin G, Ceylan R, Aktumsek A, Quintans-Júnior LJ, Quintans JSS. HPLC-DAD-UV analysis, anti-inflammatory and anti-neuropathic effects of methanolic extract of Sideritis bilgeriana (lamiaceae) by NF-κB, TNF-α, IL-1β and IL-6 involvement. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113338. [PMID: 32920137 DOI: 10.1016/j.jep.2020.113338] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Medicinal plants remain an invaluable source for therapeutics of diseases that affect humanity. Sideritis bilgeriana (Lamiaceae) is medicinal plant used in Turkey folk medicine to reduce inflammation and pain, but few studies scientific corroborates its medicinal use so creating a gap between popular use and scientific evidence. Thus, we aimed to evaluate the pharmacological effects of the methanolic extract of S. bilgeriana (MESB) in rodents nociception models and also performed its phytochemical analysis. Firstly, a screening was carried out that enabled the identification of the presence of phenolic compounds and flavonoids. In view of this, a chromatographic method by HPLC-DAD-UV was developed that made it possible to identify chlorogenic acid and its quantification in MESB. MESB-treated mice (MESB 50, 100 and 200 mg/kg, p.o.) reduced mechanical hyperalgesia and myeloperoxidase activity (p < 0.01), and also showed a reduced pain behavior in capsaicin test. In the carrageenan-induced pleurisy test, MESB (100 mg/kg p.o.) significantly reduced the leukocyte (polymorphonuclear) count in the pleural cavity and equally decreased the TNF-α and IL-1β levels (p < 0.001). In the PSNL model, mechanical hyperalgesia was reduced on the first evaluation day and during the 7 days of evaluation compared to the vehicle group (p < 0.001). Thermal hyperalgesia was also reduced 1 h after treatment compared to the vehicle group (p < 0.001) and reversed the loss of force initially displayed by the animals, thus inferring an analgesic effect in the muscle strength test. Analysis of the marrow of these animals showed a decrease in the level of pro-inflammatory cytokine IL-6 (p < 0.001) and factor NF-κB, in relation to the control group (p < 0.05). Moreover, the MESB treatment produced no noticeable side effects, no disturb in motor performance and no signs of gastric or hepatic injury. Together, the results suggests that MESB could be useful to management of inflammation and neuropathic pain mainly by the management of pro-inflammatory mediators (NF-κB, TNF-α, IL-1β and IL-6), so reinforcing its use in popular medicine and corroborating the need for further chemical and pharmacological studies for the species.
Collapse
Affiliation(s)
- Mariana R M Cavalcanti
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | | | | | - Luana Heimfarth
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | | | - Yuri M Nascimento
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | | | - Adriano A S Araujo
- Department of Pharmacy, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Irwin R A Menezes
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Henrique D M Coutinho
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Ramazan Ceylan
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Abdurrahman Aktumsek
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| | - Jullyana S S Quintans
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
28
|
Gu P, Fan T, Wong SSC, Pan Z, Tai WL, Chung SK, Cheung CW. Central Endothelin-1 Confers Analgesia by Triggering Spinal Neuronal Histone Deacetylase 5 (HDAC5) Nuclear Exclusion in Peripheral Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2021; 22:454-471. [PMID: 33421591 DOI: 10.1016/j.jpain.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
The rationale of spinal administration of endothelin-1(ET-1) mediated anti-nociceptive effect has not been elucidated. ET-1 is reported to promote nuclear effluxion of histone deacetylase 5 (HDAC5) in myocytes, and spinal HDAC5 is implicated in modulation of pain processing. In this study, we aimed to investigate whether central ET-1 plays an anti-nociceptive role by facilitating spinal HDAC5 nuclear shuttling under neuropathic pain. Here, we demonstrate that upregulating spinal ET-1 attenuated the nociception induced by partial sciatic nerve ligation surgery and this analgesic effect mediated by ET-1 was attenuated by intrathecal injection of endothelin A receptor selective inhibitor (BQ123) or by blocking the exportation of nuclear HDAC5 by adeno-associated viruses targeting neuronal HDAC5 (AVV-HDAC5 S259/498A Mutant). Notably, ET-1 administration increased spinal glutamate acid decarboxylases (GAD65/67) expression via initiating HDAC5 nuclear exportation and increased the acetylation of histone 3 at lysine 9 (Acetyl-H3K9) in the promotor regions of spinal Gad1 and Gad2 genes. This was reversed by blocking endothelin A receptor function or by inhibiting the spinal neuronal nuclear exportation of HDAC5. Therefore, inducing spinal GABAergic neuronal HDAC5 nuclear exportation may be a novel therapeutic approach for managing neuropathic pain. PERSPECTIVE: Neuropathic pain is intractable in a clinical setting, and epigenetic regulation is considered to contribute to this processing. Characterizing the anti-nociceptive effect of ET-1 and investigating the associated epigenetic mechanisms in animal models may lead to the development of new therapeutic strategies and targets for treating neuropathic pain.
Collapse
Affiliation(s)
- Pan Gu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China; Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Guangdong province, China
| | - Tingting Fan
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Stanley Sau Ching Wong
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anaesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wai Lydia Tai
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sookja Kim Chung
- Macau University of Science and Technology, Taipa, Macau; School of Biomedical Sciences, The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China; Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong, HKSAR, China; Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Guangdong province, China.
| |
Collapse
|
29
|
Maia-Marques R, Nascimento IMR, Lauria PSS, Silva ECPD, Silva DF, Casais-E-Silva LL. Inflammatory mediators in the pronociceptive effects induced by Bothrops leucurus snake venom: The role of biogenic amines, nitric oxide, and eicosanoids. Toxicology 2020; 448:152649. [PMID: 33259823 DOI: 10.1016/j.tox.2020.152649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Bothrops leucurus is the major causative agent of venomous snakebites in Northeastern Brazil. Severe pain is the most frequent symptom in these envenomings, with an important inflammatory component. This work characterized the pronociceptive effects evoked by B. leucurus venom (BLV) in mice and the role of inflammatory mediators in these responses. The nociceptive behaviors were quantified by the modified formalin test. The mechanical hyperalgesia was assessed by the digital von Frey test. Pharmacological assays were performed with different antagonists and synthesis inhibitors to investigate the involvement of inflammatory mediators in both nociceptive events. BLV (1-15 μg/paw) injection in mice evoked intense and dose-dependent nociceptive behaviors that lasted for up to 1 h. BLV (10 μg/paw) also caused sustained mechanical hyperalgesia. Histamine and serotonin played a role in the nociception, but not in the BLV-induced mechanical hyperalgesia. Nitric oxide contributed to both responses, but only to the late stages of mechanical hyperalgesia. Eicosanoids were also present in both nociceptive responses. Prostanoid synthesis by COX-1 seemed to be more relevant for the nociception, whereas COX-2 had a more prominent role in the mechanical hyperalgesia. Leukotrienes were the most relevant mediators of BLV-induced mechanical hyperalgesia, hence inhibiting lipoxygenase pathway could be an efficient therapeutic strategy for pain management during envenoming. Our behavioral data demonstrates that BLV promotes nociceptive transmission mediated by biogenic amines, nitric oxide and eicosanoids, and nociceptor sensitization through nitric oxide and eicosanoids. Moreover, phospholipases A2 (PLA2), an important class of toxins present in bothropic venoms, appear to play an important role in the nociceptive and hypernociceptive response induced by BLV.
Collapse
Affiliation(s)
- Rodrigo Maia-Marques
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Igor M R Nascimento
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Pedro S S Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Federal University of Bahia, Salvador, BA, Brazil.
| | - Ellen C P da Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Darizy F Silva
- Laboratory of Endocrine and Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
30
|
Effects of photobiomodulation therapy on the local experimental envenoming by Bothrops leucurus snake. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112087. [PMID: 33234463 DOI: 10.1016/j.jphotobiol.2020.112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/03/2023]
Abstract
Bothrops leucurus is the major causative agent of snakebites in Brazil's Northeast. The systemic effects of its venom are effectively neutralized by antivenom therapy, preventing bitten patients' death. However, antivenom fails in neutralizing local effects that include intense pain, edema, bleeding, and myonecrosis. Such effects can lead to irreversible sequels, representing a clinically relevant issue for which there is no current effective treatment. Herein, the effects of photobiomodulation therapy (PBMT) were tested in the local actions induced by B. leucurus venom (BLV) in mice (n = 123 animals in 20 experimental groups). A continuous emission AlGaAs semiconductor diode laser was used in two wavelengths (660 or 780 nm). Mechanical nociceptive thresholds were assessed with the electronic von Frey apparatus. Local edema was determined by measuring the increase in paw thickness. Hemorrhage was quantified by digital measurement of the bleeding area. Myotoxicity was evaluated by serum creatine kinase (CK) activity and histopathological analysis. PBMT promoted anti-hypernociception in BLV-injected mice; irradiation with the 660 nm laser resulted in faster effect onset than the 780 nm laser. Both laser protocols reduced paw edema formation, whether irradiation was performed immediately or half an hour after venom injection. BLV-induced hemorrhage was not altered by PBMT. Laser irradiation delayed, but did not prevent myotoxicity caused by BLV, as shown by a late increase in CK activity and histopathological alterations. PBMT was effective in the control of some of the major local effects of BLV refractory to antivenom. It is a potential complementary therapy that could be used in bothropic envenoming, minimizing the morbidity of these snakebite accidents.
Collapse
|
31
|
Sant'Anna MB, Giardini AC, Ribeiro MAC, Lopes FSR, Teixeira NB, Kimura LF, Bufalo MC, Ribeiro OG, Borrego A, Cabrera WHK, Ferreira JCB, Zambelli VO, Sant'Anna OA, Picolo G. The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions. Front Immunol 2020; 11:591563. [PMID: 33193433 PMCID: PMC7655790 DOI: 10.3389/fimmu.2020.591563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 μg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.
Collapse
Affiliation(s)
| | - Aline C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Marcio A C Ribeiro
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Flavia S R Lopes
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | | | - Louise F Kimura
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Michelle C Bufalo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | | | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Sao Paulo, Brazil
| | - Wafa H K Cabrera
- Laboratory of Immunogenetics, Butantan Institute, Sao Paulo, Brazil
| | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Department of Chemical and Systems Biology, School of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.,Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
32
|
Running wheel exercise induces therapeutic and preventive effects on inflammatory stimulus-induced persistent hyperalgesia in mice. PLoS One 2020; 15:e0240115. [PMID: 33048957 PMCID: PMC7553300 DOI: 10.1371/journal.pone.0240115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain affects significant portion of the world's population and physical exercise has been extensively indicated as non-pharmacological clinical intervention to relieve symptoms in chronic pain conditions. In general, studies on pain chronification and physical exercise intervention have focused on neuropathic pain, although chronic pain commonly results from an original inflammatory episode. Based on this, the objective of the present study was to investigate the therapeutic and preventive effect of the running wheel exercise on the persistent hyperalgesia induced by repetitive inflammatory stimulus, a rodent model that simulates clinical conditions of chronic pain that persist even with no more inflammatory stimulus present. To evaluate the therapeutic effect of physical exercise, we first induced persistent hyperalgesia through 14 days of PGE2 hind paw injections and, after that, mice have access to the regular voluntary running wheel. To evaluate the preventive effect of physical exercise, we first left the mice with access to the regular voluntary running wheel and, after that, we performed 14 days of PGE2 hind paw injection. Our results showed that voluntary running wheel exercise reduced persistent mechanical and chemical hyperalgesia intensity induced by repetitive inflammatory stimulus. In addition, we showed that this therapeutic effect is long-lasting and is observed even if started belatedly, i.e. two weeks after the development of hyperalgesia. Also, our results showed that voluntary running wheel exercise absolutely prevented persistent mechanical and chemical hyperalgesia induction. We can conclude that physical exercise has therapeutic and preventive effect on inflammatory stimulus-induced persistent hyperalgesia. Our data from animal experiments bypass placebo effects bias of the human studies and reinforce physical exercise clinical recommendations to treat and prevent chronic pain.
Collapse
|
33
|
Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways. Inflamm Res 2020; 69:1257-1270. [PMID: 33037469 DOI: 10.1007/s00011-020-01407-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE AND DESIGN Methyl gallate (MG) is a prevalent polyphenol in the plant kingdom, which may be related to the effects of several medicinal plants. Although it is widely reported that polyphenols have therapeutic effects, there are few studies demonstrating that MG has anti-inflammatory action. This study aimed to investigate the molecular mechanism behind the anti-inflammatory activity of MG and its effect on hyperalgesia. METHODS Swiss mice were pretreated orally with different doses of MG and subjected to i.pl. injection of zymosan to induce paw edema. RAW264.7 macrophages and BMDMs stimulated with different TLR agonists such as zymosan, LPS, or Pam3CSK4 were used to investigate the molecular mechanisms of MG RESULTS: MG inhibits zymosan-induced paw edema and hyperalgesia and modulates molecular pathways crucial for inflammation development. Pretreatment with MG inhibited cytokines production and NF-κB activity by RAW 264.7 cells stimulated with zymosan, Pam3CSK4 or LPS, but not with PMA. Moreover, pretreatment with MG decreased IκB degradation, nuclear translocation of NF-κBp65, c-jun and c-fos and ERK1/2, p38 and JNK phosphorylation. CONCLUSION Thus, the results of this study demonstrate that MG has a promising anti-inflammatory effect and suggests an explanation of its mechanism of action through the inhibition of NF-κB signaling and the MAPK pathway.
Collapse
|
34
|
Lopes F, Vicentini FA, Cluny NL, Mathews AJ, Lee BH, Almishri WA, Griffin L, Gonçalves W, Pinho V, McKay DM, Hirota SA, Swain MG, Pittman QJ, Sharkey KA. Brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. Brain Behav Immun 2020; 89:224-232. [PMID: 32592863 DOI: 10.1016/j.bbi.2020.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Patients with rheumatoid arthritis experience chronic pain, depression and fatigue, even when inflammation of the joints is well controlled. To study the relationship between arthritis, depression, and sustained pain when articular inflammation is no longer observed, we tested the hypothesis that brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. The murine model of antigen-induced arthritis (AIA) was used to evaluate the effects of knee inflammation on sustained pain and depression-like behavior. We measured joint pain using an automated dynamic plantar algesiometer and depression-like behavior with the tail suspension test. Cytokines were measured by Luminex assay and ELISA. TNF in the brain was blocked by intracerebroventricular injection of anti-TNF antibodies. Histological damage and elevated levels of cytokines were observed in the knee 24 h after antigen treatment, but not at 13 days. Reduced pain thresholds were seen 24 h and 13 days after treatment. Depression-like behavior was observed on day 13. Treatment with the antidepressant imipramine reduced both depression-like behavior and persistent pain. However, blocking joint pain with the analgesic dipyrone did not alter depression-like behavior. Elevated levels of TNF, CCL2, and CXCL-1 were observed in the hippocampus 24 h after treatment, with TNF remaining elevated at day 13. Intracerebroventricular infusion of an anti-TNF antibody blocked depression-like behavior and reduced persistent pain. We have demonstrated that depression-like behavior and pain is sustained in AIA mice after the resolution of inflammation. These changes are associated with elevated levels of TNF in the hippocampus and are dependent upon brain TNF. The findings reveal an important mechanistic link between the expression of chronic pain and depression in experimental arthritis. Furthermore, they suggest treating depression in rheumatoid arthritis may positively impact other debilitating features of this condition.
Collapse
Affiliation(s)
- Fernando Lopes
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| | - Fernando A Vicentini
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nina L Cluny
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander J Mathews
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin H Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Wagdi A Almishri
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lateece Griffin
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Derek M McKay
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
35
|
Pereira AF, Lino JA, Alves BWF, Lisboa MRP, Pontes RB, Leite CAVG, Nogueira RB, Lima-Júnior RCP, Vale ML. Amifostine protects from the peripheral sensory neuropathy induced by oxaliplatin in mice. Braz J Med Biol Res 2020; 53:e10263. [PMID: 32965323 PMCID: PMC7510240 DOI: 10.1590/1414-431x202010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Sensory neuropathy is a dose-limiting side effect of oxaliplatin-based cancer treatment. This study investigated the antinociceptive effect of amifostine and its potential neuroprotective mechanisms on the oxaliplatin-related peripheral sensory neuropathy in mice. Oxaliplatin (1 mg/kg) was injected intravenously in Swiss albino male mice twice a week (total of nine injections), while amifostine (1, 5, 25, 50, and 100 mg/kg) was administered subcutaneously 30 min before oxaliplatin. Mechanical and thermal nociceptive tests were performed once a week for 49 days. Additionally, c-Fos, nitrotyrosine, and activating transcription factor 3 (ATF3) immunoexpressions were assessed in the dorsal root ganglia. In all doses, amifostine prevented the development of mechanical hyperalgesia and thermal allodynia induced by oxaliplatin (P<0.05). Amifostine at the dose of 25 mg/kg provided the best protection (P<0.05). Moreover, amifostine protected against neuronal hyperactivation, nitrosative stress, and neuronal damage in the dorsal root ganglia, detected by the reduced expression of c-Fos, nitrotyrosine, and ATF3 (P<0.05 vs the oxaliplatin-treated group). In conclusion, amifostine reduced the nociception induced by oxaliplatin in mice, suggesting the possible use of amifostine for the management of oxaliplatin-induced peripheral sensory neuropathy.
Collapse
Affiliation(s)
- A F Pereira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J A Lino
- Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - B W F Alves
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M R P Lisboa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Pontes
- Departamento de Fisioterapia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C A V G Leite
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Nogueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R C P Lima-Júnior
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M L Vale
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
36
|
Lima TC, Matos SS, Carvalho TF, Silveira-Filho AJ, Couto LPSM, Quintans-Júnior LJ, Quintans JSS, Silva AMO, Heimfarth L, Passos FRS, Gandhi SR, Lima BS, Silva FA. Evidence for the involvement of IL-1β and TNF-α in anti-inflammatory effect and antioxidative stress profile of the standardized dried extract from Miconia albicans Sw. (Triana) Leaves (Melastomataceae). JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112908. [PMID: 32387231 DOI: 10.1016/j.jep.2020.112908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Miconia albicans (Melastomataceae), commonly known in Brazil as "canela-de-velho", is used in folk medicine for treating rheumatoid arthritis and reducing pain and inflammation. THE AIM OF THE CURRENT WORK WAS: to provide data on physicochemical characterization of the drug plant and dried extract from M. albicans leaves, as well as investigate the anti-inflammatory effect and antioxidant stress profile from the standardized dried extract of this species employing different model systems. MATERIALS AND METHODS plant material (dried crushed leaves) was extracted by turboextraction using 50% ethanol (v/v). Different pharmacological techniques were performed to establish quality control parameters of the plant drug, and dried extract of M. albicans (DEMA) was chemically characterized by HPLC-PDA to selection of the chemical marker. Total phenolic and flavonoid contents were determined by the Folin-Ciocalteu and AlCl3 colorimetric methods, respectively. Antioxidant potential of the DEMA was investigated by employing different in vitro antioxidant assays, including DPPH and ABTS radical scavenging assays, ferric reducing antioxidant assay, NO scavenging assay, metal ion (Fe2+) chelating activity and antioxidant capacity by inhibition of lipid peroxidation (TBARS). Finally, anti-inflammatory activity of the DEMA was evaluated using two models of acute inflammation: carrageenan induced inflammation and mechanical hyperalgesia. RESULTS AND DISCUSSION M. albicans leaves, after drying in forced air circulation chamber at ±40 °C for 48 h and crushing in knife mill, presented a moisture content below the maximum allowed for plant drugs (6.4%). The powder of M. albicans was classified as moderately coarse and total ash content was found to be 6.27%. Preliminary phytochemical screening of DEMA revealed the presence of flavonoids, tannins, saponins, leucoanthocyanins and steroids. DEMA had significant higher total phenolic (551.3 mg gallic acid equivalent/g of dried extract) and flavonoid contents (367.19 mg catechin equivalent/g of dried extract). Two major compounds (λ = 340 nm) were identified in DEMA by HPLC-PDA: the flavonoids rutin and quercetin. Rutin content, selected as chemical marker, was determined and found to be 1.16 mg/g dried extract (r = 0.9941). Regarding to antioxidant activity, our results revealed the DEMA exhibited good antioxidant activity on different models. M. albicans treatment also reduced the levels of TNF-α e IL-1β and consequently inflammatory nociception and edema caused by carrageenan injection. Based on previous studies and our results, is possible to suggest a positive correlation between the flavonoids rutin and quercetin and the antioxidant and anti-inflammatory capacities. CONCLUSION Together, these data suggest that M. albicans has the possibility of use in conditions such as arthritis or other joint pain, even needing other work to better consolidate this profile.
Collapse
Affiliation(s)
- Tamires C Lima
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil.
| | - Saulo S Matos
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Thaís F Carvalho
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Alex J Silveira-Filho
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Luzi P S M Couto
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Lucindo J Quintans-Júnior
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Jullyana S S Quintans
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Ana Mara O Silva
- Department of Nutrition, Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Luana Heimfarth
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Fabiolla R S Passos
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Sathiyabama R Gandhi
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Bruno S Lima
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Francilene A Silva
- Department of Pharmacy (DFA), Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| |
Collapse
|
37
|
Social stress as a trigger for depressive-like behavior and persistent hyperalgesia in mice: study of the comorbidity between depression and chronic pain. J Affect Disord 2020; 274:759-767. [PMID: 32664012 DOI: 10.1016/j.jad.2020.05.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND There is great comorbidity and similarity between chronic pain and major depressive disorders. We have recently shown that 10 days of social defeat stress (SDS) induces hyperalgesia regardless depressive-like behavior in mice. Here we aimed to investigate whether social stress predisposes to chronic pain and, inversely, whether chronic pain predisposes to stress-induced depression. METHODS Firstly, we used the 10 days SDS paradigm in mice followed by a mild protocol of repetitive inflammatory stimulus to evaluate if SDS would predispose to persistent hyperalgesia development. Secondly, we used the intense protocol of repetitive inflammatory stimulus followed by a subthreshold SDS to evaluate if persistent hyperalgesia would predispose to depressive-like behavior of social avoidance. RESULTS Our results showed that SDS predispose to chronic pain, since stressed mice injected with PGE2 for 7 days (mild protocol), stimuli normally not sufficient to trigger chronic pain, showed persistent hyperalgesia. Also, we showed that persistent hyperalgesia induced by repetitive inflammatory stimuli predispose to long-lasting depressive-like behavior of social avoidance induced by subthreshold SDS. LIMITATIONS We did not analyze molecular mechanism associated with chronic pain and depressive-like behavior induced by SDS. However, we hypothesized that SDS and 14 days of PGE2 would generate neuroplasticity on brain areas shared by chronic pain and depression, predisposing to pain chronification and depressive-like behavior, respectively. CONCLUSIONS We can conclude social stress as a key and a common factor for chronic pain and depression. We can also conclude that SDS predisposes to chronic pain and, inversely, chronic pain predisposes to depressive-like behavior.
Collapse
|
38
|
Gusmão JNFM, Fonseca KM, Ferreira BSP, de Freitas Alves BW, Ribeiro Júnior HL, Lisboa MRP, Pereira KMA, Vale ML, Gondim DV. Electroacupuncture Reduces Inflammation but Not Bone Loss on Periodontitis in Arthritic Rats. Inflammation 2020; 44:116-128. [PMID: 32789781 DOI: 10.1007/s10753-020-01313-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Periodontitis and rheumatoid arthritis (RA) are inflammatory diseases characterized by chronic inflammation and bone erosion. Electroacupuncture (EA) shows anti-inflammatory and anti-resorptive effects in experimental periodontitis (EP) and in RA. It is important to investigate whether EA shows these effects in periodontal tissues in the presence of these two inflammatory diseases or not. For this, Wistar rats were divided into six groups: control (C); experimental rheumatoid arthritis (RA; bovine type II collagen-induced (CII)); experimental periodontitis (EP); RA/EP (RA + EP); EP/EA (EP treated with EA); RA/EP/EA (RA + EP treated with EA). EP was induced 21 days after RA induction and EA was performed previously and during the EP induction period, every 3 days until the 36th experimental day. The rats were euthanized on day 39. RA was evaluated by edema and the withdrawal threshold of hind paws. The maxillae were removed, and alveolar bone loss (ABL) and bone radiographic density (BRD) were evaluated. Immunohistochemical analyses for interleukins (IL)-6 and -17 and nuclear factor (NF)-κB were performed. Our results showed that EA reduced only the pain intensity in arthritic rats. Histomorphometric, macroscopic, and radiographic analyses did not show differences between the control and EP/EA groups. EA caused a reduction in ABL and BRD only in the presence of EP. EA caused a reduction in IL-6 and -17 in all groups, but NF-κB was only reduced in the arthritic rats with EP. In conclusion, EA reduced the inflammation related to periodontitis in arthritic rats but did not prevent ABL.
Collapse
Affiliation(s)
- Jonas Nogueira Ferreira Maciel Gusmão
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Khetyma Moreira Fonseca
- Post Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Sousa Pinto Ferreira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Bruno Wesley de Freitas Alves
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Howard Lopes Ribeiro Júnior
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Mario Roberto Pontes Lisboa
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Karuza Maria Alves Pereira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Mariana Lima Vale
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil.,Post Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Delane Viana Gondim
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil.
| |
Collapse
|
39
|
Quintans-Júnior LJ, Gandhi SR, Passos FRS, Heimfarth L, Pereira EWM, Monteiro BS, Dos Santos KS, Duarte MC, Abreu LS, Nascimento YM, Tavares JF, Silva MS, Menezes IRA, Coutinho HDM, Lima ÁAN, Zengin G, Quintans JSS. Dereplication and quantification of the ethanol extract of Miconia albicans (Melastomaceae) by HPLC-DAD-ESI-/MS/MS, and assessment of its anti-hyperalgesic and anti-inflammatory profiles in a mice arthritis-like model: Evidence for involvement of TNF-α, IL-1β and IL-6. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112938. [PMID: 32387232 DOI: 10.1016/j.jep.2020.112938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Miconia albicans (Sw) Triana (Melastomataceae), a medicinal plant widely used by practitioners of folk medicine in the northeast of Brazil, has been used to treat chronic inflammatory disorders, such as rheumatoid arthritis (RA) and other joint conditions. Oddly, there is little research on the species. AIM OF THE STUDY We aimed to evaluate the anti-arthritic and anti-inflammatory profile of the ethanolic leaf extract of M. albicans (EEMA), as well as to perform dereplication and quantification by HPLC-DAD-ESI-/MS/MS. MATERIALS AND METHODS The compounds present in the extracts were identified by HPLC-DAD-ESI-MS/MS. The possible anti-inflammatory effect of EEMA (50 and 100 mg/kg, p.o) was evaluated using the pleurisy model induced by carrageenan and its action on IL-1β and TNF-α levels was also evaluated. The RA model was induced through the intra-articular injection of complete Freund's adjuvant (CFA). RESULTS HPLC-DAD-ESI-MS/MS analysis identified 23 compounds, with glycoside flavonoids mainly derived from quercetin, and rutin being the main compounds. EEMA significantly reduced (p < 0.001) leukocyte migration in the pleurisy model and reduced TNF-α and IL-1β levels in pleural lavage (p < 0.001). In the CFA animal model, EEMA significantly reduced the nociceptive and hyperalgesic behaviors demonstrated by the rearing test (p < 0.01 or p < 0.05) and decreased mechanical hyperalgesia (p < 0.001). EEMA produced a significant improvement in mobility in the open-field test (only at the higher dose, p < 0.05). EEMA significantly (p < 0.01) increased hindpaw grip strength. The diameter of CFA-induced ipsilateral knee edema was significantly reduced (p < 0.001) by EEMA, which was related to reduced levels of IL-6 and TNF-α in the joint knee (p < 0.01). No indication of hepatic injury after chronic treatment was found. CONCLUSION Taken together, these results contribute to the chemical and pharmacological knowledge of M. albicans and demonstrated that this medicinal plant appears to be able to mitigate deleterious symptoms of RA, which supports its use in folk medicine.
Collapse
Affiliation(s)
- Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil.
| | - Sathiyabama R Gandhi
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil
| | - Fabiolla R Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil
| | - Erik W Menezes Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil
| | - Brenda S Monteiro
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil
| | - Katielen Silvana Dos Santos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil
| | | | - Lucas Silva Abreu
- Nucleus for Characterization and Analysis, Department of Pharmaceutical Sciences, Health Science Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Yuri M Nascimento
- Nucleus for Characterization and Analysis, Department of Pharmaceutical Sciences, Health Science Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Josean F Tavares
- Nucleus for Characterization and Analysis, Department of Pharmaceutical Sciences, Health Science Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Marcelo S Silva
- Nucleus for Characterization and Analysis, Department of Pharmaceutical Sciences, Health Science Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Irwin R A Menezes
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Henrique D M Coutinho
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Ádley A N Lima
- Department of Pharmacy, Health Sciences Center, Universidade Federal Do Rio Grande Do Norte (UFRN), Rio Grande Do Norte (RN), Natal, 59012-570, Brazil
| | - Gokhan Zengin
- Science Faculty, Department of Biology, Selcuk University, Konya, Turkey
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Depatment of Pharmacy, Federal University of Sergipe, São Cristóvão-SE, CEP 49.100-000, Brazil.
| |
Collapse
|
40
|
Silva CR, Melo BMS, Silva JR, Lopes AH, Pereira JA, Cecilio NT, Berlink J, Souza GG, Lucas G, Vogl T, Cunha FQ, Alves-Filho JC, Cunha TM. S100A9 plays a pivotal role in a mouse model of herpetic neuralgia via TLR4/TNF pathway. Brain Behav Immun 2020; 88:353-362. [PMID: 32243898 DOI: 10.1016/j.bbi.2020.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 02/01/2023] Open
Abstract
Herpetic neuralgia is a painful condition following herpes zoster disease, which results from Varicella-zoster virus reactivation in the dorsal or trigeminal sensory ganglia. Nevertheless, the pathophysiological mechanisms involved in herpetic neuralgia are not well understood. Recently, we identified, that neuroimmune-glia interactions in the sensory ganglion is a critical mechanism for the development of herpetic neuralgia. Here, we investigate the contribution of S100A9, a well-known pro-inflammatory molecule produced by myeloid cells, for the development of herpetic neuralgia using a murine model of HSV-1 infection. We found that cutaneous HSV-1 infection results in an increase of S100A9 expression in the Dorsal Root Ganglia (DRGs). Infiltrating neutrophils into the DRGs were the main source of S100A9 post HSV-1 infection. Functionally, genetic or pharmacological inhibition of S100A9 impairs the development of HSV-1 infection-induced mechanical pain hypersensitivity. Finally, we found that the pronociceptive role of S100A9 in herpetic neuralgia depends on the TLR4/TNF pathway. These results unraveled previously unknown mechanisms involved in the pathophysiology of herpetic neuralgia and indicate that S100A9 might be an important target for novel therapies aiming acute herpetic neuralgia.
Collapse
Affiliation(s)
- Cássia R Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Graduated Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlândia, 38408-100 Uberlândia MG, Brazil
| | - Bruno M S Melo
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaqueline R Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandre H Lopes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Janaina A Pereira
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nerry T Cecilio
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonilson Berlink
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Giovani G Souza
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme Lucas
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thomas Vogl
- Institute of Immunology, University of Münster, D-48149 Münster, Germany
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José C Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
41
|
Antinociceptive effect of Lonchocarpus araripensis lectin: activation of L-arginine/NO/cGMP/K +ATP signaling pathway. Inflammopharmacology 2020; 28:1623-1631. [PMID: 32572724 DOI: 10.1007/s10787-020-00729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE AND DESIGN The involvement of nitric oxide pathway in the antinociceptive activity of Lonchocarpus araripensis lectin (LAL) was investigated in the model of carragenan-induced hypernociception. METHODS Swiss mice received LAL (0.01-10 mg/kg; i.v.) 30 min before s.c. injection of carragenan in the paws. For the involvement of nociceptive pathways, animals were previously treated with the blockers: NOS (L-NAME, aminoguanidine, 7-nitroindazole); soluble guanylyl cyclase (ODQ); channels of ATP-dependent K+ (glibenclamide); L-type Ca2+ (nifedipine), or Ca2+-dependent Cl- (niflumic acid). Participation of lectin domain was evaluated by injection of LAL associated with N-acetyl-glucosamine (GlcNAc). nNOS gene relative expression was evaluated in the paw tissues and nNOS immunostaining in dorsal root ganglia. RESULTS LAL at all doses inhibited carrageenan-induced hypernociception (4.12 ± 0.58 g), being maximal at 10 mg/kg (3 h: 59%), and reversed by GlcNAc. At this time, LAL effect was reversed by nifedipine (39%), niflumic acid (59%), L-NAME (59%), 7-nitroindazole (44%), ODQ (45%), and glibenclamide (34%), but was unaltered by aminoguanidine. LAL increased (95%) nNOS gene expression in mice paw tissues, but not its immunoexpression in the dorsal root ganglia. CONCLUSION The antinociceptive effect of Lonchocarpus araripensis lectin involves activation of the L-arginine/NO/GMPc/K+ATP pathway.
Collapse
|
42
|
Pagliusi M, Bonet IJM, Lemes JBP, Oliveira ALL, Carvalho NS, Tambeli CH, Parada CA, Sartori CR. Social defeat stress-induced hyperalgesia is mediated by nav 1.8 + nociceptive fibers. Neurosci Lett 2020; 729:135006. [PMID: 32387758 DOI: 10.1016/j.neulet.2020.135006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Recently the voltage-gated sodium (Nav) channels began to be studied as possible targets for analgesic drugs. In addition, specific Nav 1.8 blockers are currently being used to treat some types of chronic pain pathologies such as neuropathies and fibromyalgia. Nav 1.8+ fibers convey nociceptive information to brain structures belonging to the limbic system, which is involved in the pathophysiology of major depressive disorders. From this, using a model of chronic social defeat stress (SDS) and intrathecal injections of Nav 1.8 antisense, this study investigated the possible involvement of Nav 1.8+ nociceptive fibers in SDS- induced hyperalgesia in C57/BL mice. Our results showed that SDS induced a depressive-like behavior of social avoidance and increased the sensitivity to mechanical (electronic von Frey test) and chemical (capsaicin test) nociceptive stimuli. We also showed that intrathecal injection of Nav 1.8 antisense reversed the SDS-induced hyperalgesia as demonstrated by both, mechanical and chemical nociceptive tests. We confirmed the antisense efficacy and specificity in a separate no-defeated cohort through real-time PCR, which showed a significant reduction of Nav 1.8 mRNA and no reduction of Nav 1.7 and Nav 1.9 in the L4, L5 and L6 dorsal root ganglia (DRG). The present study advances the understanding of SDS-induced hyperalgesia, which seems to be dependent on Nav 1.8+ nociceptive fibers.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil
| | - Ivan José Magayewski Bonet
- Department of Oral and Maxillofacial Surgery,University of California San Francisco, 513 Parnassus Ave, Box 0440 S709, San Francisco, CA 94143, United States
| | - Júlia Borges Paes Lemes
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil
| | - Anna Lethicia Lima Oliveira
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil
| | - Nathalia Santos Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitaria Zeferino Vaz, Box 6109, Campinas, SP 13083-865, Brazil.
| |
Collapse
|
43
|
Mendes-Gomes J, Paschoalin-Maurin T, Donaldson LF, Lumb BM, Blanchard DC, Coimbra NC. Repeated exposure of naïve and peripheral nerve-injured mice to a snake as an experimental model of post-traumatic stress disorder and its co-morbidity with neuropathic pain. Brain Res 2020; 1744:146907. [PMID: 32474017 DOI: 10.1016/j.brainres.2020.146907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Confrontation of rodents by natural predators provides a number of advantages as a model for traumatic or stressful experience. Using this approach, one of the aims of this study was to investigate a model for the study of post-traumatic stress disorder (PTSD)-related behaviour in mice. Moreover, because PTSD can facilitate the establishment of chronic pain (CP), and in the same way, patients with CP have an increased tendency to develop PTSD when exposed to a traumatic event, our second aim was to analyse whether this comorbidity can be verified in the new paradigm. C57BL/6 male mice underwent chronic constriction injury of the sciatic nerve (CCI), a model of neuropathic CP, or not (sham groups) and were submitted to different threatening situations. Threatened mice exhibited enhanced defensive behaviours, as well as significantly enhanced risk assessment and escape behaviours during context reexposure. Previous snake exposure reduced open-arm time in the elevated plus-maze test, suggesting an increase in anxiety levels. Sham mice showed fear-induced antinociception immediately after a second exposure to the snake, but 1 week later, they exhibited allodynia, suggesting that multiple exposures to the snake led to increased nociceptive responses. Moreover, after reexposure to the aversive environment, allodynia was maintained. CCI alone produced intense allodynia, which was unaltered by exposure to either the snake stimuli or reexposure to the experimental context. Together, these results specifically parallel the behavioural symptoms of PTSD, suggesting that the snake/exuvia/reexposure procedure may constitute a useful animal model to study PTSD.
Collapse
Affiliation(s)
- Joyce Mendes-Gomes
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Dracena Medical School (UNIFADRA-FUNDEC), Rua Bahia, 332, Dracena, 17900-000 São Paulo, Brazil
| | - Tatiana Paschoalin-Maurin
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil
| | - Lucy F Donaldson
- Arthritis Research UK Pain Centre and School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - D Caroline Blanchard
- Pacific Biosciences Research Centre, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; University of São Paulo Neurobiology of Emotions Research Centre (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil.
| |
Collapse
|
44
|
Zelice da Cruz de Moraes S, Shan AYKV, Oliveira Melo MA, Pereira da Silva J, Rocha Santos Passos F, de Souza Graça A, Araújo BSD, Quintans JDSS, Quintans Júnior LJ, Oliveira Barreto ED, Brandão GC, Estevam CDS. Antinociceptive and anti-inflammatory effect of Poincianella pyramidalis (Tul.) L.P. Queiroz. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112563. [PMID: 31931158 DOI: 10.1016/j.jep.2020.112563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Poncianella pyramidalis (Leguminosae) is a Caatinga plant used in folk medicine because of its pharmacological properties, which include anti-inflammatory action. However, chemical compounds responsible for this effect have not yet been identified. AIM OF THE STUDY This study aimed to evaluate the antioxidant, antinociceptive and anti-inflammatory effects of the ethyl acetate fraction from the inner bark of P. pyramidalis. MATERIAL AND METHODS Total phenol content (TP) was estimated using the Folin-Ciocalteu reagent, while in vitro antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Chemical identification was done using LC-PDA/MS and LC-ESI/MS/MS. In vivo antinociceptive and anti-inflammatory properties were investigated using formalin, mechanical hypernociception and carrageenan-induced pleurisy assays in mice. RESULTS TP was 525.08 ± 17.49 μg mg-1 gallic acid equivalent. The ethyl acetate fraction (EAF) inhibited 87.76% of the DPPH radical with an EC50 of 22.94 μg mL-1 and Antioxidant Activity Index of 1.74. LC-PDA/MS and LC-ESI/MS/MS identified 15 compounds that are mostly derived from gallic and ellagic acids. Regarding in vivo antinociceptive and anti-inflammatory activity, EAF (100 mg kg-1) significantly reduced the nociceptive response in the second phase of the formalin assay by 50% (p < 0.01) compared with the control group. In the hypernociception test, a significant (p < 0.001) anti-hyperalgesic effect of EAF (100 mg kg-1) was observed up to the third hour of evaluation (p < 0.001). In the carrageenan assay, EAF (100 mg kg-1) was shown to inhibit protein extravasation, increase total leukocytes and neutrophils, and inhibit mononuclear cells. CONCLUSION These results demonstrate EAF from the inner bark of P. pyramidalis has strong in vitro antioxidant effect as well as in vivo antinociceptive and anti-inflammatory activities, which may be attributed to the bark being rich in phenolic compounds derived from gallic acid.
Collapse
Affiliation(s)
| | | | | | - Juliane Pereira da Silva
- Institute of Healthy and Biological Science, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | | | - Ariel de Souza Graça
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49000-100, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Preventive hypothermia as a neuroprotective strategy for paclitaxel-induced peripheral neuropathy. Pain 2020; 160:1505-1521. [PMID: 30839425 DOI: 10.1097/j.pain.0000000000001547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect that occurs secondary to anticancer treatments and has no known preventive or therapeutic strategy. Therapeutic hypothermia has been shown to be effective in protecting against central and peripheral nervous system injuries. However, the effects of therapeutic hypothermia on CIPN have rarely been explored. We induced lower back hypothermia (LBH) in an established paclitaxel-induced CIPN rat model and found that the paclitaxel-induced impairments observed in behavioral, electrophysiological, and histological impairments were inhibited by LBH when applied at an optimal setting of 24°C to the sciatic nerve and initiated 90 minutes before paclitaxel infusion. Lower back hypothermia also inhibited the paclitaxel-induced activation of astroglia and microglia in the spinal cord and macrophage infiltration into and neuronal injury in the dorsal root ganglia and sciatic nerves. Furthermore, LBH decreased the local blood flow and local tissue concentrations of paclitaxel. Finally, in NOD/SCID mice inoculated with cancer cells, the antiproliferative effect of paclitaxel was not affected by the distal application of LBH. In conclusion, our findings indicate that early exposure to regional hypothermia alleviates paclitaxel-induced peripheral neuropathy. Therapeutic hypothermia may therefore represent an economical and nonpharmaceutical preventive strategy for CIPN in patients with localized solid tumors.
Collapse
|
46
|
Fattori V, Rasquel-Oliveira FS, Artero NA, Ferraz CR, Borghi SM, Casagrande R, Verri WA. Diosmin Treats Lipopolysaccharide-Induced Inflammatory Pain and Peritonitis by Blocking NF-κB Activation in Mice. JOURNAL OF NATURAL PRODUCTS 2020; 83:1018-1026. [PMID: 32083866 DOI: 10.1021/acs.jnatprod.9b00887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gram-negative bacterial infections induce inflammation and pain. Lipopolysaccharide (LPS) is a pathogen-associated molecular pattern and the major constituent of Gram-negative bacterial cell walls. Diosmin is a citrus flavonoid with antioxidant and anti-inflammatory activities. Here we investigated the efficacy of diosmin in a nonsterile model of inflammatory pain and peritonitis induced by LPS. Diosmin reduced in a dose-dependent manner LPS-induced inflammatory mechanical hyperalgesia, thermal hyperalgesia, and neutrophil recruitment to the paw (myeloperoxidase activity). Diosmin also normalized changes in paw weight distribution assessed by static weight bearing as a nonreflexive method of pain measurement. Moreover, treatment with diosmin inhibited LPS-induced peritonitis as observed by a reduction of leukocyte recruitment and oxidative stress. Diosmin reduced LPS-induced total ROS production (DCFDA assay) and superoxide anion production (NBT assay and NBT-positive cells). We also observed a reduction of LPS-induced oxidative stress and cytokine production (IL-1β, TNF-α, and IL-6) in the paw. Furthermore, we demonstrated that diosmin inhibited LPS-induced NF-κB activation in peritoneal exudate. Thus, we demonstrated, using a model of nonsterile inflammation induced by LPS, that diosmin is a promising molecule for the treatment of inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- Departament of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Fernanda S Rasquel-Oliveira
- Departament of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Nayara A Artero
- Departament of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Camila R Ferraz
- Departament of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Sergio M Borghi
- Departament of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86057-970, Paraná, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Waldiceu A Verri
- Departament of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
47
|
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, Picot L, Antoniolli AR, Quintans JSS, Quintans-Júnior LJ. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. JOURNAL OF NATURAL PRODUCTS 2020; 83:1107-1117. [PMID: 32091204 DOI: 10.1021/acs.jnatprod.9b01116] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytol is a diterpene constituent of chlorophyll and has been shown to have several pharmacological properties, particularly in relation to the management of painful inflammatory diseases. Arthritis is one of the most common of these inflammatory diseases, mainly affecting the synovial membrane, cartilage, and bone in joints. Proinflammatory cytokines, such as TNF-α and IL-6, and the NFκB signaling pathway play a pivotal role in arthritis. However, as the mechanisms of action of phytol and its ability to reduce the levels of these cytokines are poorly understood, we decided to investigate its pharmacological effects using a mouse model of complete Freund's adjuvant (CFA)-induced arthritis. Our results showed that phytol was able to inhibit joint swelling and hyperalgesia throughout the whole treatment period. Moreover, phytol reduced myeloperoxidase (MPO) activity and proinflammatory cytokine release in synovial fluid and decreased IL-6 production as well as the COX-2 immunocontent in the spinal cord. It also downregulated the p38MAPK and NFκB signaling pathways. Therefore, our findings demonstrated that phytol can be an innovative antiarthritic agent due to its capacity to attenuate inflammatory reactions in joints and the spinal cord, mainly through the modulation of mediators that are key to the establishment of arthritic pain.
Collapse
Affiliation(s)
| | | | | | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France
| | | | | | | |
Collapse
|
48
|
In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease. Sci Rep 2020; 10:5306. [PMID: 32210270 PMCID: PMC7093544 DOI: 10.1038/s41598-020-62084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mayaro virus (MAYV) is endemic in South American countries where it is responsible for sporadic outbreaks of acute febrile illness. The hallmark of MAYV infection is a highly debilitating and chronic arthralgia. Although MAYV emergence is a potential threat, there are no specific therapies or licensed vaccine. In this study, we developed a murine model of MAYV infection that emulates many of the most relevant clinical features of the infection in humans and tested a live-attenuated MAYV vaccine candidate (MAYV/IRES). Intraplantar inoculation of a WT strain of MAYV into immunocompetent mice induced persistent hypernociception, transient viral replication in target organs, systemic production of inflammatory cytokines, chemokines and specific humoral IgM and IgG responses. Inoculation of MAYV/IRES in BALB/c mice induced strong specific cellular and humoral responses. Moreover, MAYV/IRES vaccination of immunocompetent and interferon receptor-defective mice resulted in protection from disease induced by the virulent wt MAYV strain. Thus, this study describes a novel model of MAYV infection in immunocompetent mice and highlights the potential role of a live-attenuated MAYV vaccine candidate in host's protection from disease induced by a virulent MAYV strain.
Collapse
|
49
|
Martinez RM, Hohmann MS, Longhi-Balbinot DT, Zarpelon AC, Baracat MM, Georgetti SR, Vicentini FTMC, Sassonia RC, Verri WA, Casagrande R. Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice. Inflammopharmacology 2020; 28:1663-1675. [PMID: 32141011 DOI: 10.1007/s10787-020-00689-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/04/2020] [Indexed: 01/27/2023]
Abstract
Evidence demonstrates the pronounced anti-inflammatory activity of a beetroot (Beta vulgaris) dye enriched in betalains obtained using precipitation with ethanol. Herein, we expand upon our previous observations and demonstrate the analgesic and antioxidant effect of betalains. Betalains [10-1000 mg/kg; intraperitoneal route (i.p.)] diminished acetic acid- and PBQ-induced abdominal contortions, and the overt pain-like behaviour induced by complete Freund`s adjuvant (CFA) and formalin (intraplantar; i.pl.) injection. Moreover, betalains (100 mg/kg) administered by various routes [i.p. or subcutaneous (s.c.)] or as a post-treatment reduced carrageenin- or CFA-induced hyperalgesia. Mechanistically, betalains mitigated carrageenin-induced tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1β, superoxide anion levels, and lipid peroxidation. Betalains also stopped the depletion of reduced glutathione (GSH) levels and ferric reducing ability produced by carrageenin, as well as upregulated Nrf2 and Ho1 transcript expression in the plantar tissue of mice. Furthermore, betalains showed hydroxyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+), and 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH•) scavenging ability and iron-chelating activity (bathophenantroline assay), and inhibited iron-independent and iron-dependent lipid peroxidation (LPO) in vitro. Finally, betalains-treated bone marrow-derived macrophages exhibited lower levels of cytokines (TNF-α and IL-1β), and superoxide anion levels and nuclear factor kappa B (NF-κB) activation following lipopolysaccharide (LPS) stimulation. Therefore, this betalain-rich dye extracted using a novel precipitation approach presents prominent analgesic effect in varied models of pain by mechanisms targeting cytokines and oxidative stress.
Collapse
Affiliation(s)
- Renata M Martinez
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Miriam S Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Daniela T Longhi-Balbinot
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Fabiana T M C Vicentini
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogério Côrte Sassonia
- Centro de Ciências Integradas, Universidade Federal do Tocantins, Araguaína, Tocantins, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
50
|
Fonseca MM, Davoli-Ferreira M, Santa-Cecília F, Guimarães RM, Oliveira FFB, Kusuda R, Ferreira DW, Alves-Filho JC, Cunha FQ, Cunha TM. IL-27 Counteracts Neuropathic Pain Development Through Induction of IL-10. Front Immunol 2020; 10:3059. [PMID: 32047492 PMCID: PMC6997342 DOI: 10.3389/fimmu.2019.03059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroimmune–glia interactions have been implicated in the development of neuropathic pain. Interleukin-27 (IL-27) is a cytokine that presents regulatory activity in inflammatory conditions of the central nervous system. Thus, we hypothesized that IL-27 would participate in the neuropathic pain process. Here, we found that neuropathic pain caused by peripheral nerve injury (spared nerve injury model; SNI), was enhanced in IL-27-deficient(−/−) mice, whereas nociceptive pain is similar to that of wild-type mice. SNI induced an increase in the expression of IL-27 and its receptor subunit (Wsx1) in the sensory ganglia and spinal cord. IL-27 receptor was expressed mainly in resident macrophage, microglia, and astrocytes of the sensory ganglia and spinal cord, respectively. Finally, we identify that the antinociceptive effect of IL-27 was not observed in IL-10−/− mice. These results provided evidence that IL-27 is a cytokine produced after peripheral nerve injury that counteracts neuropathic pain development through induction of the antinociceptive cytokine IL-10. In summary, our study unraveled the role of IL-27 as a regulatory cytokine that counteracts the development of neuropathic pain after peripheral nerve damage. In conclusion, they indicate that immunotherapies based on IL-27 could emerge as possible therapeutic approaches for the prevention of neuropathic pain development after peripheral nerve injury.
Collapse
Affiliation(s)
- Miriam M Fonseca
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcela Davoli-Ferreira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Flávia Santa-Cecília
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Rafaela M Guimarães
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco F B Oliveira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - David W Ferreira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|