1
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
2
|
Procópio IM, Ribeiro CT, Marchon RG, Costa WS, Buys-Gonçalves GF, Sampaio FJB, Pereira-Sampaio MA, Souza DBD. Effects of chronic restraint stress in the prostate of prepubertal and adult rats. Acta Cir Bras 2023; 38:e387123. [PMID: 38055386 DOI: 10.1590/acb387123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To investigate the effects of chronic stress in the prostate of prepubertal and adult rats. METHODS Thirty-two male rats were assigned into four groups depending on the type of treatment (control or stressed) and the age at which stress was initiated (prepubertal or adult). Restraint stress stimuli were applied for six weeks. Stressed prepubertal and adult rats evaluated immediately after the last stress stimuli were named SP and SA groups, respectively. Age-matched rats were used as control groups (CP and CA). At the end of the experiment, the rats were euthanized, and prostate morphological parameters were evaluated and statistically compared. RESULTS Application of stress stimuli to the SP group resulted in reduced body weight, but no prostate morphological modification was noted. The SA group showed reduced testosterone level and prostatic epithelium surface density, in comparison to CA group. Further, the prostatic lumen surface density was increased in adult stressed animals, in comparison to adult controls. CONCLUSIONS The stress stimuli promoted changes in hormonal and morphological parameters in the prostate of adult stressed rats. Prepubertal stressed animals did not presented modifications of prostate morphology.
Collapse
Affiliation(s)
- Isabella Mendes Procópio
- Universidade Estadual do Rio de Janeiro - Urogenital Research Unit - Rio de Janeiro (Rio de Janeiro) - Brazil
| | - Carina Teixeira Ribeiro
- Universidade Estadual do Rio de Janeiro - Urogenital Research Unit - Rio de Janeiro (Rio de Janeiro) - Brazil
| | - Roger Gaspar Marchon
- Universidade Estadual do Rio de Janeiro - Urogenital Research Unit - Rio de Janeiro (Rio de Janeiro) - Brazil
| | - Waldemar Silva Costa
- Universidade Estadual do Rio de Janeiro - Urogenital Research Unit - Rio de Janeiro (Rio de Janeiro) - Brazil
| | | | | | - Marco Aurélio Pereira-Sampaio
- Universidade Estadual do Rio de Janeiro - Urogenital Research Unit - Rio de Janeiro (Rio de Janeiro) - Brazil
- Universidade Federal Fluminense - Department of Morphology - Niteroi (Rio de Janeiro) - Brazil
| | - Diogo Benchimol de Souza
- Universidade Estadual do Rio de Janeiro - Urogenital Research Unit - Rio de Janeiro (Rio de Janeiro) - Brazil
| |
Collapse
|
3
|
Zuppone S, Bresolin A, Spinelli AE, Fallara G, Lucianò R, Scarfò F, Benigni F, Di Muzio N, Fiorino C, Briganti A, Salonia A, Montorsi F, Vago R, Cozzarini C. Pre-clinical Research on Bladder Toxicity After Radiotherapy for Pelvic Cancers: State-of-the Art and Challenges. Front Oncol 2020; 10:527121. [PMID: 33194587 PMCID: PMC7642999 DOI: 10.3389/fonc.2020.527121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Despite the dramatic advancements in pelvic radiotherapy, urinary toxicity remains a significant side-effect. The assessment of clinico-dosimetric predictors of radiation cystitis (RC) based on clinical data has improved substantially over the last decade; however, a thorough understanding of the physiopathogenetic mechanisms underlying the onset of RC, with its variegated acute and late urinary symptoms, is still largely lacking, and data from pre-clinical research is still limited. The aim of this review is to provide an overview of the main open issues and, ideally, to help investigators in orienting future research. First, anatomy and physiology of bladder, as well as the current knowledge of dose and dose-volume effects in humans, are briefly summarized. Subsequently, pre-clinical radiobiology aspects of RC are discussed. The findings suggest that pre-clinical research on RC in animal models is a lively field of research with growing interest in the development of new radioprotective agents. The availability of new high precision micro-irradiators and the rapid advances in small animal imaging might lead to big improvement into this field. In particular, studies focusing on the definition of dose and fractionation are warranted, especially considering the growing interest in hypo-fractionation and ablative therapies for prostate cancer treatment. Moreover, improvement in radiotherapy plans optimization by selectively reducing radiation dose to more radiosensitive substructures close to the bladder would be of paramount importance. Finally, thanks to new pre-clinical imaging platforms, reliable and reproducible methods to assess the severity of RC in animal models are expected to be developed.
Collapse
Affiliation(s)
- Stefania Zuppone
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Fondazione Centro San Raffaele, Milan, Italy
| | - Andrea Bresolin
- Fondazione Centro San Raffaele, Milan, Italy.,Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonello E Spinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Lucianò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Scarfò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Benigni
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Di Muzio
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Claudio Fiorino
- Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Cesare Cozzarini
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Miyamoto T, Lo PHY, Saichi N, Ueda K, Hirata M, Tanikawa C, Matsuda K. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. SCIENCE ADVANCES 2017; 3:e1603204. [PMID: 28560349 PMCID: PMC5438217 DOI: 10.1126/sciadv.1603204] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The transcription factor p53 is at the core of a built-in tumor suppression system that responds to varying degrees of stress input and is deregulated in most human cancers. Befitting its role in maintaining cellular fitness and fidelity, p53 regulates an appropriate set of target genes in response to cellular stresses. However, a comprehensive understanding of this scheme has not been accomplished. We show that argininosuccinate synthase 1 (ASS1), a citrulline-aspartate ligase in de novo arginine synthesis pathway, was directly transactivated by p53 in response to genotoxic stress, resulting in the rearrangement of arginine metabolism. Furthermore, we found that x-ray irradiation promoted the systemic induction of Ass1 and concomitantly increased plasma arginine levels in p53+/+ mice but not in p53-/- mice. Notably, Ass1+/- mice exhibited hypersensitivity to whole-body irradiation owing to increased apoptosis in the small intestinal crypts. Analyses of ASS1-deficient cells generated using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) system revealed that ASS1 plays a pivotal role in limiting Akt phosphorylation. In addition, aberrant activation of Akt resulting from ASS1 loss disrupted Akt-mediated cell survival signaling activity under genotoxic stress. Building on these results, we demonstrated that p53 induced an intrinsic Akt repressor, ASS1, and the perturbation of ASS1 expression rendered cells susceptible to genotoxic stress. Our findings uncover a new function of p53 in the regulation of Akt signaling and reveal how p53, ASS1, and Akt are interrelated to each other.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paulisally Hau Yi Lo
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|