1
|
Soleimani S, Bruce-Tagoe TA, Ullah N, Danquah MK. Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection. MICROMACHINES 2025; 16:162. [PMID: 40047591 PMCID: PMC11857385 DOI: 10.3390/mi16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
Rapid and reliable detection of pathogens requires precise and optimized analytical techniques to address challenges in food safety and public health. This study focuses on the parametric characterization of an electrochemical aptasensor for Staphylococcus aureus (S. aureus) iron-regulated surface determinant protein A (IsdA) using cyclic voltammetry (CV) analysis, which offers a robust method for evaluating electrode modifications and electrochemical responses. Key parameters were optimized to ensure maximum sensitivity, including an aptamer concentration of 5 μM, an incubation time of 4 h, a potential range from -0.1 to 0.9 V, and a scan rate of 0.05 V/s. The aptasensor achieved stability and peak performance at pH 7.5 and 25 °C. These conditions were critical for detecting the IsdA protein as a biomarker of S. aureus. The aptasensor applicability was demonstrated by successfully detecting S. aureus in food samples such as milk and apple juice with high specificity and reliability. Zeta potential measurements confirmed the layer-by-layer charge dynamics of the AuNPs-aptamer-IsdA system. This work emphasizes the importance of CV in understanding the performance of the electrochemical sensor, and supports the aptasensor as a practical, sensitive, and portable tool for addressing critical gaps in foodborne pathogen detection.
Collapse
Affiliation(s)
- Shokoufeh Soleimani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA;
| | - Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (T.A.B.-T.); (N.U.)
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (T.A.B.-T.); (N.U.)
| | - Michael K. Danquah
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA;
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (T.A.B.-T.); (N.U.)
| |
Collapse
|
2
|
Yeşildağ A, Kızıloğlu HT, Dirican E, Erbaş E, Gelen V, Kara A. Anticarcinogenic Effects of Gold Nanoparticles and Metformin Against MCF-7 and A549 Cells. Biol Trace Elem Res 2024; 202:4494-4507. [PMID: 38358644 PMCID: PMC11339093 DOI: 10.1007/s12011-024-04090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Metformin is commonly prescribed to people with diabetes. Metformin has been shown in previous studies to be able to prevent the growth of cancer cells. This study aims to investigate the effects of metformin and gold nanoparticles in MCF7 breast cancer and A549 lung cell lines. The effects of metformin and gold nanoparticles on MCF7 breast cancer and A549 lung cells were determined on cells grown in 24 h cell culture. MCF-7 and A549 cells were incubated for 24 h with the treatment of escalating molar concentrations of ifosfamide. The MTT assay was used to determine the cytotoxicity of metformin toward MCF7 and A549 cell lines. The expression of Bax, BCL2, PI3K, Akt3, mTOR, Hsp60, Hsp70, and TNF-α was measured by RT-PCR. Metformin and gold nanoparticles inhibited the proliferation of MCF-7 and A549 cells in a dose and time-dependent manner with an IC50 value of 5 µM and 10 µg/mL. RT-PCR assays showed ifosfamide + metformin + gold nanoparticles significantly reduced the expression of BCL2, PI3K, Akt3, mTOR, Hsp60 and Hsp70 and increased the expression of TNF-α and Bax. The findings obtained in this study suggest that further studies should be conducted, and metformin and gold nanoparticles can be used in breast cancer and lung cancer treatments.
Collapse
Affiliation(s)
- Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey.
| | - Halime Topal Kızıloğlu
- Department of Molecular Biology and Genetic, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ebubekir Dirican
- Department of Medical Biology, Faculty of Medicine, Bilecik Şeyh Edabali University, Bilecik, Turkey
| | - Elif Erbaş
- Department of Histology and Embryology Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Adem Kara
- Department of Molecular Biology and Genetic, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
3
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
4
|
Luo C, Zhang R, Liu J, He X, Li S, Ran C, Ma S, Shen Y. A One Step Strategy Based on Hollow Gold Nanoparticles to Detect C-Reactive Protein with High Sensitivity (Hs-CRP) in Serum for Monitoring Cardiovascular Disease. Int J Nanomedicine 2024; 19:845-858. [PMID: 38293607 PMCID: PMC10825586 DOI: 10.2147/ijn.s436391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose Rapid detection and diagnosis of diseases facilitate timely and effective treatment of cardiovascular diseases (CVD). The establishment of a one-step rapid detection method provides a new method for the initial screening and disease risk assessment of patients with cardiovascular diseases in primary medical units. Methods Hollow gold nanoparticles (HGNPs) were synthesized using a cobalt template method followed by use as signal amplification probes for ultra-sensitive quantitative detection of serum C-reactive protein (CRP). To induce the localized surface plasmon resonance (LSPR) and improve protein labeling efficiency, we developed a sensitive detection mode by coating polyvinylpyrrolidone (PVP-K30) on the HGNPs, resulting in a significant improvement in detection performance. Results Compared to traditional colloidal GNP-based LFTA, PVP-coated HGNPs exhibit a lower visual detection limit of 1 ng/mL, which a 25-fold decrement compare to using GNPs as the antibody-labeled probe, and the detection limit could be reduced to 0.14 ng/mL under the quantitative instrument. Conclusion The one-step method based on HGNP immunochromatographic strips modified with PVP established in this study can be used for the detection of CRP and hs-CRP in biological samples. The performance of the immunochromatographic technique designed in this study was evaluated from the perspective of synthetic markers, and the application conditions of this strip were screened, verifying its high specificity, indicating that it has high sensitivity and strong detection limit compared to colloidal gold. The sensitivity of the hollow gold immunochromatographic test strip in this article has been increased by about 25 times, providing a new method for rapid detection of CVD in clinical diagnosis.
Collapse
Affiliation(s)
- Changyou Luo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ruiqing Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ji Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Xingyue He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Shengzhou Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Chuanjiang Ran
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Songbo Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| |
Collapse
|
5
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
6
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|
7
|
Wu H, Zhang G, Yang X. Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection. Talanta 2023; 259:124492. [PMID: 37011563 DOI: 10.1016/j.talanta.2023.124492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
An electrochemical biosensor based on iron tetroxide (Fe3O4)/carboxylated carbon nanotubes (MWCNTs-COOH)/gold nanoparticles (AuNPs) was designed for the detection of alpha-fetoprotein (AFP), which is often used as an important indicator for the early clinical diagnosis of liver cancer markers. The Fe3O4/MWCNTs-COOH nanocomposite was synthesized by a solvothermal method and it combined with gold nanoparticles (AuNPs) deposited at the constant potential on a glassy carbon electrode to form Fe3O4/MWCNTs-COOH/AuNPs, which intensifies the electrical signal while the large active sites enable more stable immobilization of the AFP monoclonal antibodies on the electrode. The electrochemical performance of Fe3O4/MWCNTs-COOH/AuNPs was investigated in detail and the electrochemical response signal after the immune reaction with the AFP antigen-antibody was recorded. The peak current Ip of the response signal is linearly proportional to the lgcAFP in the range of 1 pg mL-1-10 μg mL-1, with a detection limit of 1.09034 pg mL-1 and good performance in clinical sample testing. The proposed sensor has shown great application and development potential in clinical medicine field.
Collapse
|
8
|
Nandini B, Mawale KS, Giridhar P. Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience. 3 Biotech 2023; 13:73. [PMID: 36748014 PMCID: PMC9898490 DOI: 10.1007/s13205-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
In the modern epoch, nanotechnology took forward the agriculture and food industry with new tools that promise to increase food production sustainably. It also anticipated that it would become a driving economic force shortly. Nanotechnology has the potential to reduce agricultural inputs, enrich the soil by absorbing nutrients, manage plant diseases, and detect diseases. The aim of the present review is to cover the potential aspects of nanoscience and its trend-setting appliances in modern agriculture and food production. This review focuses on the impact of various nanomaterials on plant health to improve agricultural production and its cooperative approach to food production. Nanotechnology has great potential compared to conventional approaches. The appealing path of nanotrends in the farming sector raises hopes and illuminates the route of innovative technologies to overcome various diseases in plants with an enhanced yield to meet the growing global population's need for food security.
Collapse
Affiliation(s)
- Boregowda Nandini
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
| | - Kiran S. Mawale
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
| |
Collapse
|
9
|
Oliveira AEF, Pereira AC, Ferreira LF. Disposable electropolymerized molecularly imprinted electrochemical sensor for determination of breast cancer biomarker CA 15-3 in human serum samples. Talanta 2023; 252:123819. [DOI: 10.1016/j.talanta.2022.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
10
|
Recent advances in gold nanoparticle-based colorimetric aptasensors for chemical and biological analyses. Bioanalysis 2022; 14:1509-1524. [PMID: 36799230 DOI: 10.4155/bio-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Aptasensors are amazing among many currently formed procedures due to their excellent particularity, selectivity and responsiveness. These biosensors get more popular in combination with gold nanoparticles (AuNPs) to detect chemical and biological molecules. The response of AuNPs by changing color provides a simple explanation of outcomes. The authors review the recent developments in AuNP-based colorimetric aptasensors designed to sense different chemical and biological molecules. They summarize the procedure of AuNP-based detection and the ordinary instances of currently formed AuNP-based colorimetric procedures. Furthermore, their uses for detecting different analytes based on analyte types are given and the present challenges, overview, and positive views for forming new aptasensors are also regarded.
Collapse
|
11
|
Mittal D, Ali SA. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microb Drug Resist 2022; 28:670-697. [PMID: 35696335 DOI: 10.1089/mdr.2021.0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Globally, viral illness propagation is the leading cause of morbidity and death, causing wreaking havoc on socioeconomic development and health care systems. The rise of infected individuals has outpaced the existing critical care facilities. Early and sophisticated methods are desperately required in this respect to halt the spread of the infection. Therefore, early detection of infectious agents and an early treatment approach may help minimize viral outbreaks. Conventional point-of-care diagnostic techniques such as computed tomography scan, quantitative real time polymerase chain reaction (qRT-PCR), X-ray, and immunoassay are still deemed valuable. However, the labor demanding, low sensitivity, and complex infrastructure needed for these methods preclude their use in distant areas. Nanotechnology has emerged as a potentially transformative technology due to its promise as an effective theranostic platform for diagnosing and treating viral infection, circumventing the limits of traditional techniques. Their unique physical and chemical characteristics make nanoparticles (NPs) advantageous for drug delivery platforms due to their size, encapsulation efficiency, improved bioavailability, effectiveness, immunogenicity, and antiviral response. This study discusses the recent research on nanotechnology-based treatments designed to combat new viruses.
Collapse
Affiliation(s)
- Deepti Mittal
- Nanosafety Lab, Division of Biochemistry, ICAR-NDRI, Karnal, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, Haryana, India
| |
Collapse
|
12
|
Torres-Ferrer LR, López-Romero JM, Mendez-Nonell J, Rivas-Arreola MJ, Moreno-Ríos M, Ávila-Dávila EO, Prokhorov E, Kovalenko Y, Zárate-Triviño DG, Revilla-Vazquez JR, Meraz-Rios MA, Luna-Barcenas G. Tuning HAuCl4/Sodium Citrate Stoichiometry to Fabricate Chitosan-Au Nanocomposites. Polymers (Basel) 2022; 14:polym14040788. [PMID: 35215700 PMCID: PMC8879739 DOI: 10.3390/polym14040788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Nanocomposite engineering of biosensors, biomaterials, and flexible electronics demand a highly tunable synthesis of precursor materials to achieve enhanced or desired properties. However, this process remains limited due to the need for proper synthesis-property strategies. Herein, we report on the ability to synthesize chitosan-gold nanocomposite thin films (CS/AuNP) with tunable properties by chemically reducing HAuCl4 in chitosan solutions and different HAuCl4/sodium citrate molar relationships. The structure, electrical, and relaxation properties of nanocomposites have been investigated as a function of HAuCl4/sodium citrate molar relation. It was shown that gold particle size, conductivity, Vogel temperature (glass transition), and water content strongly depend upon HAuCl4/sodium citrate relationships. Two relaxation processes have been observed in nanocomposites; the α-relaxation process, related to a glass transition in wet CS/AuNP films, and the σ-relaxation related to the local diffusion process of ions in a disordered system. The ability to fine-tune both α- and σ-relaxations may be exploited in the proper design of functional materials for biosensors, biomaterials, and flexible electronics applications.
Collapse
Affiliation(s)
- Luis R. Torres-Ferrer
- Nanosciences & Nanotechnology Program, Cinvestav Zacatenco, Ciudad de Mexico 07360, Mexico;
| | | | | | - Maria J. Rivas-Arreola
- Department of Sciences & Engineering, Universidad Iberoamericana, San Andrés Cholula 72820, Mexico;
| | - Marisa Moreno-Ríos
- Department of Postgraduates Studies and Investigation, Tecnologico Nacional de Mexico, Instituto Tecnológico de Pachuca, Pachuca 42080, Mexico; (M.M.-R.); (E.O.Á.-D.)
| | - Erika O. Ávila-Dávila
- Department of Postgraduates Studies and Investigation, Tecnologico Nacional de Mexico, Instituto Tecnológico de Pachuca, Pachuca 42080, Mexico; (M.M.-R.); (E.O.Á.-D.)
| | - Evgeny Prokhorov
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
| | - Yuriy Kovalenko
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
| | - Diana G. Zárate-Triviño
- Immunology and virology Laboratory, Universidad Autónoma de Nuevo León, Monterrey 64450, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Javier R. Revilla-Vazquez
- Department of Engineering & Technology, Division of Chemical Sciences, FES-Cuautitlan, Universidad Nacional Autónoma de Mexico, Cuatitlan Izcalli 54740, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Marco A. Meraz-Rios
- Department of Molecular Biomedicine, Cinvestav Zacatenco, Ciudad de Mexico 07360, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Gabriel Luna-Barcenas
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| |
Collapse
|
13
|
Dutta S, Corni S, Brancolini G. Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications. Int J Mol Sci 2022; 23:1484. [PMID: 35163407 PMCID: PMC8835741 DOI: 10.3390/ijms23031484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Nanoscale biosensors, a highly promising technique in clinical analysis, can provide sensitive yet label-free detection of biomolecules. The spatial and chemical specificity of the surface coverage, the proper immobilization of the bioreceptor as well as the underlying interfacial phenomena are crucial elements for optimizing the performance of a biosensor. Due to experimental limitations at the microscopic level, integrated cross-disciplinary approaches that combine in silico design with experimental measurements have the potential to present a powerful new paradigm that tackles the issue of developing novel biosensors. In some cases, computational studies can be seen as alternative approaches to assess the microscopic working mechanisms of biosensors. Nonetheless, the complex architecture of a biosensor, associated with the collective contribution from "substrate-receptor-analyte" conjugate in a solvent, often requires extensive atomistic simulations and systems of prohibitive size which need to be addressed. In silico studies of functionalized surfaces also require ad hoc force field parameterization, as existing force fields for biomolecules are usually unable to correctly describe the biomolecule/surface interface. Thus, the computational studies in this field are limited to date. In this review, we aim to introduce fundamental principles that govern the absorption of biomolecules onto functionalized nanomaterials and to report state-of-the-art computational strategies to rationally design nanoscale biosensors. A detailed account of available in silico strategies used to drive and/or optimize the synthesis of functionalized nanomaterials for biosensing will be presented. The insights will not only stimulate the field to rationally design functionalized nanomaterials with improved biosensing performance but also foster research on the required functionalization to improve biomolecule-surface complex formation as a whole.
Collapse
Affiliation(s)
- Sutapa Dutta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
14
|
Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112689. [DOI: 10.1016/j.msec.2022.112689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
|
15
|
Theerthagiri J, Lee SJ, Karuppasamy K, Park J, Yu Y, Kumari MLA, Chandrasekaran S, Kim HS, Choi MY. Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126648. [PMID: 34329090 DOI: 10.1016/j.jhazmat.2021.126648] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 05/20/2023]
Abstract
The intensive research on the synthesis and characterization of gold (Au) nanostructures has been extensively documented over the last decades. These investigations allow the researchers to understand the relationships between the intrinsic properties of Au nanostructures such as particle size, shape, morphology, and composition to synthesize the Au nano/hybrid nanostructures with novel physicochemical properties. By tuning the properties above, these nanostructures are extensively employed to detect and remove trace amounts of toxic pollutants from the environment. This review attempts to document the achievements and current progress in Au-based nanostructures, general synthetic and fabrication strategies and their utilization in electrochemical sensing and environmental remediation applications. Additionally, the applications of Au nanostructures (e.g., as adsorbents, sensing platforms, catalysts, and electrodes) and advancements in the field of electrochemical sensing of different target analytes (e.g., proteins, nucleic acids, heavy metals, small molecules, and antigens) are summarized. The literature survey concludes the existing methods for the detection of toxic contaminants at various concentration levels. Finally, the existing challenges and future research directions on electrochemical sensing and degradation of toxic contaminants using Au nanostructures are defined.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Juhyeon Park
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - M L Aruna Kumari
- Department of Chemistry, M.S. Ramaiah College of Arts, Science and Commerce, Bengaluru 560054, India
| | - Sivaraman Chandrasekaran
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
16
|
Relaxation Phenomena in Chitosan-Au Nanoparticle Thin Films. Polymers (Basel) 2021; 13:polym13193214. [PMID: 34641030 PMCID: PMC8512657 DOI: 10.3390/polym13193214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Chitosan–gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl4 in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl4 content. Two relaxation processes in the nanocomposites have been observed. The α-relaxation process is related to a glass transition in wet CS/AuNP films. However, in dry composites (with 0.2 wt% of moisture content), the glass transition vanished. A second relaxation process was observed from 70 °C to the onset of thermal degradation (160 °C) in wet films and from 33 °C to the onset of degradation in dry films. This relaxation is identified as the σ-relaxation and may be related to the local diffusion process of ions between high potential barriers in disordered systems. The α- and σ-relaxation processes are affected by the HAuCl4 content of the solutions from which films were obtained because of the interaction between CS, sodium succinate, and gold nanoparticles. With about 0.6 mM of HAuCl4, the conductivity of both wet and dry films sharply increased by six orders, corresponding to the percolation effect, which may be related to the appearance of a conductivity pathway between AuNPs, HAuCl4, and NaCl.
Collapse
|
17
|
Peng S, Yang S, Zhang X, Jia J, Chen Q, Lian Y, Wang A, Zeng B, Yang H, Li J, Dan J, Liao J, Zhou S. Analysis of imidacloprid residues in mango, cowpea and water samples based on portable molecular imprinting sensors. PLoS One 2021; 16:e0257042. [PMID: 34473806 PMCID: PMC8412333 DOI: 10.1371/journal.pone.0257042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/21/2021] [Indexed: 01/18/2023] Open
Abstract
Imidacloprid is a neonicotinoid insecticide widely used in the production and cultivation of crops. In recent years, the extensive use of imidacloprid in agricultural production has resulted in large amounts of pesticide residues in agricultural products and the environment. Therefore, it is necessary to establish a rapid, accurate, sensitive and convenient method for detecting imidacloprid pesticide residues to ensure the safety of agricultural products and the environment. To clarify how to use the molecular imprinting method for the electrochemical rapid residue detection of imidacloprid. This paper selected reduced graphene oxide and gold nanoparticles as modifiers modified on screen-printed carbon electrodes (SPCE) chitosan as a functional monomer, and imidacloprid as template molecule to prepare molecularly imprinted polymer, and applied this sensor to the residue detection of imidacloprid. The results showed that the concentration of imidacloprid showed a good linear relationship with the peak response current, and the detection limit of imidacloprid was 0.5 μM, while the sensor had good repeatability and interference resistance. The recoveries of imidacloprid spiked on three samples, mango, cowpea and water, were in the range of 90-110% (relative standard deviation, RSD<5%), which proved the practicality and feasibility of the assay established in this paper. The results of this paper can be used as a basis for the research on the detection of imidacloprid pesticide residues in food or environment.
Collapse
Affiliation(s)
- Sihua Peng
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Shuyan Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xi Zhang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jingjing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Hainan, Haikou, China
| | - Qiulin Chen
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Yuyang Lian
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Aqiang Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Bei Zeng
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Heming Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jinlei Li
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jianguo Dan
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Jianjun Liao
- College of Ecology and Environment, Hainan University, Hainan, Haikou, China
| | - Shihao Zhou
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
18
|
Yu Z, Gopinath SC, Lakshmipriya T, Anbu P. Single-walled carbon nanotube-gold urchin nanohybrid for identifying gastric cancer on dimicroelectrodes junction. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021; 277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/07/2023]
Abstract
The emergence of nanotechnology has provided the possibilities to overcome the potential problems associated with the development of pharmaceuticals including the low solubility, non-specific cellular uptake or action, and rapid clearance. Regarding the biomaterials (BMs), huge efforts have been made for improving their multi-functionalities via incorporation of various nanomaterials (NMs). Nanocomposite hydrogels with suitable properties could exhibit a variety of beneficial effects in biomedicine particularly in the delivery of therapeutics or tissue engineering. NMs including the silica- or carbon-based ones are capable of integration into various BMs that might be due to their special compositions or properties such as the hydrophilicity, hydrophobicity, magnetic or electrical characteristics, and responsiveness to various stimuli. This might provide multi-functional nanobiomaterials against a wide variety of disorders. Meanwhile, inappropriate distribution or penetration into the cells or tissues, bio-nano interface complexity, targeting ability loss, or any other unpredicted phenomena are the serious challenging issues. Computational simulations and models enable development of NMs with optimal characteristics and provide a deeper knowledge of NM interaction with biosystems. This review highlights the biomedical significance of the multifunctional NMs particularly those applied for the development of 2-D or 3-D BMs for a variety of applications including the site-specific delivery of therapeutics. The powerful impacts of the computational techniques on the design process of NMs, quantitation and prediction of protein corona formation, risk assessment, and individualized therapy for improved therapeutic outcomes have also been discussed.
Collapse
|
20
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
21
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
22
|
Angeline N, Choo SS, Kim CH, Bhang SH, Kim TH. Precise Electrical Detection of Curcumin Cytotoxicity in Human Liver Cancer Cells. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00002-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1109. [PMID: 33562639 PMCID: PMC7915135 DOI: 10.3390/s21041109] [Citation(s) in RCA: 515] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
Collapse
Affiliation(s)
- Varnakavi. Naresh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
24
|
Bhatia R, Gulati D, Sethi G. Biofilms and nanoparticles: applications in agriculture. Folia Microbiol (Praha) 2021; 66:159-170. [PMID: 33528768 DOI: 10.1007/s12223-021-00851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
A profound need to explore eco-friendly methods to practice sustainable agriculture leads to the research and exploration of plant growth-promoting rhizobacteria (PGPRs). Biofilms are assemblages of microbial communities within a self-secreted exopolymeric matrix, adhering to different biotic and abiotic surfaces and performing a variety of desired and undesired functions. Biofilm formation by PGPRs is governed by effective root colonization of the host plant in providing plant growth promotion and stress management. Biofilms can also provide a suitable environment for the synthesis and entrapment of nanoparticles. Together, nanoparticles and PGPRs may contribute towards biocontrol and crop management. This review discusses the significance of biofilms in agriculture and their confluence with different types of nanoparticles for plant protection and improved crop production.
Collapse
Affiliation(s)
- Ranjana Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Divij Gulati
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Gavin Sethi
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
25
|
Vijayaprasath G, Habibulla I, Dharuman V, Balasubramanian S, Ganesan R. Fabrication of Gd 2O 3 Nanosheet-Modified Glassy Carbon Electrode for Nonenzymatic Highly Selective Electrochemical Detection of Vitamin B2. ACS OMEGA 2020; 5:17892-17899. [PMID: 32743160 PMCID: PMC7391253 DOI: 10.1021/acsomega.9b04284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
A novel Gd2O3 nanosheet was synthesized by the template-free chemical coprecipitation method. Interestingly, upon calcination at 600 °C, nanoparticles were transformed into a nanosheet, as observed from field emission scanning electron microscopy (FESEM) images. An increase in the calcination temperature to 600 °C increases the particle size to 50 nm, which results in aggregation. A sheetlike Gd2O3 exhibits superparamagnetism from 300 K. The highly selective nonenzymatic sensing of riboflavin (RF) was studied using a modified glassy carbon electrode with Gd2O3 nanosheets, and its various applications were made possible by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The redox behavior of the RF was determined. The newly fabricated sensor showed high sensitivity, stability, and reproducibility and was also tested with a commercial vitamin B2 tablet and a milk powder sample.
Collapse
Affiliation(s)
- Gandhi Vijayaprasath
- PG
& Research, Department of Physics, Sree
Sevugan Annamalai College, Devakottai 630 303, Tamil Nadu, India
- Department
of Physics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
- CSIR-Central
Electrochemical Research Institute, Karaikudi 630003, Tamil
Nadu, India
| | - Imran Habibulla
- Department
of Bioelectronics and Biosensors, Alagappa
University, Karaikudi 630003, India
| | - Venkataraman Dharuman
- Department
of Bioelectronics and Biosensors, Alagappa
University, Karaikudi 630003, India
| | | | - Ravi Ganesan
- Department
of Physics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
26
|
Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step. Mikrochim Acta 2020; 187:444. [DOI: 10.1007/s00604-020-04400-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022]
|
27
|
Cardoso RM, Kalinke C, Rocha RG, dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RA. Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Anal Chim Acta 2020; 1118:73-91. [DOI: 10.1016/j.aca.2020.03.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023]
|
28
|
Bahavarnia F, Mobed A, Hasanzadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A. Bio-assay of Acintobacter baumannii using DNA conjugated with gold nano-star: A new platform for microorganism analysis. Enzyme Microb Technol 2020; 133:109466. [PMID: 31874682 DOI: 10.1016/j.enzmictec.2019.109466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
Abstract
Acinetobacter baumannii is a non-motile, gram-negative member of the gamma proteobacteria. A specific and sensitive approach was established for the detection of Acintobacter baumannii via DNA based bio-assay. In this study, gold nano-star was synthesized and used for bio-conjugation with pDNA toward the detection of target sequences. Synthesized probe (5' TTG TGA ACT ATT TAC GTC AGC ATG C3') of Acinetobacter baumannii was found with excellent sensitivity. After the hybridization of pDNA with cDNA, target DNA (5' GCA TGC TGA CGT AAA TAG TTC ACA A 3') was easily measured. According to ultra-sensitivity of the engineered optical DNA-based bio-assay, it is potentially applied in the bacterial detection of the environmental and clinical specimens. Here, the selection of engineered biosensor in the presence of two mismatch sequences was investigated. The results indicated an acceptable choice for DNA-based assays. The low limit of quantification (LLOQ) of genosensor was obtained as 1 fM. The present study is a very important diagnostic examination to recognize Acinetobacter baumannii, which can be a best alternative to the traditional methods.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz 51664, Iran
| | - Ahmad Mobed
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Arezoo Saadati
- Biotechnology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
30
|
Dos Santos WB, Amorim KAE, Galvão AD, Moraes FT, Fortaleza DB, Pavanin LA. Photochemical Properties of trans-[Ru(NH 3 ) 4 (bpa)(L)] 2+ (L = py, isn, 4-acpy or 4-pic). Photochem Photobiol 2019; 95:1306-1310. [PMID: 31230351 DOI: 10.1111/php.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022]
Abstract
Photochemical reactions of ruthenium (II) complexes of type trans-[Ru(NH3 )4 LL']2+ , where L is a nitrogenous heterocyclic ligand, pyridine (py), isonicotinamide (isn), 4-acetylpyridine (4-acpy) or 4-picoline (4-pic), and L´ is a 1,2-bis(4-pyridyl)ethane (bpa) ligand, were studied with the purpose of evaluating the ligand exchange when, in solution, the complexes are irradiated at the wavelengths of 365, 436, 480 and 519 nm. The study revealed that at lower wavelengths, a labilization process is observed for py and 4-pic ligands, even at low quantum yields, indicating the dependence of the photolabeling process on the wavelength. The study also reveals that for the filters of greater wavelength, the processes of photolabilization do not occur for any of the studied complexes. The study also shows that there are no photolization processes for the complexes obtained with the isn and 4-acpy ligands, and it is therefore possible to classify them as nonreactive.
Collapse
Affiliation(s)
- Wagner Batista Dos Santos
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Anderson Dourado Galvão
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Fabricio Tarso Moraes
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Dario Batista Fortaleza
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | |
Collapse
|
31
|
Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: current uses and future applications in the food industry. 3 Biotech 2018; 8:74. [PMID: 29354385 DOI: 10.1007/s13205-018-1104-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022] Open
Abstract
Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.
Collapse
|
32
|
Caetano F, Carneiro E, Agustini D, Figueiredo-Filho L, Banks C, Bergamini M, Marcolino-Junior L. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water. Biosens Bioelectron 2018; 99:382-388. [DOI: 10.1016/j.bios.2017.07.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 11/26/2022]
|
33
|
Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front Microbiol 2017; 8:1014. [PMID: 28676790 PMCID: PMC5476687 DOI: 10.3389/fmicb.2017.01014] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.
Collapse
Affiliation(s)
- Ram Prasad
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Atanu Bhattacharyya
- Department of Entomology, University of Agricultural Sciences, Gandhi Krishi Vigyan KendraBengaluru, India
| | - Quang D. Nguyen
- Research Centre of Bioengineering and Process Engineering, Faculty of Food Science, Szent István UniversityBudapest, Hungary
| |
Collapse
|
34
|
Saraf N, Bosak A, Willenberg A, Das S, Willenberg BJ, Seal S. Colorimetric detection of epinephrine using an optimized paper-based aptasensor. RSC Adv 2017. [DOI: 10.1039/c7ra10272k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Morphological modification of gold nanoparticles to obtain a highly efficient paper based sensor for colorimetric detection of epinephrine (LOD – Limit of Detection).
Collapse
Affiliation(s)
- Nileshi Saraf
- Advanced Materials Processing and Analysis Center
- Department of Materials Science and Engineering
- University of Central Florida
- Orlando
- USA
| | - Alexander Bosak
- Department of Internal Medicine
- College of Medicine
- University of Central Florida
- Orlando
- USA
| | - Alicia Willenberg
- Department of Internal Medicine
- College of Medicine
- University of Central Florida
- Orlando
- USA
| | - Soumen Das
- Advanced Materials Processing and Analysis Center
- Department of Materials Science and Engineering
- University of Central Florida
- Orlando
- USA
| | - Bradley Jay Willenberg
- Department of Internal Medicine
- College of Medicine
- University of Central Florida
- Orlando
- USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center
- Department of Materials Science and Engineering
- University of Central Florida
- Orlando
- USA
| |
Collapse
|
35
|
Zhang G, Liu Z, Wang L, Guo Y. Electrochemical Aptasensor for Myoglobin-Specific Recognition Based on Porphyrin Functionalized Graphene-Conjugated Gold Nanocomposites. SENSORS 2016; 16:s16111803. [PMID: 27801833 PMCID: PMC5134462 DOI: 10.3390/s16111803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 12/17/2022]
Abstract
In this work, a novel electrochemical aptasensor was developed for sensitive and selective detection of myoglobin based on meso-tetra (4-carboxyphenyl) porphyrin-functionalized graphene-conjugated gold nanoparticles (TCPP–Gr/AuNPs). Due to its good electric conductivity, large specific surface area, and excellent mechanical properties, TCPP–Gr/AuNPs can act as an enhanced material for the electrochemical detection of myoglobin. Meanwhile, it provides an effective matrix for immobilizing myoglobin-binding aptamer (MbBA). The electrochemical aptasensor has a sensitive response to myoglobin in a linear range from 2.0 × 10−11 M to 7.7 × 10−7 M with a detection limit of 6.7 × 10−12 M (S/N = 3). Furthermore, the method has the merits of high sensitivity, low price, and high specificity. Our work will supply new horizons for the diagnostic applications of graphene-based materials in biomedicine and biosensors.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
36
|
Meirinho SG, Dias LG, Peres AM, Rodrigues LR. Voltammetric aptasensors for protein disease biomarkers detection: A review. Biotechnol Adv 2016; 34:941-953. [PMID: 27235188 DOI: 10.1016/j.biotechadv.2016.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/14/2022]
Abstract
An electrochemical aptasensor is a compact analytical device where the bioreceptor (aptamer) is coupled to a transducer surface to convert a biological interaction into a measurable signal (current) that can be easily processed, recorded and displayed. Since the discovery of the Systematic Evolution of Ligands by Enrichment (SELEX) methodology, the selection of aptamers and their application as bioreceptors has become a promising tool in the design of electrochemical aptasensors. Aptamers present several advantages that highlight their usefulness as bioreceptors such as chemical stability, cost effectiveness and ease of modification towards detection and immobilization at different transducer surfaces. In this review, a special emphasis is given to the potential use of electrochemical aptasensors for the detection of protein disease biomarkers using voltammetry techniques. Methods for the immobilization of aptamers onto electrode surfaces are discussed, as well as different electrochemical strategies that can be used for the design of aptasensors.
Collapse
Affiliation(s)
- Sofia G Meirinho
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Luís G Dias
- ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; CQ-VR, Centro de Química - Vila Real, University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - António M Peres
- Laboratory of Separation and Reaction Enginerring - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Ribeiro de Barros H, Cardoso MB, Camargo de Oliveira C, Cavichiolo Franco CR, de Lima Belan D, Vidotti M, Riegel-Vidotti IC. Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines. RSC Adv 2016. [DOI: 10.1039/c5ra24858b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stable gold nanoparticles coated with gum arabic (GA-AuNPs) exhibit selective effect on B16-F10 cells that could provide a future alternative for melanoma treatment.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- Grupo de Pesquisa em Macromoléculas e Interfaces
- Departamento de Química
- Universidade Federal do Paraná – UFPR
- Curitiba
- Brazil
| | | | | | | | - Daniel de Lima Belan
- Departamento de Biologia Celular
- Universidade Federal do Paraná – UFPR
- Curitiba
- Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces
- Departamento de Química
- Universidade Federal do Paraná – UFPR
- Curitiba
- Brazil
| | - Izabel C. Riegel-Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces
- Departamento de Química
- Universidade Federal do Paraná – UFPR
- Curitiba
- Brazil
| |
Collapse
|
38
|
Liu Z, Wang Y, Guo Y, Dong C. Label-free Electrochemical Aptasensor for Carcino-embryonic Antigen Based on Ternary Nanocomposite of Gold Nanoparticles, Hemin and Graphene. ELECTROANAL 2015. [DOI: 10.1002/elan.201500593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Li J, Xie H, Liu Y, Ren H, Zhao W, Huang X. Au-F127 strawberry-like nanospheres as an electrochemical interface for sensitive detection of carcinoembryonic antigen in real sample. Talanta 2015; 144:404-10. [DOI: 10.1016/j.talanta.2015.06.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 01/31/2023]
|
40
|
Singh A, Choudhary M, Singh M, Verma H, Singh SP, Arora K. DNA Functionalized Direct Electro-deposited Gold nanoaggregates for Efficient Detection of Salmonella typhi. Bioelectrochemistry 2015; 105:7-15. [DOI: 10.1016/j.bioelechem.2015.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022]
|
41
|
Bonanni A, Pividori MI, del Valle M. DNA polymorphism sensitive impedimetric detection on gold-nanoislands modified electrodes. Talanta 2015; 136:95-101. [PMID: 25702990 DOI: 10.1016/j.talanta.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
Nanocomposite materials are being increasingly used in biosensing applications as they can significantly improve biosensor performance. Here we report the use of a novel impedimetric genosensor based on gold nanoparticles graphite-epoxy nanocomposite (nanoAu-GEC) for the detection of triple base mutation deletion in a cystic-fibrosis (CF) related human DNA sequence. The developed platform consists of chemisorbing gold nano-islands surrounded by rigid, non-chemisorbing, and conducting graphite-epoxy composite. The ratio of the gold nanoparticles in the composite was carefully optimized by electrochemical and microscopy studies. Such platform allows the very fast and stable thiol immobilization of DNA probes on the gold islands, thus minimizing the steric and electrostatic repulsion among the DNA probes and improving the detection of DNA polymorphism down to 2.25fmol by using electrochemical impedance spectroscopy. These findings are very important in order to develop new and renewable platforms to be used in point-of-care devices for the detection of biomolecules.
Collapse
Affiliation(s)
- Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 63737, Singapore.
| | - Maria Isabel Pividori
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
42
|
Direct application of gold nanoparticles to one-pot electrochemical biosensors. Anal Chim Acta 2014; 849:1-6. [DOI: 10.1016/j.aca.2014.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
|
43
|
Abstract
Point-of-care applications are gaining increasing interest in clinical diagnostics and emergency applications. Biosensors are used to monitor the biomolecular interaction process between a disease biomarker and a recognition element such as a reagent. Essential are the quality and selectivity of the recognition elements and assay types used to improve sensitivity and to avoid nonspecific interactions. In addition, quality measures are influenced by the detection principle and the evaluation strategies. For these reasons, this review provides a survey and validation of recognition elements, assays, and various types of detection methods for point-of-care testing (POCT) platforms. Common applications of clinical parameters are discussed and considered. In this ever-changing field, a snapshot of current applications is needed. We provide such a snapshot by way of a table including literature citations and also discuss these applications in more detail throughout.
Collapse
Affiliation(s)
- Günter Gauglitz
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, D-72076 Tuebingen, Germany;
| |
Collapse
|
44
|
Electrochemical applications of a Au nanoparticle array fabricated using highly ordered dimpled Ta templates. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Simon ÍA, Vacaro BB, Nunes MR, Benvenutti EV, Dias SLP, Gushikem Y, Arguello J. Electrochemical Behavior of Gold Nanoparticles Generated In Situ on 3-(1-Imidazolyl)propyl-silsesquioxane. ELECTROANAL 2013. [DOI: 10.1002/elan.201300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Pereira SO, Barros-Timmons A, Trindade T. Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3037-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
SUN W, WANG D, ZHANG YY, JU XM, YANG HX, CHEN YX, SUN ZF. Electrodeposited Graphene and Gold Nanoparticle Modified Carbon Ionic Liquid Electrode for Sensitive Detection of Rutin. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60655-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Barchiesi D, Kessentini S, Guillot N, de la Chapelle ML, Grosges T. Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. OPTICS EXPRESS 2013; 21:2245-2262. [PMID: 23389205 DOI: 10.1364/oe.21.002245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plasmonic nanostructures are widely used to design sensors with improved capabilities. The position of the localized surface plasmon resonance (LSPR) is part of their characteristics and deserves to be specifically studied, according to its importance in sensor tuning, especially for spectroscopic applications. In the visible and near infra-red domain, the LSPR of an array of nano-gold-cylinders is considered as a function of the diameter, height of cylinders and the thickness of chromium adhesion layer and roughness. A numerical experience plan is used to calculate heuristic laws governing the inverse problem and the propagation of uncertainties. Simple linear formulae are deduced from fitting of discrete dipole approximation (DDA) calculations of spectra and a good agreement with various experimental results is found. The size of cylinders can be deduced from a target position of the LSPR and conversely, the approximate position of the LSPR can be simply deduced from the height and diameter of cylinders. The sensitivity coefficients and the propagation of uncertainties on these parameters are evaluated from the fitting of 15500 computations of the DDA model. The case of a grating of nanodisks and of homothetic cylinders is presented and expected trends in the improvement of the fabrication process are proposed.
Collapse
Affiliation(s)
- Dominique Barchiesi
- Project Group for Automatic Mesh Generation and Advanced Methods, Gamma3 project (UTT-INRIA), University of Technology of Troyes – 12 Rue Marie Curie – CS 42060, 10004 Troyes Cedex, France.
| | | | | | | | | |
Collapse
|
49
|
Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A. Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 2013; 1:4878-4908. [DOI: 10.1039/c3tb20881h] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Durán N, Marcato PD. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 2012. [DOI: 10.1111/ijfs.12027] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|