1
|
Ratnayani, Hegar B, Sunardi D, Fadilah F, Gunardi H, Fahmida U, Vidiawati D. Association of Gut Microbiota Composition with Stunting Incidence in Children under Five in Jakarta Slums. Nutrients 2024; 16:3444. [PMID: 39458441 PMCID: PMC11510009 DOI: 10.3390/nu16203444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Stunting can be linked to various factors, one of which is dysbiosis. This study aims to analyze the microbiota composition and related contributing factors of stunted and non-stunted children in the slum areas of Jakarta. METHODS The subjects in this study included 21 stunted (HAZ ≤ -2SD) and 21 non-stunted children (-2SD ≤ HAZ ≤ 3SD) aged 2-5 years. Microbiota analysis was performed by extracting DNA from the subjects' feces and then via 16S rRNA sequencing using next-generation sequencing (NGS). RESULTS The results of this study showed that in stunted children, the abundance of Mitsuokella (24,469 OTUs), Alloprevotella (23,952 OTUs), and Providencia alcalifaciens (861 OTUs) was higher, while in non-stunted children, that of Blautia (29,755 OTUs), Lachnospiraceae (6134 OTUs), Bilophila (12,417 OTUs), Monoglobus (484 OTUs), Akkermansia muciniphila (1116 OTUs), Odoribacter splanchnicus (42,993 OTUs), and Bacteroides clarus (8900 OTUs) was higher. Differences in microbiota composition in the two groups were influenced by nutrient intake, birth history, breastfeeding history, handwashing habits before eating, drinking water sources, and water sources for other activities. CONCLUSIONS This study highlights that stunted children have a significantly different gut microbiota composition compared to non-stunted children, with higher levels of pathogenic bacteria and lower levels of beneficial bacteria. Future research should focus on interventions that can improve the gut microbiota composition to prevent stunting in children.
Collapse
Affiliation(s)
- Ratnayani
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (R.); (D.S.); (U.F.)
- Nutrition Study Program, Faculty of Health Sciences and Technology, Binawan University, Jakarta 13630, Indonesia
| | - Badriul Hegar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia;
| | - Diana Sunardi
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (R.); (D.S.); (U.F.)
| | - Fadilah Fadilah
- Department of Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
- Bioinformatics Core Facilities, Institute of Medical Education and Research Indonesia (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia;
| | - Umi Fahmida
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (R.); (D.S.); (U.F.)
- Southeast Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON), Jakarta 13120, Indonesia
| | - Dhanasari Vidiawati
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| |
Collapse
|
2
|
Scaccia N, da Silva Fonseca JV, Megueya AL, de Aragão GL, Rasolofoarison T, de Paula AV, de Vinci Kanda Kupa L, Tchatchueng J, Makuetche K, Rasolojaona TZ, Rasamoelina T, Razzolini MTP, Duarte NJC, Mendes-Correa MC, Samison LH, Guimaraes T, Sabino EC, Komurian-Pradel F, Nzouankeu A, Costa SF. Analysis of chlorhexidine, antibiotics and bacterial community composition in water environments from Brazil, Cameroon and Madagascar during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173016. [PMID: 38723967 DOI: 10.1016/j.scitotenv.2024.173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
The widespread of chlorhexidine and antibiotics in the water bodies, which grew during the global COVID-19 pandemic, can increase the dispersion of antibiotic resistance. We assessed the occurrence of these pharmaceutical compounds as well as SARS-CoV-2 and analysed the bacterial community structure of hospital and urban wastewaters from Brazil, Cameroon, and Madagascar. Water and wastewater samples (n = 59) were collected between January-June 2022. Chlorhexidine, azithromycin, levofloxacin, ceftriaxone, gentamicin and meropenem were screened by Ultra-High-Performance Liquid Chromatography coupled with mass spectrometer. SARS-CoV-2 was detected based on the nucleocapsid gene (in Cameroon and Madagascar), and envelope and spike protein-encoding genes (in Brazil). The total community-DNA was extracted and used for bacterial community analysis based on the 16S rRNA gene. To unravel likely interaction between pharmaceutical compounds and/or SARS-CoV-2 with the water bacterial community, multivariate statistics were performed. Chlorhexidine was found in hospital wastewater effluent from Brazil with a maximum concentration value of 89.28 μg/L. Additionally, antibiotic residues such as azithromycin and levofloxacin were also present at concentrations between 0.32-7.37 μg/L and 0.11-118.91 μg/L, respectively. In Cameroon, azithromycin was the most found antibiotic present at concentrations from 1.14 to 1.21 μg/L. In Madagascar instead, ceftriaxone (0.68-11.53 μg/L) and levofloxacin (0.15-0.30 μg/L) were commonly found. The bacterial phyla statistically significant different (P < 0,05) among participating countries were Proteobacteria, Patescibacteria and Dependentiae which were mainly abundant in waters sampled in Africa and, other phyla such as Firmicutes, Campylobacterota and Fusobacteriota were more abundant in Brazil. The phylum Caldisericota was only found in raw hospital wastewater samples from Madagascar. The canonical correspondence analysis results suggest significant correlation of azithromycin, meropenem and levofloxacin with bacteria families such as Enterococcaceae, Flavobacteriaceae, Deinococcaceae, Thermacetogeniaceae and Desulfomonilaceae, Spirochaetaceae, Methanosaetaceae, Synergistaceae, respectively. Water samples were also positive for SARS-CoV-2 with the lowest number of hospitalized COVID-19 patients in Madagascar (n = 7) and Brazil (n = 30). Our work provides new data about the bacterial community profile and the presence of pharmaceutical compounds in the hospital effluents from Brazil, Cameroon, and Madagascar, whose limited information is available. These compounds can exacerbate the spreading of antibiotic resistance and therefore pose a risk to public health.
Collapse
Affiliation(s)
- Nazareno Scaccia
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil.
| | - Joyce Vanessa da Silva Fonseca
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Armelle Leslie Megueya
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Gabrielly Lacerda de Aragão
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Tiavina Rasolofoarison
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Anderson Vicente de Paula
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Léonard de Vinci Kanda Kupa
- Central Laboratory Division, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 155, 01246-100 Cerqueira César, São Paulo, Brazil
| | - Jules Tchatchueng
- Department of Epidemiology, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Kévine Makuetche
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Tahiry Z Rasolojaona
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Tahinamandranto Rasamoelina
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Maria Tereza Pepe Razzolini
- School of Public Health of University of São Paulo, Av. Dr. Arnaldo, 715, 01246-904 Cerqueira César, São Paulo, Brazil
| | - Nilo José Coelho Duarte
- Central Laboratory Division, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 155, 01246-100 Cerqueira César, São Paulo, Brazil
| | - Maria Cássia Mendes-Correa
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Luc Hervé Samison
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Thais Guimaraes
- Infection Control Committee Hospital das clínicas, Faculty of Medicine, University of São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | | | - Ariane Nzouankeu
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| |
Collapse
|
3
|
Santamarina AB, de Freitas JA, Franco LAM, Nehmi-Filho V, Fonseca JV, Martins RC, Turri JA, da Silva BFRB, Fugi BEI, da Fonseca SS, Gusmão AF, Olivieri EHR, de Souza E, Costa S, Sabino EC, Otoch JP, Pessoa AFM. Nutraceutical blends predict enhanced health via microbiota reshaping improving cytokines and life quality: a Brazilian double-blind randomized trial. Sci Rep 2024; 14:11127. [PMID: 38750102 PMCID: PMC11096337 DOI: 10.1038/s41598-024-61909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Nutraceutical interventions supporting microbiota and eliciting clinical improvements in metabolic diseases have grown significantly. Chronic stress, gut dysbiosis, and metainflammation have emerged as key factors intertwined with sleep disorders, consequently exacerbating the decline in quality of life. This study aimed to assess the effects of two nutraceutical formulations containing prebiotics (fructooligosaccharides (FOS), galactooligosaccharides (GOS), yeast β-glucans), minerals (Mg, Se, Zn), and the herbal medicine Silybum marianum L. Gaertn., Asteraceae (Milk thistle or Silymarin). These formulations, namely NSupple (without silymarin) and NSupple_Silybum (with silymarin) were tested over 180 days in overweight/obese volunteers from Brazil's southeastern region. We accessed fecal gut microbiota by partial 16S rRNA sequences; cytokines expression by CBA; anthropometrics, quality of life and sleep, as well as metabolic and hormonal parameters, at baseline (T0) and 180 days (T180) post-supplementation. Results demonstrated gut microbiota reshaping at phyla, genera, and species level post-supplementation. The Bacteroidetes phylum, Bacteroides, and Prevotella genera were positively modulated especially in the NSupple_Silybum group. Gut microbiota modulation was associated with improved sleep patterns, quality-of-life perception, cytokines expression, and anthropometric parameters post-supplementation. Our findings suggest that the nutraceutical blends positively enhance cardiometabolic and inflammatory markers. Particularly, NSupple_Silybum modulated microbiota composition, underscoring its potential significance in ameliorating metabolic dysregulation. Clinical trial registry number: NCT04810572. 23/03/2021.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP, 03317000, Brazil
| | - Jéssica Alves de Freitas
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP, 03317000, Brazil
| | - Lucas Augusto Moyses Franco
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Universidade de São Paulo Instituto de Medicina Tropical de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Victor Nehmi-Filho
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP, 03317000, Brazil
| | - Joyce Vanessa Fonseca
- Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM-49)Departamento de Doenças Infecciosas e Parasitárias, Universidade de São Paulo Instituto de Medicina Tropical de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Roberta Cristina Martins
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Universidade de São Paulo Instituto de Medicina Tropical de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - José Antônio Turri
- Grupo de Pesquisa em Economia da Saúde, Departamento de Ginecologia e Obstetrícia, Universidade de São Paulo Faculdade de Medicina, São Paulo, SP, 01246903, Brazil
| | - Bruna Fernanda Rio Branco da Silva
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Laboratório Interdisciplinar em Fisiologia e Exercício, Universidade Federal de São Paulo (UNIFESP), Santos, SP, 11015-020, Brazil
| | - Beatriz Emi Itikawa Fugi
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Graduação em Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, 01246904, Brazil
| | - Sumaia Sobral da Fonseca
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Graduação em Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, 01246904, Brazil
| | - Arianne Fagotti Gusmão
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, 01508-010, Brazil
| | | | - Erica de Souza
- Ambulatório Monte Azul, São Paulo, SP, 05801-110, Brazil
| | - Silvia Costa
- Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM-49)Departamento de Doenças Infecciosas e Parasitárias, Universidade de São Paulo Instituto de Medicina Tropical de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Ester Cerdeira Sabino
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Universidade de São Paulo Instituto de Medicina Tropical de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - José Pinhata Otoch
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP, 03317000, Brazil
- Faculdade de Medicina da, Universidade de São Paulo, Hospital Universitário da Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246903, Brazil.
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP, 03317000, Brazil.
| |
Collapse
|
4
|
Nehmi‐Filho V, de Freitas JA, Franco LA, Martins RC, Turri JAO, Santamarina AB, Fonseca JVDS, Sabino EC, Moraes BC, Souza E, Murata GM, Costa SF, Alcântara PS, Otoch JP, Pessoa AFM. Modulation of the gut microbiome and Firmicutes phylum reduction by a nutraceutical blend in the obesity mouse model and overweight humans: A double-blind clinical trial. Food Sci Nutr 2024; 12:2436-2454. [PMID: 38628220 PMCID: PMC11016419 DOI: 10.1002/fsn3.3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 04/19/2024] Open
Abstract
Overweight and obesity are closely linked to gut dysbiosis/dysmetabolism and disrupted De-Ritis ratio [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio], which may contribute to chronic noncommunicable diseases onset. Concurrently, extensive research explores nutraceuticals, and health-enhancing supplements, for disease prevention or treatment. Thus, sedentary overweight volunteers were double-blind randomized into two groups: Novel Nutraceutical_(S) (without silymarin) and Novel Nutraceutical (with silymarin). Experimental formulations were orally administered twice daily over 180 consecutive days. We evaluated fecal gut microbiota, based on partial 16S rRNA sequences, biochemistry and endocrine markers, steatosis biomarker (AST/ALT ratio), and anthropometric parameters. Post-supplementation, only the Novel Nutraceutical group reduced Clostridium clostridioforme (Firmicutes), Firmicutes/Bacteroidetes ratio (F/B ratio), and De-Ritis ratio, while elevating Bacteroides caccae and Bacteroides uniformis (Bacteroidetes) in Brazilian sedentary overweight volunteers after 180 days. In summary, the results presented here allow us to suggest the gut microbiota as the action mechanism of the Novel Nutraceutical promoting metabolic hepatic recovery in obesity/overweight non-drug interventions.
Collapse
Affiliation(s)
- Victor Nehmi‐Filho
- Laboratório de Investigação Médica (LIM‐26), Laboratório de Produtos e Derivados Naturais, Departamento de CirurgiaUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
| | - Jessica Alves de Freitas
- Laboratório de Investigação Médica (LIM‐26), Laboratório de Produtos e Derivados Naturais, Departamento de CirurgiaUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
| | - Lucas Augusto Franco
- Departamento de Doenças Infecciosas e Parasitárias, Laboratório de Parasitologia Médica (LIM‐46)Universidade de São Paulo Instituto de Medicina Tropical de São PauloJardim AmericaBrazil
| | - Roberta Cristina Martins
- Departamento de Doenças Infecciosas e Parasitárias, Laboratório de Parasitologia Médica (LIM‐46)Universidade de São Paulo Instituto de Medicina Tropical de São PauloJardim AmericaBrazil
| | - José Antônio Orellana Turri
- Departamento de Ginecologia e Obstetrícia, Grupo de Pesquisa em Economia da SaúdeUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
| | - Aline Boveto Santamarina
- Laboratório de Investigação Médica (LIM‐26), Laboratório de Produtos e Derivados Naturais, Departamento de CirurgiaUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
| | - Joyce Vanessa da Silva Fonseca
- Departamento de Doenças Infecciosas e Parasitárias, Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM‐49)Universidade de São Paulo Instituto de Medicina Tropical de São PauloJardim AmericaBrazil
| | - Ester Cerdeira Sabino
- Departamento de Doenças Infecciosas e Parasitárias, Laboratório de Parasitologia Médica (LIM‐46)Universidade de São Paulo Instituto de Medicina Tropical de São PauloJardim AmericaBrazil
| | - Bruna Carvalho Moraes
- Laboratório de Investigação Médica (LIM‐31), Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco‐Imuno‐HematologiaUniversidade de São Paulo Faculdade de Medicina, Universidade de São Paulo Hospital das ClínicasCerqueira CésarBrazil
| | | | - Gilson Masahiro Murata
- Laboratório de Investigação Médica (LIM‐29), Laboratório de Nefrologia Celular, Genética e Molecular, Departamento de Clínica MédicaUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
| | - Silvia Figueiredo Costa
- Departamento de Doenças Infecciosas e Parasitárias, Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM‐49)Universidade de São Paulo Instituto de Medicina Tropical de São PauloJardim AmericaBrazil
| | - Paulo Sérgio Alcântara
- Departamento de CirurgiaUniversidade de São Paulo Hospital Universitário de São PauloButantãBrazil
| | - José Pinhata Otoch
- Laboratório de Investigação Médica (LIM‐26), Laboratório de Produtos e Derivados Naturais, Departamento de CirurgiaUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
- Departamento de CirurgiaUniversidade de São Paulo Hospital Universitário de São PauloButantãBrazil
| | - Ana Flávia Marçal Pessoa
- Laboratório de Investigação Médica (LIM‐26), Laboratório de Produtos e Derivados Naturais, Departamento de CirurgiaUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
- Efeom NutritionUniversidade de São Paulo Faculdade de MedicinaPacaembuBrazil
| |
Collapse
|
5
|
Budel JCC, Hess MK, Bilton TP, Henry H, Dodds KG, Janssen PH, McEwan JC, Rowe SJ. Low-cost sample preservation methods for high-throughput processing of rumen microbiomes. Anim Microbiome 2022; 4:39. [PMID: 35668514 PMCID: PMC9171989 DOI: 10.1186/s42523-022-00190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background The use of rumen microbial community (RMC) profiles to predict methane emissions has driven interest in ruminal DNA preservation and extraction protocols that can be processed cheaply while also maintaining or improving DNA quality for RMC profiling. Our standard approach for preserving rumen samples, as defined in the Global Rumen Census (GRC), requires time-consuming pre-processing steps of freeze drying and grinding prior to international transportation and DNA extraction. This impedes researchers unable to access sufficient funding or infrastructure. To circumvent these pre-processing steps, we investigated three methods of preserving rumen samples for subsequent DNA extraction, based on existing lysis buffers Tris-NaCl-EDTA-SDS (TNx2) and guanidine hydrochloride (GHx2), or 100% ethanol. Results Rumen samples were collected via stomach intubation from 151 sheep at two time-points 2 weeks apart. Each sample was separated into four subsamples and preserved using the three preservation methods and the GRC method (n = 4 × 302). DNA was extracted and sequenced using Restriction Enzyme-Reduced Representation Sequencing to generate RMC profiles. Differences in DNA yield, quality and integrity, and sequencing metrics were observed across the methods (p < 0.0001). Ethanol exhibited poorer quality DNA (A260/A230 < 2) and more failed samples compared to the other methods. Samples preserved using the GRC method had smaller relative abundances in gram-negative genera Anaerovibrio, Bacteroides, Prevotella, Selenomonas, and Succiniclasticum, but larger relative abundances in the majority of 56 additional genera compared to TNx2 and GHx2. However, log10 relative abundances across all genera and time-points for TNx2 and GHx2 were on average consistent (R2 > 0.99) but slightly more variable compared to the GRC method. Relative abundances were moderately to highly correlated (0.68 ± 0.13) between methods for samples collected within a time-point, which was greater than the average correlation (0.17 ± 0.11) between time-points within a preservation method. Conclusions The two modified lysis buffers solutions (TNx2 and GHx2) proposed in this study were shown to be viable alternatives to the GRC method for RMC profiling in sheep. Use of these preservative solutions reduces cost and improves throughput associated with processing and sequencing ruminal samples. This development could significantly advance implementation of RMC profiles as a tool for breeding ruminant livestock. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00190-z.
Collapse
Affiliation(s)
- Juliana C C Budel
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand.,Graduate Program in Animal Science, Federal University of Pará, UFPA, Castanhal, 68740-970, Brazil
| | - Melanie K Hess
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand
| | - Timothy P Bilton
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand.
| | - Hannah Henry
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand
| | - Ken G Dodds
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand
| | - Peter H Janssen
- Grasslands Research Centre, AgResearch Ltd., Private Bag 11008, Palmerston North, 4410, New Zealand
| | - John C McEwan
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand
| | - Suzanne J Rowe
- Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, Mosgiel, 9053, New Zealand
| |
Collapse
|
6
|
Comparing Published Gut Microbiome Taxonomic Data Across Multinational Studies. Nurs Res 2022; 71:43-53. [PMID: 34985847 PMCID: PMC8740627 DOI: 10.1097/nnr.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nurse researchers are well poised to study the connection of the microbiome to health and disease. Evaluating published microbiome results can assist with study design and hypothesis generation. OBJECTIVES This article aims to present and define important analysis considerations in microbiome study planning and to identify genera shared across studies despite methodological differences. This methods article will highlight a workflow that the nurse scientist can use to combine and evaluate taxonomy tables for microbiome study or research proposal planning. METHODS We compiled taxonomy tables from 13 published gut microbiome studies that had used Ion Torrent sequencing technology. We searched for studies that had amplified multiple hypervariable (V) regions of the 16S rRNA gene when sequencing the bacteria from healthy gut samples. RESULTS We obtained 15 taxonomy tables from the 13 studies, comprised of samples from four continents and eight V regions. Methodology among studies was highly variable, including differences in V regions amplified, geographic location, and population demographics. Nevertheless, of the 354 total genera identified from the 15 data sets, 25 were shared in all V regions and the four continents. When relative abundance differences across the V regions were compared, Dorea and Roseburia were statistically different. Taxonomy tables from Asian subjects had increased average abundances of Prevotella and lowered abundances of Bacteroides compared with the European, North American, and South American study subjects. DISCUSSION Evaluating taxonomy tables from previously published literature is essential for study planning. The genera found from different V regions and continents highlight geography and V region as important variables to consider in microbiome study design. The 25 shared genera across the various studies may represent genera commonly found in healthy gut microbiomes. Understanding the factors that may affect the results from a variety of microbiome studies will allow nurse scientists to plan research proposals in an informed manner. This work presents a valuable framework for future cross-study comparisons conducted across the globe.
Collapse
|
7
|
Bhattacharjee A, Dubey S, Sharma S. Storage of soil microbiome for application in sustainable agriculture: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3171-3183. [PMID: 34718953 DOI: 10.1007/s11356-021-17164-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Soil microbiome is a dynamic micro-ecosystem driving and fine-tuning several biological processes in the global macro-ecosystems. Its tremendous potential towards mediating sustainability in the ecosystem necessitates the urgent need to store it optimally and efficiently as "next-generation biologicals" for future applications via soil transplantation. The challenge, therefore, is to devise a strategy for the storage of soil microbiome such that its "functionality" is preserved for later application. This review discusses the current endeavours made towards storage of the soil microbiome. The methods for assessing the integrity of soil microbiome by targeting the structural diversity and functional potential of the preserved microbiomes have also been discussed. Further, the success stories related to the storage of fecal microbiome for application in transplants have also been highlighted. This is done primarily with the objective of learning lessons, and parallel application of the knowledge gained, in bringing about improvement in the research domain of soil microbiome storage. Subsequently, the limitations of current techniques of preservation have also been delineated. Further, the open questions in the area have been critically discussed. In conclusion, possible alternatives for storage, comprehensive analyses of the composition of the stored microbiome and their potential have been presented.
Collapse
Affiliation(s)
- Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
8
|
Exploring the signature gut and oral microbiome in individuals of specific Ayurveda prakriti. J Biosci 2021. [DOI: 10.1007/s12038-021-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Ide K, Shinohara M, Yamagishi S, Endo A, Nishifuji K, Tochio T. Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. J Vet Med Sci 2019; 82:1-8. [PMID: 31761826 PMCID: PMC6983673 DOI: 10.1292/jvms.19-0071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kestose, a fructooligosaccharide (FOS) with one fructose monomer linked to sucrose, is a key component of the prebiotic activity of FOS. This study aimed to evaluate the prebiotic potential
of Kestose in terms of the impact on population change in the intestinal microbiota and fecal short-chain fatty acid (SCFA) concentration in dogs. Kestose 2 g per dog was administered daily
with conventional diet to 6 healthy, adult beagle dogs for 8 weeks followed by 4 weeks of follow-up period without Kestose supplementation. Fresh fecal samples were obtained before and every
4 weeks until the end of the follow-up period. Genomic DNA extracted from the fecal samples was subjected to 16S rRNA gene analysis using next generation sequencer and to quantitative
polymerase chain reaction (qPCR). Fecal acetate, propionate, butyrate, lactate and ethanol concentrations were measured by high-performance liquid chromatography. 16S rRNA gene analysis and
qPCR showed increasing trend of genus Bifidobacterium after Kestose supplementation while genera Bacteroides and Sutterella decreased.
Clostridium perfringens decreased below the detection limit within first 4 weeks after starting Kestose supplementation. Fecal butyrate concentration was significantly
increased at week 8 and returned to the base level after 4 weeks of the washing period. To the best of our knowledge, this is the first study to reveal effect of Kestose on the populational
changes in fecal microbiota and fecal butyrate concentration in dogs.
Collapse
Affiliation(s)
- Kaori Ide
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Mikako Shinohara
- B Food Science Co., Ltd., 24-12 Kitahama, Chita, Aichi 478-0046, Japan
| | - Shohei Yamagishi
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Akihito Endo
- Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Koji Nishifuji
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Takumi Tochio
- B Food Science Co., Ltd., 24-12 Kitahama, Chita, Aichi 478-0046, Japan
| |
Collapse
|