1
|
Nascimento ALA, de Oliveira Souza S, Guimarães AS, Figueiredo IM, de Albuquerque Dias T, Gomes FS, Botero WG, Santos JCC. Investigation on humic substance and tetracycline interaction mechanism: biophysical and theoretical studies and assessing their effect on biological activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20172-20187. [PMID: 38369661 DOI: 10.1007/s11356-024-32168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Tetracycline (TC) is a widely used antibiotic, and evaluating its interaction with humic substances (HS) that act as a complexing agent in the environment is essential to understanding the availability of this contaminant in the environment. This study evaluated the interaction between HS and TC using different spectroscopic techniques, theoretical studies, and biological assays simulating environmental conditions. TC interacts with HS, preferably by electrostatic forces, with a binding constant of 9.2 × 103 M-1 (30 °C). This process induces conformational changes in the superstructure, preferably in the HS, like protein fraction. Besides, studies using the 8-anilino-1-naphthalene sulfonate (ANS) probe indicated that the antibiotic alters the hydrophobicity degree on HS's surface. Synchronized fluorescence shows that the TC interaction occurs preferentially with the protein-like fraction of soil organic matter (KSV = 26.28 ± 1.03 M-1). The TC epitope was evaluated by 1H NMR and varied according to the pH (4.8 and 9.0) of the medium, as well as the main forces responsible for the stabilization of the HS-TC complex. The molecular docking studies showed that the formation of the HS-TC complex is carried out spontaneously (ΔG = -7.1 kcal mol-1) and is stabilized by hydrogen bonds and electrostatic interactions, as observed in the experimental spectroscopic results. Finally, biological assays indicated that HS influenced the antimicrobial activity of TC. Thus, this study contributed to understanding the dynamics and distribution of TC in the environment and HS's potential in the remediation of antibiotics of this class in natural systems, as these can have adverse effects on ecosystems and human health.
Collapse
Affiliation(s)
| | - Shenia de Oliveira Souza
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | - Ari Souza Guimarães
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | - Isis Martins Figueiredo
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | | | - Francis Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | - Wander Gustavo Botero
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceio, AL, 57072-900, Brazil
| | | |
Collapse
|
2
|
Brito LL, Borges KRA, Silva GX, da Silva MACN, de Nazaré Silva Alves R, Teles AM, do Carmo Lacerda Barbosa M, Muniz Filho WE, de Barros Bezerra GF, do Desterro Soares Brandão Nascimento M. Effects of Euterpe oleracea Mart. extract on Candida spp. biofilms. Braz J Microbiol 2023; 54:29-36. [PMID: 36746872 PMCID: PMC9944593 DOI: 10.1007/s42770-023-00919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
PROBLEM OF RESEARCH Candida spp. biofilms are complex microbial communities that have been associated with increasing resistance to clinically available antifungal drugs. Hence, novel pharmacological approaches with ability to inhibit biofilm formation have been investigated. AIM OF STUDY The aim was to analyze in vitro antifungal activity of Euterpe oleracea Mart. (açaí berry) extract on biofilm strains of Candida albicans, C. parapsilosis, and C. tropicalis that were formed on abiotic surfaces. REMARKABLE METHODOLOGY Biofilms of C. albicans, C. parapsilosis, and C. tropicalis were grown in vitro. They were then treated with E. oleracea Mart. extract at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 μg/mL) for evaluation of both biofilm removal and anti-biofilm activity. REMARKABLE RESULTS All Candida species analyzed formed biofilms on abiotic surfaces. Yet, increased biofilm formation was displayed for C. tropicalis in comparison with the other two species. E. oleracea Mart. extract was shown to inhibit biofilm formation at all concentrations used when compared to no treatment (p < 0.05). SIGNIFICANCE OF THE STUDY In the current study, the extract of E. oleracea Mart. demonstrated antifungal activity against Candida albicans, C. parapsilosis, and C. tropicalis biofilms, regardless of the dose utilized. These results are important to evaluate a natural product as antifungal for Candida species.
Collapse
Affiliation(s)
- Larissa Lira Brito
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Kátia Regina Assunção Borges
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Gabriel Xavier Silva
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcos Antonio Custódio Neto da Silva
- Postgraduate Program in Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
- Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Rita de Nazaré Silva Alves
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Amanda Mara Teles
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | - Geusa Felipa de Barros Bezerra
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Maria do Desterro Soares Brandão Nascimento
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil.
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil.
| |
Collapse
|
3
|
Petrescu N, Crisan B, Aghiorghiesei O, Sarosi C, Mirica IC, Lucaciu O, Iușan SAL, Dirzu N, Apostu D. Gradual Drug Release Membranes and Films Used for the Treatment of Periodontal Disease. MEMBRANES 2022; 12:895. [PMID: 36135916 PMCID: PMC9503414 DOI: 10.3390/membranes12090895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Periodontitis is an inflammatory disease that, if not treated, can cause a lot of harm to the oral cavity, to the patients' quality of life, and to the entire community. There is no predictable standardized treatment for periodontitis, but there have been many attempts, using antibiotics, tissue regeneration techniques, dental scaling, or root planning. Due to the limits of the above-mentioned treatment, the future seems to be local drug delivery systems, which could gradually release antibiotics and tissue regeneration inducers at the same time. Local gradual release of antibiotics proved to be more efficient than systemic administration. In this review, we have made a literature search to identify the articles related to this topic and to find out which carriers have been tested for drug release as an adjuvant in the treatment of periodontitis. Considering the inclusion and exclusion criteria, 12 articles were chosen to be part of this review. The selected articles indicated that the drug-releasing carriers in periodontitis treatment were membranes and films fabricated from different types of materials and through various methods. Some of the drugs released by the films and membranes in the selected articles include doxycycline, tetracycline, metronidazole, levofloxacin, and minocycline, all used with good outcome regarding their bactericide effect; BMP-2, Zinc-hydroxyapatite nanoparticles with regenerative effect. The conclusion derived from the selected studies was that gradual drug release in the periodontal pockets is a promising strategy as an adjuvant for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Nausica Petrescu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bogdan Crisan
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, 400029 Cluj-Napoca, Romania
| | - Ovidiu Aghiorghiesei
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Codruta Sarosi
- Institute of Chemistry Raluca Ripan, Department of Polymer Composites, Babes-Bolyai University, 400294 Cluj-Napoca, Romania
| | - Ioana Codruta Mirica
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Noemi Dirzu
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Dragos Apostu
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Toledano-Osorio M, Vallecillo C, Vallecillo-Rivas M, Manzano-Moreno FJ, Osorio R. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers (Basel) 2022; 14:polym14040840. [PMID: 35215754 PMCID: PMC8963018 DOI: 10.3390/polym14040840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polymeric membranes are frequently used for bone regeneration in oral and periodontal surgery. Polymers provide adequate mechanical properties (i.e., Young’s modulus) to support oral function and also pose some porosity with interconnectivity to permit for cell proliferation and migration. Bacterial contamination of the membrane is an event that may lead to infection at the bone site, hindering the clinical outcomes of the regeneration procedure. Therefore, polymeric membranes have been proposed as carriers for local antibiotic therapy. A literature search was performed for papers, including peer-reviewed publications. Among the different membranes, collagen is the most employed biomaterial. Collagen membranes and expanded polytetrafluoroethylene loaded with tetracyclines, and polycaprolactone with metronidazole are the combinations that have been assayed the most. Antibiotic liberation is produced in two phases. A first burst release is sometimes followed by a sustained liberation lasting from 7 to 28 days. All tested combinations of membranes and antibiotics provoke an antibacterial effect, but most of the time, they were measured against single bacteria cultures and usually non-specific pathogenic bacteria were employed, limiting the clinical relevance of the attained results. The majority of the studies on animal models state a beneficial effect of these antibiotic functionalized membranes, but human clinical assays are scarce and controversial.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Francisco-Javier Manzano-Moreno
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
- Biomedical Group (BIO277), Department of Stomatology, Facultad de Odontología, University of Granada, 18071 Granada, Spain
- Instituto Investigación Biosanitaria ibs.GRANADA, University of Granada, C/Doctor Azpitarte 4, Planta, 18012 Granada, Spain
- Correspondence:
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| |
Collapse
|
5
|
Yang F, Sun Y, Lu Q. The synergistic effect of minocycline and azole antifungal drugs against Scedosporium and Lomentospora species. BMC Microbiol 2022; 22:21. [PMID: 35016611 PMCID: PMC8753875 DOI: 10.1186/s12866-021-02433-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
Background This study was aimed to determine the potency of Minocycline (MIN) and azoles, including itraconazole (ITR), voriconazole (VOR) and posaconazole (POS) against Scedosporium and Lomentospora species. Results This study revealed that MIN exhibited no significant antifungal activity against any of the tested strains, whereas in vitro combination of MIN with ITR, VOR or POS showed satisfactory synergistic effects against 8 (80%), 1 (10%), and 9 (90%) strains, respectively. Moreover, combined use of MIN with azoles decreased the minimum inhibitory concentration (MIC) range from 5.33–16 μg/ml to 1–16 μg/ml for ITR, from 0.42–16 μg/ml to 0.21–16 μg/ml for VOR, and from 1.33–16 μg/ml to 0.33–16 μg/ml for POS. Meanwhile, no antagonistic interactions were observed between the above combinations. The G. mellonella infection model demonstrated the in vivo synergistic antifungal effect of MIN and azoles. Conclusions The present study demonstrated that combinations between MIN and azoles lead to synergistic antimicrobial effects on Scedosporium and Lomentospora species, while showing a potential for overcoming and preventing azole resistance.
Collapse
|
6
|
Zhang T, Qiu Y, Song J, Zhou P, Liao H, Cheng Y, Wu X. Electrosprayed minocycline hydrochloride-loaded microsphere/SAIB hybrid depot for periodontitis treatment. Drug Deliv 2021; 28:620-633. [PMID: 33779441 PMCID: PMC8008938 DOI: 10.1080/10717544.2021.1902020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Minocycline hydrochloride (MINO) has been one of the most frequently used antibiotics in the treatment of periodontitis due to its antibacterial activity and osteogenesis effects; however, high levels of MINO administered during the treatment halt the formation of new bone. Therefore, the purpose of the present study was to prepare a MINO-microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot to reduce the burst release of MINO and ensure antibacterial and osteogenesis effects of MINO in the treatment of periodontitis. Uniform microspheres, approximately 5 µm size, with a slightly rough surface and different MINO loading (10, 12, and 14%) were prepared, and the microspheres were added into SAIB, after which the burst release significantly decreased from 66.18 to 2.92%, from 71.82 to 3.82%, and from 73.35 to 4.45%, respectively, and the release from all the MINO-microspheres/SAIB hybrid depots lasted for 77 days. In addition, cytotoxicity test showed that the MINO-microsphere with 12% drug loading promoted the proliferation of osteoblasts the most and was subsequently used in vivo experiments. Moreover, in the model of ligatured-induced periodontitis in SD rats, the MINO-microsphere/SAIB hybrid depot not only significantly increased the alveolar bone height and bone volume but also reduced the inflammation of the periodontal tissue. Additionally, it also inhibited the expression of the receptor activator of nuclear factor-kappa B ligand (RANKL) and promoted the expression of osteoprotegerin (OPG).. These results indicated that the MINO-microsphere/SAIB hybrid depot might be promising in the treatment of periodontitis.
Collapse
Affiliation(s)
- Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yingqian Qiu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pengfei Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hang Liao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Cheng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Zou L, Mei Z, Guan T, Zhang B, Deng Q. Underlying mechanisms of the effect of minocycline against Candida albicans biofilms. Exp Ther Med 2021; 21:413. [PMID: 33747154 PMCID: PMC7967842 DOI: 10.3892/etm.2021.9857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Minocycline (MH) is a broad-spectrum antimicrobial agent and semisynthetic tetracycline derivative, which has been widely used in the clinic due to its efficacy. Having the strongest anti-microbial effect, MH exceeded the traditional scope of antibiotics and its previously unknown antifungal activity is also gradually being discovered. To preliminarily investigate the inhibitory effect of MH on Candida albicans (C. albicans), changes of cell growth, hyphal formation and transition, biofilm production and signaling pathway gene expression of C. albicans in the presence of MH were assessed in the present study. An XTT reduction assay was performed to quantitatively detect the metabolic activity of biofilms and evaluate the inhibition of MH on this. The results suggested that biofilm formation was clearly inhibited by 67% (P<0.0001) in the presence of 250 µg/ml MH, while mature biofilms were not significantly affected. In addition, MH inhibited the transition from yeast to hypha in a dose-dependent manner. Furthermore, reverse transcription-quantitative PCR revealed that several hyphae- and adhesion-specific genes associated with the Ras/cyclic (c)AMP/protein kinase A (PKA) pathway were differentially expressed following MH treatment, including downregulation of ras family GTPase (RAS1), adenylyl cyclase-associated protein 1 (CAP1), thiamin pyrophosphokinase 1 (TPK1), adenylate cyclase (CDC35), transcription factor (TEC1), agglutinin-like protein 3 (ALS3) and hyphal wall protein 1 (HWP1) and upregulation of EFG1 (enhanced filamentous growth protein 1 gene) and PDE2 (high-affinity phosphodiesterase gene). The most obviously changed genes were TPK1, HWP1 and RAS1, downregulated by 0.33-, 0.48- and 0.55-fold, respectively. It was suggested that MH is associated with alterations in the morphology of C. albicans, such as the repression of hypha and biofilm formation of cells, and MH affected the Ras/cAMP pathway to regulate the expression of cAMP-associated genes.
Collapse
Affiliation(s)
- Li Zou
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Zhao Mei
- Department of Pharmacy, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Medical College of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tao Guan
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bo Zhang
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Qun Deng
- Department of Clinical Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
8
|
Ma Y, Song J, Almassri HNS, Zhang D, Zhang T, Cheng Y, Wu X. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis. Drug Deliv 2020; 27:151-160. [PMID: 31913739 PMCID: PMC6968699 DOI: 10.1080/10717544.2019.1709921] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Minocycline (MINO) is a tetracycline antibiotic effective against most of the bacteria microorganisms related to periodontal disease. Additionally, MINO promotes bone in vitro and in vivo. The objective of the present study was to establish the protocol for the preparation of MINO-loaded poly (lactic-co-glycolic acid) (MINO-PLGA) electrospun membranes and to evaluate their effect on osteogenesis in vitro and in a rat model of periodontitis. The characterization of MINO-PLGA electrospun membranes was assessed by scanning electron microscopy, laser scanning confocal microscopy, and contact angle measurement. The drug release study showed a sustained diffusion of MINO from electrospun membranes over a period of 40 d. The MINO-PLGA membranes containing 2% of the drug exhibited better support of osteoblast proliferation and adhesion and was subsequently used in vivo in an experimental periodontitis model. Its therapeutic potential was evaluated by the measurement of alveolar bone loss (ABL), bone volume analysis, histological analysis, and immunohistochemistry. MINO-PLGA membrane increased alveolar crest height in the periodontitis model, inhibited the expression of the ligand of the receptor activator for nuclear factor-κB (RANKL), and promoted the expression of its inhibitor, osteoprotegerin. The study demonstrated that MINO-PLGA electrospun membranes may be applied to stimulate bone regeneration in periodontitis.
Collapse
Affiliation(s)
- Yihui Ma
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huthayfa N S Almassri
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dan Zhang
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Cheng
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
9
|
Kanwal A, Iqbal A, Arshad R, Akhtar S, Razzaq S, Ahmad NM, Naz H, Shahnaz G. Formulation and Evaluation of Novel Thiolated Intra Pocket Periodontal Composite Membrane of Doxycycline. AAPS PharmSciTech 2019; 20:325. [PMID: 31659563 DOI: 10.1208/s12249-019-1536-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022] Open
Abstract
Localized intra-pocket, retentive, biodegradable, prolonged release thiolated membrane can provide an improved therapeutic efficacy of doxycycline at the site of action with evading off target side effects. To this end, thiolated chitosan-hyaluronic acid composite polymeric complex next-generation of the periodontal membrane was manufactured by solvent casting method. FTIR spectroscopic analysis displayed successful immobilization of thiol groups on the manufactured thiolated periodontal membrane. Moreover, XRD, DSC, AFM and TGA of the membrane confirmed the compatibility of ingredients and modifications in surface chemistry. The thiolated periodontal film was also investigated in terms of thickness, weight uniformity, water-uptake capacity, drug content, pH, entrapment efficiency, lysozymal degradation and release patterns. Also, mucoadhesion profile was explored on gingival mucosa. The immobilized thiol groups on thiolated chitosan and thiolated hyaluronate were found to be 168 ± 11 μM/g (mean ± SD, n = 3) and 189 ± 8 μM/g (mean ± SD, n = 3) respectively. Swelling capacity of the thiolated periodontal membrane was significantly ∼2-fold higher (p < 0.05) as compared to unmodified membrane. The obtained thiolated membrane depicted 3 -old higher mucoadhesive features as compared to the un-modified membrane. In vitro release kinetics indicated approximately more than 80% prolonged release within 7 days. Mechanical strength of the Thiolated bandage was also significantly ∼2-fold higher (p < 0.05) as compared to unmodified membrane. Ex-vivo retention study revealed enhanced retention of thiolated membrane as compared to unmodified membrane. In-vitro antimicrobial studies demonstrated that thiolated membrane could efficiently kill Porphyromonas gingivalis cells as compared to the native membrane. Moreover, ex-vivo biodegradation results indicated that 90% of the thiolated membrane was biodegradable in 28 days. Based on these findings, thiolated next-generation of the periodontal membrane seems to be promising for periodontitis therapy.
Collapse
|
10
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
11
|
Matic Petrovic S, Radunovic M, Barac M, Kuzmanovic Pficer J, Pavlica D, Arsic Arsenijevic V, Pucar A. Subgingival areas as potential reservoirs of different Candida spp in type 2 diabetes patients and healthy subjects. PLoS One 2019; 14:e0210527. [PMID: 30629672 PMCID: PMC6328191 DOI: 10.1371/journal.pone.0210527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The aim of this cross-sectional observational study was to compare the prevalence of different oral Candida spp. in patients with Type 2 Diabetes and chronic periodontitis in two oral sites: dorsal surface of the tongue and subgingival area. In order to determine subgingival areas as potential reservoirs of yeasts, this study aimed to find differences in the yeasts' detection between the dorsum of the tongue, as the oral site most commonly inhabited with microorganisms, and subgingival samples. Additionally, potential predictors for the yeasts prevalence were determined. MATERIAL AND METHODS Subjects (N = 146) were divided into four groups: group A- healthy individuals without periodontitis, group B- healthy individuals with chronic periodontitis, group C- Type 2 Diabetes patients with good glycoregulation and Chronic periodontitis and group D- Type 2 Diabetes patients with poor glycoregulation and Chronic periodontitis. Samples were obtained from the tongue by swabbing. Subgingival plaque samples were taken by paper points and periodontal curette. Isolation and identification of different Candida spp. was done using ChromAgar medium. In addition, germ-tube production and carbohydrate assimilation tests were performed. RESULTS The prevalence of Candida spp. was higher in diabetics with poor glycoregulation. The most frequently isolated species was Candida albicans followed by Candida glabrata and Candida tropicalis. In 15.6% of cases, Candida spp. was present in the subgingival area while absent on the tongue. Multivariate regression model showed that HbA1c was Candida spp. predictor for both locations. CONCLUSIONS Our results confirmed that there are Candida spp. carriers among subjects with clinically healthy oral mucosa. Also, this study identified subgingival areas as potential reservoirs of these pathogenic species. Glycoregulation has been recognized as a positive predictor factor of Candida spp.
Collapse
Affiliation(s)
- Sanja Matic Petrovic
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Radunovic
- Department of Microbiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail: (AP); (MR)
| | - Milena Barac
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovana Kuzmanovic Pficer
- Department for Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Pavlica
- Department of Microbiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Ana Pucar
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail: (AP); (MR)
| |
Collapse
|
12
|
Yang Z, Liang X, Jiang X, Guo J, Tao Y, Wang S, Cao Y, Gui S. Development and Evaluation of Minocycline Hydrochloride-Loaded In Situ Cubic Liquid Crystal for Intra-Periodontal Pocket Administration. Molecules 2018; 23:molecules23092275. [PMID: 30200615 PMCID: PMC6225298 DOI: 10.3390/molecules23092275] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
In the present study, an injectable in situ liquid crystal formulation was developed for local delivery of minocycline hydrochloride (MH) for chronic periodontitis treatment. The physicochemical properties, phase structures, in vitro drug release and pharmacodynamics of in situ liquid crystals were investigated. The optimal formulation (phytantriol (PT)/propylene glycol (PG)/water, 63/27/10, w/w/w) loaded with 20 mg/g MH was proved to be injectable. The precursor formulation can form a cubic phase gel in excess water in 6.97 ± 0.10 s. The results of in vitro drug release suggested the MH presented a sustained release for 4 days. Liquid crystal precursor formulation significantly reduced gingival index, probing depth and alveolar bone loss compared to the model group (p < 0.01). Besides, the pathological characteristics of model rats were improved. The results suggested that MH-loaded in situ cubic liquid crystal possessed of sustained release ability and periodontal clinical symptoms improvement. The developed in situ cubic liquid crystal may be a potentially carrier in the local delivery of MH for periodontal diseases.
Collapse
Affiliation(s)
- Zhuanzhuan Yang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xin Liang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yaotian Tao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shengmei Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yingji Cao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
13
|
Gu W, Yu Q, Yu C, Sun S. In vivo activity of fluconazole/tetracycline combinations in Galleria mellonella with resistant Candida albicans infection. J Glob Antimicrob Resist 2017; 13:74-80. [PMID: 29191612 DOI: 10.1016/j.jgar.2017.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Treatment of azole-resistant Candida albicans infections continues to pose significant challenges. With limited options of licensed agents, drug combinations may be a practical treatment alternative. In our previous studies, the combinations minocycline/fluconazole (MINO/FLC) and doxycycline/fluconazole (DOXY/FLC) shown synergistic effects in vitro. It is necessary to explore their appropriate dosage, potential toxicity and in vivo efficacy. METHODS The Galleria mellonella infection model was employed to study the in vivo efficacy of MINO/FLC and DOXY/FLC by survival analysis, quantification of C. albicans fungal burden and histological studies. RESULTS The survival rates of G. mellonella larvae infected with lethal doses of resistant C. albicans CA10 increased significantly when treated with the drug combinations compared with FLC treatment alone, and the fungal burden was reduced by almost four-fold. The histopathological study showed that fewer infected areas in larvae were observed and the destructive degree was less when larvae were exposed to the drug combinations. CONCLUSIONS These findings suggest that combination of a tetracycline antibiotic (MINO or DOXY) with FLC has antifungal activity against azole-resistant C. albicans in vivo. This is in agreement with several previous in vitro studies and provides preliminary in vivo evidence that such a combination might be useful therapeutically.
Collapse
Affiliation(s)
- Wenrui Gu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China; Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qiong Yu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
14
|
Kassem AA, Ismail FA, Naggar VF, Aboulmagd E. Comparative study to investigate the effect of meloxicam or minocycline HCl in situ gel system on local treatment of periodontal pockets. AAPS PharmSciTech 2014; 15:1021-8. [PMID: 24831089 PMCID: PMC4113610 DOI: 10.1208/s12249-014-0118-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
In situ gelling formulations allow easy application to the target area. Gelation is induced by physiological stimuli at the site of application where the formula attains semisolid properties and exerts sustained drug release. In situ gelling formulations containing either 3% meloxicam (Mx) or 2% minocycline HCl (MH) were prepared for local application into the periodontal pockets. Gel formulations were based on the thermosensitive Pluronic(®) (Pl) and the pH-sensitive Carbopol(®) (C) polymers. C gels were prepared in combination with HPMC (H) to decrease its acidity. The total percent drug released from Pl formulae was 21.72% after 1 week for Mx and 85% after 3 days for MH. Their release kinetics data indicated anomalous non-Fickian behavior that could be controlled by both diffusion and chain relaxation. Addition of MH to C/H gels (1:2.5) resulted in liquefaction, followed by drug precipitation. Regarding C/H gel containing Mx, it showed a prolonged release rate up to 7 days with an initial burst effect; the kinetics data revealed Fickian-diffusion mechanism. The in vitro antibacterial activity studies for MH gel in Pl revealed that the drug released exceeded the minimum inhibitory concentration (MIC) of MH against Staphylococcus aureus ATCC 6538; placebo gel showed no effect on the microorganism. Clinical evaluation of Pl gels containing either Mx or MH showed significant improvement in chronic periodontitis patients, manifested by decrease in pocket depth and gingival index and increase in bone density.
Collapse
Affiliation(s)
- Abeer Ahmed Kassem
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,
| | | | | | | |
Collapse
|
15
|
Cannas S, Molicotti P, Usai D, Maxia A, Zanetti S. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species. Nat Prod Res 2014; 28:2173-7. [PMID: 24960256 DOI: 10.1080/14786419.2014.925892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Candida species belong to the normal microbiota of the oral cavity, gastrointestinal tract and vagina. The increasing incidence of drug-resistant pathogens and the toxicity of the antifungal compounds have drawn the attention towards the antimicrobial activity of natural products, an inexpensive alternative. The aim of this work was to evaluate the adhesion activity, the biofilm formation and the action of the Myrtus communis L. essential oil (EO) on the biofilm formation towards three species isolated from clinical samples: Candida albicans, Candida parapsilosis and Candida tropicalis. Furthermore, we evaluated the antimycotic activity of the EO towards the three species, and the results were compared with the minimum inhibitory concentration of six antimycotics. The activity of the EO against C. albicans and C. parapsilosis was better than that obtained against C. tropicalis; moreover, the strains used in the assay were adhesive and biofilm producer, and the effect of myrtle EO on the biofilm formation yielded encouraging results.
Collapse
Affiliation(s)
- Sara Cannas
- a Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche , Università degli Studi di Sassari , Viale San Pietro 43/b, 07100 Sassari , Italy
| | | | | | | | | |
Collapse
|
16
|
Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 2014; 43:395-402. [DOI: 10.1016/j.ijantimicag.2013.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
17
|
Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013. [DOI: 10.1099/jmm.0.045054-0] [Citation(s) in RCA: 730] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- J. C. O. Sardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - L. Scorzoni
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - T. Bernardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - A. M. Fusco-Almeida
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - M. J. S. Mendes Giannini
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| |
Collapse
|
18
|
Machado AG, Komiyama EY, Santos SSFD, Jorge AOC, Brighenti FL, Koga-Ito CY. In vitro adherence of Candida albicans isolated from patients with chronic periodontitis. J Appl Oral Sci 2011; 19:384-7. [PMID: 21710096 PMCID: PMC4223791 DOI: 10.1590/s1678-77572011005000014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/26/2010] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Adherence is considered an extremely important virulence factor in yeast. OBJECTIVE The aim of this study was to analyze the adherence to epithelial cells of C. albicans isolated from patients with chronic periodontitis in comparison to healthy patients. MATERIAL AND METHODS Candida albicans cells isolated from individuals with chronic periodontitis (n=25) and healthy controls (n=25) were included in this study. Suspensions of C. albicans (10(6) cells/mL) and epithelial cells (10(5) cells/mL) were mixed and incubated at 37ºC for 1 h. The number of yeasts adhered to 25 epithelial cells was counted. RESULTS The number of C. albicans cells adhered to epithelial cells was statistically higher in the chronic periodontitis group than in the control group (Student's t-test, p=0.000). CONCLUSION The results of the present study suggest a higher Candida adherence of samples isolated from patients with chronic periodontitis.
Collapse
Affiliation(s)
- Adriana Gadotti Machado
- Department of Biosciences and Oral Diagnosis, São José dos Campos Dental School, State University of São Paulo, São José dos Campos, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Sardi JCO, Almeida AMF, Mendes Giannini MJS. New antimicrobial therapies used against fungi present in subgingival sites--a brief review. Arch Oral Biol 2011; 56:951-9. [PMID: 21676377 DOI: 10.1016/j.archoralbio.2011.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/14/2023]
Abstract
Although the main reservoir of Candida spp. is believed to be the buccal mucosa, these microorganisms can coaggregate with bacteria in subgingival biofilm and adhere to epithelial cells. The treatment of periodontal disease includes scaling and root planning (SRP) associated with proper oral hygiene. However, some patients may have negative responses to different therapeutic procedures, with a continuous loss of insertion, so the use of antimicrobials is needed as an adjuvant to SRP treatment. The use of a broad-spectrum antibiotic, such as tetracycline and metronidazole, as an aid in periodontal treatment has also been a factor for the development of superinfections by resistant bacteria and Candida species, even in patients with HIV. In the dental practice, the most commonly used antifungals are nystatin and fluconazole. However, the introduction of new drugs like the next generation of azoles is essential before the onset of emergent species in periodontal disease. Plants are good options for obtaining a wide variety of drugs. This alternative could benefit a large population that uses plants as a first treatment option. Plants have been used in medicine for a long time and are extensively used in folk medicine, because they represent an economic alternative, are easily accessible and are applicable to various diseases. Herein, we briefly review the literature pertaining the presence of Candida sp. in periodontal pockets, the conventional antifungal resistance and new therapies that include natural antifungal agents are reviewed.
Collapse
Affiliation(s)
- Janaina Cássia Orlandi Sardi
- Faculty of Pharmaceutical Sciences of Araraquara, Department of Clinical Analysis, Laboratory of Clinical Mycology, Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | | | | |
Collapse
|
20
|
Shi W, Chen Z, Chen X, Cao L, Liu P, Sun S. The combination of minocycline and fluconazole causes synergistic growth inhibition against Candida albicans: an in vitro interaction of antifungal and antibacterial agents. FEMS Yeast Res 2010; 10:885-93. [PMID: 20707818 DOI: 10.1111/j.1567-1364.2010.00664.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Combination therapy can be used for the treatment of fungal infections, especially for those caused by antifungal-resistant fungi. In the present study, in vitro interactions and mechanisms between fluconazole and minocycline against Candida albicans were evaluated. The nature of the interactions determined by spectrophotometric method in a checkerboard assay was interpreted using nonparametric models of fractional inhibitory concentration index (FICI) and percentages of growth difference (ΔE). In the mechanism study, we evaluated the potential activity of minocycline on fluconazole penetrating the C. albicans biofilm. Furthermore, the effect of fluconazole and minocycline alone and in combination on the cellular calcium balance, as well as on the uptake and efflux of fluconazole were evaluated. It was found that fluconazole can work synergistically with minocycline against fluconazole-resistant C. albicans; the minimum inhibitory concentration of fluconazole decreased from 512 to 2 microgmL(-1) when fluconazole and minocycline were given in combination, with an FICI of 0.035 and 0.064 and high-percentage synergistic interactions of 1250% and 988% for the two resistant strains. The mechanism of action was suggested to be the enhancement of minocycline on fluconazole penetrating biofilm, and inducing the intracellular calcium release, instead of impacting on the uptake and efflux of fluconazole. Our results suggest that the combination of fluconazole and minocycline can reduce the fluconazole resistance of C. albicans in vitro.
Collapse
Affiliation(s)
- Wenna Shi
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|