1
|
Ogórek K, Nowak K, Wadych E, Ruzik L, Timerbaev AR, Matczuk M. Are We Ready to Measure Skin Permeation of Modern Antiaging GHK-Cu Tripeptide Encapsulated in Liposomes? Molecules 2025; 30:136. [PMID: 39795193 PMCID: PMC11721469 DOI: 10.3390/molecules30010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Cosmetically active compounds (CACs), both of lipophilic and hydrophilic origin, have difficulty reaching the deeper layers of the skin, and this shortcoming significantly reduces their efficacy. One such CAC that occurs naturally in the human body and displays many beneficial properties (via reducing fine lines and wrinkles, tightening skin, improving its elasticity, etc.) is the glycyl-L-histidyl-L-lysine tripeptide complex of copper (GHK-Cu). GHK-Cu is a fairly hydrophilic compound with limited permeation through the lipophilic stratum corneum. On the other hand, liposomes capable of encapsulating GHK-Cu may improve its permeation potential. The present review discusses various issues related to obtaining insight into the permeation of CACs through the skin. Methods for studying the transport of CACs encapsulated by liposomes and free GHK-Cu across the skin barrier are summarized. An analysis of the literature data reveals that the transport of liposomes containing GHK-Cu received little attention. This research gap gives an impetus to the methodological developments for assessing the effect of liposomes on GHK-Cu transportation and trafficking.
Collapse
Affiliation(s)
- Karolina Ogórek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland (K.N.); (E.W.); (L.R.)
| | - Kinga Nowak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland (K.N.); (E.W.); (L.R.)
| | - Emilia Wadych
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland (K.N.); (E.W.); (L.R.)
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland (K.N.); (E.W.); (L.R.)
| | - Andrei R. Timerbaev
- Institute of Inorganic Chemistry, University of Vienna; Währinger Str. 42, 1090 Vienna, Austria
| | - Magdalena Matczuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland (K.N.); (E.W.); (L.R.)
| |
Collapse
|
2
|
Ghaferi M, Alavi SE, Phan K, Maibach H, Mohammed Y. Transdermal Drug Delivery Systems (TDDS): Recent Advances and Failure Modes. Mol Pharm 2024; 21:5373-5391. [PMID: 39365887 DOI: 10.1021/acs.molpharmaceut.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Transdermal drug delivery systems (TDDS), commonly refered to as "patches", present a nonintrusive technique to provide medication without the need for invasive procedures. These products adhere to the skin and gradually release a specific dosage of medicine at a defined rate into the bloodstream. Compared with other methods of drug delivery, TDDS offer benefits such as reduced invasiveness, convenience for patients, and avoidance of the metabolic processes that occur when drugs are orally consumed. Throughout time, TDDS have been used to provide medications for various medical conditions (such as nicotine, fentanyl, nitroglycerin, and clonidine), and their potential for delivering biologics is currently being explored. This review investigates the current literature on the drug delivery efficacy of medical TDDS through the transdermal route. Additionally, the review addresses potential risks and failure modes associated with TDDS design and development as well as strategies for mitigating such risks. A thorough understanding of failure modes provides a blueprint to mitigate failure and produce high-quality efficacious therapeutics.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Semnan 9WVR+757, Iran
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Khanh Phan
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Howard Maibach
- University of California, San Francisco, San Francisco, California 94115, United States
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
3
|
Kushwaha R, Palei NN. Transdermal Drug Delivery Systems: Different Generations and Dermatokinetic Assessment of Drug Concentration in Skin. Pharmaceut Med 2024; 38:407-427. [PMID: 39400929 DOI: 10.1007/s40290-024-00537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Transdermal drug delivery systems (TDDS) are a highly appealing and innovative method of administering drugs through the skin, as it enables the drugs to achieve systemic effects. A TDDS offers patient convenience, avoids first-pass hepatic metabolism, enables local targeting, and reduces the toxic effect of drug. This review details several generations of TDDS and the advancements made in their development to address the constraints associated with skin delivery systems. Transdermal delivery methods of the first generation have been consistently growing in their clinical application for administering small, lipophilic, low-dose drugs. Second-generation TDDS, utilizing chemical enhancers and iontophoresis, have led to the development of clinical products. Third-generation delivery systems employ microneedles, thermal ablation, and electroporation to specifically target the stratum corneum, which is the skin's barrier layer. Dermatokinetics is the study of the movement of drugs and formulations applied to the skin over a period of time. It provides important information regarding the rate and extent to which drugs penetrate skin layers. Several dermatokinetic techniques, including tape stripping, microdialysis, and laser scanning microscopy, have been used to study the intricate barrier properties and clearance mechanisms of the skin. This understanding is essential for developing and improving effective TDDS.
Collapse
Affiliation(s)
- Rahul Kushwaha
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
4
|
Rhee S, Xia C, Chandra A, Hamon M, Lee G, Yang C, Guo Z, Sun B. Full-Thickness Perfused Skin-on-a-Chip with In Vivo-Like Drug Response for Drug and Cosmetics Testing. Bioengineering (Basel) 2024; 11:1055. [PMID: 39593715 PMCID: PMC11591533 DOI: 10.3390/bioengineering11111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we present a novel 3D perfused skin-on-a-chip model fabricated using micro-precision 3D printing, which offers a streamlined and reproducible approach for incorporating perfusion. Perfused skin models are well-regarded for their advantages, such as improved nutrient supply, enhanced barrier function, and prolonged tissue viability. However, current models often require complex setups, such as self-assembled endothelial cells or sacrificial rods, which are prone to variability and time-consuming. Our model uses projection micro-stereolithography 3D printing to create precise microcapillary-like channels using a biocompatible resin, overcoming the drug-absorbing properties of PDMS. A customized chip holder allows for the simultaneous culture of six perfused chips, enabling high-throughput testing. The engineered skin-on-a-chip features distinct dermis and epidermis layers, confirmed via H&E staining and immunostaining. To evaluate drug screening capabilities, inflammation was induced using TNF-α and treated with dexamethasone, with cytokine levels compared to 2D cultures and human skin biopsies. Our 3D model exhibited drug response trends similar to human skin, while showing reduced cytotoxicity over time compared to biopsies. This perfused skin-on-a-chip provides a reliable, physiologically relevant alternative for drug and cosmetics screening, simplifying perfusion setup while preserving key benefits.
Collapse
Affiliation(s)
- Stephen Rhee
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Chunguang Xia
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | | | - Morgan Hamon
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Geonhui Lee
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| | - Chen Yang
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | - Zaixun Guo
- BMF Nano Material Technology Co., Ltd., Shenzhen 518100, China; (C.Y.)
| | - Bingjie Sun
- BMF Biotechnology, Inc., San Diego, CA 92121, USA
| |
Collapse
|
5
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01722-7. [PMID: 39433696 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
6
|
Pastina JT, Abel MG, Bollinger LM, Best SA. Topical Cannabidiol Application May Not Attenuate Muscle Soreness or Improve Performance: A Randomized, Double-Blinded, Placebo-Controlled Pilot Study. Cannabis Cannabinoid Res 2024. [PMID: 38980809 DOI: 10.1089/can.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Purpose: The purpose of this pilot study was to investigate cannabidiol (CBD) cream's effects on muscle soreness and performance after exercise. Materials and Methods: This double-blinded, placebo-controlled experiment included 15 men and 13 women (n = 28; mean ± standard deviation age: 23.29 ± 2.54 years) untrained in lower-body resistance training. Participants were randomized into control (NG, n = 9), CBD (CG, n = 9), or placebo (PG, n = 10) groups. Participants completed a lower-body fatigue protocol (FP) consisting of unilateral maximal concentric and eccentric isokinetic muscle actions of the quadriceps and hamstrings (5 sets, 10 repetitions, both legs). CG and PG participants applied ∼100 mg CBD or placebo cream, respectively, matched for weight and appearance to the quadriceps on three separate days. NG participants engaged in a sitting rest period matched in duration to cream application processes. Questionnaires, pressure-pain threshold (PPT), peak torque test (PTT), and countermovement jump (CMJ) were assessed. Mixed-model analysis of variance was conducted to assess main effects and interactions (group × muscle × time; group × time). Results: There were no significant interactions or main effects for group for PPT, CMJ, or PTT. There were main effects for time (p < 0.05) for all soreness questions, PPT, CMJ, and PTT. There was one significant interaction (group × time; p = 0.045) for cream/rest effect questions, in which PG participants perceived the effect of cream to be greater than the effect of rest for NG participants. There were main effects for group (p ≤ 0.031) for all soreness questions, in which PG participants perceived enhanced recovery. Conclusions: The present pilot study did not discover any significant impacts of CBD cream use for muscle recovery. For individuals seeking to attenuate muscle soreness and improve performance, the current dose of this topical CBD product may not be an effective treatment.
Collapse
Affiliation(s)
- Joseph T Pastina
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Mark G Abel
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Lance M Bollinger
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Stuart A Best
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
Ip K, Song G, Banov D, Bassani AS, Liu Y, Song H, Valdez BC. Evaluation of the in vitro human skin percutaneous absorption of ketoprofen in topical anhydrous and aqueous gels. Skin Res Technol 2024; 30:e13589. [PMID: 38396354 PMCID: PMC10891364 DOI: 10.1111/srt.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Ketoprofen is a nonsteroidal anti-inflammatory drug used for the treatment of acute and chronic pain associated with inflammatory conditions. This study aims to evaluate the in vitro percutaneous absorption of ketoprofen 10% formulated in proprietary anhydrous and aqueous gels using the Franz skin finite dose model. MATERIALS AND METHODS The anhydrous gel was initially characterized for cytotoxicity using EpiDerm skin tissue model by cell proliferation assay and Western blot analysis. The Ultra Performance Liquid Chromatography method for measuring ketoprofen was validated and the stability of ketoprofen 10% in the anhydrous gel formulation was evaluated at 5°C and 25°C for 181 days. The percutaneous absorption of ketoprofen was determined using donated human skin. The tissue sections were mounted within Franz diffusion cells. A variable finite dose of each ketoprofen formulation in either anhydrous or aqueous gel was applied to the skin sections and receptor solutions were collected at various time points. RESULTS Cell proliferation assay showed minimal cell death when EpiDerm skin tissue was exposed to the anhydrous gel for 24 h; the levels of protein markers of cell proliferation were not affected after 17-h exposure. Ketoprofen was stable in the anhydrous gel when stored at 5°C and 25°C. When compounded in the anhydrous and aqueous gels, ketoprofen had mean flux rate of 2.22 and 2.50 μg/cm2 /h, respectively, after 48 h. The drug was distributed to the epidermis and dermis sections of the skin. Both the anhydrous and aqueous gels facilitated the percutaneous absorption of ketoprofen without statistically significant differences. CONCLUSION The anhydrous gel can be used as a base to facilitate the transdermal delivery of ketoprofen. Although the anhydrous and aqueous gels can deliver a similar amount of ketoprofen, the anhydrous gel (water activity below 0.6) allows for extended default beyond-use-date of compounding preparations.
Collapse
Affiliation(s)
- Kendice Ip
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Guiyun Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | | | - Yi Liu
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Hui Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular TherapyThe University of Texas MD, Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
10
|
Banov D, Song G, Carvalho M, Bassani AS, Valdez BC. Evaluation of a compounding phospholipid base for the percutaneous absorption of high molecular weight drugs using the Franz finite dose model. Skin Res Technol 2024; 30:e13610. [PMID: 38352988 PMCID: PMC10865068 DOI: 10.1111/srt.13610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Permeation-enhancing compounding bases are aimed to facilitate the penetration of the active pharmaceutical ingredients (APIs) across the skin barrier. OBJECTIVES The purpose of this study was to evaluate the percutaneous absorption of radiolabeled human insulin (14 C-isototpe) when incorporated in a proprietary phospholipid base designed to deliver APIs with high molecular weights (HMW). The aim was not to claim the transdermal delivery of insulin with potential therapeutic applications in diabetes but, instead, to evaluate the ability of the compounding phospholipid base to deliver HMW drugs. METHODS The percutaneous absorption of 14 C-insulin was determined using human torso skin and the Franz skin finite dose model. Two topical test formulations were prepared for in vitro evaluation: insulin 1% in phospholipid base (standard) and insulin 1% in phospholipid base HMW. The rate of percutaneous absorption (mean flux) and the distribution of 14 C-insulin through the skin were evaluated for both topical test formulations. A two-way ANOVA was used to determine statistical differences. RESULTS The 14 C-insulin was distributed into the stratum corneum, epidermis and dermis. Mean flux values showed a rapid penetration upon application and the maximum flux was achieved at 30 min, followed by a slow decline. Subsequently, a slower decline was observed for the topical test formulation including the phospholipid base HMW. CONCLUSION The phospholipid base HMW facilitates the percutaneous absorption of HMW drugs across human cadaver skin and, therefore, it may potentially be a useful option for compounding pharmacists and practitioners when considering the skin for the percutaneous delivery of large drugs.
Collapse
Affiliation(s)
- Daniel Banov
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Guiyun Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Maria Carvalho
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | | | - Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular TherapyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
11
|
Dao L, Dong Y, Song L, Sa C. The Fate of 1,8-cineole as a Chemical Penetrant: A Review. Curr Drug Deliv 2024; 21:697-708. [PMID: 37165499 DOI: 10.2174/1567201820666230509101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/12/2023]
Abstract
The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.
Collapse
Affiliation(s)
- Ligema Dao
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Yu Dong
- School of Pharmacy, Inner Mongolian Medical University, Hohhot, China
| | - Lin Song
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Chula Sa
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| |
Collapse
|
12
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
13
|
Gusmão LA, Rodero CF, Pironi AM, Chorilli M, Perussi JR. Hypericin supramolecular assembles: A way to increase the skin availability and photodynamic efficiency in tumor cells. Photodiagnosis Photodyn Ther 2023; 44:103858. [PMID: 37898262 DOI: 10.1016/j.pdpdt.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Cyclodextrins (CDs) are molecules approved by the FDA and show promise in increasing the solubility of hydrophobic molecules and making them more available to the skin. These CDs have been used to form complexes with some photosensitizers for Photodynamic Therapy (PDT), such as Hypericin (HY). HY is a lipophilic photosensitizer known for its exceptional fluorescence and singlet oxygen quantum yield generation of over 20 % under 590 nm irradiation. In this study, we found a six-fold increase in the release of HY in vitro after complexation with β-CD. The β-CDHY assembly also demonstrated better skin retention, which is crucial for the topical application of this photosensitizer. Furthermore, the β-CD complexation led to a significant increase in the phototoxicity of HY at three different light doses (3, 6, and 10 J cm-2) due to its improved water solubility and higher in vitro accumulation (approximately two times compared with free HY) in HeLa and Vero cell lines.
Collapse
Affiliation(s)
- Luiza Araújo Gusmão
- University of São Paulo (USP), Chemical Insititut of São Carlos (IQSC), Sao Carlos, SP, Brazil.
| | - Camila Fernanda Rodero
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Andressa Maria Pironi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | |
Collapse
|
14
|
Varela M, de Castro Levatti EV, Tempone AG, Fernandes JPS. Investigation of Structure-Activity Relationships for Benzoyl and Cinnamoyl Piperazine/Piperidine Amides as Tyrosinase Inhibitors. ACS OMEGA 2023; 8:44265-44275. [PMID: 38027351 PMCID: PMC10666245 DOI: 10.1021/acsomega.3c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Melanin is a substance that plays important roles in several organisms. Its function as an antioxidant and metal-complexing agent makes tyrosinase, the key enzyme that controls melanogenesis, an interesting target for designing inhibitors. In this article, we report a set of piperazine/piperidine amides of benzoic and cinnamic acid derivatives as tyrosinase inhibitors with improved potency and drug-likeness. The most potent compound 5b showed a pIC50 of 4.99 in the monophenolase assay, and only compound 3a showed reasonable potency in the diphenolase assay (pIC50, 4.18). These activities are not correlated to antiradical activity, suggesting that the activity is dependent on competition with the substrates. Molecular docking studies indicated that the benzyl substituent of 5b and other analogues perform important interactions in the enzyme that may explain the higher potency of these compounds. Moreover, the compounds present adequate lipophilicity and skin permeability and no relevant cytotoxicity (CC50 > 200 μM) to mammalian cells.
Collapse
Affiliation(s)
- Marina
T. Varela
- Departament
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
| | - Erica V. de Castro Levatti
- Laboratory
of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - Andre G. Tempone
- Laboratory
of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - João Paulo S. Fernandes
- Departament
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
15
|
Kumar R, Singh R, das Chagas Almeida A, da Trindade Granato J, de Oliveira Lemos AS, Kumar K, Patil MT, da Silva AD, Rode AB, Coimbra ES, Salunke DB. Imidazo[1,2- a]pyrimidine as a New Antileishmanial Pharmacophore against Leishmania amazonensis Promastigotes and Amastigotes. ACS OMEGA 2023; 8:40613-40621. [PMID: 37929127 PMCID: PMC10621021 DOI: 10.1021/acsomega.3c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Leishmania poses a substantial threat to the human population all over the globe because of its visceral and cutaneous spread engendered by all 20 species. Unfortunately, the available drugs against leishmania are already hobbled with toxicity, prolonged treatment, and increasing instances of acquirement of resistance. Under these grave circumstances, the development of new drugs has become imperative to keep these harmful microbes at bay. To this end, a Groebke-Blackburn-Bienaymé multicomponent reaction-based library of different imidazo-fused heterocycles has been synthesized and screened against Leishmania amazonensis promastigotes and amastigotes. Among the library compounds, the imidazo-pyrimidine 24 has been found to be the most effective (inhibitory concentration of 50% (IC50) < 10 μM), with selective antileishmanial activity on amastigote forms, a stage of the parasite related to human disease. The compound 24 has exhibited an IC50 value of 6.63 μM, being ∼two times more active than miltefosine, a reference drug. Furthermore, this compound is >10 times more destructive to the intracellular parasites than host cells. The observed in vitro antileishmanial activity along with suitable in silico physicochemical and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of compound 24 reinforce the imidazo-pyrimidine scaffold as a new antileishmanial pharmacophore and encourage further murine experimental leishmaniasis studies.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Ayla das Chagas Almeida
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Juliana da Trindade Granato
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36, Chandigarh 160036, India
| | - Adilson D. da Silva
- Department
of Chemistry, Institute of Exacts Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Brazil
| | - Ambadas B. Rode
- Regional
Centre for Biotechnology, NCR Biotech Science
Cluster, third Milestone, Faridabad-Gurgaon Expressway, Faridabad - 121 001, India
| | - Elaine S. Coimbra
- Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Sciences, Federal University of Juiz de
Fora, Juiz de
Fora 36036-900, Brazil
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutic and Antimicrobials, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
16
|
Noshi SH, Ibrahim MS, Salama A, Fathy IA, Elsayyad NME. Chondroitin Sulphate-Chitosan polyelectrolyte complexes for etorocoxib transdermal delivery: in silico, in vitro and in vivo studies. Pharm Dev Technol 2023; 28:785-798. [PMID: 37610935 DOI: 10.1080/10837450.2023.2251574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which affects around 1% globally leading to joint inflammation and disability. Etorocoxib (ETR) is a potent COX-2 inhibitor traditionally used orally to alleviate RA induced inflammation, yet it causes hepatic side effects on prolonged use. This study aims for in silico optimization of ETR polyelectrolyte complex (PEC) utilizing chondroitin sulphate (CS) and chitosan (CH) for transdermal delivery to RA-inflamed joints with a synergistic anti-inflammatory action owing to CS. An artificial neural network (ANN) combined with 22 factorial design was used to optimize the PEC formula according to particle size (PS) and entrapment efficiency (%EE) by varying CS and CH concentrations. The optimum ETR PEC was incorporated in a gel and examined for its in vitro release, ex vivo permeation, in vivo inflammatory biomarkers, and histopathological evaluation in rats. The optimized formula (F3) with 0.1 CH% w/w and 0.5 CS %w/w showed a PS of 214.98 ± 17.24 nm, %EE 75.31 ± 1.67%, and enhanced in vitro release profile, ex vivo permeation and in vivo anti-inflammatory effect compared to ETR gel via suppressing the expression of IL-6, TNF-α, and TGF-β pro-inflammatory cytokines as well as the additional anti-inflammatory effect of CS. In conclusion, ETR-PEC gel holds promise as transdermal therapy for managing RA-induced inflammation.
Collapse
Affiliation(s)
- Shereen H Noshi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mervat Shafik Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Iman A Fathy
- Department of Oral Biology, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - Nihal Mohamed Elmahdy Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
17
|
Zintle M, Siwaphiwe P, Marthe Carine F, Thierry Youmbi F, Derek Tantoh N, Suprakas Sinha R, Blessing Atim A. Antibacterial study of carbopol-mastic gum/silver nanoparticle-based topical gels with carvacrol/neem bark extract in vitro. J Wound Care 2023; 32:clxxxi-clxxxix. [PMID: 37703219 DOI: 10.12968/jowc.2023.32.sup9a.clxxxi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Resistance to antimicrobial drugs as a result of prolonged use usually results in clinical failure, especially in wound infections. Development of effective antimicrobial therapeutics for the management of infected wounds from a natural source with improved therapeutic effects is a pressing need. OBJECTIVE In this study, carbopol-mastic gum-based topical gels were loaded with silver nanoparticles in combination with either neem bark extract or carvacrol oil. The effect of combining silver nanoparticles with neem bark extract or the essential oil carvacrol in the prepared gel formulations was investigated on selected bacterial strains. METHOD The prepared gels were characterised by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy, followed by antimicrobial analysis against selected strains of bacteria. RESULTS There was no interaction between the loaded natural extract or essential oil and the polymer used for the preparation of the formulations, which was visible from the FTIR spectra of the formulations. The gels were selective and effective against selected strains of bacteria. However, the combination of the silver nanoparticles with essential oil or natural extract in some of the gel formulations rendered the formulation ineffective against some of the bacterial strains. CONCLUSION The gel formulations were effective against bacterial strains such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis which are the common causes of wound infections. Incorporation of silver nanoparticles into the topical formulations with natural extracts is usually a good approach to overcome antibiotic-resistant infections. However, the combination of antibacterial agents must be managed carefully.
Collapse
Affiliation(s)
- Mbese Zintle
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South Africa
| | - Peteni Siwaphiwe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South Africa
| | - Fotsing Marthe Carine
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Fonkui Thierry Youmbi
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Ndinteh Derek Tantoh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Ray Suprakas Sinha
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | | |
Collapse
|
18
|
Polo AB, Lemos AS, Martins da Mata CP, Oliveira VS, Pontes AC, Pontes DL, Tavares GD, Fabri RL, M Apolônio AC. In vitro activity of the novel Fe-cyclam complex against clinical multidrug-resistant bacterial isolates from Brazil. Future Microbiol 2023; 18:897-909. [PMID: 37584550 DOI: 10.2217/fmb-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aim: To evaluate the effect of a new Fe-cyclam complex on pathogenic bacterial species, including multidrug-resistant clinical specimens. Materials & methods: The complex [Fe(cyclam)ox]PF6 (D2) was tested in cytotoxicity and MIC tests. Clinical and reference strains of Gram-negative and Gram-positive bacteria were used. Considering Staphylococcus aureus strains, the profile of antimicrobial susceptibility and time-kill kinetics for D2 was performed. An in silico analysis for D2 was also performed. Results: D2 showed broad bacterial activity, mainly against specimens of Cutibacterium acnes, S. aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Low cytotoxicity in human cells was demonstrated. Conclusion: The tested compound proved to be a promising agent against resistant bacterial infections.
Collapse
Affiliation(s)
- Ana B Polo
- Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Ari So Lemos
- Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Camila Ps Martins da Mata
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Verônica S Oliveira
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Ana Cfb Pontes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Daniel L Pontes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Guilherme D Tavares
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Rodrigo L Fabri
- Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Ana Carolina M Apolônio
- Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| |
Collapse
|
19
|
Pereira MN, Nogueira LL, Cunha-Filho M, Gratieri T, Gelfuso GM. Methodologies to Evaluate the Hair Follicle-Targeted Drug Delivery Provided by Nanoparticles. Pharmaceutics 2023; 15:2002. [PMID: 37514188 PMCID: PMC10383440 DOI: 10.3390/pharmaceutics15072002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Nanotechnology has been investigated for treatments of hair follicle disorders mainly because of the natural accumulation of solid nanoparticles in the follicular openings following a topical application, which provides a drug "targeting effect". Despite the promising results regarding the therapeutic efficacy of topically applied nanoparticles, the literature has often presented controversial results regarding the targeting of hair follicle potential of nanoformulations. A closer look at the published works shows that study parameters such as the type of skin model, skin sections analyzed, employed controls, or even the extraction methodologies differ to a great extent among the studies, producing either unreliable results or precluding comparisons altogether. Hence, the present study proposes to review different skin models and methods for quantitative and qualitative analysis of follicular penetration of nano-entrapped drugs and their influence on the obtained results, as a way of providing more coherent study protocols for the intended application.
Collapse
Affiliation(s)
- Maíra N Pereira
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luma L Nogueira
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
20
|
Scandorieiro S, Kimura AH, de Camargo LC, Gonçalves MC, da Silva JVH, Risso WE, de Andrade FG, Zaia CTBV, Lonni AASG, Dos Reis Martinez CB, Durán N, Nakazato G, Kobayashi RKT. Hydrogel-Containing Biogenic Silver Nanoparticles: Antibacterial Action, Evaluation of Wound Healing, and Bioaccumulation in Wistar Rats. Microorganisms 2023; 11:1815. [PMID: 37512989 PMCID: PMC10383514 DOI: 10.3390/microorganisms11071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Wound infections are feared complications due to their potential to increase healthcare costs and cause mortality since multidrug-resistant bacteria reduce treatment options. This study reports the development of a carbomer hydrogel containing biogenic silver nanoparticles (bioAgNPs) and its effectiveness in wound treatment. This hydrogel showed in vitro bactericidal activity after 2 h, according to the time-kill assay. It also reduced bacterial contamination in rat wounds without impairing their healing since the hydrogel hydrophilic groups provided hydration for the injured skin. The high number of inflammatory cells in the first days of the skin lesion and the greater degree of neovascularization one week after wound onset showed that the healing process occurred normally. Furthermore, the hydrogel-containing bioAgNPs did not cause toxic silver accumulation in the organs and blood of the rats. This study developed a bioAgNP hydrogel for the treatment of wounds; it has a potent antimicrobial action without interfering with cicatrization or causing silver bioaccumulation. This formulation is effective against bacteria that commonly cause wound infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, and for which new antimicrobials are urgently needed, according to the World Health Organization's warning.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil
| | - Angela Hitomi Kimura
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Larissa Ciappina de Camargo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Marcelly Chue Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - João Vinícius Honório da Silva
- Laboratory of Histopathological Analysis, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Wagner Ezequiel Risso
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Fábio Goulart de Andrade
- Laboratory of Histopathological Analysis, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Cássia Thaïs Bussamra Vieira Zaia
- Laboratory of Neuroendocrine Physiology and Metabolism, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Audrey Alesandra Stinghen Garcia Lonni
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Laboratory of Animal Ecophysiology, Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Nelson Durán
- Institute of Biology, State University of Campinas, Campinas 13083-862, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
21
|
Ghazwani M, Alqarni MH, Hani U, Alam A. QbD-Optimized, Phospholipid-Based Elastic Nanovesicles for the Effective Delivery of 6-Gingerol: A Promising Topical Option for Pain-Related Disorders. Int J Mol Sci 2023; 24:9983. [PMID: 37373129 DOI: 10.3390/ijms24129983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, elastic nanovesicles, constructed of phospholipids optimized by Quality by Design (QbD), release 6-gingerol (6-G), a natural chemical that may alleviate osteoporosis and musculoskeletal-related pain. A 6-gingerol-loaded transfersome (6-GTF) formulation was developed using a thin film and sonication approach. 6-GTFs were optimized using BBD. Vesicle size, PDI, zeta potential, TEM, in vitro drug release, and antioxidant activity were evaluated for the 6-GTF formulation. The optimized 6-GTF formulation had a 160.42 nm vesicle size, a 0.259 PDI, and a -32.12 mV zeta potential. TEM showed sphericity. The 6-GTF formulation's in vitro drug release was 69.21%, compared to 47.71% for the pure drug suspension. The Higuchi model best described 6-G release from transfersomes, while the Korsmeyer-Peppas model supported non-Fickian diffusion. 6-GTF had more antioxidant activity than the pure 6-G suspension. The optimized transfersome formulation was converted into a gel to improve skin retention and efficacy. The optimized gel had a spreadability of 13.46 ± 4.42 g·cm/s and an extrudability of 15.19 ± 2.01 g/cm2. The suspension gel had a 1.5 μg/cm2/h ex vivo skin penetration flux, while the 6-GTF gel had 2.71 μg/cm2/h. Rhodamine B-loaded TF gel reached deeper skin layers (25 μm) compared to the control solution in the CLSM study. The gel formulation's pH, drug concentration, and texture were assessed. This study developed QbD-optimized 6-gingerol-loaded transfersomes. 6-GTF gel improved skin absorption, drug release, and antioxidant activity. These results show that the 6-GTF gel formulation has the ability to treat pain-related illnesses effectively. Hence, this study offers a possible topical treatment for conditions connected to pain.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
22
|
Atef B, Ishak RAH, Badawy SS, Osman R. 10-Hydroxy Decanoic Acid-Based Vesicles as a Novel Topical Delivery System: Would It Be a Better Platform Than Conventional Oleic Acid Ufasomes for Skin Cancer Treatment? Pharmaceutics 2023; 15:pharmaceutics15051461. [PMID: 37242703 DOI: 10.3390/pharmaceutics15051461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
10-hydroxy decanoic acid (HDA), a naturally derived fatty acid, was used for the preparation of novel fatty acid vesicles for comparison with oleic acid (OA) ufasomes. The vesicles were loaded with magnolol (Mag), a potential natural drug for skin cancer. Different formulations were prepared using the thin film hydration method and were statistically evaluated according to a Box-Behnken design in terms of particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The ex vivo skin permeation and deposition were assessed for Mag skin delivery. In vivo, an assessment of the optimized formulae using 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer in mice was also conducted. The PS and ZP of the optimized OA vesicles were 358.9 ± 3.2 nm and -82.50 ± 7.13 mV compared to 191.9 ± 6.28 nm and -59.60 ± 3.07 mV for HDA vesicles, respectively. The EE was high (>78%) for both types of vesicles. Ex vivo permeation studies revealed enhanced Mag permeation from all optimized formulations compared to a drug suspension. Skin deposition demonstrated that HDA-based vesicles provided the highest drug retention. In vivo, studies confirmed the superiority of HDA-based formulations in attenuating DMBA-induced skin cancer during treatment and prophylactic studies.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
23
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
24
|
Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, Haimhoffer Á, Vasvári G. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods. Pharmaceutics 2023; 15:pharmaceutics15041146. [PMID: 37111632 PMCID: PMC10144798 DOI: 10.3390/pharmaceutics15041146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Bioavailability assessment in the development phase of a drug product is vital to reveal the disadvantageous properties of the substance and the possible technological interventions. However, in vivo pharmacokinetic studies provide strong evidence for drug approval applications. Human and animal studies must be designed on the basis of preliminary biorelevant experiments in vitro and ex vivo. In this article, the authors have reviewed the recent methods and techniques from the last decade that are in use for assessing the bioavailability of drug molecules and the effects of technological modifications and drug delivery systems. Four main administration routes were selected: oral, transdermal, ocular, and nasal or inhalation. Three levels of methodologies were screened for each category: in vitro techniques with artificial membranes; cell culture, including monocultures and co-cultures; and finally, experiments where tissue or organ samples were used. Reproducibility, predictability, and level of acceptance by the regulatory organizations are summarized for the readers.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Réka Révész
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
25
|
Kim S, Abdella S, Abid F, Afinjuomo F, Youssef SH, Holmes A, Song Y, Vaidya S, Garg S. Development and Optimization of Imiquimod-Loaded Nanostructured Lipid Carriers Using a Hybrid Design of Experiments Approach. Int J Nanomedicine 2023; 18:1007-1029. [PMID: 36855538 PMCID: PMC9968428 DOI: 10.2147/ijn.s400610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Background Imiquimod (IMQ) is an immunomodulating drug that is approved for the treatment of superficial basal cell carcinoma, actinic keratosis, external genital warts and perianal warts. However, IMQ cream (Aldara®) has several drawbacks including poor skin permeation, local toxicity, and compromised patient compliance as a topical pharmacological option. Methods Our research aimed to develop and optimize nanostructured lipid carriers (NLCs) containing IMQ for the first time using a hybrid design of experiments approach. The optimized formulation was then incorporated into a matrix-type topical patch as an alternative dosage form for topical application and evaluated for IMQ deposition across different skin layers in comparison to the performance of the commercial product. Additionally, our work also attempted to highlight the possibility of implementing environment-friendly practices in our IMQ-NLCs formulation development by reviewing our analytical methods and experimental designs and reducing energy and solvent consumption where possible. Results In this study, stearyl alcohol, oleic acid, Tween® 80 (polysorbate 80), and Gelucire® 50/13 (Stearoyl polyoxyl-32 glycerides) were selected for formulation development. The formulation was optimized using a 2k factorial design and a central composite design. The optimized formulation achieved the average particle size, polydispersity index, and zeta potential of 75.6 nm, 0.235, and - 30.9 mV, respectively. Subsequently, a matrix-type patch containing IMQ-NLCs was developed and achieved a statistically significant improvement in IMQ deposition in the deeper skin layers. The IMQ deposition from the patch into the dermis layer and receptor chamber was 3.3 ± 0.9 µg/cm2 and 12.3 ± 2.2 µg/cm2, while the commercial cream only deposited 1.0 ± 0.8 µg/cm2 and 1.5 ± 0.5 µg/cm2 of IMQ, respectively. Conclusion In summary, IMQ-NLC-loaded patches represent great potential as a topical treatment option for skin cancer with improved patient compliance.
Collapse
Affiliation(s)
- Sangseo Kim
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Amy Holmes
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sachin Vaidya
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia,Correspondence: Sanjay Garg, Tel +61 8 8302 1575, Email
| |
Collapse
|
26
|
Elim D, Fitri AMN, Mahfud MAS, Afika N, Sultan NAF, Hijrah, Asri RM, Permana AD. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: An ex vivo proof of concept study. Colloids Surf B Biointerfaces 2023; 222:113018. [PMID: 36435027 DOI: 10.1016/j.colsurfb.2022.113018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Erectile dysfunction (ED) is a disorder that often occurs in men worldwide. One of the drugs used as the first-line therapy for erectile dysfunction is sildenafil citrate (SC). Unfortunately, SC was commonly found in oral, injection, and transdermal dosage forms with some limitations, mainly related to low oral bioavailability caused by the occurrence of first-pass metabolism in the liver, and poor patient comfort and compliance. Therefore, it was essential to develop dosage forms to overcome these limitations. We developed hydrogel-forming microneedles (HFM) that can facilitate transdermal delivery of SC by penetrating the stratum corneum. HFM was made using polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) as polymers and several variations of tartaric acid as crosslinking agents. The evaluation of swelling properties, mechanical resistance, and penetration ability showed that the HFM produced had good insertion properties and swelling capabilities ranging from 300% to 700%. This HFM was designed to be integrated with a polyethylene glycol (PEG) reservoir prepared using several types of PEG with different molecular weights. The ex vivo permeation study showed that up to 80% of SC (equivalent to 20.2 ± 0.29 mg/mL) was delivered transdermally from this combined dosage form. For the first time, SC has been successfully developed into an HFM that was integrated with a PEG reservoir which was non-irritating, safe, and painless. It also had promising results for increasing the effectiveness of ED therapy.
Collapse
Affiliation(s)
- Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Nur Afika
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Hijrah
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
27
|
S G P, Echanur AV, Matadh AV, Rangappa S, H N S, Murthy RN, V S R, Ureña-Benavides EE, Maibach H, Murthy SN. Sublimation of Drugs from the Site of Application of Topical Products. Mol Pharm 2023. [PMID: 36625731 DOI: 10.1021/acs.molpharmaceut.2c00816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The objective of the project was to investigate the plausibility of active pharmaceutical ingredients (APIs) to undergo sublimation from topical application following evaporation of solvent. Topical formulations with different APIs were subjected to a sublimation screening test. The APIs in the selected topical products were found to undergo sublimation to a different extent. The salicylic acid topical product was found to undergo a significant loss due to sublimation. The extent of sublimation of salicylic acid was significantly greater at skin temperature compared to room temperature. When the APIs were subjected to the sublimation screening test in their neat form at 32 ± 1 °C, the natural log of the rate of sublimation decreased linearly with the standard enthalpy of sublimation of compound (R2 = 0.89). The formulation composition was found to have a significant impact on the extent of sublimation of the representative API, salicylic acid. The sublimation of APIs from the topical product was found to affect the mass balance studies in the case of the salicylic acid ointment. Furthermore, the results of the human studies agreed with the in vitro experimental results demonstrating the plausibility of loss of API due to sublimation from the site of application.
Collapse
Affiliation(s)
- Pragathi S G
- Institute for Drug Delivery and Biomedical Research, Bangalore, Karnataka560086, India
| | - Anusha V Echanur
- Institute for Drug Delivery and Biomedical Research, Bangalore, Karnataka560086, India
| | - Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Bangalore, Karnataka560086, India
| | - Srinath Rangappa
- Topical Products Testing LLC, Oxford, Mississippi38655, United States
| | - Shivakumar H N
- Institute for Drug Delivery and Biomedical Research, Bangalore, Karnataka560086, India.,KLE College of Pharmacy, Bangalore, Karnataka560010, India
| | - Reena N Murthy
- Topical Products Testing LLC, Oxford, Mississippi38655, United States
| | - Ranganath V S
- Surgiderma Hospital, Bangalore, Karnataka560043, India
| | - Esteban E Ureña-Benavides
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas78249, United States
| | - Howard Maibach
- Department of Dermatology, University of California, San Francisco, California94115, United States
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bangalore, Karnataka560086, India.,Topical Products Testing LLC, Oxford, Mississippi38655, United States
| |
Collapse
|
28
|
Sharma M, Rathi R, Kaur S, Singh I, Kadir EA, Chahardehi AM, Lim V. Antiinflammatory activity of herbal bioactive-based formulations for topical administration. RECENT DEVELOPMENTS IN ANTI-INFLAMMATORY THERAPY 2023:245-277. [DOI: 10.1016/b978-0-323-99988-5.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Ortiz MI. Synergistic interaction and activation of the opioid receptor-NO-cGMP-K + channel pathway on peripheral antinociception induced by the α-Bisabolol-diclofenac combination. Front Pharmacol 2023; 14:1158236. [PMID: 37124202 PMCID: PMC10133703 DOI: 10.3389/fphar.2023.1158236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: The local peripheral combination of analgesic drugs with herbal derivatives may have beneficial effects. Information on the action mechanism of these interactions between drugs is scarce. Therefore, the main of the present study was to determine the pharmacological interaction and action mechanism of the combination α-Bisabolol and diclofenac. Methods: Rats were injected in the dorsal surface of the right hind paw with 1% formalin. Rats received subcutaneous injections in the dorsal surface of paw of vehicles or increasing doses of α-Bisabolol, diclofenac or their combination before formalin injection into the paw. Antinociception of the α-Bisabolol + diclofenac combination was evaluated with and without the local treatment of naloxone, metformin, NG-nitro-L-arginine methyl ester (L-NAME), 1H- (1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), glibenclamide, glipizide, 4-aminopyridine, tetraethylammonium, apamin, or charybdotoxin. Results: α-Bisabolol, diclofenac or α-Bisabolol-diclofenac combinations produced significant antinociception in the rat (p < 0.05). The experimental effective dose (ED) value of 109.2 µg/paw was different significantly of the theoretical effective dose (ED) of 245.7 µg/paw (synergism). Blockers significantly reverted the antinociception produced by the synergistic combination of α-Bisabolol and diclofenac. Discussion: Data showed a synergism of the α-Bisabolol-diclofenac combination and the activation of the opioid receptor-Nitric Oxide-cyclic GMP-K+ channels pathway and a biguanide-dependent mechanism in order to produce the potentiation of its peripheral antinociception in the formalin test.
Collapse
|
30
|
Neri I, Miraglia del Giudice M, Novelli A, Ruggiero G, Pappagallo G, Galli L. Ideal Features of Topical Antibiotic Therapy for the Treatment of Impetigo: An Italian Expert Consensus Report. CURRENT THERAPEUTIC RESEARCH 2022; 98:100690. [PMID: 36712177 PMCID: PMC9881045 DOI: 10.1016/j.curtheres.2022.100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Background A group of Italian experts in impetigo medical care sought to define 10 statements to describe the ideal characteristics of the best local antibiotic treatments, and to provide relevant information re- garding their appropriate use and prescription that should be considered in clinical practice for impetigo management. Objective A group of Italian experts in impetigo medical care sought to define 10 statements to describe the ideal characteristics of the best local antibiotic treatments, and to provide relevant information regarding their appropriate use and prescription that should be considered in clinical practice for impetigo management. Methods A consensus on ideal features of antibiotic therapy for the treatment of impetigo was appraised by an online Delphi-based method, based on a panel of 61 infectious disease specialists, pediatricians, and dermatologists coordinated by a scientific committee of 5 experts specializing in impetigo management. Results Full or very high consensus was reached on the 10 statements identified to describe the characteristics of the best hypothetic antibiotic therapy for impetigo together with indications for appropriate antibiotics use. Conclusions Several criteria have to be considered when selecting topical antibacterial therapy for impetigo. Beyond efficacy and safety, antimicrobial susceptibility and pharmacological characteristics of the agent are essential points. Formulation of the antimicrobial product is fundamental, as well as patient and caregiver preference, to facilitate therapeutic adherence, to achieve the infection control, and to obtain the best benefit from treatment (Curr Ther Res Clin Exp. 2023; 84:XXXXXX).
Collapse
Affiliation(s)
- Iria Neri
- Dermatology Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Michele Miraglia del Giudice
- Department of Woman and Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Giuseppe Ruggiero
- Dermatology Study Group of the Italian Federation Italian of Pediatricians, Rome, Italy
| | - Giovanni Pappagallo
- School of Clinical Research Methodology, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella VR, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy,Paediatric Infectious Diseases Unit, Meyer Children's Hospital, Florence, Italy,Address correspondence to: Luisa Galli, Paediatric Infectious Diseases Unit, University Hospital Meyer, Azienda Ospedaliero Universitaria Meyer, Viale Pieraccini 24, Florence IT-50131, Italy
| |
Collapse
|
31
|
Zhang H, Deng L, Yang J, Yang G, Fan H, Yin Y, Luo S, Li S, Liu L, Yang M. Preparation and evaluation of a nanoemulsion containing cordycepin and its protective effect on skin. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hucheng Zhang
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Lina Deng
- Department of English, Beijing Health Vocational College, Beijing, P. R. China
| | - Jun Yang
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Guowei Yang
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Haitao Fan
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Yiqi Yin
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Shuai Luo
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Shuangshi Li
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Linying Liu
- College of Biological Engineering, Beijing Polytechnic, Beijing, P. R. China
| | - Ming Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
32
|
Ng WHS, Smith SD. Laser-Assisted Drug Delivery: A Systematic Review of Safety and Adverse Events. Pharmaceutics 2022; 14:pharmaceutics14122738. [PMID: 36559233 PMCID: PMC9787022 DOI: 10.3390/pharmaceutics14122738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Laser-assisted drug delivery (LADD) is an increasingly studied and applied methodology for drug delivery. It has been used in a wide variety of clinical applications. Given the relatively low barrier to entry for clinicians as well as ongoing research in this area, the authors aimed to review outcomes relating to safety in laser-assisted drug delivery. A systematic review was conducted, with the databases PubMed, Medline and Embase searched in September 2022. Included articles were those that mentioned laser-assisted drug delivery in human subjects that also reported adverse effects or safety outcomes. There were no language-based exclusions. Conference abstracts and literature reviews were excluded. The results were then tabulated and categorized according to the application of LADD. In total, 501 articles were obtained. Following deduplication, screening, and full text review 70 articles of various study designs were included. Common findings were erythema, oedema, pain, and crusting following LADD. Several notably more severe adverse effects such as generalized urticaria, infection, scarring and dyspigmentation were noted. However, these events were varied depending on the clinical use of LADD. Relevant negatives were also noted whereby no studies reported life-threatening adverse effects. Limitations included limited details regarding the adverse effects within the full texts, lack of follow-up, and risk of bias. In conclusion, there were multiple adverse effects that clinicians should consider prior to carrying out LADD, where treatment goals and patient tolerability should be considered. Further evidence is needed to quantitatively determine these risks.
Collapse
Affiliation(s)
| | - Saxon D. Smith
- ANU Medical School, ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
33
|
Locust bean gum-based hydrogel containing nanocapsules for 3,3′-diindolylmethane delivery in skin inflammatory conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Gorantla S, Puppala ER, Naidu V, Saha RN, Singhvi G. Hyaluronic acid-coated proglycosomes for topical delivery of tofacitinib in rheumatoid arthritis condition: Formulation design, in vitro, ex vivo characterization, and in vivo efficacy studies. Int J Biol Macromol 2022; 224:207-222. [DOI: 10.1016/j.ijbiomac.2022.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
35
|
Riccio BVF, Silvestre ALP, Meneguin AB, Ribeiro TDC, Klosowski AB, Ferrari PC, Chorilli M. Exploiting Polymeric Films as a Multipurpose Drug Delivery System: a Review. AAPS PharmSciTech 2022; 23:269. [PMID: 36171494 DOI: 10.1208/s12249-022-02414-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Polymeric films are drug delivery systems that maintain contact with the delivery tissue and sustain a controlled release of therapeutic molecules. These systems allow a longer time of drug contact with the target site in the case of topical treatments and allow the controlled administration of drugs. They can be manufactured by various methods such as solvent casting, hot melt extrusion, electrospinning, and 3D bioprinting. Furthermore, they can employ various polymers, for example PVP, PVA, cellulose derivatives, chitosan, gelling gum, pectin, and alginate. Its versatility is also applicable to different routes of administration, as it can be administered to the skin, oral mucosa, vaginal canal, and eyeballs. All these factors allow numerous combinations to obtain a better treatment. This review focuses on exploring some possible ways to develop them and some particularities and advantages/disadvantages in each case. It also aims to show the versatility of these systems and the advantages and disadvantages in each case, as they bring the opportunity to develop different medicines to facilitate therapies for the most diverse purposes .
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Andreia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Ana Beatriz Klosowski
- Department of Pharmaceutical Sciences, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
36
|
Transdermal Drug Delivery: Determining Permeation Parameters Using Tape Stripping and Numerical Modeling. Pharmaceutics 2022; 14:pharmaceutics14091880. [PMID: 36145628 PMCID: PMC9505649 DOI: 10.3390/pharmaceutics14091880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
The function of transdermal drug delivery (TDD) systems is complex due to the multiple layers necessary for controlling the rate of drug release and the interaction with the patient’s skin. In this work, we study a particular aspect of a TDD system, that is, the parameters that describe the drug permeation through the skin layers. Studies of the diffusion of two compounds were carried out and supported by tape stripping and numerical modeling. The experimental studies are carried out for porcine skin in a Franz diffusion cell and tape stripping is used to quantify the concentration of drug in the stratum corneum. A multi-layered numerical model, based on Fickian diffusion, is used to determine the unknown parameters that define the skin’s permeability, such as the partition between layers and the mass transfer coefficients due to the surface barrier. A significant correlation was found between the numerical modeling and experimental results, indicating that the partition and mass transfer effects at the interlayer boundary are accurately represented in the numerical model. We find that numerical modeling is essential to fully describe the diffusion characteristics.
Collapse
|
37
|
Weimer P, Kreutz T, Limberger RP, Rossi RC, de Lima ÁAN, Veiga VF, de Araújo BV, Koester LS. Correlation between the Skin Permeation Profile of the Synthetic Sesquiterpene Compounds, Beta-Caryophyllene and Caryophyllene Oxide, and the Antiedematogenic Activity by Topical Application of Nanoemulgels. Biomolecules 2022; 12:biom12081102. [PMID: 36008995 PMCID: PMC9405972 DOI: 10.3390/biom12081102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Sesquiterpene compounds are applied as permeation promoters in topical formulations. However, studies exploring their impact on nanostructured systems, changes in permeation profile, and consequently, its biological activity are restricted. This study aimed to investigate the correlation between the skin permeation of the major sesquiterpenes, beta-caryophyllene, and caryophyllene oxide from the oleoresin of Copaifera multijuga, after delivery into topical nanoemulgels, and the in vivo antiedematogenic activity. First, ten nanoemulgels were prepared and characterized, and their in vitro permeation profile and in vivo anti-inflammatory activity were evaluated. In equivalent concentrations, β-caryophyllene permeation was greater from oleoresin nanoemulgels, resulting in greater in vivo antiedematogenic activity. However, an inverse relationship was observed for caryophyllene oxide, which showed its favored permeation and better in vivo anti-inflammatory effect carried as an isolated compound in the nanoemulgels. These results suggest that the presence of similar compounds may interfere with the permeation profile when comparing the profiles of the compounds alone or when presented in oleoresin. Furthermore, the correlation results between the permeation profile and in vivo antiedematogenic activity corroborate the establishment of beta-caryophyllene as an essential compound for this pharmacological activity of C. multijuga oleoresin.
Collapse
Affiliation(s)
- Patrícia Weimer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil
| | - Tainá Kreutz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil
| | - Renata P. Limberger
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil
| | - Rochele C. Rossi
- Programa de Pós-Graduação em Nutrição e Alimentos, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-000, RS, Brazil
| | - Ádley A. N. de Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Valdir F. Veiga
- Instituto Militar de Engenharia (IME), Rio de Janeiro 22290-270, RJ, Brazil
| | - Bibiana Verlindo de Araújo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil
| | - Letícia S. Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil
- Correspondence: ; Tel.: +55-51-33085278; Fax: +55-51-33085437
| |
Collapse
|
38
|
Argel S, Castaño M, Jimenez DE, Rodríguez S, Vallejo MJ, Castro CI, Osorio MA. Assessment of Bacterial Nanocellulose Loaded with Acetylsalicylic Acid or Povidone-Iodine as Bioactive Dressings for Skin and Soft Tissue Infections. Pharmaceutics 2022; 14:1661. [PMID: 36015286 PMCID: PMC9412879 DOI: 10.3390/pharmaceutics14081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial nanocellulose (BNC) is a novel nanomaterial known for its large surface area, biocompatibility, and non-toxicity. BNC contributes to regenerative processes in the skin but lacks antimicrobial and anti-inflammatory properties. Herein, the development of bioactive wound dressings by loading antibacterial povidone-iodine (PVI) or anti-inflammatory acetylsalicylic acid (ASA) into bacterial cellulose is presented. BNC is produced using Hestrin-Schramm culture media and loaded via immersion in PVI and ASA. Through scanning electron microscopy, BNC reveals open porosity where the bioactive compounds are loaded; the mechanical tests show that the dressing prevents mechanical wear. The loading kinetic and release assays (using the Franz cell method) under simulated fluids present a maximum loading of 589.36 mg PVI/g BNC and 38.61 mg ASA/g BNC, and both systems present a slow release profile at 24 h. Through histology, the complete diffusion of the bioactive compounds is observed across the layers of porcine skin. Finally, in the antimicrobial experiment, BNC/PVI produced an inhibition halo for Gram-positive and Gram-negative bacteria, confirming the antibacterial activity. Meanwhile, the protein denaturation test shows effective anti-inflammatory activity in BNC/ASA dressings. Accordingly, BNC is a suitable platform for the development of bioactive wound dressings, particularly those with antibacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Shaydier Argel
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Melissa Castaño
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Daiver Estiven Jimenez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Sebastian Rodríguez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Maria Jose Vallejo
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Cristina Isabel Castro
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Marlon Andres Osorio
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- Biology Systems Research Group, School of Health Science, Universidad Pontificia Bolivariana, Cl. 78b #72a-159, Medellin 050034, Colombia
| |
Collapse
|
39
|
Song G, Banov D, Song H, Liu Y, Ip K, Bassani AS, Valdez BC. Evaluation of an Anhydrous Permeation-Enhancing Vehicle for Percutaneous Absorption of Hormones. AAPS PharmSciTech 2022; 23:198. [PMID: 35854200 DOI: 10.1208/s12249-022-02352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
The efficiency and safety of hormone delivery through the skin partly depend on the appropriate choice of vehicle and the type of formulation. The present study reports the skin cytotoxicity, irritancy, and safety of a newly developed anhydrous permeation-enhancing base (APEB) and the percutaneous absorption of progesterone, testosterone, estriol, and estradiol in APEB formulations. Using the human skin EpiDerm model, cell death was not observed after 4 h of exposure to APEB and was 48% after 24 h, indicating its mild to non-irritating property. APEB did not change the expression level of skin cell proliferation markers including PCNA, MCL-1, iNOS, and NFκB proteins, and apoptosis was minimal after 8-h exposure. The in vivo skin irritation and sensitization evaluation of APEB using a Human Repeat Insult Patch Test showed no adverse reaction of any kind during the course of the study. These results indicate the safety of APEB on skin tissues. The hormone percutaneous absorption was performed using human cadaver abdomen skin tissues and the Franz diffusion system, and hormone concentrations were determined by ELISA. Absorption was observed as early as 2 h of application and accumulated after 24 h to 2851 ± 66 ng/cm2, 2338 ± 594 ng/cm2, 55 ± 25 ng/cm2, and 341 ± 122 ng/cm2 for progesterone, testosterone, estriol, and estradiol, respectively. A steady flux rate of absorption of the hormones was observed within 24 h of application. These results suggest that APEB can be used as a vehicle to deliver these hormones through the skin and into the bloodstream for hormone replacement therapy.
Collapse
Affiliation(s)
- Guiyun Song
- Professional Compounding Centers of America (PCCA), 9901 South Wilcrest Drive, Houston, Texas, 77099, United States of America.
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA), 9901 South Wilcrest Drive, Houston, Texas, 77099, United States of America
| | - Hui Song
- Professional Compounding Centers of America (PCCA), 9901 South Wilcrest Drive, Houston, Texas, 77099, United States of America
| | - Yi Liu
- Professional Compounding Centers of America (PCCA), 9901 South Wilcrest Drive, Houston, Texas, 77099, United States of America
| | - Kendice Ip
- Professional Compounding Centers of America (PCCA), 9901 South Wilcrest Drive, Houston, Texas, 77099, United States of America
| | - August S Bassani
- Professional Compounding Centers of America (PCCA), 9901 South Wilcrest Drive, Houston, Texas, 77099, United States of America
| | - Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| |
Collapse
|
40
|
A Mathematical Approach Using Strat-M ® to Predict the Percutaneous Absorption of Chemicals under Finite Dose Conditions. Pharmaceutics 2022; 14:pharmaceutics14071370. [PMID: 35890266 PMCID: PMC9318111 DOI: 10.3390/pharmaceutics14071370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Estimation of the percutaneous absorption is essential for the safety assessment of cosmetic and dermopharmaceutical products. Currently, an artificial membrane, Strat-M®, has been focused on as the tool which could obtain the permeation parameters close to the skin-derived values. Nevertheless, few practical methodologies using the permeation parameters for assessing percutaneous absorption under in-use conditions are available. In the present study, based on Fick's first law of diffusion, a novel mathematical model incorporating the permeation parameters as well as considering the water evaporation (Teva) was constructed. Then, to evaluate the applicability domain of our model in the case where Strat-M®-derived parameters were used, the permeation parameters were compared between the skin from edible porcine and Strat-M®. Regarding chemicals (-0.2 ≤ Log Kow ≤ 2.0), their permeation profiles were equivalent between Strat-M® and porcine skin. Therefore, for these chemicals, the percutaneous absorption was calculated using our model with the permeation parameters obtained using Strat-M® and the Teva determined by measuring the solution weight. The calculated values revealed a good correlation to the values obtained using porcine skin in finite dose experiments, suggesting that our mathematical approach with Strat-M® would be useful for the future safety assessment of cosmetic and dermopharmaceutical products.
Collapse
|
41
|
Hosseini M, Roberts MS, Aboofazeli R, Moghimi HR. Measurement of Hansen Solubility Parameters of third-degree burn eschar. Burns 2022; 48:860-871. [PMID: 34893367 DOI: 10.1016/j.burns.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Topical drug therapy is one of the most effective approaches in third-degree burn wound treatments. To optimize and enhance drug permeation through burn eschar, we need to characterize this barrier, most importantly, its affinity to drugs; the subject of this investigation. Hansen Solubility Parameters (HSP), as polarity and affinity scale, were measured here for human third-degree burn eschar through uptake studies using 19 solvents at 25 °C and 32 °C and two hydration levels by gravimetric method combined with thermal analysis and Karl Fischer titration. HSP parameters of dispersion (δD), bipolar (δP), and hydrogen bonding (δH) were calculated by HSPiP software. Results showed δD, δP, and δH of 17.0, 12.5, 14.6 and 16.8, 12.4, 14.4 at 25 and 32 °C respectively for normally-hydrated samples. Full hydration increased HSP values to 17.2, 12.9, 15.3 (25 °C) and 17.1, 12.8, 15.1 (32 °C). Good correlations between solvents uptakes and HSP values were observed for all parameters; higher for δP. Increased temperature decreased them with more changes in δH. Relative Energy Differences (RED) were calculated and shown to be a good parameter for predicting drug-eschar affinity. The obtained information is useful for drug selection and carrier design in drug delivery through burn eschar.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael S Roberts
- Therapeutics Research Centre, School of Medicine, Translational Research Institute, University of Queensland, Brisbane 4102, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Reza Aboofazeli
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Nagra U, Barkat K, Ashraf MU, Shabbir M. Feasibility of Enhancing Skin Permeability of Acyclovir through Sterile Topical Lyophilized Wafer on Self-Dissolving Microneedle-Treated Skin. Dose Response 2022; 20:15593258221097594. [PMID: 35602585 PMCID: PMC9122490 DOI: 10.1177/15593258221097594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Acyclovir is an antiviral drug that is frequently prescribed for the herpes
virus. However, the drug requires frequent dosing due to limited bioavailability
(10–26.7%). The rationale of the present study was to develop a self-dissolving
microneedle system for local and systemic delivery of acyclovir using a topical
lyophilized wafer on microneedle-treated skin to provide the drug at the site of
infection. The microneedles prepared with hydroxypropyl methylcellulose (HPMC)
(8% w/w) or HPMC (8% w/w)-polyvinyl pyrrolidone (PVP) (30% w/w) penetrated
excised rat skin, showing sufficient mechanical strength and rapid polymer
dissolution. The topical wafer was prepared with acyclovir (40% w/w; equivalent
to 200 mg of drug), gelatin (10% w/w), mannitol (5% w/w), and sodium chloride
(5% w/w). The uniform distribution of acyclovir within the wafer in an amorphous
form was confirmed by differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA). No polymer–drug interaction was evident in the
lyophilized wafer as per Fourier transform infrared spectroscopy (FTIR)
analysis. The wafer showed a sufficiently porous structure for rapid hydration
as per scanning electron microscopy (SEM) analysis. During
ex-vivo analysis, the skin was pre-treated with a
self-dissolving microneedle array for 5 minutes, and the wafer was placed on
this microporated-skin. Topical wafer provided ∼7–11 times higher skin
concentration than the ID99 reported with a lower lag-time. Based on
in-vivo testing, ∼2.58 µg/ml of Cmax was achieved in rabbit
plasma during 24 hours’ study. Our findings suggest that the self-dissolving
microneedle-assisted topical wafer, proposed for the first time, would be
efficacious against the infection residing in the skin layer and for systemic
therapy.
Collapse
Affiliation(s)
- Uzair Nagra
- Department of Pharmacy, The University of Lahore - New Campus, Lahore, Pakistan
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | - Maryam Shabbir
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
43
|
Oh YJ, Kang NW, Jeong HR, Sohn SY, Jeon YE, Yu NY, Hwang Y, Kim S, Kim DD, Park JH. The Relationship between the Drug Delivery Properties of a Formulation of Teriparatide Microneedles and the Pharmacokinetic Evaluation of Teriparatide Administration in Rats. Pharm Res 2022; 39:989-999. [PMID: 35441319 DOI: 10.1007/s11095-022-03254-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Teriparatide is an effective drug for the treatment of osteoporosis. This study examines the relationship between the drug delivery properties of the solid formulation with teriparatide and the pharmacokinetic properties of teriparatide in vivo. METHODS Teriparatide microneedles with different dissolution rates were prepared using sucrose and carboxymethylcellulose (CMC). There were three aspects of this study: (1) The dissolution rate of teriparatide from both formulations (sucrose and CMC) was measured in vitro. (2) After administration into porcine skin ex vivo, the diffusion rate of FITC-dextran was observed using a confocal microscope. (3) Pharmacokinetic studies were performed in rats and pharmacokinetic data compared with the release rate and the diffusion pattern. RESULTS In the in vitro dissolution experiment, 80% of teriparatide was released within 30 min from the CMC MNs, whereas 80% of teriparatide was released within 10 min from the sucrose MNs. After 30 min, the fluorescence intensity on the surface of the MNs was 40% of the initial intensity for sucrose MNs and 90% for CMC MNs. In the pharmacokinetic study, the Cmax values of the CMC and sucrose MNs were 868 pg/mL and 6809 pg/mL, respectively, and the AUClast values were 6771 pg*hr/mL for the CMC MNs and 17,171 pg*hr/mL for the sucrose MNs. CONCLUSIONS When teriparatide is delivered into the skin using microneedles, the release rate from the solid formulation determines the drug's pharmacokinetic properties. The diffusion pattern of fluorescence into the skin can be used to anticipate the pharmacokinetic properties of the drug.
Collapse
Affiliation(s)
- Yu-Jeong Oh
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, Republic of Korea
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye-Rin Jeong
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Sohn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yae-Eun Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Na-Young Yu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yura Hwang
- Hanlim Pharmaceutical.Co.,Ltd, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sunkyung Kim
- Hanlim Pharmaceutical.Co.,Ltd, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Jung-Hwan Park
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, Republic of Korea. .,QuadMedicine R&D Centre, QuadMedicine Co., Ltd, Seongnam, Republic of Korea.
| |
Collapse
|
44
|
Kashani-Asadi-Jafari F, Hadjizadeh A. Niosome-encapsulated Doxycycline hyclate for Potentiation of Acne Therapy: Formulation and Characterization. Pharm Nanotechnol 2022; 10:56-68. [PMID: 35209832 DOI: 10.2174/2211738510666220224103406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acne is the pilosebaceous units' disorder. The most important cause of acne is the colonization of bacteria in the follicles. Among antibiotics, doxycycline hyclate kills a wide range of bacteria. OBJECTIVES To prevent oral administration's side effects, overcome the barriers of conventional topical treatment, and improve the therapeutic effectiveness, this drug was loaded into niosomal nanocarriers for topical application. METHODS Doxycycline hyclate was loaded into four niosomal formulations prepared by the thin-film hydration method with different percentages of constituents. Drug-containing niosomal systems were evaluated for morphological properties via scanning electron microscopy, particle size, drug entrapment efficiency, zeta potential, in vitro drug release, physical stability after 60 days, in vitro drug permeation through rat skin, in vitro drug deposition in rat skin, toxicity on human dermal fibroblasts (HDF) by MTT method after 72 hours, and antibacterial properties against the main acne-causing bacteria via antibiogram test. RESULTS The best formulation had the appropriate particle size of 362.88 ± 13.05 nm to target follicles, entrapment efficiency of 56.3 ± 2.1%, the zeta potential of - 24.46±1.39 mV, in vitro drug release of 54.93 ± 1.99% after 32 hours, and the lowest permeation of the drug through the rat skin among all other formulations. Improved cell viability, increased antibacterial activity, and an approximately three-fold increase in drug deposition were the optimal niosomal formulation features relative to the free drug. CONCLUSION This study demonstrated the ability of nano-niosomes containing doxycycline hyclate to treat skin acne compared with the free drug.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| |
Collapse
|
45
|
Budi HS, Anitasari S, Ulfa NM, Juliastuti WS, Aljunaid M, Ramadan DE, Muzari K, Shen YK. Topical Medicine Potency of Musa paradisiaca var. sapientum (L.) kuntze as Oral Gel for Wound Healing: An In Vitro, In Vivo Study. Eur J Dent 2022; 16:848-855. [PMID: 35181871 DOI: 10.1055/s-0041-1740226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE Topical application of ambonese banana (Musa paradisiaca var. sapientum (L.) kuntze) stem sap gel (GEGPA) on the socket wound area showed an increase in the expression of platelet-derived growth factor-BB, while decrease in the expression of matrix metalloproteinase-2 and 9. The aim of this study is to achieve standard formulation of GEGPA through stability, viscosity, distribution area, and drugs release for oral gel wound healing. MATERIALS AND METHODS This is an in vitro and in vivo study with the randomized posttest only control group design. The gel was formulated according to the composition of each group by adding hydroxypropyl methylcellulose (HPMC), Lexgard, propylene glycol, and cold water to obtain 100 g of gel. Observations were made through the following tests: stability, viscosity, distribution area, drug release, and histopathological analysis of tooth extraction wound healing. STATISTICAL ANALYSIS Data were analyzed using a one-way analysis of variance (α = 0.05) with GraphPad Prism-8 statistical software. RESULTS The study showed that the GEGPA formulation was stable against changes in consistency, color, smell, homogeneity, and pH value. There is a significant difference between groups with respect to viscosity (p = 0.0001), adhesion (p = 0.004), dispersion (p = 0.000), and fibroblast cell numbers on days 3 and 5 (p = 0.007 and p = 0.001). There is no interaction between the active ingredients and the gel base of all formulations. Formulation 3 had better properties in terms of viscosity, broad distribution, and drug release compared with other groups. Application of GEGPA to tooth extraction wounds showed a significant proliferation of fibroblast cells on days 3 and 5. CONCLUSIONS The formulation of M. paradisiaca var. sapientum (L.) kuntze extract with HPMC and propylene glycol obtained a gel preparation, GEGPA, that was organoleptically stable and met the topical gel standard for wounds in the oral cavity.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Silvia Anitasari
- Department of Dental Material and Devices, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia.,Department of Medical Microbiology, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia
| | | | - Wisnu Setyari Juliastuti
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - Koko Muzari
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
46
|
Lubda M, Zander M, Salazar A, Kolmar H, von Hagen J. Lateral Dermal Penetration is Dependent on the Lipophilicity of Active Ingredients. Skin Pharmacol Physiol 2022; 35:235-246. [PMID: 35172307 DOI: 10.1159/000522633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION With its large surface area skin facilitates a topical administration of active ingredients, and thus percutaneous delivery to a specific target site. Due to its high barrier function and different diffusion characteristics skin governs the efficacy of these active ingredients and a bioavailability in the epidermal and dermal tissue. OBJECTIVE In order to characterize the vertical and lateral movement of molecules into and inside the skin the diffusivity of active ingredients with different physico-chemical properties and their penetration ability in different dermal skin layers was investigated. METHODS A novel lateral dermal microdialysis (MD) penetration setup was used to compare the diffusion characteristics of active ingredients into superficial and deep implanted MD membranes in porcine skin. The corresponding membrane depth was determined via ultrasound and the active ingredients concentration via high-pressure liquid chromatography (HPLC) measurement. RESULTS The depth depended penetration of superficial and deep implanted MD membranes and the quantitative diffusivity of two active ingredients was compared. An experimental lateral MD setup was used to determine the influence of percutaneous skin penetration characteristics of an active ingredient with different lipophilic and hydrophilic characteristics. Therefore, hydrophilic caffeine and lipophilic LIP1, which have an identical molecular weight, but different lipophilic characteristics were tested for their penetration ability inside a propylene glycol (PG) and oleic acid (OA) formulation. CONCLUSION The vertical and lateral penetration movement of caffeine was found to exceed that of LIP1 through the hydrophilic dermal environment. The findings of this study show that the lipophilicity of active ingredients influence the penetration movement and that skin enables a conical increasing lateral diffusivity and transdermal delivery.
Collapse
Affiliation(s)
- Markus Lubda
- Merck KGaA, Surface Solutions, Cosmetic Actives R&D, Darmstadt, Germany
| | | | - Andrew Salazar
- Merck KGaA, Surface Solutions, Cosmetic Actives R&D, Darmstadt, Germany
| | - Harald Kolmar
- Technical University Darmstadt, Biochemistry, Darmstadt, Germany
| | - Jörg von Hagen
- Merck KGaA, Surface Solutions, Cosmetic Actives R&D, Darmstadt, Germany
| |
Collapse
|
47
|
Kis N, Kovács A, Budai-Szűcs M, Erős G, Csányi E, Berkó S. The effect of non-invasive dermal electroporation on skin barrier function and skin permeation in combination with different dermal formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Kim S, Fouladian P, Afinjuomo F, Song Y, Youssef SH, Vaidya S, Garg S. Effect of plasticizers on drug-in-adhesive patches containing 5-fluorouracil. Int J Pharm 2022; 611:121316. [PMID: 34838623 DOI: 10.1016/j.ijpharm.2021.121316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
Topical patches containing 5-fluorouracil (5-FU) are a feasible alternative to overcome the shortcomings of commercial cream for the treatment of non-melanoma skin cancer (NMSC). Plasticizers are a critical component of drug-in-adhesive (DIA) patches as they can significantly affect the mechanical, adhesive and drug release characteristics of the patches. Eudragit® E (EuE) is a methacrylate-based cationic copolymer capable of producing flexible and adhesive films for topical application. In this study, the effect of plasticizers on the mechanical, adhesive and 5-FU release characteristics of EuE-based patches was comprehensively evaluated. While the elongation at break (%) and adhesion of the films were significantly increased with increasing triacetin, dibutyl sebacate (DBS) and triethyl citrate (TEC) concentrations, the tensile strength showed an inverse relationship. EuE plasticized with 40% triacetin, 30% DBS or 40% w/w TEC produced elastic and adhesive films most suitable for topical application. In vitro release studies of the 5-FU-loaded patches demonstrated an initial burst release pattern during the first 10 min followed by a slow release over 120 min. In summary, this study provides important information on effect of plasticizers for preparation of EuE-based patches with desired mechanical, adhesive and release characteristics of 5-FU towards their potential application in the treatment of NMSC.
Collapse
Affiliation(s)
- Sangseo Kim
- Pharmaceutical Innovation and Development Group (PIDG), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paris Fouladian
- Pharmaceutical Innovation and Development Group (PIDG), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Pharmaceutical Innovation and Development Group (PIDG), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Pharmaceutical Innovation and Development Group (PIDG), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Pharmaceutical Innovation and Development Group (PIDG), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sachin Vaidya
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Sanjay Garg
- Pharmaceutical Innovation and Development Group (PIDG), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
49
|
Nogueira RJL, Grazul RM, Silva Filho AAD, Nascimento JWL. Evaluation of copaiba oil as enhancer of ibuprofen skin permeation. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1342-1352. [DOI: 10.1093/jpp/rgac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|