1
|
Siegelmann R, Siegelmann HT. Meta-Analytic Operation of Threshold-independent Filtering (MOTiF) reveals sub-threshold genomic robustness in trisomy: The Jörmungandr Effect. Biochem Biophys Res Commun 2024; 737:150802. [PMID: 39500042 DOI: 10.1016/j.bbrc.2024.150802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/13/2024]
Abstract
Trisomy, a form of aneuploidy wherein the cell possesses an additional copy of a specific chromosome, exhibits a high correlation with cancer. Studies from across different hosts, cell-lines, and labs into the cellular effects induced by aneuploidy have conflicted, ranging from small, chaotic global changes to large instances of either overexpression or underexpression throughout the trisomic chromosome. We ascertained that conflicting findings may be correct but miss the overarching ground truth due to injudicious use of thresholds. To correct this deficiency, we introduce the Meta-analytic Operation of Threshold-independent Filtering (MOTiF) method, which begins by providing a panoramic view of all thresholds, transforms the data to eliminate the effects accounted for by known mechanisms, and then reconstructs an explanation of the mechanisms that underly the difference between the baseline and the uncharacterized effects observed. As a proof of concept, we applied MOTiF to human colonic epithelial cells, discovering a uniform decrease in gene expression levels throughout the genome, which while significant, is beneath most common thresholds. Using Hi-C data we identified the structural correlate, wherein the physical genomic architecture condenses, compactifying in a uniform, genome-wide manner. This effect, which we dub the Jörmungandr Effect, is likely a robustness mechanism counteracting the addition of a chromosome. We were able to break down the gene expression alterations into three overlapping mechanisms: the raw chromosome content, the genomic compartmentalization, and the global structural condensation. While further studies must be conducted to corroborate the hypothesized Jörmungandr Effect, MOTiF presents a useful meta-analytic tool in the realm of gene expression and beyond.
Collapse
Affiliation(s)
- Roy Siegelmann
- Department of Applied Mathematics and Statistics Johns Hopkins University, Baltimore, MD 21218-2680, USA.
| | - Hava T Siegelmann
- Manning College of Information and Computer Sciences University of Massachusetts, Amherst Amherst, MA 01003-9264, USA.
| |
Collapse
|
2
|
Mays JC, Mei S, Kogenaru M, Quysbertf HM, Bosco N, Zhao X, Bianchi JJ, Goldberg A, Kidiyoor GR, Holt LJ, Fenyö D, Davoli T. KaryoTap Enables Aneuploidy Detection in Thousands of Single Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.555746. [PMID: 39386620 PMCID: PMC11463636 DOI: 10.1101/2023.09.08.555746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Investigating chromosomal instability and aneuploidy within tumors is essential for understanding tumorigenesis and developing diagnostic and therapeutic strategies. Single-cell DNA sequencing technologies have enabled such analyses, revealing aneuploidies specific to individual cells within the same tumor. However, it has been difficult to scale the throughput of these methods to detect rare aneuploidies while maintaining high sensitivity. To overcome this deficit, we developed KaryoTap, a method combining custom targeted DNA sequencing panels for the Tapestri platform with a computational framework to enable detection of chromosome- and chromosome arm-scale aneuploidy (gains or losses) and copy number neutral loss of heterozygosity in all human chromosomes across thousands of single cells simultaneously. KaryoTap allows detecting gains and losses with an average accuracy of 83% for arm events and 91% for chromosome events. Importantly, together with chromosomal copy number, our system allows us to detect barcodes and gRNAs integrated into the cells' genome, thus enabling pooled CRISPR- or ORF-based functional screens in single cells. As a proof of principle, we performed a small screen to expand the chromosomes that can be targeted by our recently described CRISPR-based KaryoCreate system for engineering aneuploidy in human cells. KaryoTap will prove a powerful and flexible approach for the study of aneuploidy and chromosomal instability in both tumors and normal tissues.
Collapse
Affiliation(s)
- Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sally Mei
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Helberth M Quysbertf
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA. Current Address: Volastra Therapeutics, New York, NY 10027, USA
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joy J Bianchi
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aleah Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gururaj Rao Kidiyoor
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
4
|
Feng Q, Bennett Z, Grichuk A, Pantoja R, Huang T, Faubert B, Huang G, Chen M, DeBerardinis RJ, Sumer BD, Gao J. Severely polarized extracellular acidity around tumour cells. Nat Biomed Eng 2024; 8:787-799. [PMID: 38438799 DOI: 10.1038/s41551-024-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Bennett
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Grichuk
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raymundo Pantoja
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongyi Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gang Huang
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Baran D Sumer
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinming Gao
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Szlasa W, Mazurek W, Szewczyk A, Rembiałkowska N, Tunikowska J, Kulbacka J. The Antagonistic and Synergistic Role of Fe 3+ Compounds in Chemo- and Electrochemotherapy in Human Colon Cancer In Vitro. Pharmaceuticals (Basel) 2024; 17:651. [PMID: 38794222 PMCID: PMC11124256 DOI: 10.3390/ph17050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Colon cancer (CC) management includes surgery, radio- and chemotherapy based on treatment with 5-fluorouracil (5-FU) or its derivatives. However, its application is limited to low-grade carcinomas. Thus, much research has been conducted to introduce new techniques and drugs to the therapy. CC mostly affects older people suffering from cardiac diseases, where iron compounds are commonly used. Ferric citrate and iron (III)-EDTA complexes have proven to be effective in colon cancer in vitro. This study aimed to determine the potency and action of iron-containing compounds in colon cancer treatment by chemo- and electrochemotherapy in both nano- and microsecond protocols. The viability of the cells was assessed after standalone iron (III) citrate and iron (III)-EDTA incubation. Both compounds were also assessed with 5-FU to determine the combination index. Additionally, frataxin expression was taken as the quantitative response to the exposition of iron compounds. Each of the substances exhibited a cytotoxic effect on the LoVo cell line. Electroporation with standalone drugs revealed the potency of 5-FU and iron(III)-EDTA in CC treatment. The combination of 5-FU with iron(III)-EDTA acted synergistically, increasing the viability of the cells in the nanosecond electrochemotherapy protocol. Iron(III)-EDTA decreased the frataxin expression, thus inducing ferroptosis. Iron(III) citrate induced the progression of cancer; therefore, it should not be considered as a potential therapeutic option. The relatively low stability of iron(III) citrate leads to the delivery of citrate anions to cancer cells, which could increase the Krebs cycle rate and promote progression.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (N.R.)
| | - Wiktoria Mazurek
- Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (N.R.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (N.R.)
| | - Joanna Tunikowska
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-356 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (N.R.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
| |
Collapse
|
6
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Shih J, Sarmashghi S, Zhakula-Kostadinova N, Zhang S, Georgis Y, Hoyt SH, Cuoco MS, Gao GF, Spurr LF, Berger AC, Ha G, Rendo V, Shen H, Meyerson M, Cherniack AD, Taylor AM, Beroukhim R. Cancer aneuploidies are shaped primarily by effects on tumour fitness. Nature 2023; 619:793-800. [PMID: 37380777 PMCID: PMC10529820 DOI: 10.1038/s41586-023-06266-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Aneuploidies-whole-chromosome or whole-arm imbalances-are the most prevalent alteration in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events1,2. Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness1,2. These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Juliann Shih
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV, USA
| | - Shahab Sarmashghi
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nadja Zhakula-Kostadinova
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yohanna Georgis
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stephanie H Hoyt
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Cuoco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Galen F Gao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liam F Spurr
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashton C Berger
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gavin Ha
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Veronica Rendo
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison M Taylor
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Bosco N, Goldberg A, Zhao X, Mays JC, Cheng P, Johnson AF, Bianchi JJ, Toscani C, Di Tommaso E, Katsnelson L, Annuar D, Mei S, Faitelson RE, Pesselev IY, Mohamed KS, Mermerian A, Camacho-Hernandez EM, Gionco CA, Manikas J, Tseng YS, Sun Z, Fani S, Keegan S, Lippman SM, Fenyö D, Giunta S, Santaguida S, Davoli T. KaryoCreate: A CRISPR-based technology to study chromosome-specific aneuploidy by targeting human centromeres. Cell 2023; 186:1985-2001.e19. [PMID: 37075754 PMCID: PMC10676289 DOI: 10.1016/j.cell.2023.03.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/17/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-β, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.
Collapse
Affiliation(s)
- Nazario Bosco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleah Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Pan Cheng
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Adam F Johnson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joy J Bianchi
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Cecilia Toscani
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Di Tommaso
- Department of Biology and Biotechnology Charles Darwin, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Lizabeth Katsnelson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Dania Annuar
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sally Mei
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Roni E Faitelson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Ilan Y Pesselev
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Kareem S Mohamed
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Angela Mermerian
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Elaine M Camacho-Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Courtney A Gionco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Julie Manikas
- Department of Cell Biology, NYU Langone Health, New York, NY, USA
| | - Yi-Shuan Tseng
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Zhengxi Sun
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Somayeh Fani
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Scott M Lippman
- Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Simona Giunta
- Department of Biology and Biotechnology Charles Darwin, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Cheng P, Zhao X, Katsnelson L, Camacho-Hernandez EM, Mermerian A, Mays JC, Lippman SM, Rosales-Alvarez RE, Moya R, Shwetar J, Grun D, Fenyo D, Davoli T. Proteogenomic analysis of cancer aneuploidy and normal tissues reveals divergent modes of gene regulation across cellular pathways. eLife 2022; 11:75227. [PMID: 36129397 PMCID: PMC9491860 DOI: 10.7554/elife.75227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
How cells control gene expression is a fundamental question. The relative contribution of protein-level and RNA-level regulation to this process remains unclear. Here, we perform a proteogenomic analysis of tumors and untransformed cells containing somatic copy number alterations (SCNAs). By revealing how cells regulate RNA and protein abundances of genes with SCNAs, we provide insights into the rules of gene regulation. Protein complex genes have a strong protein-level regulation while non-complex genes have a strong RNA-level regulation. Notable exceptions are plasma membrane protein complex genes, which show a weak protein-level regulation and a stronger RNA-level regulation. Strikingly, we find a strong negative association between the degree of RNA-level and protein-level regulation across genes and cellular pathways. Moreover, genes participating in the same pathway show a similar degree of RNA- and protein-level regulation. Pathways including translation, splicing, RNA processing, and mitochondrial function show a stronger protein-level regulation while cell adhesion and migration pathways show a stronger RNA-level regulation. These results suggest that the evolution of gene regulation is shaped by functional constraints and that many cellular pathways tend to evolve one predominant mechanism of gene regulation at the protein level or at the RNA level.
Collapse
Affiliation(s)
- Pan Cheng
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Lizabeth Katsnelson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Elaine M Camacho-Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Angela Mermerian
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Scott M Lippman
- Moores Cancer Center, University of California San Diego, La Jolla, United States
| | - Reyna Edith Rosales-Alvarez
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raquel Moya
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States.,Department of Pathology, NYU School of Medicine, New York, United States
| | - Jasmine Shwetar
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Dominic Grun
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research, Würzburg, Germany
| | - David Fenyo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| |
Collapse
|
10
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Abstract
Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Braun R, Ronquist S, Wangsa D, Chen H, Anthuber L, Gemoll T, Wangsa D, Koparde V, Hunn C, Habermann JK, Heselmeyer-Haddad K, Rajapakse I, Ried T. Single Chromosome Aneuploidy Induces Genome-Wide Perturbation of Nuclear Organization and Gene Expression. Neoplasia 2019; 21:401-412. [PMID: 30909073 PMCID: PMC6434407 DOI: 10.1016/j.neo.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chromosomal aneuploidy is a defining feature of carcinomas and results in tumor-entity specific genomic imbalances. For instance, most sporadic colorectal carcinomas carry extra copies of chromosome 7, an aneuploidy that emerges already in premalignant adenomas, and is maintained throughout tumor progression and in derived cell lines. A comprehensive understanding on how chromosomal aneuploidy affects nuclear organization and gene expression, i.e., the nucleome, remains elusive. We now analyzed a cell line established from healthy colon mucosa with a normal karyotype (46,XY) and its isogenic derived cell line that acquired an extra copy of chromosome 7 as its sole anomaly (47,XY,+7). We studied structure/function relationships consequent to aneuploidization using genome-wide chromosome conformation capture (Hi-C), RNA sequencing and protein profiling. The gain of chromosome 7 resulted in an increase of transcript levels of resident genes as well as genome-wide gene and protein expression changes. The Hi-C analysis showed that the extra copy of chromosome 7 is reflected in more interchromosomal contacts between the triploid chromosomes. Chromatin organization changes are observed genome-wide, as determined by changes in A/B compartmentalization and topologically associating domain (TAD) boundaries. Most notably, chromosome 4 shows a profound loss of chromatin organization, and chromosome 14 contains a large A/B compartment switch region, concurrent with resident gene expression changes. No changes to the nuclear position of the additional chromosome 7 territory were observed when measuring distances of chromosome painting probes by interphase FISH. Genome and protein data showed enrichment in signaling pathways crucial for malignant transformation, such as the HGF/MET-axis. We conclude that a specific chromosomal aneuploidy has profound impact on nuclear structure and function, both locally and genome-wide. Our study provides a benchmark for the analysis of cancer nucleomes with complex karyotypes.
Collapse
Affiliation(s)
- Rüdiger Braun
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Darawalee Wangsa
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Haiming Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lena Anthuber
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Danny Wangsa
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, NCI, Bethesda, MD, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Cynthia Hunn
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Kerstin Heselmeyer-Haddad
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Mathematics, University of Michigan, Ann Arbor, MI, USA.
| | - Thomas Ried
- Section of Cancer Genomics, National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA.
| |
Collapse
|
13
|
Simonetti G, Bruno S, Padella A, Tenti E, Martinelli G. Aneuploidy: Cancer strength or vulnerability? Int J Cancer 2018; 144:8-25. [PMID: 29981145 PMCID: PMC6587540 DOI: 10.1002/ijc.31718] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Aneuploidy is a very rare and tissue‐specific event in normal conditions, occurring in a low number of brain and liver cells. Its frequency increases in age‐related disorders and is one of the hallmarks of cancer. Aneuploidy has been associated with defects in the spindle assembly checkpoint (SAC). However, the relationship between chromosome number alterations, SAC genes and tumor susceptibility remains unclear. Here, we provide a comprehensive review of SAC gene alterations at genomic and transcriptional level across human cancers and discuss the oncogenic and tumor suppressor functions of aneuploidy. SAC genes are rarely mutated but frequently overexpressed, with a negative prognostic impact on different tumor types. Both increased and decreased SAC gene expression show oncogenic potential in mice. SAC gene upregulation may drive aneuploidization and tumorigenesis through mitotic delay, coupled with additional oncogenic functions outside mitosis. The genomic background and environmental conditions influence the fate of aneuploid cells. Aneuploidy reduces cellular fitness. It induces growth and contact inhibition, mitotic and proteotoxic stress, cell senescence and production of reactive oxygen species. However, aneuploidy confers an evolutionary flexibility by favoring genome and chromosome instability (CIN), cellular adaptation, stem cell‐like properties and immune escape. These properties represent the driving force of aneuploid cancers, especially under conditions of stress and pharmacological pressure, and are currently under investigation as potential therapeutic targets. Indeed, promising results have been obtained from synthetic lethal combinations exploiting CIN, mitotic defects, and aneuploidy‐tolerating mechanisms as cancer vulnerability.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Elena Tenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
14
|
Joshi PS, Modur V, Cheng J, Robinson K, Rao K. Characterization of immortalized human mammary epithelial cell line HMEC 2.6. Tumour Biol 2017; 39:1010428317724283. [PMID: 29022488 DOI: 10.1177/1010428317724283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.
Collapse
Affiliation(s)
- Pooja S Joshi
- 1 Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vishnu Modur
- 2 Department of Pediatrics and Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - JiMing Cheng
- 3 For You Dentistry, 477 Union Ave., Bridgewater, NJ
| | - Kathy Robinson
- 4 Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University School of Medicine, USA.,5 Simmons Cancer Institute at Southern Illinois University, Springfield, IL, USA
| | - Krishna Rao
- 1 Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.,4 Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University School of Medicine, USA.,5 Simmons Cancer Institute at Southern Illinois University, Springfield, IL, USA
| |
Collapse
|
15
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
16
|
Sansregret L, Patterson JO, Dewhurst S, López-García C, Koch A, McGranahan N, Chao WCH, Barry DJ, Rowan A, Instrell R, Horswell S, Way M, Howell M, Singleton MR, Medema RH, Nurse P, Petronczki M, Swanton C. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability. Cancer Discov 2017; 7:218-233. [PMID: 28069571 PMCID: PMC5300100 DOI: 10.1158/2159-8290.cd-16-0645] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/25/2023]
Abstract
Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. SIGNIFICANCE We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115.
Collapse
Affiliation(s)
| | | | | | | | - André Koch
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nicholas McGranahan
- The Francis Crick Institute, London, United Kingdom
- CRUK UCL/Manchester Lung Cancer Centre of Excellence
| | | | | | - Andrew Rowan
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Michael Way
- The Francis Crick Institute, London, United Kingdom
| | | | | | - René H. Medema
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Nurse
- The Francis Crick Institute, London, United Kingdom
| | - Mark Petronczki
- The Francis Crick Institute, London, United Kingdom
- Boehringer Ingelheim, Vienna, Austria
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- CRUK UCL/Manchester Lung Cancer Centre of Excellence
| |
Collapse
|
17
|
Zasadil LM, Britigan EMC, Ryan SD, Kaur C, Guckenberger DJ, Beebe DJ, Moser AR, Weaver BA. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation. Mol Biol Cell 2016; 27:1981-9. [PMID: 27146113 PMCID: PMC4927272 DOI: 10.1091/mbc.e15-10-0747] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/23/2016] [Indexed: 11/11/2022] Open
Abstract
Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the Apc(Min/+) mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. Apc(Min/+) cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E(+/-);Apc(Min/+) doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with Apc(Min/+) animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy.
Collapse
Affiliation(s)
- Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Eric M C Britigan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - David J Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705 Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Amy R Moser
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705 Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705 Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
18
|
Rutledge SD, Douglas TA, Nicholson JM, Vila-Casadesús M, Kantzler CL, Wangsa D, Barroso-Vilares M, Kale SD, Logarinho E, Cimini D. Selective advantage of trisomic human cells cultured in non-standard conditions. Sci Rep 2016; 6:22828. [PMID: 26956415 PMCID: PMC4783771 DOI: 10.1038/srep22828] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/17/2016] [Indexed: 01/13/2023] Open
Abstract
An abnormal chromosome number, a condition known as aneuploidy, is a ubiquitous feature of cancer cells. A number of studies have shown that aneuploidy impairs cellular fitness. However, there is also evidence that aneuploidy can arise in response to specific challenges and can confer a selective advantage under certain environmental stresses. Cancer cells are likely exposed to a number of challenging conditions arising within the tumor microenvironment. To investigate whether aneuploidy may confer a selective advantage to cancer cells, we employed a controlled experimental system. We used the diploid, colorectal cancer cell line DLD1 and two DLD1-derived cell lines carrying single-chromosome aneuploidies to assess a number of cancer cell properties. Such properties, which included rates of proliferation and apoptosis, anchorage-independent growth, and invasiveness, were assessed both under standard culture conditions and under conditions of stress (i.e., serum starvation, drug treatment, hypoxia). Similar experiments were performed in diploid vs. aneuploid non-transformed human primary cells. Overall, our data show that aneuploidy can confer selective advantage to human cells cultured under non-standard conditions. These findings indicate that aneuploidy can increase the adaptability of cells, even those, such as cancer cells, that are already characterized by increased proliferative capacity and aggressive tumorigenic phenotypes.
Collapse
Affiliation(s)
- Samuel D Rutledge
- Department of Biological Sciences, Blacksburg, VA 24061 - USA.,Biocomplexity Institute, Virginia Tech, 1015 Life Sciences Circle, Blacksburg, VA 24061 - USA
| | - Temple A Douglas
- Biocomplexity Institute, Virginia Tech, 1015 Life Sciences Circle, Blacksburg, VA 24061 - USA.,Biomedical Engineering, Virginia Tech, Blacksburg, VA 24061 - USA
| | - Joshua M Nicholson
- Department of Biological Sciences, Blacksburg, VA 24061 - USA.,Biocomplexity Institute, Virginia Tech, 1015 Life Sciences Circle, Blacksburg, VA 24061 - USA
| | | | - Courtney L Kantzler
- Department of Biological Sciences, Blacksburg, VA 24061 - USA.,Biocomplexity Institute, Virginia Tech, 1015 Life Sciences Circle, Blacksburg, VA 24061 - USA
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892 - USA
| | - Monika Barroso-Vilares
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto - Portugal
| | - Shiv D Kale
- Biocomplexity Institute, Virginia Tech, 1015 Life Sciences Circle, Blacksburg, VA 24061 - USA
| | - Elsa Logarinho
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto - Portugal.,Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto- Portugal
| | - Daniela Cimini
- Department of Biological Sciences, Blacksburg, VA 24061 - USA.,Biocomplexity Institute, Virginia Tech, 1015 Life Sciences Circle, Blacksburg, VA 24061 - USA
| |
Collapse
|
19
|
Rutledge SD, Cimini D. Consequences of aneuploidy in sickness and in health. Curr Opin Cell Biol 2016; 40:41-46. [PMID: 26919076 DOI: 10.1016/j.ceb.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 10/24/2022]
Abstract
A link between aneuploidy and miscarriage or cancer in humans has been known for a long time. However, only in recent years the development of experimental models of whole-chromosome aneuploidy has allowed investigators to take a closer look at how aneuploidy affects individual cells. Collectively, recent studies using these models have shown that aneuploidy induces transcriptomic and proteomic changes, chromosomal instability, and adaptation. In this article, we discuss the findings from these recent studies and present current and emerging models on how aneuploidy may be deleterious in certain contexts, but beneficial in others.
Collapse
Affiliation(s)
- Samuel D Rutledge
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
20
|
Hisamatsu Y, Oki E, Otsu H, Ando K, Saeki H, Tokunaga E, Aishima S, Morita M, Oda Y, Maehara Y. Effect of EGFR and p-AKT Overexpression on Chromosomal Instability in Gastric Cancer. Ann Surg Oncol 2016; 23:1986-92. [PMID: 26847684 DOI: 10.1245/s10434-016-5097-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Molecular profiling in gastric cancer (GC) is important for diagnosis and treatment. In this study, we investigated signal transduction pathways that might induce chromosomal instability in GC. METHODS Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and p-AKT expression were analyzed using immunohistochemistry, and chromosomal instability was assessed by DNA aneuploidy using laser scanning cytometry, in a total of 202 GC cases. RESULTS The rate of EGFR expression and p-AKT expression was 70.3 and 34.2 %, respectively, in GC patients. In total, 57.5 % of GC patients exhibited DNA aneuploidy, and p-AKT positively correlated with EGFR and HER2 (p = 0.0127 and p = 0.00031, respectively). Patients with EGFR overexpressing GC showed shorter disease-specific survival than the other cases (hazard ratio 2.00, 95 % confidence interval 1.19-3.53; p = 0.0104). Moreover, EGFR and p-AKT expression was significantly correlated with DNA aneuploidy (p = 0.0002 and p = 0.0302, respectively). CONCLUSIONS Our data showed that both EGFR and p-AKT overexpression were clearly associated with DNA aneuploidy. Aneuploidy could be a useful marker for therapies that target EGFR.
Collapse
Affiliation(s)
- Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hajime Otsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Tokunaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Aishima
- Department Anatomic Pathology and Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department Anatomic Pathology and Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Russo A, Pacchierotti F, Cimini D, Ganem NJ, Genescà A, Natarajan AT, Pavanello S, Valle G, Degrassi F. Genomic instability: Crossing pathways at the origin of structural and numerical chromosome changes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:563-580. [PMID: 25784636 DOI: 10.1002/em.21945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Genomic instability leads to a wide spectrum of genetic changes, including single nucleotide mutations, structural chromosome alterations, and numerical chromosome changes. The accepted view on how these events are generated predicts that separate cellular mechanisms and genetic events explain the occurrence of these types of genetic variation. Recently, new findings have shed light on the complexity of the mechanisms leading to structural and numerical chromosome aberrations, their intertwining pathways, and their dynamic evolution, in somatic as well as in germ cells. In this review, we present a critical analysis of these recent discoveries in this area, with the aim to contribute to a deeper knowledge of the molecular networks leading to adverse outcomes in humans following exposure to environmental factors. The review illustrates how several technological advances, including DNA sequencing methods, bioinformatics, and live-cell imaging approaches, have contributed to produce a renewed concept of the mechanisms causing genomic instability. Special attention is also given to the specific pathways causing genomic instability in mammalian germ cells. Remarkably, the same scenario emerged from some pioneering studies published in the 1980s to 1990s, when the evolution of polyploidy, the chromosomal effects of spindle poisons, the fate of micronuclei, were intuitively proposed to share mechanisms and pathways. Thus, an old working hypothesis has eventually found proper validation.
Collapse
Affiliation(s)
| | - Francesca Pacchierotti
- Laboratory of Toxicology, Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Rome, Italy
| | - Daniela Cimini
- Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia
| | - Neil J Ganem
- Department of Pharmacology, Division of Hematology and Oncology, Boston University School of Medicine, Boston, Massachusetts
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
22
|
Nicholson JM, Cimini D. Link between aneuploidy and chromosome instability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:299-317. [PMID: 25708466 DOI: 10.1016/bs.ircmb.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aneuploidy is widely acknowledged as a leading cause of miscarriage and birth defects in humans, and is generally known to be deleterious to the survival of individual cells. However, aneuploidy is also ubiquitous in cancer and is found to arise as an adaptive response in certain contexts. This dichotomy of aneuploidy has attracted the interest of researchers for over a century, but many studies have reached conflicting conclusions. The emergence of new technology has allowed scientists to revisit the aneuploidy problem and has fueled a number of recent studies aimed at understanding the effects of aneuploidy on cell physiology. Here, we review these studies, in light of previous observations and knowledge, specifically focusing on the effects of aneuploidy on cellular homeostasis, chromosome stability, and adaptation.
Collapse
Affiliation(s)
- Joshua M Nicholson
- Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | - Daniela Cimini
- Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
23
|
Zhang L, Kim S, Jia G, Buhmeida A, Dallol A, Wright WE, Fornace AJ, Al-Qahtani M, Shay JW. Exome Sequencing of Normal and Isogenic Transformed Human Colonic Epithelial Cells (HCECs) Reveals Novel Genes Potentially Involved in the Early Stages of Colorectal Tumorigenesis. BMC Genomics 2015; 16 Suppl 1:S8. [PMID: 25923178 PMCID: PMC4315167 DOI: 10.1186/1471-2164-16-s1-s8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background We have generated a series of isogenically derived immortalized human colonic epithelial cell (HCEC 1CT and HCEC 2CT) lines, including parental un-immortalized normal cell strains. The CDK4 and hTERT immortalized colonic epithelial cell line (HCEC 1CT) is initially karyotypically normal diploid and expresses a series of epithelial cell markers including stem cell markers. Under stressful tissue culture conditions, a spontaneous aneuploidy event occurred in the HCEC 1CT line, resulting in a single chromosomal change leading to a stable trisomy 7 cell line (1CT7). Trisomy 7 occurs in about 40% of all benign human adenomas (polyps) and thus this specific chromosomal change in diploid HCEC 1CT cells appears to be non random. In addition, we have partially transformed the HCEC 1CT line by introducing stable knockdown of wild type APC and TP53, and ectopically introducing a mutant Krasv12 and a mutant version of APC (A1309), all commonly found mutations in colorectal cancer (CRC). Methods Whole exome sequencing and bioinformatic analyses were performed to comprehensively examine the genetic background of these isogenic cell lines. Results Exome sequencing of these experimentally progressed cell lines recapitulates a list of genes previously reported to be involved in CRC tumorigenesis. In addition, sequencing revealed a collection of novel genes specifically detected in 1CT7 and A1309 cells but not normal diploid 1CT cells. Conclusion This study demonstrates the utility of using isogenic experimentally derived HCEC lines as a model to recapitulate CRC initiation and progression. Exome sequencing reveals a collection of novel genes that may play important roles in CRC tumorigenesis.
Collapse
|
24
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
25
|
Prakash S, Guo D, Maslen CL, Silberbach M, Investigators G, Milewicz D, Bondy CA. Single-nucleotide polymorphism array genotyping is equivalent to metaphase cytogenetics for diagnosis of Turner syndrome. Genet Med 2014; 16:53-9. [PMID: 23743550 PMCID: PMC3883919 DOI: 10.1038/gim.2013.77] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Turner syndrome is a developmental disorder caused by partial or complete monosomy for the X chromosome in 1 in 2,500 females. We hypothesized that single-nucleotide polymorphism (SNP) array genotyping could provide superior resolution in comparison to metaphase karyotype analysis to facilitate genotype-phenotype correlations. METHODS We genotyped 187 Turner syndrome patients with 733,000 SNP marker arrays. All cases met diagnostic criteria for Turner syndrome based on karyotypes (60%) or characteristic physical features. The SNP array results confirmed the diagnosis of Turner syndrome in 100% of cases. RESULTS We identified a single X chromosome (45,X) in 113 cases. In 58 additional cases (31%), other mosaic cell lines were present, including isochromosomes (16%), rings (5%), and Xp deletions (8%). The remaining cases were mosaic for monosomy X and normal male or female cell lines. Array-based models of X chromosome structure were compatible with karyotypes in 104 of 116 comparable cases (90%). We found that the SNP array data did not detect X-autosome translocations (three cases) but did identify two derivative Y chromosomes and 13 large copy-number variants that were not detected by karyotyping. CONCLUSION Our study is the first systematic comparison between the two methods and supports the utility of SNP array genotyping to address clinical and research questions in Turner syndrome.
Collapse
Affiliation(s)
| | - Dongchuan Guo
- University of Texas Health Science Center at Houston, Houston, TX
| | | | | | | | - Dianna Milewicz
- University of Texas Health Science Center at Houston, Houston, TX
| | - Carolyn A. Bondy
- National Institute of Child Health and Human Development, Bethesda, MD
| |
Collapse
|
26
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
27
|
Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol 2013; 3:148. [PMID: 23760367 PMCID: PMC3675379 DOI: 10.3389/fonc.2013.00148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are typically characterized by complex karyotypes including both structural and numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly evident that aneuploidy per se can cause chromosome mis-segregation, which explains the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused by various mechanisms and results in extensive karyotypic heterogeneity within a cancer cell population. However, despite such karyotypic heterogeneity, cancer cells also display predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential functional role of karyotypic patterns in cancer.
Collapse
|
28
|
Duijf PHG, Schultz N, Benezra R. Cancer cells preferentially lose small chromosomes. Int J Cancer 2012; 132:2316-26. [PMID: 23124507 DOI: 10.1002/ijc.27924] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022]
Abstract
Genetic and genomic aberrations are the primary cause of cancer. Chromosome missegregation leads to aneuploidy and provides cancer cells with a mechanism to lose tumor suppressor loci and gain extra copies of oncogenes. Using cytogenetic and array-based comparative genomic hybridization data, we analyzed numerical chromosome aneuploidy in 43,205 human tumors and found that 68% of solid tumors are aneuploid. In solid tumors, almost all chromosomes are more frequently lost than gained with chromosomes 7, 12 and 20 being the only exceptions with more frequent gains. Strikingly, small chromosomes are lost more readily than large ones, but no such inverse size correlation is observed with chromosome gains. Because of increasing levels of proteotoxic stress, chromosome gains have been shown to slow cell proliferation in a manner proportional to the number of extra gene copies gained. However, we find that the extra chromosome in trisomic tumors does not preferentially have a low gene copy number, suggesting that a proteotoxicity-mediated proliferation barrier is not sustained during tumor progression. Paradoxically, despite a bias toward chromosome loss, gains of chromosomes are a poor prognostic marker in ovarian adenocarcinomas. In addition, we find that solid and non-solid cancers have markedly distinct whole-chromosome aneuploidy signatures, which may underlie their fundamentally different etiologies. Finally, preferential chromosome loss is observed in both early and late stages of astrocytoma. Our results open up new avenues of enquiry into the role and nature of whole-chromosome aneuploidy in human tumors and will redirect modeling and genetic targeting efforts in patients.
Collapse
Affiliation(s)
- Pascal H G Duijf
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
29
|
Ly P, Kim SB, Kaisani AA, Marian G, Wright WE, Shay JW. Aneuploid human colonic epithelial cells are sensitive to AICAR-induced growth inhibition through EGFR degradation. Oncogene 2012; 32:3139-46. [PMID: 22890317 DOI: 10.1038/onc.2012.339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trisomy for chromosome 7 is frequently observed as an initiating event in sporadic colorectal cancer. Although unstable chromosome numbers and recurrent aneuploidies drive a large fraction of human cancers, targeted therapies selective to pre-neoplastic trisomic cells are non-existent. We have previously characterized a trisomy 7 cell line (1CT+7) spontaneously derived from normal diploid human colonic epithelial cells that aberrantly expresses the epidermal growth factor receptor (EGFR, chromosome 7p11). Recent studies identified AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) as a pharmacological inhibitor of aneuploid murine fibroblast proliferation. Here, we report that AICAR induces profound cytostatic and metabolic effects on 1CT+7 cells, but not on their isogenic diploid counterpart. Dose-response experiments indicate that 1CT+7 cells are fourfold preferentially sensitive to AICAR compared to diploid cells. Unexpectedly, treatment of 1CT+7 cells with AICAR led to a reversible 3.5-fold reduction (P=0.0025) in EGFR overexpression. AICAR-induced depletion of EGFR protein can be abrogated through inhibition of the proteasome with MG132. AICAR also heavily promoted EGFR ubiquitination in cell-based immunoprecipitation assays, suggesting enhanced degradation of EGFR protein mediated by the proteasome. Moreover, treatment with AICAR reduced EGFR protein levels in a panel of human colorectal cancer cells in vitro and in xenograft tumors in vivo. Our data collectively support the pharmacological compound AICAR as a novel inhibitor of EGFR protein abundance and as a potential anticancer agent for aneuploidy-driven colorectal cancer.
Collapse
Affiliation(s)
- P Ly
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
30
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|
31
|
Abstract
Aneuploidy is a common feature of cancer cells, and is believed to play a critical role in tumorigenesis and cancer progression. Most cancer cells also exhibit high rates of mitotic chromosome mis-segregation, a phenomenon known as chromosomal instability, which leads to high variability of the karyotype. Here, we describe the nature, nuances, and implications of cancer karyotypic diversity. Moreover, we summarize recent studies aimed at identifying the mitotic defects that may be responsible for inducing chromosome mis-segregation in cancer cells. These include kinetochore attachment errors, spindle assembly checkpoint dysfunction, mitotic spindle defects, and other cell division inaccuracies. Finally, we discuss how such mitotic errors generate karyotypic diversity in cancer cells.
Collapse
|