1
|
Ghalavand M, Moradi-Chaleshtori M, Dorostkar R, Mohammadi-Yeganeh S, Hashemi SM. Exosomes derived from rapamycin-treated 4T1 breast cancer cells induced polarization of macrophages to M1 phenotype. Biotechnol Appl Biochem 2023; 70:1754-1771. [PMID: 37254633 DOI: 10.1002/bab.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/07/2023] [Indexed: 06/01/2023]
Abstract
M2 macrophages are the most prevalent type in the tumor microenvironment and their polarization to M1 type can be used as a potential cancer immunotherapy. Here, we investigated the role of tumor microenvironment and particularly purified exosomes in M2 to M1 macrophage polarization. Rapamycin treatment on triple-negative breast cancer cells (TNBC) was performed. Tumor cells-derived exosomes (called texosomes) were isolated and characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography, Fourier transform infrared, and Western blot assays. M2 mouse peritoneal macrophages were treated with rapamycin or rapamycin-texosome. Then, M1/M2 phenotype-specific marker genes and proteins were measured to assess the degree of M2 to M1 polarization. Finally, nitric oxide (NO) production, phagocytosis, and efferocytosis assays were assessed to verify the functionality of the polarized macrophages. Purified rapamycin-texosomes significantly increased the expression of the M1 markers (Irf5, Nos2, and CD86) and decreased M2 markers (Arg, Ym1, and CD206). In addition, the levels of M1-specific cytokines tumor necrosis factor alpha and interleukin 1β (IL-1β) were increased, whereas the levels of M2 specific cytokines IL-10 and transforming growth factor beta were declined. Furthermore, texosome treatment increased NO concentration and phagocytosis and decreased efferocytosis indicating M1 polarization. These findings suggest rapamycin-texosomes can induce M2 to M1 macrophages polarization as a potential immunotherapy for TNBC.
Collapse
Affiliation(s)
- Majdedin Ghalavand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moradi-Chaleshtori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Therapeutic Effect of Curcumol on Chronic Atrophic Gastritis (CAG) and Gastric Cancer Is Achieved by Downregulating SDF-1α/CXCR4/VEGF Expression. JOURNAL OF ONCOLOGY 2022; 2022:3919053. [PMID: 36131788 PMCID: PMC9484916 DOI: 10.1155/2022/3919053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
CAG is an essential procession of the transformation from gastritis into gastric cancer. A series of timely moves of diagnosis, treatment, and monitoring towards CAG to anticipate the potential population at risk of gastric cancer is an effective means to prevent gastric cancer occurrence. The main active monomer in Fuzheng Huowei Decoction is Curcumol, which is an indispensable ingredient in the treatment to CAG and gastric cancer. In this study, the CAG model, in vitro cultured gastric cancer cells, and participating nude mice were treated with Curcumol, and alterations in SDF-1α/CXCR4/VEGF expression were estimated using the assays of immunohistochemistry and Western blot. MTT, flow cytometry, transwell, HE staining, and tumor volume determination were applied for the verification of the regulatory effects of Curcumol on CAG and gastric cancer cells. The results showed that the expressions of VEGF, SDF-1α, CXCR4, and CD34 decreased in our CAG model with Curcumol treatment. Curcumol is in procession of an inhibitory effect toward the activity, migration, and invasion of gastric cancer cells, and it would also result in gastric cancer cells' apoptosis. We subsequently added SDF-1α overexpressing lentivirus to the Curcumol-treated group and found that the expressions of SDF-1α, CXCR4, and VEGF protein increased, and the inhibitory effect of Curcumol on gastric cancer cells was withdrawn. Our nude mouse experiment showed that Curcumol + SDF-1α group ended up with the largest tumor volume, while Fuzheng Huowei + NC group was with the smallest tumor volume. In conclusion, Curcumol is able to effectively protect the gastric tissue and suppress gastric cancer cells' viability. Curcumol functions as a therapeutic factor in chronic atrophic gastritis and gastric cancer by downregulating SDF-1α/CXCR4/VEGF expression.
Collapse
|
3
|
Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C, Stavarache MA, Ma M, Wang Y, Cui Q, Kaplitt MG, Zack DJ, Benowitz LI, Yin Y. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proc Natl Acad Sci U S A 2022; 119:e2113751119. [PMID: 35394873 PMCID: PMC9169637 DOI: 10.1073/pnas.2113751119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell–derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Ling-Ping Cen
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Yiqing Li
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510085, China
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Oleksandr Strelko
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mihaela A. Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Madeline Ma
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Yongting Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Cui
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
4
|
Malik S, Westcott JM, Brekken RA, Burrows FJ. CXCL12 in Pancreatic Cancer: Its Function and Potential as a Therapeutic Drug Target. Cancers (Basel) 2021; 14:cancers14010086. [PMID: 35008248 PMCID: PMC8750050 DOI: 10.3390/cancers14010086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a challenging disease to treat effectively. Fibroblasts associated with pancreatic cancer contribute to disease progression by secreting factors that enhance tumor cell survival and help tumor cells avoid detection by the immune system. This overview focuses on a chemokine, CXCL12, produced by cancer-associated fibroblasts and how CXCL12 signaling enhances pancreatic cancer progression by contributing to various hallmarks of cancer including, but not limited to, tumor growth and evasion of immune response. These pro-oncogenic functions of CXCL12 make it an attractive target in pancreatic cancer. We discuss the different approaches in development to therapeutically target CXCL12 and finally propose a novel approach, the use of the farnesyl transferase inhibitor tipifarnib to inhibit CXCL12 expression in pancreatic fibroblasts. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a disease with limited therapeutic options and dismal long-term survival. The unique tumor environment of PDAC, consisting of desmoplastic stroma, immune suppressive cells, and activated fibroblasts, contributes to its resistance to therapy. Activated fibroblasts (cancer-associated fibroblasts and pancreatic stellate cells) secrete chemokines and growth factors that support PDAC growth, spread, chemoresistance, and immune evasion. In this review, we focus on one such chemokine, CXCL12, secreted by the cancer-associated fibroblasts and discuss its contribution to several of the classical hallmarks of PDAC and other tumors. We review the various therapeutic approaches in development to target CXCL12 signaling in PDAC. Finally, we propose an unconventional use of tipifarnib, a farnesyl transferase inhibitor, to inhibit CXCL12 production in PDAC.
Collapse
Affiliation(s)
| | - Jill M. Westcott
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| | - Francis J. Burrows
- Kura Oncology, Inc., San Diego, CA 92130, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| |
Collapse
|
5
|
Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G, Scala S. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 2021; 11:591386. [PMID: 33937018 PMCID: PMC8082172 DOI: 10.3389/fonc.2021.591386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors (GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression, targeting cell proliferation and migration, while orchestrating the recruitment of immune and stromal cells within the TME. CXCL12 excludes T cells from TME through a concentration gradient that inhibits immunoactive cells access and promotes tumor vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer components. CXCR4/CXCR7 antagonism should prevent the development of metastases by interfering with tumor cell growth, migration and chemotaxis and favoring the frequency of T cells in TME. Herein, we discuss the current understanding on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In addition, we consider emerging approaches that coordinately target both immune checkpoints and CXCL12/CXCR4/CXCR7 axis.
Collapse
Affiliation(s)
- Sara Santagata
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Caterina Ieranò
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Trotta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Capiluongo
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Federica Auletta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppe Guardascione
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| |
Collapse
|
6
|
Song T, Chen M, Wang X, Zhu E, Xue Y, Wang J, Sun B, Feng J. Intermittent hypoxia: Friend or foe on endothelial repair in mouse model. Exp Lung Res 2021; 47:211-225. [PMID: 33678107 DOI: 10.1080/01902148.2021.1891355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aim of the study: Obstructive sleep apnea, which is characterized by intermittent hypoxia (IH), is a common respiratory disease. The aim of the present study was to explore the relationship between hypoxia and endothelial progenitor cell (EPC) function, and explain the role of IH in endothelial repair.Materials and methods: Peripheral blood mononuclear cells (PBMCs) were isolated from a mouse model of IH. The number of CD133+ kinase insert domain receptor (KDR)+, CD133+CD34+, CD34+KDR+ and ALDHlowCD34+KDR+ EPCs was determined by flow cytometry. HIF-1α, stromal-derived factor-1 (SDF-1) α and VEGF were measured by ELISA. The proliferative ability of PBMCs was determined. EPC migration was assessed by Transwell assay and surface proteins by western blot analysis. EPCs were co-cultured with mouse brain endothelial cells and their angiogenic ability was analyzed.Results: The number of CD133+KDR+, CD133+CD34+ and CD34+KDR+ EPCs increased with IH ingravescence. The number of ALDHlowCD34+KDR+ EPCs with mild IH stimulation was higher and gradually decreased in the moderate and severe IH groups. The release of HIF-1α, SDF-1α and VEGF in the serum increased with the increase in the degree of IH. In the mild IH treatment, the migration and angiogenesis of EPCs, as well as the expression of vascular endothelial growth factor receptor 2 and cysteine-X-cysteine receptor 4, were higher than those in the control group, but progressively decreased in the groups with moderate and severe IH.Conclusion: Increased levels of IH accelerated the increase in vasoactive factors in peripheral blood, thereby mobilizing a large number of EPCs. Increasing of IH diminished the mobilization, chemotactic and angiogenetic ability of EPCs.
Collapse
Affiliation(s)
- Tao Song
- Intensive Care Unit of Tianjin Medical University General Hospital, Tianjin, China
| | - Mo Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanchao Xue
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Juan Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China.,Neuropharmacology Section, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Shi Y, Riese DJ, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020; 11:574667. [PMID: 33363463 PMCID: PMC7753359 DOI: 10.3389/fphar.2020.574667] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
8
|
Soliman GA, Shukla SK, Etekpo A, Gunda V, Steenson SM, Gautam N, Alnouti Y, Singh PK. The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Curr Dev Nutr 2020; 4:nzaa131. [PMID: 32908958 PMCID: PMC7467276 DOI: 10.1093/cdn/nzaa131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sharalyn M Steenson
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
10
|
Jin J, Zhao Q. Emerging role of mTOR in tumor immune contexture: Impact on chemokine-related immune cells migration. Theranostics 2020; 10:6231-6244. [PMID: 32483450 PMCID: PMC7255024 DOI: 10.7150/thno.45219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, cell-based anti-tumor immunotherapy emerged and it has provided us with a large amount of knowledge. Upon chemokines recognition, immune cells undergo rapid trafficking and activation in disease milieu, with immune cells chemotaxis being accompanied by activation of diverse intercellular signal transduction pathways. The outcome of chemokines-mediated immune cells chemotaxis interacts with the cue of mammalian target of rapamycin (mTOR) in the tumor microenvironment (TME). Indeed, the mTOR cascade in immune cells involves migration and infiltration. In this review, we summarize the available mTOR-related chemokines, as well as the characterized upstream regulators and downstream targets in immune cells chemotaxis and assign potential underlying mechanisms in each evaluated chemokine. Specifically, we focus on the involvement of mTOR in chemokine-mediated immune related cells in the balance between tumor immunity and malignancy.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
11
|
Nabeel AI. Samarium enriches antitumor activity of ZnO nanoparticles via downregulation of CXCR4 receptor and cytochrome P450. Tumour Biol 2020; 42:1010428320909999. [PMID: 32129155 DOI: 10.1177/1010428320909999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of death and exhausts human and economic resources for treatment and protection. Zinc oxide nanoparticles play an effective role in tumor treatment but with some cautions, such as overexpression of cytochrome P450, hepatic overload, and the mammalian target of rapamycin pathway resistance. Although lanthanides have antitumor activity, their use is limited. Therefore, the current study aims to improve the effectiveness of zinc oxide nanoparticle via doping with lanthanides, such as samarium. In vitro study revealed that samarium doped with zinc oxide showed more antitumor activity than the other lanthanides, and the antitumor activity depends on the concentration of samarium in the nanocomposite. The in vivo experiment on mice bearing Ehrlich solid tumor revealed that intramuscular injection of samarium/zinc oxide downregulates the expressions of CXCR4 and PI3K/Akt/mammalian target of rapamycin pathway in respect to Ehrlich solid tumor group. Regarding the apoptotic biomarkers, samarium/zinc oxide upregulates the apoptotic biomarker; Bax accompanied with the mitotic catastrophe which was indicated by cell cycle arrest in G2 phase. Moreover, samarium:zinc oxide nanoparticles exhibited minimum toxicity which was indicated by suppressed activities of cytochrome P450 and hepatic enzymes, including alanine transaminase and aspartate transaminase. In addition, the histopathological finding, as well as immunophenotyping results, appreciated the biochemical finding. Therefore, samarium:zinc oxide might be offered a new approach to improve the effectiveness of zinc oxide nanoparticles along with lower toxic effect. Also, samarium:zinc oxide nanoparticles can be a candidate as a new antitumor compound to detect its mode of action.
Collapse
Affiliation(s)
- Asmaa I Nabeel
- Biochemistry Laboratory, Chemistry Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Doodnauth SA, Grinstein S, Maxson ME. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180147. [PMID: 30967001 DOI: 10.1098/rstb.2018.0147] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages respond to several stimuli by forming florid membrane ruffles that lead to fluid uptake by macropinocytosis. This type of induced macropinocytosis, executed by a variety of non-malignant and malignant cells, is initiated by transmembrane receptors and is involved in nutrient acquisition and mTOR signalling. However, macrophages also perform a unique type of constitutive ruffling and macropinocytosis that is dependent on the presence of extracellular calcium. Calcium-sensing receptors are responsible for this activity. This distinct form of macropinocytosis enables macrophages to continuously sample their microenvironment for antigenic molecules and for pathogen- and danger-associated molecular patterns, as part of their immune surveillance functions. Interestingly, even within the monocyte lineage, there are differences in macropinocytic ability that reflect the polarized functional roles of distinct macrophage subsets. This review discusses the shared and distinct features of both induced and constitutive macropinocytosis displayed by the macrophage lineage and their roles in physiology, immunity and pathophysiology. In particular, we analyse the role of macropinocytosis in the uptake of modified low-density lipoprotein (LDL) and its contribution to foam cell and atherosclerotic plaque formation. We propose a combined role of scavenger receptors and constitutive macropinocytosis in oxidized LDL uptake, a process we have termed 'receptor-assisted macropinocytosis'. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Sasha A Doodnauth
- 1 Princess Margaret Cancer Center, University Health Network , Toronto, ON , Canada M5G 1L7.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada M5G 1L7
| | - Sergio Grinstein
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4.,4 Department of Biochemistry, University of Toronto , 1 King's Circle, Toronto, ON , Canada M5S 1A8.,5 Keenan Research Centre of the Li Ka Shing Knowledge Institute , St. Michael's Hospital, 290 Victoria Street, Toronto, ON , Canada M5C 1N8
| | - Michelle E Maxson
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4
| |
Collapse
|
13
|
Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:69-80. [PMID: 32030685 DOI: 10.1007/978-3-030-35582-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.
Collapse
|
14
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
15
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
16
|
Revisiting mTOR inhibitors as anticancer agents. Drug Discov Today 2019; 24:2086-2095. [PMID: 31173912 DOI: 10.1016/j.drudis.2019.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates a variety of cellular processes, influencing diverse pathological conditions including a variety of cancers. Accordingly, therapies that target mTOR as anticancer agents benefit patients in various clinical settings. It is therefore important to fully investigate mTOR signaling at a molecular level and corresponding mTOR inhibitors to identify additional clinical opportunities of targeting mTOR in cancers. In this review, we introduce the function and regulation of the mTOR signaling pathway and organize and summarize the different roles of mTOR in cancers and a variety of mTOR inhibitors that can be used as anticancer agents. This article aims to enlighten and guide the development of mTOR-targeted anticancer agents in the future.
Collapse
|
17
|
CXCL12 and Its Isoforms: Different Roles in Pancreatic Cancer? JOURNAL OF ONCOLOGY 2019; 2019:9681698. [PMID: 31275385 PMCID: PMC6582792 DOI: 10.1155/2019/9681698] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
CXCL12 is a chemokine that acts through CXCR4 and ACKR3 receptors and plays a physiological role in embryogenesis and haematopoiesis. It has an important role also in tumor development, since it is released by stromal cells of tumor microenvironment and alters the behavior of cancer cells. Many studies investigated the roles of CXCL12 in order to understand if it has an anti- or protumor role. In particular, it seems to promote tumor invasion, proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in pancreatic cancer. Nevertheless, some evidence shows opposite functions; therefore research on CXCL12 is still ongoing. These discrepancies could be due to the presence of at least six CXCL12 splicing isoforms, each with different roles. Interestingly, three out of six variants have the highest levels of expression in the pancreas. Here, we report the current knowledge about the functions of this chemokine and then focus on pancreatic cancer. Moreover, we discuss the methods applied in recent studies in order to understand if they took into account the existence of the CXCL12 isoforms.
Collapse
|
18
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
20
|
Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett 2017; 14:2611-2620. [PMID: 28927027 PMCID: PMC5588104 DOI: 10.3892/ol.2017.6497] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 05/08/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblasts in the tumor stroma are well recognized as having an indispensable role in carcinogenesis, including in the initiation of epithelial tumor formation. The association between cancer cells and fibroblasts has been highlighted in several previous studies. Regulation factors released from cancer-associated fibroblasts (CAFs) into the tumor microenvironment have essential roles, including the support of tumor growth, angiogenesis, metastasis and therapy resistance. A mutual interaction between tumor-induced fibroblast activation, and fibroblast-induced tumor proliferation and metastasis occurs, thus CAFs act as tumor supporters. Previous studies have reported that by developing fibroblast-targeting drugs, it may be possible to interrupt the interaction between fibroblasts and the tumor, thus resulting in the suppression of tumor growth, and metastasis. The present review focused on the reciprocal feedback loop between fibroblasts and cancer cells, and evaluated the potential application of anti-CAF agents in the treatment of cancer.
Collapse
Affiliation(s)
- Leilei Tao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
21
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
22
|
Circelli L, Sciammarella C, Guadagno E, Tafuto S, del Basso de Caro M, Botti G, Pezzullo L, Aria M, Ramundo V, Tatangelo F, Losito NS, Ieranò C, D'Alterio C, Izzo F, Ciliberto G, Colao A, Faggiano A, Scala S. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR. Oncotarget 2017; 7:18865-75. [PMID: 26934559 PMCID: PMC4951335 DOI: 10.18632/oncotarget.7738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022] Open
Abstract
Objective To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Methods Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. Results: CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. Conclusions CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.
Collapse
Affiliation(s)
- Luisa Circelli
- Molecolar Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Concetta Sciammarella
- Departments of Clinical Medicine and Surgery, "Federico II" University of Naples, Italy
| | - Elia Guadagno
- Advanced Biomedical Sciences, Division of Pathology, "Federico II" University of Naples, Italy
| | - Salvatore Tafuto
- Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | | | - Giovanni Botti
- Molecolar Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Luciano Pezzullo
- Thyroid and Parathyroid Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Massimo Aria
- Economics and Statistics, "Federico II" University of Naples, Naples, Italy
| | - Valeria Ramundo
- Departments of Clinical Medicine and Surgery, "Federico II" University of Naples, Italy
| | - Fabiana Tatangelo
- Pathology, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Nunzia Simona Losito
- Pathology, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Caterina Ieranò
- Molecolar Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Crescenzo D'Alterio
- Molecolar Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Francesco Izzo
- Abdominal Surgery, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Annamaria Colao
- Departments of Clinical Medicine and Surgery, "Federico II" University of Naples, Italy
| | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| | - Stefania Scala
- Molecolar Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori - IRCCS Naples "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
23
|
Zhang H, Wu H, Guan J, Wang L, Ren X, Shi X, Liang Z, Liu T. Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget 2016; 6:3085-97. [PMID: 25609203 PMCID: PMC4413639 DOI: 10.18632/oncotarget.3099] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer exhibits the poorest prognosis among all tumors and is characterized by high resistance to the currently available chemotherapeutic agents. Our previous studies have suggested that stromal components could promote the chemoresistance of pancreatic cancer cells (PCCs). Here, we explored the roles of pancreatic stellate cells (PSCs) and the SDF-1α/CXCR4 axis in pancreatic cancer chemoresitance. Our results showed that primary PSCs typically expressed SDF-1α, whereas its receptor CXCR4 was highly expressed in PCCs. PSC-conditioned medium (PSC-CM) inhibited Gemcitabine (GEM)-induced cytotoxicity and apoptosis in the human PCC line Panc-1, which was antagonized by an SDF-1α neutralizing Ab. Recombinant human SDF-1α (rhSDF-1α) increased IL-6 expression and secretion in Panc-1 cells in a time and dose-dependent manner, and this effect was suppressed by the CXCR4 antagonist AMD3100. rhSDF-1α protected Panc-1 cells from GEM-induced apoptosis, and the protective effect was significantly reduced by blocking IL-6 using a neutralizing antibody. Moreover, rhSDF-1α increased FAK, ERK1/2, AKT and P38 phosphorylation in Panc-1 cells, and either FAK or ERK1/2 inhibition suppressed SDF-1α-upregulated IL-6 expression. SDF-1α-induced AKT activation was almost completely blocked by FAK inhibition. In conclusion, we demonstrate for the first time that PSCs promote the chemoresistance of PCCs to GEM, and this effect is mediated by paracrine SDF-1α/CXCR4 signaling-induced activation of the intracellular FAK-AKT and ERK1/2 signaling pathways and a subsequent IL-6 autocrine loop in PCCs. Our findings indicate that blocking the PSC-PCC interaction by inhibiting SDF-1α/CXCR4 signaling may be a promising therapeutic strategy for overcoming chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Jian Guan
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Li Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| |
Collapse
|
24
|
Sahin IH, Iacobuzio-Donahue CA, O'Reilly EM. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy. Expert Opin Ther Targets 2015; 20:341-59. [PMID: 26439702 PMCID: PMC4985526 DOI: 10.1517/14728222.2016.1094057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. AREAS COVERED In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. EXPERT OPINION Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a 'precision medicine' approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes.
Collapse
Affiliation(s)
- Ibrahim H Sahin
- a 1 Icahn School of Medicine at Mount Sinai St Luke's Roosevelt Hospital Center , NY, USA
| | | | - Eileen M O'Reilly
- b 2 Memorial Sloan Kettering Cancer Center , NY, USA
- c 3 Weill Medical College of Cornell University, David M. Rubenstein Center for Pancreatic Cancer Research , 300 East 66th street, office 1021, NY 10065, USA ;
| |
Collapse
|
25
|
Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. J Cancer Res Clin Oncol 2015; 142:1137-61. [PMID: 26250876 DOI: 10.1007/s00432-015-2024-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer shows a remarkable preference for the liver to establish secondary tumors. Selective metastasis to the liver is attributed to the development of potential microenvironment for the survival of pancreatic cancer cells. This review aims to provide a full understanding of the hepatic metastatic process from circulating pancreatic cancer cells to their settlement in the liver, serving as a basic theory for efficient prediction and treatment of metastatic diseases. METHODS A systematic search of relevant original articles and reviews was performed on PubMed, EMBASE and Cochrane Library for the purpose of this review. RESULTS Three interrelated phases are delineated as the contributions of the interaction between pancreatic cancer cells and the liver to hepatic metastasis process. Chemotaxis of disseminated pancreatic cancer cells and simultaneous defensive formation of platelets or neutrophils facilitate specific metastasis toward the liver. Remodeling of extracellular matrix and stromal cells in hepatic lobules and angiogenesis induced by proangiogenic factors support the survival and growth of clinical micrometastasis colonizing the liver. The bimodal role of the immune system or prevalence of cancer cells over the immune system makes metastatic progression successfully proceed from micrometastasis to macrometastasis. CONCLUSIONS Pancreatic cancer is an appropriate research object of cancer metastasis representing more than a straight cascade. If any of the successive or simultaneous phases, especially tumor-induced immunosuppression, is totally disrupted, hepatic metastasis will be temporarily under control or even cancelled forever. To shrink cancers on multiple fronts and prolong survival for patients, novel oral or intravenous anti-cancer agents covering one or different phases of metastatic pancreatic cancer are expected to be integrated into innovative strategies on the premise of safety and efficacious biostability.
Collapse
|
26
|
CXCL12-CXCR4/CXCR7 axis contributes to cell motilities of oral squamous cell carcinoma. Tumour Biol 2015; 37:567-75. [DOI: 10.1007/s13277-015-3803-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022] Open
|
27
|
Scala S. Molecular Pathways: Targeting the CXCR4–CXCL12 Axis—Untapped Potential in the Tumor Microenvironment. Clin Cancer Res 2015. [DOI: 10.1158/1078-0432.ccr-14-0914] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Yun HJ, Ryu H, Choi YS, Song IC, Jo DY, Kim S, Lee HJ. C-X-C motif receptor 7 in gastrointestinal cancer. Oncol Lett 2015; 10:1227-1232. [PMID: 26622655 DOI: 10.3892/ol.2015.3407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
Chemokine receptors are key mediators of normal physiology and numerous pathological conditions, including inflammation and cancer. This receptor family is an emerging target for anticancer drug development. C-X-C motif receptor 7 (CXCR7) is an atypical chemokine receptor that was first cloned from a canine cDNA library as an orphan receptor and was initially named receptor dog cDNA 1 (RDC1). Shortly after demonstrating that RDC1 binds with its ligand, stromal cell-derived factor-1α and interferon-inducible T-cell α chemoattractant, RDC1 was officially deorphanized and renamed CXCR7, as the seventh receptor in the CXC class of the chemokine receptor family. Recent accumulating evidence has demonstrated that CXCR7 expression is augmented in the majority of tumor cells compared with their normal counterparts and is involved in cell proliferation, survival, migration, invasion and angiogenesis during the initiation and progression of breast, lung and prostate cancer. In the present review, the expression and role of CXCR7, as well as its clinical relevance in cancer of the gastrointestinal system, were investigated. In addition, the potential of this chemokine receptor as a therapeutic target in the treatment of gastrointestinal cancer was discussed.
Collapse
Affiliation(s)
- Hwan-Jung Yun
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Hyewon Ryu
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Yoon Seok Choi
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Deog-Yeon Jo
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Samyong Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Hyo Jin Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| |
Collapse
|
29
|
Abstract
Pancreatic cancer is an insidious type of cancer with its symptoms manifested upon extensive disease. The overall 5-year survival rates between 0.4 and 4%. Surgical resection is an option for only 10% of the patients with pancreatic cancer. Local recurrence and hepatic metastases occur within 2 years after surgery. There are currently several molecular pathways investigated and novel targeted treatments are on the market. However; the nature of pancreatic cancer with its ability to spread locally in the primary site and lymph nodes indicates that further experimentation with local interventional therapies could be a future treatment proposal as palliative care or adjunct to gene therapy and chemotherapy/radiotherapy. In the current review, we will summarize the molecular pathways and present the interventional treatment options for pancreatic cancer.
Collapse
|
30
|
Liu NN, Zhao N, Cai N. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling. IUBMB Life 2015; 67:446-52. [PMID: 25988388 DOI: 10.1002/iub.1382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/09/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Ning-Ning Liu
- Department of Ophthalmology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning Province China
| | - Ning Zhao
- Department of Ophthalmology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning Province China
| | - Na Cai
- Department of Ophthalmology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning Province China
| |
Collapse
|
31
|
Seong H, Ryu J, Jeong JY, Chung IY, Han YS, Hwang SH, Park JM, Kang SS, Seo SW. Resveratrol suppresses vascular endothelial growth factor secretion via inhibition of CXC-chemokine receptor 4 expression in ARPE-19 cells. Mol Med Rep 2015; 12:1479-84. [PMID: 25815440 DOI: 10.3892/mmr.2015.3518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
The present study characterizes the effects of resveratrol (Res) on vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with CoCl2, a hypoxia mimetic agent. CoCl2 treatment increased protein levels of hypoxia inducible factor-1α (HIF-1α) and CXC-chemokine receptor 4 (CXCR4), and secretion of VEGF. To confirm the effects of Res on VEGF secretion, the human umbilical vein endothelial cell tube formation assay was performed with conditioned medium from Res-treated ARPE-19 cells. The well-known antioxidant Res effectively blocked these effects and reduced phosphorylation of nuclear factor (NF)-κB, an upstream activator of CXCR4. Furthermore, Res also suppressed VEGF secretion induced by SDF-1, a ligand of CXCR4. Conditioned medium from Res-treated ARPE-19 cells clearly suppressed tube formation compared with hypoxia-treated conditioned medium. The results demonstrated that Res inhibited the hypoxia mimetic CoCl2-induced expression of VEGF in ARPE-19 cells. Res suppressed CXCR4 expression through decreased phosphorylation of NF-κB, resulting in downregulation of VEGF secretion.
Collapse
Affiliation(s)
- Hyemin Seong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Jinhyun Ryu
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Joo Yeon Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - In Young Chung
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Yong-Seop Han
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Soo Hyun Hwang
- Department of Neurosurgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Jong Moon Park
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| | - Seong Wook Seo
- Department of Ophthalmology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660‑751, Republic of Korea
| |
Collapse
|
32
|
Liu Y, Starr MD, Brady JC, Rushing C, Bulusu A, Pang H, Honeycutt W, Amara A, Altomare I, Uronis HE, Hurwitz HI, Nixon AB. Biomarker signatures correlate with clinical outcome in refractory metastatic colorectal cancer patients receiving bevacizumab and everolimus. Mol Cancer Ther 2015; 14:1048-56. [PMID: 25695956 DOI: 10.1158/1535-7163.mct-14-0923-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
A novel combination of bevacizumab and everolimus was evaluated in refractory colorectal cancer patients in a phase II trial. In this retrospective analysis, plasma samples from 49 patients were tested for over 40 biomarkers at baseline and after one or two cycles of drug administration. Analyte levels at baseline and change on-treatment were correlated with progression-free survival (PFS) and overall survival (OS) using univariate Cox proportional hazard modeling. Multivariable analyses were conducted using Cox modeling. Significant changes in multiple markers were observed following bevacizumab and everolimus treatment. Baseline levels of six markers significantly correlated with PFS and OS, including CRP, Gro-α, IGFBP-1, TF, ICAM-1, and TSP-2 (P < 0.05). At C2D1, changes of IGFBP-3, TGFβ-R3, and IGFBP-2 correlated with PFS and OS. Prognostic models were developed for OS and PFS (P = 0.0002 and 0.004, respectively). The baseline model for OS consisted of CRP, Gro-α, and TF, while the on-treatment model at C2D1 included IGFBP-2, IGFBP-3, and TGFβ-R3. These data demonstrated that multiple biomarkers were significantly modulated in response to bevacizumab and everolimus. Several markers correlated with both PFS and OS. Interestingly, these markers are known to be associated with inflammation and IGF signaling, key modulators of mTOR biology.
Collapse
Affiliation(s)
- Yingmiao Liu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mark D Starr
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - John C Brady
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Christel Rushing
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Anuradha Bulusu
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Herbert Pang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina. School of Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanda Honeycutt
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Anthony Amara
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ivy Altomare
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Hope E Uronis
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Herbert I Hurwitz
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Andrew B Nixon
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
33
|
Shi J, Wei Y, Xia J, Wang S, Wu J, Chen F, Huang G, Chen J. CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis. Future Oncol 2014; 10:749-59. [PMID: 24799056 DOI: 10.2217/fon.13.193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CXCL12-CXCR4 axis is postulated to be a key pathway in the interaction between (cancer) stem cells and their surrounding supportive cells in the (cancer) stem cell niche. As the bone marrow constitutes a unique microenvironment for cancer cells, the CXCL12-CXCR4 axis assists the bone marrow in regulating cancer progression. This interaction can be disrupted by CXCR4 antagonists, and this concept is being used clinically to harvest hematopoietic stem/progenitor cells from the bone marrow. The functions of CXCL12-CXCR4 axis in cancer cell-tumor microenvironment interaction and angiogenesis have been recently studied. This review focuses on how CXCL12-CXCR4 helps the bone marrow in creating a tumor mircoenvironment that results in the cancer metastasis. It also discusses ongoing research regarding the clinical feasibility of CXCR4 inhibitors.
Collapse
Affiliation(s)
- Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Beloribi-Djefaflia S, Siret C, Lombardo D. Exosomal lipids induce human pancreatic tumoral MiaPaCa-2 cells resistance through the CXCR4-SDF-1α signaling axis. Oncoscience 2014; 2:15-30. [PMID: 25821841 PMCID: PMC4341461 DOI: 10.18632/oncoscience.96] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/09/2014] [Indexed: 12/18/2022] Open
Abstract
We previously reported that exosomes secreted by human pancreatic tumor cells induce cell death through the inhibition of the Notch-1 survival pathway (Ristorcelli et al., 2009). We demonstrated that exosomal lipids evoked apoptosis of human pancreatic cancer SOJ-6 cells. Based on the lipid composition of efficient exosomes we designed Synthetic Exosome-Like Nanoparticles (SELN) in which the ratio ordered lipids versus disordered lipids was equal to 6.0 (SELN6.0). These SELN decreased SOJ-6 cells survival by inhibiting the Notch-1 pathway. However MiaPaCa-2 cells were resistant to exosomes (Ristorcelli et al., 2008) and to SELN6.0 (Beloribi et al.,2012). In this paper we aimed at deciphering the reason(s) of this resistance. We observed, in presence of SELN6.0, that the expression of the Notch IntraCytoplasmic Domain (NICD) decreases in MiaPaCa-2 cells but neither Hes-1, the nuclear target of NICD, nor the ratio Bax/Bcl-2 were affected. We further showed that in MiaPaCa-2 cells SELN6.0 induced the activation of NF-kB, which promotes the expression and the secretion of SDF-1α. This chemokine interacts with its receptor CXCR4 on MiaPaCa-2 cells and activates the Akt survival pathway protecting cells from death. This activation process promoted by exosomal lipids could have implications in tumor progression and drug resistance.
Collapse
Affiliation(s)
| | - Carole Siret
- Aix-Marseille Université, CRO2, INSERM, UMR 911, Marseille cedex 5, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, INSERM, UMR 911, Marseille cedex 5, France
| |
Collapse
|
35
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
36
|
Domanska UM, Boer JC, Timmer-Bosscha H, van Vugt MATM, Hoving HD, Kliphuis NM, Rosati S, van der Poel HG, de Jong IJ, de Vries EGE, Walenkamp AME. CXCR4 inhibition enhances radiosensitivity, while inducing cancer cell mobilization in a prostate cancer mouse model. Clin Exp Metastasis 2014; 31:829-39. [PMID: 25154297 DOI: 10.1007/s10585-014-9673-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023]
Abstract
Preclinical studies show that stroma affects sensitivity of prostate cancer cells via activation of the CXCR4/CXCL12 pathway. Here we studied the effect of CXCR4 inhibition combined with irradiation in prostate cancer cells. In an in vitro co-culture with stromal cells, the CXCR4 inhibitor AMD3100 sensitized prostate cancer cell lines PC3-Luc and LNCaP to irradiation (P = 0.04). Tumor growth and metastasis were evaluated in mice xenografted with luciferase-expressing PC3 cells that received 5 Gy irradiation weekly ± 3.5 mg/kg AMD3100 daily intraperitoneally. The irradiated xenografts showed higher CXCR4 (P = 0.006) and CXCL12 (P = 0.01) expression, compared to controls. AMD3100 sensitized the xenografts to irradiation at the fourth week of treatment (P = 0.02). However AMD3100 also mobilized tumor cells at days 14 and 21 (P < 0.0001), as shown by bioluminescent imaging. In conclusion, AMD3100 transiently enhances prostate cancer radiosensitivity, but induces cancer cell mobilization.
Collapse
Affiliation(s)
- Urszula M Domanska
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.00, 19700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ieranò C, Santagata S, Napolitano M, Guardia F, Grimaldi A, Antignani E, Botti G, Consales C, Riccio A, Nanayakkara M, Barone MV, Caraglia M, Scala S. CXCR4 and CXCR7 transduce through mTOR in human renal cancer cells. Cell Death Dis 2014; 5:e1310. [PMID: 24991762 PMCID: PMC4123065 DOI: 10.1038/cddis.2014.269] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023]
Abstract
Treatment of metastatic renal cell carcinoma (mRCC) has improved significantly with the advent of agents targeting the mTOR pathway, such as temsirolimus and everolimus. However, their efficacy is thought to be limited by feedback loops and crosstalk with other pathways leading to the development of drug resistance. As CXCR4-CXCL12-CXCR7 axis has been described to have a crucial role in renal cancer; the crosstalk between the mTOR pathway and the CXCR4-CXCL12-CXCR7 chemokine receptor axis has been investigated in human renal cancer cells. In SN12C and A498, the common CXCR4-CXCR7 ligand, CXCL12, and the exclusive CXCR7 ligand, CXCL11, activated mTOR through P70S6K and 4EBP1 targets. The mTOR activation was specifically inhibited by CXCR4 antagonists (AMD3100, anti-CXCR4-12G5 and Peptide R, a newly developed CXCR4 antagonist) and CXCR7 antagonists (anti-CXCR7-12G8 and CCX771, CXCR7 inhibitor). To investigate the functional role of CXCR4, CXCR7 and mTOR in human renal cancer cells, both migration and wound healing were evaluated. SN12C and A498 cells migrated toward CXCL12 and CXCL11; CXCR4 and CXCR7 inhibitors impaired migration and treatment with mTOR inhibitor, RAD001, further inhibited it. Moreover, CXCL12 and CXCL11 induced wound healing while was impaired by AMD3100, the anti CXCR7 and RAD001. In SN12C and A498 cells, CXCL12 and CXCL11 promoted actin reorganization characterized by thin spikes at the cell periphery, whereas AMD3100 and anti-CXCR7 impaired CXCL12/CXCL11-induced actin polymerization, and RAD001 treatment further reduced it. In addition, when cell growth was evaluated in the presence of CXCL12, CXCL11 and mTOR inhibitors, an additive effect was demonstrated with the CXCR4, CXCR7 antagonists and RAD001. RAD001-resistant SN12C and A498 cells recovered RAD001 sensitivity in the presence of CXCR4 and CXCR7 antagonists. In conclusion, the entire axis CXCR4-CXCL12-CXCR7 regulates mTOR signaling in renal cancer cells offering new therapeutic opportunities and targets to overcome resistance to mTOR inhibitors.
Collapse
Affiliation(s)
- C Ieranò
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - S Santagata
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - M Napolitano
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - F Guardia
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - A Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - E Antignani
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - G Botti
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - C Consales
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - A Riccio
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| | - M Nanayakkara
- Department of Translational Medical Science and European Laboratory for the Investigation of Food Induced Disease (ELFID), University of Naples, Federico II, Italy
| | - M V Barone
- Department of Translational Medical Science and European Laboratory for the Investigation of Food Induced Disease (ELFID), University of Naples, Federico II, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - S Scala
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale"-IRCCS-ITALY, Naples, Italy
| |
Collapse
|
38
|
Borriello L, DeClerck YA. [Tumor microenvironment and therapeutic resistance process]. Med Sci (Paris) 2014; 30:445-51. [PMID: 24801042 DOI: 10.1051/medsci/20143004021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, it has become clear that cancer is not just a disease of the genes, and that the tumor microenvironment (TME) plays an important role in cancer progression. Interactions between tumor cells and the TME, made of the extracellular matrix (ECM) and of non-transformed cells (designated here as stromal cells), promote cancer cell survival and drug resistance. Many of the mechanisms involved are known and are either contact-dependent or contact-independent. Contact between tumor cells and the ECM or stromal cells as well as the production of soluble factors and microvesicles all contribute. The bone marrow plays a special role in environment-mediated drug resistance as it is not only a sanctuary protecting tumor cells from cytotoxic drugs, but also a source of many stromal cells that colonize primary tumors and contribute to the pre-metastatic niche. As our understanding of the mechanisms by which the tumor microenvironment promotes therapeutic resistance progresses, clinical trials testing agents that disrupt the interaction between tumor cells and the stroma have been initiated. This new avenue of therapy is promising.
Collapse
Affiliation(s)
- Lucia Borriello
- Département de pédiatrie, de biochimie et biologie moléculaire - Keck school of medicine, university of Southern California, États-Unis - Children's hospital Los Angeles, 4650 Sunset Boulevard CA 90027 Los Angeles, California, États-Unis
| | - Yves A DeClerck
- Département de pédiatrie, de biochimie et biologie moléculaire - Keck school of medicine, university of Southern California, États-Unis - Children's hospital Los Angeles, 4650 Sunset Boulevard CA 90027 Los Angeles, California, États-Unis
| |
Collapse
|
39
|
Liu W, Huang S, Chen Z, Wang H, Wu H, Zhang D. Temsirolimus, the mTOR inhibitor, induces autophagy in adenoid cystic carcinoma: in vitro and in vivo. Pathol Res Pract 2014; 210:764-9. [PMID: 24767255 DOI: 10.1016/j.prp.2014.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 01/21/2023]
Abstract
Temsirolimus acts as a mammalian target of rapamycin (mTOR)-dependent autophagic inhibitor. In order to clarify its effects and mechanisms on human salivary adenoid cystic carcinoma (ACC), we examined whether temsirolimus induced autophagy as the mTOR inhibitor in ACC, both in vitro and in vivo. In this study, MTT assay showed that the inhibition effect of temsirolimus assumed an obvious dose-response relationship on ACC-M cells, and the 50% inhibitory concentration (IC(50)) approached 20 μmol/l; numerous autophagosomes were observed by the transmission electron microscopy (TEM) in temsirolimus treatment groups; notably, expression of LC3 and Beclin1 was significantly up-regulated by temsirolimus. More importantly, the xenograft model provided further evidence of temsirolimus-induced autophagy in vivo by inhibiting mTOR activation as well as up-regulation the expression of Beclin1. These results suggest that temsirolimus could act as an mTOR inhibitor to induce autophagy in adenoid cystic carcinoma both in vitro and in vivo.
Collapse
Affiliation(s)
- Wenlei Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Huachun Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
40
|
Temsirolimus improves cytotoxic efficacy of cisplatin and gemcitabine against urinary bladder cancer cell lines. Urol Oncol 2013; 32:41.e11-22. [PMID: 24035472 DOI: 10.1016/j.urolonc.2013.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To analyze the cytotoxic action of temsirolimus using 3 established human bladder cancer cell lines and to assess whether temsirolimus potentiates the anticancer activity of gemcitabine and cisplatin. METHODS Temsirolimus (500, 1,000, 2,000, and 4,000 nM), in isolation, and combined with gemcitabine (100 nM) and cisplatin (2.5 µg/ml), was given to 5637, T24, and HT1376 bladder cancer cell lines. Cell proliferation, autophagy, early apoptosis, and cell cycle distribution were analyzed after a 72-hour period. The expression of mammalian target of rapamycin baseline, Akt, and their phosphorylated forms, before and after treatment with temsirolimus, was evaluated by immunoblotting. RESULTS Temsirolimus slightly decreased the bladder cancer cell proliferation in all 3 cell lines. No significant differences in the expression of mammalian target of rapamycin, Akt, and their phosphorylated forms because of temsirolimus exposure were found in the 3 cell lines. As part of a combined regime along with gemcitabine, and especially with cisplatin, there was a more pronounced antiproliferative effect. This pattern of response was similar to the other parameters analyzed (increased autophagy and apoptosis). Also, in the combined regime, an enhanced cell cycle arrest in the G0/G1 phase was observed. The non-muscle invasive 5637 bladder cancer cell line was most sensitive to both combinations. CONCLUSIONS Temsirolimus makes a moderate contribution in terms of cell proliferation, apoptosis, and autophagy. However, it does potentiate the activity of gemcitabine and particularly cisplatin. Therefore, cisplatin- or gemcitabine-based chemotherapy regimen used in combination with temsirolimus to treat bladder cancer represents a novel and valuable treatment option, which should be tested for future studies in urinary bladder xenograft models.
Collapse
|
41
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|