1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
4
|
Zhang R, Yao Y, Gao H, Hu X. Mechanisms of angiogenesis in tumour. Front Oncol 2024; 14:1359069. [PMID: 38590656 PMCID: PMC10999665 DOI: 10.3389/fonc.2024.1359069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Angiogenesis is essential for tumour growth and metastasis. Antiangiogenic factor-targeting drugs have been approved as first line agents in a variety of oncology treatments. Clinical drugs frequently target the VEGF signalling pathway during sprouting angiogenesis. Accumulating evidence suggests that tumours can evade antiangiogenic therapy through other angiogenesis mechanisms in addition to the vascular sprouting mechanism involving endothelial cells. These mechanisms include (1) sprouting angiogenesis, (2) vasculogenic mimicry, (3) vessel intussusception, (4) vascular co-option, (5) cancer stem cell-derived angiogenesis, and (6) bone marrow-derived angiogenesis. Other non-sprouting angiogenic mechanisms are not entirely dependent on the VEGF signalling pathway. In clinical practice, the conversion of vascular mechanisms is closely related to the enhancement of tumour drug resistance, which often leads to clinical treatment failure. This article summarizes recent studies on six processes of tumour angiogenesis and provides suggestions for developing more effective techniques to improve the efficacy of antiangiogenic treatment.
Collapse
Affiliation(s)
| | | | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
7
|
Hong X, Zhang J, Zou J, Ouyang J, Xiao B, Wang P, Peng X. Role of COL6A2 in malignant progression and temozolomide resistance of glioma. Cell Signal 2023; 102:110560. [PMID: 36521657 DOI: 10.1016/j.cellsig.2022.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gliomas are one of the most common primary malignant tumors of the central nervous system, and have an unfavorable prognosis. Even combining precise surgery, chemotherapy and radiotherapy, the survival rate is still unsatisfactory. Chemotherapy resistance is one of main reasons for its adverse prognosis. As shown by several studies, glioma stem cells (GSCs) were correlated with radiotherapy/chemotherapy resistance and high relapse rate. This study aimed to find a new biomarker related to GSCs and chemotherapy resistance. METHODS TCGA, CGGA, GSE16011, GSE23806 and GDSC datasets were used to screen the genes related to GSCs, Temozolomide (TMZ) resistance, and survival. In the TCGA, GTEx, GSE16011 and CGGA datasets, mRNA level, prognostic value, and correlation with immune infiltration in the selected genes were analyzed through methods including Kaplan-Meier analysis, Cox analysis, the ESTIMATE algorithm, and the CIBERSORT algorithm. The expression of COL6A2 mRNA and protein in different groups was detected by RT-qPCR and western blot. A MTT assay and flow cytometry were used to measure the effect of COL6A2 on proliferation and apoptosis of glioma cells. RESULTS COL6A2 was positively correlated with glioma stemness and TMZ resistance. Its expression was up-regulated in GBM, and high expression was correlated with adverse prognosis. As shown by Cox analysis, COL6A2 was an independent prognostic factor for glioma. COL6A2 mRNA was increased with the glioma grade. It was over-expressed in MGMT non-methylation and IDH wild-type specimens. The results of in vitro experiments showed that COL6A2 promots proliferation of glioma cells and inhibits their apoptosis. Meanwhile, the expression of COL6A2 in TMZ-resistant glioma cells was significantly higher than that in ordinary glioma cells. As shown by GO and KEGG pathway analysis, COL6A2 was correlated with glioma proliferation, migration, invasion, and immunity. In particular, it was significantly positively correlated with PD-1, PD-L2, PD-L1, B7-H3, CTLA-4, IDO1 and TIM-3 expression, further verifying that it may play an important role in immune response. In addition, COL6A2 might influence immune cell infiltration in the glioma microenvironment. CONCLUSION COL6A2 high-expression is an indicator for adverse glioma prognosis, and is correlated with TMZ-resistant and immune response. Meanwhile, it may be a prospective biomarker for treatment.
Collapse
Affiliation(s)
- Xia Hong
- Medical School of Jingchu University of Technology, Jingmen 448000, China
| | - Jingjing Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Jianmin Zou
- The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Jiecai Ouyang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Boan Xiao
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Peng Wang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Xiaobin Peng
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
8
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
10
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
11
|
Novel therapeutics and drug-delivery approaches in the modulation of glioblastoma stem cell resistance. Ther Deliv 2022; 13:249-273. [PMID: 35615860 DOI: 10.4155/tde-2021-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a deadly malignancy with a poor prognosis. An important factor contributing to GBM recurrence is high resistance of GBM cancer stem cells (GSCs). While temozolomide (TMZ), has been shown to consistently extend survival, GSCs grow resistant to TMZ through upregulation of DNA damage repair mechanisms and avoidance of apoptosis. Since a single-drug approach has failed to significantly alter prognosis in the past 15 years, unique approaches such as multidrug combination therapy together with distinctive targeted drug-delivery approaches against cancer stem cells are needed. In this review, a rationale for multidrug therapy using a targeted nanotechnology approach that preferentially target GSCs is proposed with discussion and examples of drugs, nanomedicine delivery systems, and targeting moieties.
Collapse
|
12
|
Hypoxia Promotes Glioma Stem Cell Proliferation by Enhancing the 14-3-3β Expression via the PI3K Pathway. J Immunol Res 2022; 2022:5799776. [PMID: 35607406 PMCID: PMC9124136 DOI: 10.1155/2022/5799776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is a serious fatal type of cancer with the shorter median survival period and poor quality of living. The overall 5-year survival rate remains low due to high recurrence rates. Glioma stem cells (GSCs) play the important roles in the development of gliomas. Examination of the numerous biomarkers or cancer-associated genes involved in the development or prevention of glioma may therefore serve the discovery of novel strategies to treat patients with glioma. Hypoxia induced by using CoCl2 application and 14-3-3β protein knockdown by specific small interfering RNA transfection were performed in GSCs both in vitro and in vivo to observe their role in glioma progression and metastasis occurrence by using western blot analysis and MTT assay. The results demonstrated that CoCl2 application enhanced the 14-3-3β protein expression and mRNA levels via the PI3K pathway in GSCs. Furthermore, hypoxia promoted GSC cell proliferation and activated the expression of proliferating cell nuclear antigen, which was inhibited following 14-3-3β knockdown. In addition, tumor growth in mice was enhanced by CoCl2 application but reversed following 14-3-3β knockdown, which also enhanced GSC cell apoptosis. In conclusion, the present study demonstrated that hypoxia promoted glioma growth both in vitro and in vivo by increasing the 14-3-3β expression via the PI3K signaling pathway. 14-3-3β and HIF-1α may therefore be considered as the potential therapeutic target to treat patients with glioma.
Collapse
|
13
|
An NF-κB- and Therapy-Related Regulatory Network in Glioma: A Potential Mechanism of Action for Natural Antiglioma Agents. Biomedicines 2022; 10:biomedicines10050935. [PMID: 35625673 PMCID: PMC9138293 DOI: 10.3390/biomedicines10050935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
High-grade gliomas are among the most aggressive malignancies, with significantly low median survival. Recent experimental research in the field has highlighted the importance of natural substances as possible antiglioma agents, also known for their antioxidant and anti-inflammatory action. We have previously shown that natural substances target several surface cluster of differentiation (CD) markers in glioma cells, as part of their mechanism of action. We analyzed the genome-wide NF-κB binding sites residing in consensus regulatory elements, based on ENCODE data. We found that NF-κB binding sites reside adjacent to the promoter regions of genes encoding CD markers targeted by antiglioma agents (namely, CD15/FUT4, CD28, CD44, CD58, CD61/SELL, CD71/TFRC, and CD122/IL2RB). Network and pathway analysis revealed that the markers are associated with a core network of genes that, altogether, participate in processes that associate tumorigenesis with inflammation and immune evasion. Our results reveal a core regulatory network that can be targeted in glioblastoma, with apparent implications in individuals that suffer from this devastating malignancy.
Collapse
|
14
|
Casciati A, Tanori M, Gianlorenzi I, Rampazzo E, Persano L, Viola G, Cani A, Bresolin S, Marino C, Mancuso M, Merla C. Effects of Ultra-Short Pulsed Electric Field Exposure on Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23063001. [PMID: 35328420 PMCID: PMC8950115 DOI: 10.3390/ijms23063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.
Collapse
Affiliation(s)
- Arianna Casciati
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mirella Tanori
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Isabella Gianlorenzi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy;
| | - Elena Rampazzo
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Giampietro Viola
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alice Cani
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health (SDB), University of Padova, via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Division of Pediatric Hematology, Oncology and Hematopoietic Cell & Gene Therapy, Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Carmela Marino
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
| | - Mariateresa Mancuso
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| | - Caterina Merla
- Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (M.T.); (C.M.)
- Correspondence: (M.M.); (C.M.)
| |
Collapse
|
15
|
Chen J, Dai Q, Yang Q, Bao X, Zhou Y, Zhong H, Wu L, Wang T, Zhang Z, Lu Y, Zhang Z, Lin M, Han M, Wei Q. Therapeutic nucleus-access BNCT drug combined CD47-targeting gene editing in glioblastoma. J Nanobiotechnology 2022; 20:102. [PMID: 35246144 PMCID: PMC8895533 DOI: 10.1186/s12951-022-01304-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma is the most common brain primary malignant tumor with the highest mortality. Boron neutron capture therapy (BNCT) can efficiently kill cancer cells on the cellular scale, with high accuracy, short course and low side-effects, which is regarded as the most promising therapy for malignant brain tumors like glioma. As the keypoint of BNCT, all boron delivery agents currently in clinical use are beset by insufficient tumor uptake, especially in the tumor nucleus, which limits the clinical application of BNCT. In this study, nuclear targeting of boron is achieved by DOX-CB, consisting of doxorubicin (DOX) and carborane (CB) utilizing the nuclear translocation property of DOX. The nucleus of GL261 cells takes up almost three times the concentration of boron required for BNCT. To further kill glioma and inhibit recurrence, a new multifunctional nanoliposome delivery system DOX-CB@lipo-pDNA-iRGD is constructed. It combines DOX-CB with immunotherapy strategy of blocking macrophage immune checkpoint pathway CD47-SIRPα by CRISPR-Cas9 system, coupling BNCT with immunotherapy simultaneously. Compared with clinical drug Borocaptate Sodium (BSH), DOX-CB@lipo-pDNA-iRGD significantly enhances the survival rate of tumor-bearing mice, reduces tumor stemness, and improves the prognosis. The excellent curative effect of this nanoliposome delivery system provides an insight into the combined treatment of BNCT.
Collapse
Affiliation(s)
- Jiejian Chen
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - QiYao Yang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhicheng Zhang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengting Lin
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Croce MV. An Introduction to the Relationship Between Lewis x and Malignancy Mainly Related to Breast Cancer and Head Neck Squamous Cell Carcinoma (HNSCC). Cancer Invest 2021; 40:173-183. [PMID: 34908476 DOI: 10.1080/07357907.2021.2016800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lewis x functions as an adhesion molecule in glycolipids and glycoproteins since it mediates homophilic and heterophilic attachment of normal and tumoral cells. During malignancy, altered glycosylation is a frequent event; accumulating data support the expression of Lewis x in tumors although controversial results have been described including its relationship with patient survival. This report has been developed as an introduction to the relationship between Lewis x expression and breast cancer and head and neck squamous cell carcinoma (HNSCC). Results obtained in our laboratory are presented in the context of the literature.
Collapse
Affiliation(s)
- Maria Virginia Croce
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
17
|
Wang W, Ma S, Ding Z, Yang Y, Wang H, Yang K, Cai X, Li H, Gao Z, Qu M. XPC Protein Improves Lung Adenocarcinoma Prognosis by Inhibiting Lung Cancer Cell Stemness. Front Pharmacol 2021; 12:707940. [PMID: 34803670 PMCID: PMC8595099 DOI: 10.3389/fphar.2021.707940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Xeroderma Pigmentosum Complementation Group C (XPC) is a protein involving in nucleotide excision repair (NER). XPC also plays an important role in the lung cancer occurrence with the mechanism remian unclear up to date. Studies showed that the increased stemness of lung cancer cells is related to the recurrence and metastasis of lung cancer. This study aimed to study and analyze the correlation of XPC with lung cancer stem cell biomarkers expression and the overall survival (OS) of lung adenocarcinoma patients. Methods: 140 cases of clinical lung adenocarcinoma tissue samples and 48 cases of paired paracancerous tissue samples were made into tissue microarray. Immunohistochemistry (IHC) was used to detect the expression of XPC and CD133 in cancer and paracancerous tissues. Semi-quantitative analysis and statistics were performed by Pannoramic Digital Slide Scanner. The expression of XPC and CD133 in fresh tissues was verified by Western blotting assay. siXPC was used to knock down XPC in lung cancer cell lines to study the effect of XPC on the expression of lung cancer stem cell biomarkers and the ability of cell invasion. And shXPC was used to knockdown XPC in A549 and H1650 to study the effect of XPC on the expression of lung cancer stem cell biomarkers. Results: IHC and Western blotting results showed that XPC expression significantly decreased, while CD133 expression significantly increased in cancer tissues comparing to paracancerous tissues (P XPC < 0.0001, P CD133 = 0.0395). The high level of XPC in cancer was associated with a better prognosis (Log-rank p = 0.0577) in lung adenocarcinoma patients. Downregulation of XPC in lung cancer cells showed increased expression of cancer stem cell biomarkers and the increased cell invasion abilities. Conclusion: It is suggested that XPC can exert the ability of anti-tumor formation, tumor invasion and metastasis inhibition, and prognostic survival improvement in lung adenocarcinoma patients by regulating the stemness of lung cancer cells.
Collapse
Affiliation(s)
- Weiyu Wang
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Shengyao Ma
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,College of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhenyu Ding
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Yang
- School of Public Health, Qingdao University, Qingdao, China
| | - Huaijie Wang
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoshan Cai
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hanyue Li
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang, China.,Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
18
|
Fadera S, Chen PY, Liu HL, Lee IC. Induction Therapy of Retinoic Acid with a Temozolomide-Loaded Gold Nanoparticle-Associated Ultrasound Effect on Glioblastoma Cancer Stem-Like Colonies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32845-32855. [PMID: 34235925 DOI: 10.1021/acsami.1c09634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive glioma. The treatment response is always low, and the condition is typically rapidly fatal. The undifferentiated and self-renewal characteristics of cancer stem cells (CSCs) have been reported, and their potential contribution may cause tumor initiation, recurrence, metastasis, and therapeutic resistance. In particular, glioblastoma stem-like cells exhibit highly invasive properties and drug resistance, serving as a model for the development of novel therapeutic strategies. Induction therapy provides an alternative therapeutic strategy to eliminate the stem cell properties of CSCs and enhance therapeutic sensitivity. The differentiated cells may lose their self-renewal ability, downregulate stem cell-related genes and drug resistance genes, and enhance anticancer drug sensitivity. Therefore, the purpose of this study is to establish a niche for glioblastoma stem-like cell selection as a platform and facilitate the assessment of differentiation therapy on GBM cancer stem-like colonies by retinoic acid (RA) with temozolomide (TMZ)-loaded gold nanoparticles (GNPs) associated with low-intensity ultrasound (LIUS). Herein, a hyaluronic acid-based material system was used to isolate GBM cancer stem-like colonies. Colony formation, size determination, stem cell-related marker expression, and GBM cancer stem-like cell marker expression with the culture period were identified. The effect of TMZ on GBM stem-like colonies on HA-based material systems was also determined, and the results revealed that drug resistance was highly enhanced in GBM colonies compared with that in the control cell population. In addition, GBM colonies also exhibited a significant increase in breast cancer resistance protein expression, which is consistent with the drug resistance effect. Furthermore, several factors, including LIUS, RA, and GNPs, were used to determine the possibility of induction therapy. RA with TMZ-loaded GNP-associated LIUS stimulation exhibited a significant and synergistic effect on the differentiation effect and drug sensitivity enhancement. The GBM cancer stem-like colony system presents an opportunity for the development of new therapeutic strategies, and this study provides an alternative differentiation therapy for malignant tumors.
Collapse
Affiliation(s)
- Siaka Fadera
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung branch 20401, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
19
|
Prosniak M, Kenyon LC, Hooper DC. Glioblastoma Contains Topologically Distinct Proliferative and Metabolically Defined Subpopulations of Nestin- and Glut1-Expressing Cells. J Neuropathol Exp Neurol 2021; 80:674-684. [PMID: 34297838 DOI: 10.1093/jnen/nlab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The difficulty in treatment of glioblastoma is a consequence of its natural infiltrative growth and the existence of a population of therapy-resistant glioma cells that contribute to growth and recurrence. To identify cells more likely to have these properties, we examined the expression in tumor specimens of several protein markers important for glioma progression including the intermediate filament protein, Nestin (NES), a glucose transporter (Glut1/SLC2A1), the glial lineage marker, glial fibrillary acidic protein, and the proliferative indicator, Ki-67. We also examined the expression of von Willebrand factor, a marker for endothelial cells as well as the macrophage/myeloid markers CD163 and CD15. Using a multicolor immunofluorescence and hematoxylin and eosin staining approach with archival formalin-fixed, paraffin embedded tissue from primary, recurrent, and autopsy IDH1 wildtype specimens combined with high-resolution tissue image analysis, we have identified highly proliferative NES(+)/Glut1(-) cells that are preferentially perivascular. In contrast, Glut1(+)/NES(-) cells are distant from blood vessels, show low proliferation, and are preferentially located at the borders of pseudopalisading necrosis. We hypothesize that Glut1(+)/NES(-) cells would be naturally resistant to conventional chemotherapy and radiation due to their low proliferative capacity and may act as a reservoir for tumor recurrence.
Collapse
Affiliation(s)
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
20
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
21
|
The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther 2021; 6:124. [PMID: 33753720 PMCID: PMC7985200 DOI: 10.1038/s41392-021-00491-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most malignant tumor occurring in the human central nervous system with overall median survival time <14.6 months. Current treatments such as chemotherapy and radiotherapy cannot reach an optimal remission since tumor resistance to therapy remains a challenge. Glioblastoma stem cells are considered to be responsible for tumor resistance in treating glioblastoma. Previous studies reported two subtypes, proneural and mesenchymal, of glioblastoma stem cells manifesting different sensitivity to radiotherapy or chemotherapy. Mesenchymal glioblastoma stem cells, as well as tumor cells generate from which, showed resistance to radiochemotherapies. Besides, two metabolic patterns, glutamine or glucose dependent, of mesenchymal glioblastoma stem cells also manifested different sensitivity to radiochemotherapies. Glutamine dependent mesenchymal glioblastoma stem cells are more sensitive to radiotherapy than glucose-dependent ones. Therefore, the transition between proneural and mesenchymal subtypes, or between glutamine-dependent and glucose-dependent, might lead to tumor resistance to radiochemotherapies. Moreover, neural stem cells were also hypothesized to participate in glioblastoma stem cells mediated tumor resistance to radiochemotherapies. In this review, we summarized the basic characteristics, adaptive transition and implications of glioblastoma stem cells in glioblastoma therapy.
Collapse
|
22
|
Abstract
Only a small fraction of the tumor cell population, glioma-initiating cells (GICs) help glioblastoma propagate, invade, evade immune recognition, repair DNA in response to radiation more efficiently, remodel the microenvironment for optimal growth, and actively pump out chemotherapies. Recent data hint that efforts toward GIC characterization and quantification can help predict patient outcomes, and yet the different subpopulations of GICs remain incompletely understood. A better understanding of GIC subtypes and functions proves critical for engineering targeted therapies. Challenges for doing so are discussed, and dopamine receptor antagonists are introduced as new means to enhance the efficacy of the current standard-of-care against GICs.
Collapse
Affiliation(s)
- Yagmur Muftuoglu
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 300 Stein Plaza Driveway, Suite 420, Los Angeles, CA 90095-1714, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1714, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
24
|
Elgendy SM, Alyammahi SK, Alhamad DW, Abdin SM, Omar HA. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit Rev Oncol Hematol 2020; 155:103095. [PMID: 32927333 DOI: 10.1016/j.critrevonc.2020.103095] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
Resistance to chemotherapeutic agents remains a major challenge in the fierce battle against cancer. Cancer stem cells (CSCs) are a small population of cells in tumors that possesses the ability to self-renew, initiate tumors, and cause resistance to conventional anticancer agents. Targeting this population of cells was proven as a promising approach to eliminate cancer recurrence and improve the clinical outcome. CSCs are less susceptible to death by classical anticancer agents inducing apoptosis. CSCs can be eradicated by ferroptosis, which is a non-apoptotic-regulated mechanism of cell death. The induction of ferroptosis is an attractive strategy to eliminate tumors due to its ability to selectively target aggressive CSCs. The current review critically explored the crosstalk and regulatory pathways controlling ferroptosis, which can selectively induce CSCs death. In addition, successful chemotherapeutic agents that achieve better therapeutic outcomes through the induction of ferroptosis in CSCs were discussed to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Sara M Elgendy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shatha K Alyammahi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dima W Alhamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
25
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Ceccarelli M, D'Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol 2020; 10:226. [PMID: 32231994 PMCID: PMC7082329 DOI: 10.3389/fonc.2020.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing Patched1 heterozygous (Ptch1+/−) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (Btg1), a regulator of cerebellar development. In MBs developing in Ptch1+/− mice, deletion of Btg1 does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in Ptch1+/− mice, ablation of Btg1 increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although Btg1 ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the Ptch1+/− mutation. However, Btg1 deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between Btg1-null and Ptch1+/− mutations. That pronounced increase of apoptosis observed in Ptch1+/−/Btg1 knockout young or neoplastic GCPs may be responsible for the lack of effect of Btg1 ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in Btg1 knockout/Ptch1+/− MBs. In fact, apoptotic genes, such as BAD, are targets of Prmt1. Moreover, in Btg1-null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, Btg1 appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
27
|
Mao XG, Xue XY, Wang L, Wang L, Li L, Zhang X. Hypoxia Regulated Gene Network in Glioblastoma Has Special Algebraic Topology Structures and Revealed Communications Involving Warburg Effect and Immune Regulation. Cell Mol Neurobiol 2019; 39:1093-1114. [PMID: 31203532 DOI: 10.1007/s10571-019-00704-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023]
Abstract
Hypoxia regulated genes (HRGs) formed a complex molecular interaction network (MINW), contributing to many aspects of glioblastoma (GBM) tumor biology. However, little is known about the intrinsic structures of the HRGs-MINW, mainly due to a lack of analysis tools to decipher MINWs. By introducing general hyper-geometric distribution, we obtained a statistically reliable gene set of HRGs (SR-HRGs) from several datasets. Next, MINWs were reconstructed from several independent GBM expression datasets. Algebraic topological analysis was performed to quantitatively analyze the amount of equivalence classes of cycles in various dimensions by calculating the Betti numbers. Persistent homology analysis of a filtration of growing networks was further performed to examine robust topological structures in the network by investigating the Betti curves, life length of the cycles. Random networks with the same number of node and edge and degree distribution were produced as controls. As a result, GBM-HRGs-MINWs reconstructed from different datasets exhibited great consistent Betti curves to each other, which were significantly different from that of random networks. Furthermore, HRGs-MINWs reconstructed from normal brain expression datasets exhibited topological structures significantly different from that of GBM-HRGs-MINWs. Analysis of cycles in GBM-HRGs-MINWs revealed genes that had clinical implications, and key parts of the cycles were also identified in reconstructed protein-protein interaction networks. In addition, the cycles are composed by genes involved in the Warburg effect, immune regulation, and angiogenesis. In summary, GBM-HRGs-MINWs contained abundant molecular interacting cycles in different dimensions, which are composed by genes involved in multiple programs essential for the tumorigenesis of GBM, revealing novel interaction diagrams in GBM and providing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
28
|
Ishihara E, Takahashi S, Fukaya R, Ohta S, Yoshida K, Toda M. Identification of KLRC2 as a candidate marker for brain tumor-initiating cells. Neurol Res 2019; 41:1043-1049. [PMID: 31556357 DOI: 10.1080/01616412.2019.1672390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: Brain tumor-initiating cells are characterized by their features of self-renewal, multi-lineage differentiation, and tumorigenicity. We analyzed the gene expression of brain tumor-initiating cells to identify their novel cellular markers. Methods: We performed cDNA microarray, in silico expressed sequence tags (ESTs), RT-PCR, and q-PCR analyses. Results: We identified 10 genes that were more highly expressed in brain tumor-initiating cells than in neural stem cells. In addition, we identified 10 other genes that were more highly expressed in brain tumor-initiating cells than in glioma cell line cells from the cDNA microarray analysis. Using the EST database, we looked to see if the 20 genes were expressed more highly in gliomas, compared with normal adult brains. Among the 20 genes, five (KLRC2, HOXB2, KCNJ2, KLRC1, and COL20A1) were expressed more than twice in glioma samples, compared with normal adult brains, and, therefore, were referred for further evaluation. RT-PCR was conducted using cDNA samples obtained from neural stem cells, normal brain tissue, fetal brain tissue, glioma cell lines, and glioma tumor-initiating cell lines. KLRC2, a transmembrane activating receptor in natural killer cells, was expressed more highly in glioma-initiating cells than in neural stem cell lines or normal adult brain tissue. The q-PCR analysis revealed that expression of KLRC2 was significantly higher in brain tumor-initiating cells compared to normal brain controls. Conclusion: KLRC2 could be a novel cellular marker for brain tumor-initiating cells.
Collapse
Affiliation(s)
- Eriko Ishihara
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Raita Fukaya
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine , Tokyo , Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| |
Collapse
|
29
|
Wu W, Klockow JL, Mohanty S, Ku KS, Aghighi M, Melemenidis S, Chen Z, Li K, Morais GR, Zhao N, Schlegel J, Graves EE, Rao J, Loadman PM, Falconer RA, Mukherjee S, Chin FT, Daldrup-Link HE. Theranostic nanoparticles enhance the response of glioblastomas to radiation. Nanotheranostics 2019; 3:299-310. [PMID: 31723547 PMCID: PMC6838141 DOI: 10.7150/ntno.35342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/14/2019] [Indexed: 01/03/2023] Open
Abstract
Despite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation. Methods: NSG™ mice bearing human GBMs and C57BL/6J mice bearing murine GBMs received CLIO-ICT, radiation, or combination treatment. The mice underwent pre- and post-treatment magnetic resonance imaging (MRI) scans, bioluminescence imaging (BLI), and histological analysis. Tumor nanoparticle enhancement, tumor flux, microvessel density, GIC, and apoptosis markers were compared between different groups using a one-way ANOVA and two-tailed Mann-Whitney test. Additional NSG™ mice underwent survival analyses with Kaplan-Meier curves and a log rank (Mantel-Cox) test. Results: At 2 weeks post-treatment, BLI and MRI scans revealed significant reduction in tumor size for CLIO-ICT plus radiation treated tumors compared to monotherapy or vehicle-treated tumors. Combining CLIO-ICT with radiation therapy significantly decreased microvessel density, decreased GICs, increased caspase-3 expression, and prolonged the survival of GBM-bearing mice. CLIO-ICT delivery to GBM could be monitored with MRI. and was not significantly different before and after radiation. There was no significant caspase-3 expression in normal brain at therapeutic doses of CLIO-ICT administered. Conclusion: Our data shows additive anti-tumor effects of CLIO-ICT nanoparticles in combination with radiotherapy. The combination therapy proposed here could potentially be a clinically translatable strategy for treating GBMs.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jessica L Klockow
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Kimberly S Ku
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Maryam Aghighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | | | - Zixin Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Kai Li
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Ning Zhao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Edward E Graves
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA.,Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Sudip Mukherjee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| |
Collapse
|
30
|
Zarco N, Norton E, Quiñones-Hinojosa A, Guerrero-Cázares H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci 2019; 76:3553-3570. [PMID: 31101934 PMCID: PMC6698208 DOI: 10.1007/s00018-019-03149-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023]
Abstract
Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs' invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily Norton
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cázares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
31
|
Down-regulation of 14-3-3zeta reduces proliferation and
increases apoptosis in human glioblastoma. Cancer Gene Ther 2019; 27:399-411. [DOI: 10.1038/s41417-019-0097-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 11/08/2022]
|
32
|
Robson JP, Remke M, Kool M, Julian E, Korshunov A, Pfister SM, Osborne GW, Taylor MD, Wainwright B, Reynolds BA. Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS One 2019; 14:e0210665. [PMID: 30657775 PMCID: PMC6338368 DOI: 10.1371/journal.pone.0210665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
High morbidity and mortality are common traits of malignant tumours and identification of the cells responsible is a focus of on-going research. Many studies are now reporting the use of antibodies specific to Clusters of Differentiation (CD) cell surface antigens to identify tumour-initiating cell (TIC) populations in neural tumours. Medulloblastoma is one of the most common malignant brain tumours in children and despite a considerable amount of research investigating this tumour, the identity of the TICs, and the means by which such cells can be targeted remain largely unknown. Current prognostication and stratification of medulloblastoma using clinical factors, histology and genetic profiling have classified this tumour into four main subgroups: WNT, Sonic hedgehog (SHH), Group 3 and Group 4. Of these subgroups, SHH remains one of the most studied tumour groups due to the ability to model medulloblastoma formation through targeted deletion of the Shh pathway inhibitor Patched1 (Ptch1). Here we sought to utilise CD antibody expression to identify and isolate TIC populations in Ptch1 deleted medulloblastoma, and determine if these antibodies can help classify the identity of human medulloblastoma subgroups. Using a fluorescence-activated cell sorted (FACS) CD antibody panel, we identified CD24 as a marker of TICs in Ptch1 deleted medulloblastoma. CD24 expression was not correlated with markers of astrocytes or oligodendrocytes, but co-labelled with markers of neural progenitor cells. In conjunction with CD15, proliferating CD24+/CD15+ granule cell precursors (GCPs) were identified as a TIC population in Ptch1 deleted medulloblastoma. On human medulloblastoma, CD24 was found to be highly expressed on Group 3, Group 4 and SHH subgroups compared with the WNT subgroup, which was predominantly positive for CD15, suggesting CD24 is an important marker of non-WNT medulloblastoma initiating cells and a potential therapeutic target in human medulloblastoma. This study reports the use of CD24 and CD15 to isolate a GCP-like TIC population in Ptch1 deleted medulloblastoma, and suggests CD24 expression as a marker to help stratify human WNT tumours from other medulloblastoma subgroups.
Collapse
Affiliation(s)
- Jonathan P. Robson
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Centre and the German Cancer Consortium, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Kool
- Hopp Children´s Cancer Center at the National Center for Tumor Diseases, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | - Elaine Julian
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Andrey Korshunov
- Division of Clinical Cooperation Unit Neuropathology, German Cancer Research Centre, University of Heidelberg, Heidelberg, Germany
| | - Stefan M. Pfister
- Hopp Children´s Cancer Center at the National Center for Tumor Diseases, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Geoffrey W. Osborne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Michael D. Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brandon Wainwright
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Brent A. Reynolds
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
33
|
Hu AX, Adams JJ, Vora P, Qazi M, Singh SK, Moffat J, Sidhu SS. EPH Profiling of BTIC Populations in Glioblastoma Multiforme Using CyTOF. Methods Mol Biol 2019; 1869:155-168. [PMID: 30324522 DOI: 10.1007/978-1-4939-8805-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to elucidate the phenotype of brain tumor initiating cell (BTIC) in the context of bulk tumor in glioblastoma multiforme (GBM) provides significant therapeutic benefits for therapeutic evaluation. For the identification of such an elusive and rare subpopulation of cells, a single cell analysis technology with deep profiling capabilities known as Mass Cytometry (CyTOF) can prove to be highly useful. CyTOF circumvents the spectral overlap limitations of traditional flow cytometry by replacing fluorophores with metal isotope tags, allowing the accurate detection of significantly more parameters at the same time. In this chapter, we demonstrate that synthetic antibodies can be conjugated with metal isotope tags for CyTOF analysis, resulting in the development of a highly tailored, custom multi-parameter panel. This toolset was used to stain patient-derived GBM cells, which was analyzed via CyTOF. Analysis software viSNE and SPADE were applied to study the co-expression patterns of the Eph Receptor (EphR) family and several putative BTIC markers in GBM, resulting in the identification of a distinct group of cells consistent with a BTIC subpopulation. This approach can be readily adapted to the detection of cancer stem-like cells in other cancer types.
Collapse
Affiliation(s)
- Amy X Hu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Jarrett J Adams
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Parvez Vora
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Maleeha Qazi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M. Glioblastoma Stem-Like Cells Are More Susceptible Than Differentiated Cells to Natural Killer Cell Lysis Mediated Through Killer Immunoglobulin-Like Receptors-Human Leukocyte Antigen Ligand Mismatch and Activation Receptor-Ligand Interactions. Front Immunol 2018; 9:1345. [PMID: 29967607 PMCID: PMC6015895 DOI: 10.3389/fimmu.2018.01345] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain malignancy in adults, where survival is approximately 14.6 months. Novel therapies are urgently needed and immunotherapy has hailed a new dawn for treatment of solid tumors. Natural killer (NK) cells may be amenable therapeutic effectors against heterogeneous GBM, since they also do not require co-stimulation and antigen specificity. However, it is unclear how culture media routinely used in pre-clinical studies affect GBM cell responses to NK-mediated cytotoxicity. We hypothesized that the culture medium would affect GBM cell phenotype, proliferation, and responses to NK cytotoxicity. We investigated in paired analyses n = 6 patient-derived primary GBM cells propagated in stem cell or serum-containing medium for morphology, proliferation, as well as susceptibility to NK cytolysis and related this to expression of surface and intracellular lineage markers, as well as ligands for NK cell activating and inhibitory receptors. We genotyped the GBM cells for human leukocyte antigen (HLA) as well as the killer immunoglobulin-like receptors (KIR) of the n = 6 allogeneic NK cells used as effector cells. Culture in serum-containing medium induced a switch in GBM cell morphology from suspension neuropsheres to adherent epithelial-mesenchymal-like phenotypes, which was partially reversible. The differentiated cells diminished expression of nestin, CD133 (prominin-1), and A2B5 putative glioma stem-cell markers, attenuated growth, diminished expression of ligands for activating NK cell receptors, while upregulating class I HLA ligands for NK cell inhibitory receptors. When maintained in serum-containing medium, fewer GBM cells expressed intercellular cell adhesion molecule-1 (ICAM-1) and were less susceptible to lysis by NK cells expressing αLβ2 integrin receptor (LFA-1), mediated through combination of inhibitory KIR-HLA ligand mismatch and diminished activation receptor-ligand interactions compared to cells maintained in stem cell media. We conclude that development of preclinical immunotherapy strategies against GBM should not use cells propagated in serum-containing media to avoid misinterpretation of potential therapeutic responses.
Collapse
Affiliation(s)
| | | | | | | | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
35
|
Abstract
The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
36
|
Mao XG, Wang C, Liu DY, Zhang X, Wang L, Yan M, Zhang W, Zhu J, Li ZC, Mi C, Tian JY, Hou GD, Miao SY, Song ZX, Li JC, Xue XY. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma. Oncotarget 2018; 7:47808-47820. [PMID: 27329597 PMCID: PMC5216980 DOI: 10.18632/oncotarget.10029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia contributes to the maintenance of stem-like cells in glioblastoma (GBM), and activates vascular mimicry and tumor resistance to anti-angiogenesis treatments. The present study examined the expression patterns and biological significance of hypoxia-inducible protein 2 (HIG2, also known as HILPDA) in GBM. HIG2 was highly expressed in gliomas and was correlated with tumor grade, and high HIG2 expression independently predicted poor GBM patient prognosis. HIG2 was upregulated during hypoxia and by hypoxia mimics, and HIG2 knockdown in GBM cells inhibited cell proliferation and invasion. HIF1α bound to the HIG2 promoter and increased its expression in GBM cells, and HIG2 upregulated HIF1α expression. Reconstruction of a HIG2-related molecular network using bioinformatics methods revealed that HIG2 is closely correlated with angiogenesis genes, such as VEGFA, in GBM. HIG2 levels positively correlated with VEGFA in GBM samples. In addition, treatment of transplanted xenograft nude mice with bevacizumab (anti-angiogenesis therapy) resulted in HIG2 upregulation at late stages. We conclude that HIG2 is overexpressed in GBM and upregulated by hypoxia, and is a potential novel therapeutic target. HIG2 overexpression is an independent prognostic indicator and may promote tumor resistance to anti-angiogenesis treatments.
Collapse
Affiliation(s)
- Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Dong-Ye Liu
- Northern Hospital, General Hospital of PLA Shenyang Military Area Command, Shenyang, Liaoning Province, People's Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ming Yan
- Department of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jun Zhu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zi-Chao Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Chen Mi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing-Yang Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Guang-Dong Hou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Si-Yu Miao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Zi-Xuan Song
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Cheng Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
37
|
Haston S, Manshaei S, Martinez-Barbera JP. Stem/progenitor cells in pituitary organ homeostasis and tumourigenesis. J Endocrinol 2018; 236:R1-R13. [PMID: 28855316 PMCID: PMC5744558 DOI: 10.1530/joe-17-0258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 01/06/2023]
Abstract
Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases.
Collapse
Affiliation(s)
- Scott Haston
- Developmental Biology and Cancer Research ProgrammeBirth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Saba Manshaei
- Developmental Biology and Cancer Research ProgrammeBirth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Research ProgrammeBirth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
38
|
Abstract
Cancer stem cells (CSCs), with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute towards a 'stemness' phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers and signaling pathways.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yvonne Li
- Dana Farber cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
39
|
Cordone I, Masi S, Summa V, Carosi M, Vidiri A, Fabi A, Pasquale A, Conti L, Rosito I, Carapella CM, Villani V, Pace A. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study. Breast Cancer Res 2017; 19:46. [PMID: 28399903 PMCID: PMC5387324 DOI: 10.1186/s13058-017-0827-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
Background Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs) which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM). Methods Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The tumor-associated leukocyte population was also characterized. Results Despite a low absolute cell number (8 cell/μl, range 1–86), the flow cytometry characterization was successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02). Conclusions Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results for diagnosis and management of LM. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0827-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iole Cordone
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Serena Masi
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Valentina Summa
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mariantonia Carosi
- Regina Elena National Cancer Institute, Histopathology Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Antonello Vidiri
- Regina Elena National Cancer Institute, Radiology Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alessandra Fabi
- Regina Elena National Cancer Institute, Medical Oncology Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alessia Pasquale
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Laura Conti
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Immacolata Rosito
- Regina Elena National Cancer Institute, Clinical Pathology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carmine Maria Carapella
- Regina Elena National Cancer Institute, Neuro-Surgery Department, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Veronica Villani
- Regina Elena National Cancer Institute, Neuro-Oncology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Andrea Pace
- Regina Elena National Cancer Institute, Neuro-Oncology Division, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
40
|
de la Rosa J, Sáenz Antoñanzas A, Shahi MH, Meléndez B, Rey JA, Castresana JS. Laminin-adherent versus suspension-non-adherent cell culture conditions for the isolation of cancer stem cells in the DAOY medulloblastoma cell line. Tumour Biol 2016; 37:12359-12370. [DOI: 10.1007/s13277-016-5119-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023] Open
|
41
|
Zeng L, Zhao Y, Ouyang T, Zhao T, Zhang S, Chen J, Yu J, Lei T. Label-retaining assay enriches tumor-initiating cells in glioblastoma spheres cultivated in serum-free medium. Oncol Lett 2016; 12:815-824. [PMID: 27446356 PMCID: PMC4950123 DOI: 10.3892/ol.2016.4690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022] Open
Abstract
Label-retaining cells, which are characterized by dormancy or slow cycling, may be identified in a number of human normal and cancer tissues, and these cells demonstrate stem cell potential. In glioblastoma, label-retaining assays to enrich glioma stem cells remain to be fully investigated. In the present study, glioblastoma sphere cells cultured in serum-free medium were initially stained with the cell membrane fluorescent marker DiI. The fluorescence intensity during cell proliferation and sphere reformation was observed. At 2 weeks, the DiI-retaining cells were screened by fluorescence-activated cell sorting and compared phenotypically with the DiI-negative cells in terms of in vitro proliferation, clonogenicity and multipotency and for in vivo tumorigenicity, as well as sensitivity to irradiation and temozolomide treatment. It was observed that DiI-retaining cells accounted for a small proportion, <10%, within the glioblastoma spheres and that DiI-retaining cells proliferated significantly more slowly compared with DiI-negative cells (P=0.011, P=0.035 and P=0.023 in the of NCH421k, NCH441 and NCH644 glioblastoma sphere cell lines). Significantly increased clonogenicity (P=0.002, P=0.034 and P=0.016 in the NCH441, NCH644 and NCH421k glioblastoma sphere cell lines) and three-lineage multipotency were observed in DiI-retaining cells in vitro compared with DiI-negative cells. As few as 100 DiI-retaining cells were able to effectively generate tumors in the immunocompromised mouse brain, whereas the same number of DiI-negative cells possessed no such ability, indicating the increased tumorigenicity of DiI-retaining cells compared with DiI-negative cells. Furthermore, DiI-retaining cells demonstrated significant resistance following irradiation (P=0.012, P=0.024 and P=0.036) and temozolomide (P=0.003, P=0.005 and P=0.029) compared with DiI-negative cells in the NCH421k, NCH441 and NCH644 glioblastoma sphere cell lines, respectively. It was concluded that label-retaining cells in glioblastoma spheres manifest clear stem cell features and that the label-retaining assay may be utilized to further enrich glioma stem cells cultured under serum-free conditions for additional study.
Collapse
Affiliation(s)
- Lingcheng Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiqing Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Taohui Ouyang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tianyuan Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiasheng Yu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
42
|
Cancer stem cells, cancer-initiating cells and methods for their detection. Drug Discov Today 2016; 21:836-42. [DOI: 10.1016/j.drudis.2016.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/19/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
|
43
|
Jassam SA, Maherally Z, Smith JR, Ashkan K, Roncaroli F, Fillmore HL, Pilkington GJ. TNF-α enhancement of CD62E mediates adhesion of non-small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis. Neuro Oncol 2016; 18:679-90. [PMID: 26472821 PMCID: PMC4827040 DOI: 10.1093/neuonc/nov248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/05/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non-small cell lung cancer (NSCLC). METHODS CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. RESULTS CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. CONCLUSION This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E.
Collapse
Affiliation(s)
- Samah A Jassam
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Zaynah Maherally
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - James R Smith
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Keyoumars Ashkan
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Federico Roncaroli
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Helen L Fillmore
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Geoffrey J Pilkington
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| |
Collapse
|
44
|
Preservation of KIT genotype in a novel pair of patient-derived orthotopic xenograft mouse models of metastatic pediatric CNS germinoma. J Neurooncol 2016; 128:47-56. [PMID: 26956263 DOI: 10.1007/s11060-016-2098-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Metastatic intracranial germinoma is difficult to treat. Although the proto-oncogene KIT is recognized as one of the most frequent genetic abnormalities in CNS germinoma, the development of new target therapeutic agents for CNS germinoma is hampered by the lack of clinically-relevant animal models that replicate the mutated or over-expressed KIT. CNS germinoma tumor cells from five pediatric patients were directly implanted into the brains of Rag2/severe combined immune deficiency mice. Once established, the xenograft tumors were sub-transplanted in vivo in mouse brains. Characterization of xenograft tumors were performed through histologic and immunohistochemical staining, and KIT mutation analysed with quantitative pyro-sequencing. Expression of putative cancer stem cell markers (CD133, CD15, CD24, CD44, CD49f) was analyzed through flow cytometry. Two patient-derived orthotopic xenograft (PDOX) models (IC-6999GCT and IC-9302GCT) were established from metastatic germinoma and serially sub-transplanted five times in mouse brains. Similar to the original patient tumors, they both exhibited faint expression (+) of PLAP, no expression (-) of β-HCG and strong (+++) expression of KIT. KIT mutation (D816H), however, was only found in IC-9320GCT. This mutation was maintained during the five in vivo tumor passages with an increased mutant allele frequency compared to the patient tumor. Expression of putative cancer stem cell markers CD49f and CD15 was also detected in a small population of tumor cells in both models. This new pair of PDOX models replicated the key biological features of pediatric intracranial germinoma and should facilitate the biological and pre-clinical studies for metastatic intracranial germinomas.
Collapse
|
45
|
Dietl S, Schwinn S, Dietl S, Riedel S, Deinlein F, Rutkowski S, von Bueren AO, Krauss J, Schweitzer T, Vince GH, Picard D, Eyrich M, Rosenwald A, Ramaswamy V, Taylor MD, Remke M, Monoranu CM, Beilhack A, Schlegel PG, Wölfl M. MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer 2016; 16:115. [PMID: 26883117 PMCID: PMC4756501 DOI: 10.1186/s12885-016-2170-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2170-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Dietl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefanie Schwinn
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Susanne Dietl
- Department of Surgery II, University of Würzburg, Würzburg, Germany
| | - Simone Riedel
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Frank Deinlein
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre O von Bueren
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Jürgen Krauss
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | | | - Giles H Vince
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Matthias Eyrich
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | | | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology / Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | | | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- University Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
46
|
Krishnamurthy S, Ke X, Yang YY. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells. Nanomedicine (Lond) 2015; 10:143-60. [PMID: 25597774 DOI: 10.2217/nnm.14.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Development of cancer resistance, cancer relapse and metastasis are attributed to the presence of cancer stem cells (CSCs). Eradication of this subpopulation has been shown to increase life expectancy of patients. Since the discovery of CSCs a decade ago, several strategies have been devised to specifically target them but with limited success. Nanocarriers have recently been employed to deliver anti-CSC therapeutics for reducing the population of CSCs at the tumor site with great success. This review discusses the different therapeutic strategies that have been employed using nanocarriers, their advantages, success in targeting CSCs and the challenges that are to be overcome. Exploiting this new modality of cancer treatment in the coming decade may improve outcomes profoundly with promise of effective treatment response and reducing relapse and metastasis.
Collapse
Affiliation(s)
- Sangeetha Krishnamurthy
- Institute of Bioengineering & Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | | | | |
Collapse
|
47
|
Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 2015; 16:1084-98. [PMID: 26253117 DOI: 10.15252/embr.201439675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
48
|
miRNA therapy targeting cancer stem cells: a new paradigm for cancer treatment and prevention of tumor recurrence. Ther Deliv 2015; 6:323-37. [PMID: 25853308 DOI: 10.4155/tde.14.122] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors that retain the properties of self-renewal and tumorigenicity in vivo. Although CSCs have been reported in multiple cancers, the regulation of CSCs has not been described at the molecular level. miRNAs are endogenous small noncoding RNAs that post-transcriptionally regulate the expression of their target genes via RNA interference and are involved in almost all cellular processes. Since aberrant miRNA expression occurs in CSCs, such dysregulated miRNAs may be promising therapeutic targets. In this review, we summarize the current knowledge regarding miRNAs that regulate CSC properties and discuss an in vivo delivery system for synthetic miRNA mimics and miRNA inhibitors for the development of innovative miRNA therapy against CSCs.
Collapse
|
49
|
A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays. Sci Rep 2015; 5:12218. [PMID: 26183281 PMCID: PMC4505308 DOI: 10.1038/srep12218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/17/2015] [Indexed: 01/28/2023] Open
Abstract
In vitro cultured brain tumour cells are indispensable tools for drug screening and therapeutic development. Serum-free culture conditions tentatively preserve the features of the original tumour, but commonly comprise neurosphere propagation, which is a technically challenging procedure. Here, we define a simple, non-expensive and reproducible serum-free cell culture protocol for establishment and propagation of primary paediatric brain tumour cultures as adherent monolayers. The success rates for establishment of primary cultures (including medulloblastomas, atypical rhabdoid tumour, ependymomas and astrocytomas) were 65% (11/17) and 78% (14/18) for sphere cultures and monolayers respectively. Monolayer culturing was particularly feasible for less aggressive tumour subsets, where neurosphere cultures could not be generated. We show by immunofluorescent labelling that monolayers display phenotypic similarities with corresponding sphere cultures and primary tumours, and secrete clinically relevant inflammatory factors, including PGE2, VEGF, IL-6, IL-8 and IL-15. Moreover, secretion of PGE2 was considerably reduced by treatment with the COX-2 inhibitor Valdecoxib, demonstrating the functional utility of our newly established monolayer for preclinical therapeutic assays. Our findings suggest that this culture method could increase the availability and comparability of clinically representative in vitro models of paediatric brain tumours, and encourages further molecular evaluation of serum-free monolayer cultures.
Collapse
|
50
|
Friedman GK, Moore BP, Nan L, Kelly VM, Etminan T, Langford CP, Xu H, Han X, Markert JM, Beierle EA, Gillespie GY. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol 2015; 18:227-35. [PMID: 26188016 DOI: 10.1093/neuonc/nov123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. METHODS Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. RESULTS We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. CONCLUSIONS Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted.
Collapse
Affiliation(s)
- Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Blake P Moore
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Li Nan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Virginia M Kelly
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Tina Etminan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Catherine P Langford
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Hui Xu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Xiaosi Han
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - James M Markert
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - Elizabeth A Beierle
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| | - G Yancey Gillespie
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, Alabama (G.K.F., B.P.M., L.N., V.M.K.); Science and Technology Honors Program, Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama (T.E.); Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama (C.P.L., J.M.M., G.Y.G.); Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama (H.X.); Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (X.H.); Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama (E.A.B.)
| |
Collapse
|