1
|
Gant KL, Patankar MS, Campagnola PJ. A Perspective Review: Analyzing Collagen Alterations in Ovarian Cancer by High-Resolution Optical Microscopy. Cancers (Basel) 2024; 16:1560. [PMID: 38672642 PMCID: PMC11048585 DOI: 10.3390/cancers16081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of origin of HGSOC. Although there have been significant strides in our understanding of this disease, early stage detection and diagnosis are still rare. Current clinical imaging modalities lack the ability to detect early stage pathogenesis in the fallopian tubes and the ovaries. However, there are several microscopic imaging techniques used to analyze the structural modifications in the extracellular matrix (ECM) protein collagen in ex vivo FT and ovarian tissues that potentially can be modified to fit the clinical setting. In this perspective, we evaluate and compare the myriad of optical tools available to visualize these alterations and the invaluable insights these data provide on HGSOC initiation. We also discuss the clinical implications of these findings and how these data may help novel tools for early diagnosis of HGSOC.
Collapse
Affiliation(s)
- Kristal L. Gant
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Buckley M, Kramer M, Johnson B, Huskin G, Berry J, Sewell-Loftin MK. Mechanical activation and expression of HSP27 in epithelial ovarian cancer. Sci Rep 2024; 14:2856. [PMID: 38310132 PMCID: PMC10838328 DOI: 10.1038/s41598-024-52992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
Understanding the complex biomechanical tumor microenvironment (TME) is of critical importance in developing the next generation of anti-cancer treatment strategies. This is especially true in epithelial ovarian cancer (EOC), the deadliest of the gynecologic cancers due to recurrent disease or chemoresistance. However, current models of EOC progression provide little control or ability to monitor how changes in biomechanical parameters alter EOC cell behaviors. In this study, we present a microfluidic device designed to permit biomechanical investigations of the ovarian TME. Using this microtissue system, we describe how biomechanical stimulation in the form of tensile strains upregulate phosphorylation of HSP27, a heat shock protein implicated in ovarian cancer chemoresistance. Furthermore, EOC cells treated with strain demonstrate decreased response to paclitaxel in the in vitro vascularized TME model. The results provide a direct link to biomechanical regulation of HSP27 as a mediator of EOC chemoresistance, possibly explaining the failure of such therapies in some patients. The work presented here lays a foundation to elucidating mechanobiological regulation of EOC progression, including chemoresistance and could provide novel targets for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Molly Buckley
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Maranda Kramer
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Bronte Johnson
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Gillian Huskin
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, UK
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, UK.
| |
Collapse
|
3
|
Paradiso F, Lenna S, Gazze SA, Garcia Parra J, Murphy K, Margarit L, Gonzalez D, Francis L, Taraballi F. Mechanomimetic 3D Scaffolds as a Humanized In Vitro Model for Ovarian Cancer. Cells 2022; 11:824. [PMID: 35269446 PMCID: PMC8909508 DOI: 10.3390/cells11050824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The mechanical homeostasis of tissues can be altered in response to trauma or disease, such as cancer, resulting in altered mechanotransduction pathways that have been shown to impact tumor development, progression, and the efficacy of therapeutic approaches. Specifically, ovarian cancer progression is parallel to an increase in tissue stiffness and fibrosis. With in vivo models proving difficult to study, tying tissue mechanics to altered cellular and molecular properties necessitate advanced, tunable, in vitro 3D models able to mimic normal and tumor mechanic features. First, we characterized normal human ovary and high-grade serous (HGSC) ovarian cancer tissue stiffness to precisely mimic their mechanical features on collagen I-based sponge scaffolds, soft (NS) and stiff (MS), respectively. We utilized three ovarian cancer cell lines (OVCAR-3, Caov-3, and SKOV3) to evaluate changes in viability, morphology, proliferation, and sensitivity to doxorubicin and liposomal doxorubicin treatment in response to a mechanically different microenvironment. High substrate stiffness promoted the proliferation of Caov-3 and SKOV3 cells without changing their morphology, and upregulated mechanosensors YAP/TAZ only in SKOV3 cells. After 7 days in culture, both OVCAR3 and SKOV3 decreased the MS scaffold storage modulus (stiffness), suggesting a link between cell proliferation and the softening of the matrix. Finally, high matrix stiffness resulted in higher OVCAR-3 and SKOV3 cell cytotoxicity in response to doxorubicin. This study demonstrates the promise of biomimetic porous scaffolds for effective inclusion of mechanical parameters in 3D cancer modeling. Furthermore, this work establishes the use of porous scaffolds for studying ovarian cancer cells response to mechanical changes in the microenvironment and as a meaningful platform from which to investigate chemoresistance and drug response.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - S. Andrea Gazze
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Jezabel Garcia Parra
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Kate Murphy
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK;
| | - Lavinia Margarit
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Lewis Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
4
|
Pavlova IP, Nair SS, Lundon D, Sobotka S, Roshandel R, Treacy PJ, Ratnani P, Brody R, Epstein JI, Ayala GE, Kyprianou N, Tewari AK. Multiphoton Microscopy for Identifying Collagen Signatures Associated with Biochemical Recurrence in Prostate Cancer Patients. J Pers Med 2021; 11:jpm11111061. [PMID: 34834413 PMCID: PMC8619628 DOI: 10.3390/jpm11111061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is a heterogeneous disease that remains dormant for long periods or acts aggressively with poor clinical outcomes. Identifying aggressive prostate tumor behavior using current glandular-focused histopathological criteria is challenging. Recent evidence has implicated the stroma in modulating prostate tumor behavior and in predicting post-surgical outcomes. However, the emergence of stromal signatures has been limited, due in part to the lack of adoption of imaging modalities for stromal-specific profiling. Herein, label-free multiphoton microscopy (MPM), with its ability to image tissue with stromal-specific contrast, is used to identify prostate stromal features associated with aggressive tumor behavior and clinical outcome. MPM was performed on unstained prostatectomy specimens from 59 patients and on biopsy specimens from 17 patients with known post-surgery recurrence status. MPM-identified collagen content, organization, and morphological tumor signatures were extracted for each patient and screened for association with recurrent disease. Compared to tumors from patients whose disease did not recur, tumors from patients with recurrent disease exhibited higher MPM-identified collagen amount and collagen fiber intensity signal and width. Our study shows an association between MPM-identified stromal collagen features of prostate tumors and post-surgical disease recurrence, suggesting their potential for prostate cancer risk assessment.
Collapse
Affiliation(s)
- Ina P. Pavlova
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
- Correspondence: (I.P.P.); (A.K.T.); Tel.: +1-212-659-5654 (I.P.P.); +1-212-241-8711 (A.K.T.)
| | - Sujit S. Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Dara Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Stanislaw Sobotka
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Reza Roshandel
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | | | - Parita Ratnani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
| | - Rachel Brody
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jonathan I. Epstein
- Department of Pathology, Urology and Oncology, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Gustavo E. Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.N.); (D.L.); (S.S.); (R.R.); (P.R.); (N.K.)
- Correspondence: (I.P.P.); (A.K.T.); Tel.: +1-212-659-5654 (I.P.P.); +1-212-241-8711 (A.K.T.)
| |
Collapse
|
5
|
Vega D, Galvez D, Romano G, Pham NY, Cordova R, Aitken M, Suebka S, Heusinkveld J, Barton JK. Triple-modality co-registered endoscope featuring wide-field reflectance imaging, and high-resolution multiphoton and optical coherence microscopy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 1:044502. [PMID: 36325111 PMCID: PMC9625855 DOI: 10.1117/1.jom.1.4.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present the design and feasibility testing of a multimodal co-registered endoscope based on a dual-path optical system integrated with a scanning piezo. This endoscope incorporates three different imaging modalities. A large field of view reflectance imaging system enables visualization of objects several millimeters in front of the endoscope, while optical coherence microscopy and multiphoton microscopy are employed in contact with tissue to further analyze suspicious areas. The optical system allows multiple different imaging modalities by employing a dual optical path. One path features a low numerical aperture and wide field of view to allow reflectance imaging of distant objects. The other path features a high numerical aperture and short working distance to allow microscopy techniques such as optical coherence microscopy and multiphoton microscopy. Images of test targets were obtained with each imaging modality to verify and characterize the imaging capabilities of the endoscope. The reflectance modality was demonstrated with a 561 nm laser to allow high contrast with blood vessels. It achieved a lateral resolution of 24.8 μm at 5 mm and a working distance from 5 mm to 30 mm. Optical coherence microscopy (OCM) was performed with a 1300 nm super-luminescent diode since this wavelength experiences low relative scattering to allow for deeper tissue imaging. Measured OCM lateral and axial resolution was 4.0 μm and 14.2 μm, respectively. Multiphoton microscopy (MPM) was performed with a custom 1400 nm femtosecond fiber laser, a wavelength suitable for exciting multiple exogenous and some endogenous fluorophores, as well as providing information on tissue composition through harmonic generation processes. A 4.0 μm MPM lateral resolution was measured.
Collapse
Affiliation(s)
- David Vega
- The University of Arizona, The James C Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA, 85721
| | - Dominique Galvez
- The University of Arizona, The James C Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA, 85721
| | - Gabriella Romano
- University of Arizona, Biomedical Engineering, The University of Arizona, Tucson, AZ, USA, 85721
| | - Nancy Y. Pham
- University of Arizona, Biomedical Engineering, The University of Arizona, Tucson, AZ, USA, 85721
| | - Ricky Cordova
- University of Arizona, Biomedical Engineering, The University of Arizona, Tucson, AZ, USA, 85721
| | - Makenna Aitken
- University of Arizona, Biomedical Engineering, The University of Arizona, Tucson, AZ, USA, 85721
| | - Sartanee Suebka
- The University of Arizona, The James C Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA, 85721
| | - John Heusinkveld
- University of Arizona, Department of Obstetrics and Gynecology, College of Medicine, The University of Arizona, Tucson, AZ, USA, 85721
| | - Jennifer K. Barton
- The University of Arizona, The James C Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA, 85721
- University of Arizona, Biomedical Engineering, The University of Arizona, Tucson, AZ, USA, 85721
| |
Collapse
|
6
|
Tilbury K, Han X, Brooks PC, Khalil A. Multiscale anisotropy analysis of second-harmonic generation collagen imaging of mouse skin. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210044R. [PMID: 34159763 PMCID: PMC8217961 DOI: 10.1117/1.jbo.26.6.065002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Morphological collagen signatures are important for tissue function, particularly in the tumor microenvironment. A single algorithmic framework with quantitative, multiscale morphological collagen feature extraction may further the use of collagen signatures in understanding fundamental tumor progression. AIM A modification of the 2D wavelet transform modulus maxima (WTMM) anisotropy method was applied to both digitally simulated collagen fibers and second-harmonic-generation imaged collagen fibers of mouse skin to calculate a multiscale anisotropy factor to detect collagen fiber organization. APPROACH The modified 2D WTMM anisotropy method was initially validated on synthetic calibration images to establish the robustness and sensitivity of the multiscale fiber organization tool. Upon validation, the algorithm was applied to collagen fiber organization in normal wild-type skin, melanoma stimulated skin, and integrin α10KO skin. RESULTS Normal wild-type skin collagen fibers have an increased anisotropy factor at all sizes scales. Interestingly, the multiscale anisotropy differences highlight important dissimilarities between collagen fiber organization in normal wild-type skin, melanoma stimulated, and integrin α10KO skin. At small scales (∼2 to 3 μm), the integrin α10KO skin was vastly different than normal skin (p-value ∼ 10 - 8), whereas the melanoma stimulated skin was vastly different than normal at large scales (∼30 to 40 μm, p-value ∼ 10 - 15). CONCLUSIONS This objective computational collagen fiber organization algorithm is sensitive to collagen fiber organization across multiple scales for effective exploration of collagen morphological alterations associated with melanoma and the lack of α10 integrin binding.
Collapse
Affiliation(s)
- Karissa Tilbury
- University of Maine, Chemical and Biomedical Engineering, Orono, Maine, United States
| | - XiangHua Han
- Maine Medical Center Research Institute, Scarborough, Maine, United States
| | - Peter C. Brooks
- Maine Medical Center Research Institute, Scarborough, Maine, United States
| | - Andre Khalil
- University of Maine, Chemical and Biomedical Engineering, Orono, Maine, United States
- University of Maine, CompuMAINE Lab., Orono, Maine, United States
| |
Collapse
|
7
|
Bimodal magnetic resonance and optical imaging of extracellular matrix remodelling by orthotopic ovarian tumours. Br J Cancer 2020; 123:216-225. [PMID: 32390007 PMCID: PMC7374547 DOI: 10.1038/s41416-020-0878-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The extracellular matrix modulates the development of ovarian tumours. Currently, evaluation of the extracellular matrix in the ovary is limited to histological methods. Both magnetic resonance imaging (MRI) and two-photon microscopy (2PM) enable dynamic visualisation and quantification of fibrosis by endogenous contrast mechanisms: magnetisation transfer (MT) MRI and second-harmonic generation (SHG) 2PM, respectively. METHODS Here, we applied the MT-MRI protocol for longitudinal imaging of the stroma in orthotopic human ovarian cancer ES-2 xenograft model in CD1 athymic nude mice, and for orthotopically implanted ovarian PDX using a MR-compatible imaging window chamber implanted into NSG mice. RESULTS We observed differences between ECM deposition in ovarian and skin lesions, and heterogeneous collagen distribution in ES-2 lesions. An MR-compatible imaging window chamber enabled visual matching between T2 MRI maps of orthotopically implanted PDX grafts and anatomical images of their microenvironment acquired with a stereomicroscope and SHG-2PM intravital microscopy of the collagen. Bimodal MRI/2PM imaging allowed us to quantify the fibrosis within the same compartments, and demonstrated the consistent results across the modalities. CONCLUSIONS This work demonstrates a novel approach for measuring the stromal biomarkers in orthotopic ovarian tumours in mice, on both macroscopic and microscopic levels.
Collapse
|
8
|
Mostaço-Guidolin LB, Osei ET, Ullah J, Hajimohammadi S, Fouadi M, Li X, Li V, Shaheen F, Yang CX, Chu F, Cole DJ, Brandsma CA, Heijink IH, Maksym GN, Walker D, Hackett TL. Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma. Am J Respir Crit Care Med 2020; 200:431-443. [PMID: 30950644 DOI: 10.1164/rccm.201810-1855oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Histologic stains have been used as the gold standard to visualize extracellular matrix (ECM) changes associated with airway remodeling in asthma, yet they provide no information on the biochemical and structural characteristics of the ECM, which are vital to understanding alterations in tissue function.Objectives: To demonstrate the use of nonlinear optical microscopy (NLOM) and texture analysis algorithms to image fibrillar collagen (second harmonic generation) and elastin (two-photon excited autofluorescence), to obtain biochemical and structural information on the remodeled ECM environment in asthma.Methods: Nontransplantable donor lungs from donors with asthma (n = 13) and control (n = 12) donors were used for the assessment of airway collagen and elastin fibers by NLOM, and extraction of lung fibroblasts for in vitro experiments.Measurements and Main Results: Fibrillar collagen is not only increased but also highly disorganized and fragmented within large and small asthmatic airways compared with control subjects, using NLOM imaging. Furthermore, such structural alterations are present in pediatric and adult donors with asthma, irrespective of fatal disease. In vitro studies demonstrated that asthmatic airway fibroblasts are deficient in their packaging of fibrillar collagen-I and express less decorin, important for collagen fibril packaging. Packaging of collagen fibrils was found to be more disorganized in asthmatic airways compared with control subjects, using transmission electron microscopy.Conclusions: NLOM imaging enabled the structural assessment of the ECM, and the data suggest that airway remodeling in asthma involves the progressive accumulation of disorganized fibrillar collagen by airway fibroblasts. This study highlights the future potential clinical application of NLOM to assess airway remodeling in vivo.
Collapse
Affiliation(s)
- Leila B Mostaço-Guidolin
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emmanuel T Osei
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jari Ullah
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soheil Hajimohammadi
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - May Fouadi
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xian Li
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vicky Li
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Furquan Shaheen
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Fanny Chu
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Darren J Cole
- 3School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Corry-Anke Brandsma
- 4Department of Pathology and Medical Biology.,5Groningen Research Institute of Asthma and COPD, and
| | - Irene H Heijink
- 4Department of Pathology and Medical Biology.,5Groningen Research Institute of Asthma and COPD, and.,6Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Geoffrey N Maksym
- 3School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - David Walker
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- 1Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,2Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Yang Q, Xu Z, Liao C, Cai J, Huang Y, Chen H, Tao X, Huang Z, Chen J, Dong J, Zhu X. Epithelium segmentation and automated Gleason grading of prostate cancer via deep learning in label-free multiphoton microscopic images. JOURNAL OF BIOPHOTONICS 2020; 13:e201900203. [PMID: 31710780 DOI: 10.1002/jbio.201900203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In the current clinical care practice, Gleason grading system is one of the most powerful prognostic predictors for prostate cancer (PCa). The grading system is based on the architectural pattern of cancerous epithelium in histological images. However, the standard procedure of histological examination often involves complicated tissue fixation and staining, which are time-consuming and may delay the diagnosis and surgery. In this study, label-free multiphoton microscopy (MPM) was used to acquire subcellular-resolution images of unstained prostate tissues. Then, a deep learning architecture (U-net) was introduced for epithelium segmentation of prostate tissues in MPM images. The obtained segmentation results were then merged with the original MPM images to train a classification network (AlexNet) for automated Gleason grading. The developed method achieved an overall pixel accuracy of 92.3% with a mean F1 score of 0.839 for epithelium segmentation. By merging the segmentation results with the MPM images, the accuracy of Gleason grading was improved from 72.42% to 81.13% in hold-out test set. Our results suggest that MPM in combination with deep learning holds the potential to be used as a fast and powerful clinical tool for PCa diagnosis.
Collapse
Affiliation(s)
- Qinqin Yang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Zhexin Xu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Chenxi Liao
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianyong Cai
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Ying Huang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuan Tao
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zheng Huang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianxin Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jiyang Dong
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Xiaoqin Zhu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
König TT, Goedeke J, Muensterer OJ. Multiphoton microscopy in surgical oncology- a systematic review and guide for clinical translatability. Surg Oncol 2019; 31:119-131. [PMID: 31654957 DOI: 10.1016/j.suronc.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiphoton microscopy (MPM) facilitates three-dimensional, high-resolution functional imaging of unlabeled tissues in vivo and ex vivo. This systematic review discusses the diagnostic value, advantages and challenges in the practical use of MPM in surgical oncology. METHOD AND FINDINGS A Medline search was conducted in April 2019. Fifty-three original research papers investigating MPM compared to standard histology in human patients with solid tumors were identified. A qualitative synopsis and meta-analysis of 14 blinded studies was performed. Risk of bias and applicability were evaluated. MPM can image fresh, frozen or fixed tissues up to a depth 1000 μm in the z-plane. Best results including functional imaging and virtual histochemistry are obtained by in vivo imaging or scanning fresh tissue immediately after excision. Two-photon excited fluorescence by natural fluorophores of the cytoplasm and second harmonic generation signals by fluorophores of the extracellular matrix can be scanned simultaneously, providing high resolution optical histochemistry comparable to standard histology. Functional parameters like fluorescence lifetime imaging or optical redox ratio provide additional objective information. A major concern is inability to visualize the nucleus. However, in a subpopulation analysis of 440 specimens, MPM yielded a sensitivity of 94%, specificity of 96% and accuracy of 95% for the detection of malignant tissue. CONCLUSION MPM is a promising emerging technique in surgical oncology. Ex vivo imaging has high sensitivity, specificity and accuracy for the detection of tumor cells. For broad clinical application in vivo, technical challenges need to be resolved.
Collapse
Affiliation(s)
| | - Jan Goedeke
- Universitätsmedizin Mainz, Department of Pediatric Surgery, Mainz, Germany
| | | |
Collapse
|
11
|
Birch GP, Campbell T, Bradley M, Dhaliwal K. Optical Molecular Imaging of Inflammatory Cells in Interventional Medicine-An Emerging Strategy. Front Oncol 2019; 9:882. [PMID: 31572676 PMCID: PMC6751259 DOI: 10.3389/fonc.2019.00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The optical molecular imaging of inflammation is an emerging strategy for interventional medicine and diagnostics. The host's inflammatory response and adaptation to acute and chronic diseases provides unique signatures that have the potential to guide interventions. Thus, there are emerging a suite of molecular imaging and sensing approaches for a variety of targets in this area. This review will focus on two key cellular orchestrators that dominate this area, neutrophils and macrophages, with recent developments in molecular probes and approaches discussed.
Collapse
Affiliation(s)
- Gavin P Birch
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Thane Campbell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Bradley
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Sawyer TW, Koevary JW, Rice FPS, Howard CC, Austin OJ, Connolly DC, Cai KQ, Barton JK. Quantification of multiphoton and fluorescence images of reproductive tissues from a mouse ovarian cancer model shows promise for early disease detection. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-16. [PMID: 31571434 PMCID: PMC6768507 DOI: 10.1117/1.jbo.24.9.096010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/13/2019] [Indexed: 05/12/2023]
Abstract
Ovarian cancer is the deadliest gynecologic cancer due predominantly to late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Multiphoton microscopy (MPM) is a relatively new imaging technique sensitive to endogenous fluorophores, which has tremendous potential for clinical diagnosis, though it is limited in its application to the ovaries. Wide-field fluorescence imaging (WFI) has been proposed as a complementary technique to MPM, as it offers high-resolution imagery of the entire organ and can be tailored to target specific biomarkers that are not captured by MPM imaging. We applied texture analysis to MPM images of a mouse model of ovarian cancer. We also conducted WFI targeting the folate receptor and matrix metalloproteinases. We find that texture analysis of MPM images of the ovary can differentiate between genotypes, which is a proxy for disease, with high statistical significance (p < 0.001). The wide-field fluorescence signal also changes significantly between genotypes (p < 0.01). We use the features to classify multiple tissue groups to over 80% accuracy. These results suggest that MPM and WFI are promising techniques for the early detection of ovarian cancer.
Collapse
Affiliation(s)
- Travis W. Sawyer
- University of Arizona, College of Optical Sciences, Tucson, Arizona, United States
| | - Jennifer W. Koevary
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Faith P. S. Rice
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Caitlin C. Howard
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Olivia J. Austin
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | | | - Kathy Q. Cai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | - Jennifer K. Barton
- University of Arizona, College of Optical Sciences, Tucson, Arizona, United States
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
- Address all correspondence to Jennifer K. Barton, E-mail:
| |
Collapse
|
13
|
Marble CB, Clary JE, Noojin GD, O'Connor SP, Nodurft DT, Wharmby AW, Rockwell BA, Scully MO, Yakovlev VV. Z-scan measurements of water from 1150 to 1400 nm. OPTICS LETTERS 2018; 43:4196-4199. [PMID: 30160750 DOI: 10.1364/ol.43.004196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Understanding the nonlinear properties of water is essential for laser surgery applications, as well as understanding supercontinuum generation in water. Unfortunately, the nonlinear properties of water for wavelengths longer than 1064 nm are poorly understood. We extend the application of the Z-scan technique in water to determine its nonlinear refractive index (n2) and nonlinear absorption (β) for wavelengths in the 1150-1400 nm range, where linear absorption is also significant. We observe the wavelength-dependent variation of the nonlinear properties of water around the water absorption band.
Collapse
|
14
|
Li B, Wang M, Charan K, Li MJ, Xu C. Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber. OPTICS EXPRESS 2018; 26:19637-19647. [PMID: 30114134 PMCID: PMC7510949 DOI: 10.1364/oe.26.019637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 05/23/2023]
Abstract
We explore the long wavelength limit of soliton self-frequency shift in silica-based fibers experimentally and using numerical simulation. We found that the longest wavelength soliton generated by soliton self-frequency shift is approximately 2500 nm because the soliton loses its energy rapidly at wavelength beyond 2400 nm due to material absorption by silica and water. We demonstrate 1580-2520 nm wavelength-tunable, high-pulse energy soliton generation using soliton self-frequency shift in a large-mode-area silica fiber pumped by a compact fiber source. Soliton pulses with pulse width of ~100 fs and pulse energy up to 73 nJ were obtained. Second harmonic generation of the solitons enables a wavelength-tunable femtosecond source from 950 nm to 1260 nm, with pulse energy up to 21 nJ. Using such energetic pulses, we demonstrate in vivo two-photon excited fluorescence imaging of vasculature and neurons in a mouse brain at wavelength beyond the tuning range of a mode-locked Ti:Sapphire lasers.
Collapse
Affiliation(s)
- Bo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kriti Charan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Ming-jun Li
- Corning Research and Development Corporation, Corning, NY, 14831, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Huttunen MJ, Hassan A, McCloskey CW, Fasih S, Upham J, Vanderhyden BC, Boyd RW, Murugkar S. Automated classification of multiphoton microscopy images of ovarian tissue using deep learning. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29900705 DOI: 10.1117/1.jbo.23.6.066002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 05/21/2023]
Abstract
Histopathological image analysis of stained tissue slides is routinely used in tumor detection and classification. However, diagnosis requires a highly trained pathologist and can thus be time-consuming, labor-intensive, and potentially risk bias. Here, we demonstrate a potential complementary approach for diagnosis. We show that multiphoton microscopy images from unstained, reproductive tissues can be robustly classified using deep learning techniques. We fine-train four pretrained convolutional neural networks using over 200 murine tissue images based on combined second-harmonic generation and two-photon excitation fluorescence contrast, to classify the tissues either as healthy or associated with high-grade serous carcinoma with over 95% sensitivity and 97% specificity. Our approach shows promise for applications involving automated disease diagnosis. It could also be readily applied to other tissues, diseases, and related classification problems.
Collapse
Affiliation(s)
- Mikko J Huttunen
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
- Tampere University of Technology, Laboratory of Photonics, Tampere, Finland
| | - Abdurahman Hassan
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
| | - Curtis W McCloskey
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Sijyl Fasih
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
| | - Jeremy Upham
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Robert W Boyd
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
- University of Rochester, Institute of Optics, Department of Physics and Astronomy, Rochester, New Yo, United States
| | | |
Collapse
|
16
|
McKenzie AJ, Hicks SR, Svec KV, Naughton H, Edmunds ZL, Howe AK. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Sci Rep 2018; 8:7228. [PMID: 29740072 PMCID: PMC5940803 DOI: 10.1038/s41598-018-25589-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/13/2023] Open
Abstract
There is growing appreciation of the importance of the mechanical properties of the tumor microenvironment on disease progression. However, the role of extracellular matrix (ECM) stiffness and cellular mechanotransduction in epithelial ovarian cancer (EOC) is largely unknown. Here, we investigated the effect of substrate rigidity on various aspects of SKOV3 human EOC cell morphology and migration. Young’s modulus values of normal mouse peritoneum, a principal target tissue for EOC metastasis, were determined by atomic force microscopy (AFM) and hydrogels were fabricated to mimic these values. We find that cell spreading, focal adhesion formation, myosin light chain phosphorylation, and cellular traction forces all increase on stiffer matrices. Substrate rigidity also positively regulates random cell migration and, importantly, directional increases in matrix tension promote SKOV3 cell durotaxis. Matrix rigidity also promotes nuclear translocation of YAP1, an oncogenic transcription factor associated with aggressive metastatic EOC. Furthermore, disaggregation of multicellular EOC spheroids, a behavior associated with dissemination and metastasis, is enhanced by matrix stiffness through a mechanotransduction pathway involving ROCK, actomyosin contractility, and FAK. Finally, this pattern of mechanosensitivity is maintained in highly metastatic SKOV3ip.1 cells. These results establish that the mechanical properties of the tumor microenvironment may play a role in EOC metastasis.
Collapse
Affiliation(s)
- Andrew J McKenzie
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Stephanie R Hicks
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Kathryn V Svec
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Hannah Naughton
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Zöe L Edmunds
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Alan K Howe
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States.
| |
Collapse
|
17
|
Hall G, Liang W, Li X. Fitting-free algorithm for efficient quantification of collagen fiber alignment in SHG imaging applications. BIOMEDICAL OPTICS EXPRESS 2017; 8:4609-4620. [PMID: 29082088 PMCID: PMC5654803 DOI: 10.1364/boe.8.004609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 05/29/2023]
Abstract
Collagen fiber alignment derived from second harmonic generation (SHG) microscopy images can be important for disease diagnostics. Image processing algorithms are needed to robustly quantify the alignment in images with high sensitivity and reliability. Fourier transform (FT) magnitude, 2D power spectrum, and image autocorrelation have previously been used to extract fiber information from images by assuming a certain mathematical model (e.g. Gaussian distribution of the fiber-related parameters) and fitting. The fitting process is slow and fails to converge when the data is not Gaussian. Herein we present an efficient constant-time deterministic algorithm which characterizes the symmetricity of the FT magnitude image in terms of a single parameter, named the fiber alignment anisotropy R ranging from 0 (randomized fibers) to 1 (perfect alignment). This represents an important improvement of the technology and may bring us one step closer to utilizing the technology for various applications in real time. In addition, we present a digital image phantom-based framework for characterizing and validating the algorithm, as well as assessing the robustness of the algorithm against different perturbations.
Collapse
Affiliation(s)
- Gunnsteinn Hall
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
- These authors contributed equally
| | - Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
- These authors contributed equally
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
18
|
Ju HM, Lee SH, Kong TH, Kwon SH, Choi JS, Seo YJ. Usefulness of Intravital Multiphoton Microscopy in Visualizing Study of Mouse Cochlea and Volume Changes in the Scala Media. Front Neurol 2017; 8:332. [PMID: 28824523 PMCID: PMC5535263 DOI: 10.3389/fneur.2017.00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022] Open
Abstract
Conventional microscopy has limitations in viewing the cochlear microstructures due to three-dimensional spiral structure and the overlying bone. But these issues can be overcome by imaging the cochlea in vitro with intravital multiphoton microscopy (MPM). By using near-infrared lasers for multiphoton excitation, intravital MPM can detect endogenous fluorescence and second harmonic generation of tissues. In this study, we used intravital MPM to visualize various cochlear microstructures without any staining and non-invasively analyze the volume changes of the scala media (SM) without removing the overlying cochlear bone. The intravital MPM images revealed various tissue types, ranging from thin membranes to dense bone, as well as the spiral ganglion beneath the cochlear bone. The two-dimensional, cross-sectional, and serial z-stack intravital MPM images also revealed the spatial dilation of the SM in the temporal bone of pendrin-deficient mice. These findings suggest that intravital MPM might serve as a new method for obtaining microanatomical information regarding the cochlea, similar to standard histopathological analyses in the animal study for the cochlea. Given the capability of intravital MPM for detecting an increase in the volume of the SM in pendrin-deficient mice, it might be a promising new tool for assessing the pathophysiology of hearing loss in the future.
Collapse
Affiliation(s)
- Hyun Mi Ju
- Laboratory of Smile Snail, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sun Hee Lee
- Laboratory of Smile Snail, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Tae Hoon Kong
- Laboratory of Smile Snail, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seung-Hae Kwon
- Department of Bio-imaging, Korea Basic Science Institute, Chuncheon, South Korea
| | - Jin Sil Choi
- Laboratory of Smile Snail, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Young Joon Seo
- Laboratory of Smile Snail, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
19
|
Tilbury KB, Campbell KR, Eliceiri KW, Salih SM, Patankar M, Campagnola PJ. Stromal alterations in ovarian cancers via wavelength dependent Second Harmonic Generation microscopy and optical scattering. BMC Cancer 2017; 17:102. [PMID: 28166758 PMCID: PMC5294710 DOI: 10.1186/s12885-017-3090-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer remains the most deadly gynecological cancer with a poor aggregate survival rate; however, the specific rates are highly dependent on the stage of the disease upon diagnosis. Current screening and imaging tools are insufficient to detect early lesions and are not capable of differentiating the subtypes of ovarian cancer that may benefit from specific treatments. METHOD As an alternative to current screening and imaging tools, we utilized wavelength dependent collagen-specific Second Harmonic Generation (SHG) imaging microscopy and optical scattering measurements to probe the structural differences in the extracellular matrix (ECM) of normal stroma, benign tumors, endometrioid tumors, and low and high-grade serous tumors. RESULTS The SHG signatures of the emission directionality and conversion efficiency as well as the optical scattering are related to the organization of collagen on the sub-micron size scale and encode structural information. The wavelength dependence of these readouts adds additional characterization of the size and distribution of collagen fibrils/fibers relative to the interrogating wavelengths. We found a strong wavelength dependence of these metrics that are related to significant structural differences in the collagen organization and are consistent with the dualistic classification of type I and II serous tumors. Moreover, type I endometrioid tumors have strongly differing ECM architecture than the serous malignancies. The SHG metrics and optical scattering measurements were used to form a linear discriminant model to classify the tissues, and we obtained high accuracy (>90%) between high-grade serous tumors from the other tissue types. High-grade serous tumors account for ~70% of ovarian cancers, and this delineation has potential clinical applications in terms of supplementing histological analysis, understanding the etiology, as well as development of an in vivo screening tool. CONCLUSIONS SHG and optical scattering measurements provide sub-resolution information and when combined provide superior diagnostic power over clinical imaging modalities. Additionally the measurements are able to delineate the different subtypes of ovarian cancer and may potentially assist in treatment protocols. Understanding the altered collagen assembly can supplement histological analysis and provide new insight into the etiology. These methods could become an in vivo screening tool for earlier detection which is important since ovarian malignancies can metastasize while undetectable by current clinical imaging resolution.
Collapse
Affiliation(s)
- Karissa B Tilbury
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA
| | - Kirby R Campbell
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA.,Medical Physics Department, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53706, USA.,Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Sana M Salih
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53706, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53706, USA
| | - Paul J Campagnola
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA. .,Medical Physics Department, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
20
|
Zeitoune AA, Luna JS, Salas KS, Erbes L, Cesar CL, Andrade LA, Carvahlo HF, Bottcher-Luiz F, Casco VH, Adur J. Epithelial Ovarian Cancer Diagnosis of Second-Harmonic Generation Images: A Semiautomatic Collagen Fibers Quantification Protocol. Cancer Inform 2017; 16:1176935117690162. [PMID: 28469386 PMCID: PMC5392028 DOI: 10.1177/1176935117690162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/02/2017] [Indexed: 11/20/2022] Open
Abstract
A vast number of human pathologic conditions are directly or indirectly related to tissular collagen structure remodeling. The nonlinear optical microscopy second-harmonic generation has become a powerful tool for imaging biological tissues with anisotropic hyperpolarized structures, such as collagen. During the past years, several quantification methods to analyze and evaluate these images have been developed. However, automated or semiautomated solutions are necessary to ensure objectivity and reproducibility of such analysis. This work describes automation and improvement methods for calculating the anisotropy (using fast Fourier transform analysis and the gray-level co-occurrence matrix). These were applied to analyze biopsy samples of human ovarian epithelial cancer at different stages of malignancy (mucinous, serous, mixed, and endometrial subtypes). The semiautomation procedure enabled us to design a diagnostic protocol that recognizes between healthy and pathologic tissues, as well as between different tumor types.
Collapse
Affiliation(s)
- Angel A Zeitoune
- Biofotónica y Procesamiento de Información Biológica (ByPIB), Centro de Investigación y Transferencia de Entre Ríos (CITER), CONICET-UNER, Entre Ríos, Argentina.,Microscopy Laboratory Applied to Molecular and Cellular Studies, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina
| | - Johana Sj Luna
- Laboratory Applied to Non-Ionizing Radiation, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina
| | - Kynthia Sanchez Salas
- Laboratory Applied to Non-Ionizing Radiation, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina
| | - Luciana Erbes
- Biofotónica y Procesamiento de Información Biológica (ByPIB), Centro de Investigación y Transferencia de Entre Ríos (CITER), CONICET-UNER, Entre Ríos, Argentina.,Microscopy Laboratory Applied to Molecular and Cellular Studies, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina
| | - Carlos L Cesar
- National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABiC), São Paulo, Brazil.,Department of Physics, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Liliana Ala Andrade
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Hernades F Carvahlo
- National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABiC), São Paulo, Brazil.,Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Fátima Bottcher-Luiz
- National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABiC), São Paulo, Brazil.,Department of Pathology of the Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Victor H Casco
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina
| | - Javier Adur
- Biofotónica y Procesamiento de Información Biológica (ByPIB), Centro de Investigación y Transferencia de Entre Ríos (CITER), CONICET-UNER, Entre Ríos, Argentina.,Microscopy Laboratory Applied to Molecular and Cellular Studies, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina.,Laboratory Applied to Non-Ionizing Radiation, Engineering School, National University of Entre Ríos, Entre Ríos, Argentina
| |
Collapse
|
21
|
Abstract
Orthotopic transplantation assays in mice are invaluable for studies of cell regeneration and neoplastic transformation. Common approaches for orthotopic transplantation of ovarian surface and tubal epithelia include intraperitoneal and intrabursal administration of cells. The respective limitations of these methods include poorly defined location of injected cells and limited space volume. Furthermore, they are poorly suited for long-term structural preservation of transplanted organs. To address these challenges, we have developed an alternative approach, which is based on the introduction of cells and tissue fragments into the mouse fat pad. The mouse ovarian fat pad is located in the immediate vicinity of the ovary and uterine tube (aka oviduct, fallopian tube), and provides a familiar microenvironment for cells and tissues of these organs. In our approach fluorescence-labeled mouse and human cells, and fragments of the uterine tube are engrafted by using minimally traumatic dorsal incision surgery. Transplanted cells and their outgrowths are easily located in the ovarian fat pad for over 40 days. Long-term transplantation of the entire uterine tube allows correct preservation of all principle tissue components, and does not result in adverse side effects, such as fibrosis and inflammation. Our approach should be uniquely applicable for answering important biological questions such as differentiation, regenerative and neoplastic potential of specific cell populations. Furthermore, it should be suitable for studies of microenvironmental factors in normal development and cancer.
Collapse
|
22
|
Computer assisted optical screening of human ovarian cancer using Raman spectroscopy. Photodiagnosis Photodyn Ther 2016; 15:94-9. [DOI: 10.1016/j.pdpdt.2016.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 01/04/2023]
|
23
|
Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016; 7:48753-48787. [PMID: 27145373 PMCID: PMC5217050 DOI: 10.18632/oncotarget.9066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Umberto Veronesi Foundation, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
24
|
Adur J, Barbosa G, Pelegati V, Baratti M, Cesar C, Casco V, Carvalho H. Multimodal and non-linear optical microscopy applications in reproductive biology. Microsc Res Tech 2016; 79:567-82. [DOI: 10.1002/jemt.22684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
Affiliation(s)
- J. Adur
- Biophotonic Group. Optics and Photonics Research Center (CEPOF); Institute of Physics “Gleb Wataghin,” State University of Campinas; Brazil
- Biofotónica y Procesamiento de Información Biológica (ByPIB); CITER - Centro de Investigación y Transferencia de Entre Ríos, CONICET-UNER; Argentina
- Microscopy Laboratory Applied to Molecular and Cellular Studies, School of Bioengineering; National University of Entre Ríos; Argentina
| | - G.O. Barbosa
- Department of Structural and Functional Biology; Biology Institute, State University of Campinas; Brazil
| | - V.B. Pelegati
- Biophotonic Group. Optics and Photonics Research Center (CEPOF); Institute of Physics “Gleb Wataghin,” State University of Campinas; Brazil
- INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas; Brazil
| | - M.O. Baratti
- INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas; Brazil
| | - C.L. Cesar
- Biophotonic Group. Optics and Photonics Research Center (CEPOF); Institute of Physics “Gleb Wataghin,” State University of Campinas; Brazil
- INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas; Brazil
- Department of Physics of Federal University of Ceara (UFC); Brazil
| | - V.H. Casco
- Biofotónica y Procesamiento de Información Biológica (ByPIB); CITER - Centro de Investigación y Transferencia de Entre Ríos, CONICET-UNER; Argentina
- Microscopy Laboratory Applied to Molecular and Cellular Studies, School of Bioengineering; National University of Entre Ríos; Argentina
| | - H.F. Carvalho
- Department of Structural and Functional Biology; Biology Institute, State University of Campinas; Brazil
- INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas; Brazil
| |
Collapse
|
25
|
Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, Mohanan S, Morris PG, Du B, Zhou XK, Vahdat LT, Verma A, Elemento O, Hudis CA, Williams RM, Gourdon D, Dannenberg AJ, Fischbach C. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 2016; 7:301ra130. [PMID: 26290412 DOI: 10.1126/scitranslmed.3010467] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity and extracellular matrix (ECM) density are considered independent risk and prognostic factors for breast cancer. Whether they are functionally linked is uncertain. We investigated the hypothesis that obesity enhances local myofibroblast content in mammary adipose tissue and that these stromal changes increase malignant potential by enhancing interstitial ECM stiffness. Indeed, mammary fat of both diet- and genetically induced mouse models of obesity were enriched for myofibroblasts and stiffness-promoting ECM components. These differences were related to varied adipose stromal cell (ASC) characteristics because ASCs isolated from obese mice contained more myofibroblasts and deposited denser and stiffer ECMs relative to ASCs from lean control mice. Accordingly, decellularized matrices from obese ASCs stimulated mechanosignaling and thereby the malignant potential of breast cancer cells. Finally, the clinical relevance and translational potential of our findings were supported by analysis of patient specimens and the observation that caloric restriction in a mouse model reduces myofibroblast content in mammary fat. Collectively, these findings suggest that obesity-induced interstitial fibrosis promotes breast tumorigenesis by altering mammary ECM mechanics with important potential implications for anticancer therapies.
Collapse
Affiliation(s)
- Bo Ri Seo
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Siyoung Choi
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jacqueline Gonzalez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Karin Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sunish Mohanan
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Patrick G Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Baoheng Du
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xi K Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY 10065, USA
| | - Linda T Vahdat
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Clifford A Hudis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rebecca M Williams
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Tate TH, Baggett B, Rice PFS, Koevary JW, Orsinger GV, Nymeyer AC, Welge WA, Saboda K, Roe DJ, Hatch KD, Chambers SK, Utzinger U, Barton JK. Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage cancer detection. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:56005. [PMID: 27220626 PMCID: PMC5996865 DOI: 10.1117/1.jbo.21.5.056005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/25/2016] [Indexed: 05/17/2023]
Abstract
With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease originates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging. Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflectance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstituting using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endoscopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast agents.
Collapse
Affiliation(s)
- Tyler H. Tate
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, United States
| | - Brenda Baggett
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Photini F. S. Rice
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Jennifer Watson Koevary
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Gabriel V. Orsinger
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Ariel C. Nymeyer
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Weston A. Welge
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, United States
| | - Kathylynn Saboda
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Denise J. Roe
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Kenneth D. Hatch
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Setsuko K. Chambers
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Urs Utzinger
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, United States
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Jennifer Kehlet Barton
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, United States
- University of Arizona, Department of Biomedical Engineering, 1657 East Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
27
|
Pal MK, Rashid M, Bisht M. Multiplexed magnetic nanoparticle-antibody conjugates (MNPs-ABS) based prognostic detection of ovarian cancer biomarkers, CA-125, β-2M and ApoA1 using fluorescence spectroscopy with comparison of surface plasmon resonance (SPR) analysis. Biosens Bioelectron 2015; 73:146-152. [DOI: 10.1016/j.bios.2015.05.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
|
28
|
Bochner F, Fellus-Alyagor L, Kalchenko V, Shinar S, Neeman M. A Novel Intravital Imaging Window for Longitudinal Microscopy of the Mouse Ovary. Sci Rep 2015. [PMID: 26207832 PMCID: PMC4513547 DOI: 10.1038/srep12446] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ovary is a dynamic organ that undergoes dramatic remodeling throughout the ovulatory cycle. Maturation of the ovarian follicle, release of the oocyte in the course of ovulation as well as formation and degradation of corpus luteum involve tightly controlled remodeling of the extracellular matrix and vasculature. Ovarian tumors, regardless of their tissue of origin, dynamically interact with the ovarian microenvironment. Their activity in the tissue encompasses recruitment of host stroma and immune cells, attachment of tumor cells to mesothelial layer, degradation of the extracellular matrix and tumor cell migration. High-resolution dynamic imaging of such processes is particularly challenging for internal organs. The implementation of a novel imaging window as reported here enabled longitudinal microscopy of ovarian physiology and orthotopic tumor invasion.
Collapse
Affiliation(s)
- Filip Bochner
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100 Israel
| | - Liat Fellus-Alyagor
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100 Israel
| | | | - Shiri Shinar
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100 Israel
| | - Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100 Israel
| |
Collapse
|
29
|
Mallidi S, Spring BQ, Hasan T. Optical Imaging, Photodynamic Therapy and Optically Triggered Combination Treatments. Cancer J 2015; 21:194-205. [PMID: 26049699 PMCID: PMC4459538 DOI: 10.1097/ppo.0000000000000117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical imaging is becoming increasingly promising for real-time image-guided resections, and combined with photodynamic therapy (PDT), a photochemistry-based treatment modality, optical approaches can be intrinsically "theranostic." Challenges in PDT include precise light delivery, dosimetry, and photosensitizer tumor localization to establish tumor selectivity, and like all other modalities, incomplete treatment and subsequent activation of molecular escape pathways are often attributable to tumor heterogeneity. Key advances in molecular imaging, target-activatable photosensitizers, and optically active nanoparticles that provide both cytotoxicity and a drug release mechanism have opened exciting avenues to meet these challenges. The focus of the review is optical imaging in the context of PDT, but the general principles presented are applicable to many of the conventional approaches to cancer management. We highlight the role of optical imaging in providing structural, functional, and molecular information regarding photodynamic mechanisms of action, thereby advancing PDT and PDT-based combination therapies of cancer. These advances represent a PDT renaissance with increasing applications of clinical PDT as a frontline cancer therapy working in concert with fluorescence-guided surgery, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Bryan Q. Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
30
|
Tilbury K, Campagnola PJ. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:21-32. [PMID: 25987830 PMCID: PMC4403703 DOI: 10.4137/pmc.s13214] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 11/23/2022]
Abstract
In this perspective, we discuss how the nonlinear optical technique of second-harmonic generation (SHG) microscopy has been used to greatly enhance our understanding of the tumor microenvironment (TME) of breast and ovarian cancer. Striking changes in collagen architecture are associated with these epithelial cancers, and SHG can image these changes with great sensitivity and specificity with submicrometer resolution. This information has not historically been exploited by pathologists but has the potential to enhance diagnostic and prognostic capabilities. We summarize the utility of image processing tools that analyze fiber morphology in SHG images of breast and ovarian cancer in human tissues and animal models. We also describe methods that exploit the SHG physical underpinnings that are effective in delineating normal and malignant tissues. First we describe the use of polarization-resolved SHG that yields metrics related to macromolecular and supramolecular structures. The coherence and corresponding phase-matching process of SHG results in emission directionality (forward to backward), which is related to sub-resolution fibrillar assembly. These analyses are more general and more broadly applicable than purely morphology-based analyses; however, they are more computationally intensive. Intravital imaging techniques are also emerging that incorporate all of these quantitative analyses. Now, all these techniques can be coupled with rapidly advancing miniaturization of imaging systems to afford their use in clinical situations including enhancing pathology analysis and also in assisting in real-time surgical determination of tumor margins.
Collapse
Affiliation(s)
- Karissa Tilbury
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. ; Medical Physics Department, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
31
|
Carey SP, Rahman A, Kraning-Rush CM, Romero B, Somasegar S, Torre OM, Williams RM, Reinhart-King CA. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am J Physiol Cell Physiol 2015; 308:C436-47. [PMID: 25500742 PMCID: PMC4360026 DOI: 10.1152/ajpcell.00225.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
Tumor cell invasion through the stromal extracellular matrix (ECM) is a key feature of cancer metastasis, and understanding the cellular mechanisms of invasive migration is critical to the development of effective diagnostic and therapeutic strategies. Since cancer cell migration is highly adaptable to physiochemical properties of the ECM, it is critical to define these migration mechanisms in a context-specific manner. Although extensive work has characterized cancer cell migration in two- and three-dimensional (3D) matrix environments, the migration program employed by cells to move through native and cell-derived microtracks within the stromal ECM remains unclear. We previously reported the development of an in vitro model of patterned type I collagen microtracks that enable matrix metalloproteinase-independent microtrack migration. Here we show that collagen microtracks closely resemble channel-like gaps in native mammary stroma ECM and examine the extracellular and intracellular mechanisms underlying microtrack migration. Cell-matrix mechanocoupling, while critical for migration through 3D matrix, is not necessary for microtrack migration. Instead, cytoskeletal dynamics, including actin polymerization, cortical tension, and microtubule turnover, enable persistent, polarized migration through physiological microtracks. These results indicate that tumor cells employ context-specific mechanisms to migrate and suggest that selective targeting of cytoskeletal dynamics, but not adhesion, proteolysis, or cell traction forces, may effectively inhibit cancer cell migration through preformed matrix microtracks within the tumor stroma.
Collapse
Affiliation(s)
- Shawn P Carey
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Aniqua Rahman
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Bethsabe Romero
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Sahana Somasegar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Olivia M Torre
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Rebecca M Williams
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | |
Collapse
|
32
|
Burke K, Brown E. The Use of Second Harmonic Generation to Image the Extracellular Matrix During Tumor Progression. INTRAVITAL 2015; 3:e984509. [PMID: 28243512 DOI: 10.4161/21659087.2014.984509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
Abstract
Metastasis is the leading cause of cancer mortality, resulting from changes in the tumor microenvironment which increases tumor cell migration, dispersal to distant organs, and subsequent survival. This is accompanied by changes in tumor collagen which may allow cells to travel more efficiently away from a primary tumor and invade the surrounding tissue. Second Harmonic generation (SHG) is an intrinsic optical signal that has expanded our understanding of collagen evolution throughout tumor progression. This article addresses current research into tumor progression using SHG, as well as the future prospects of using SHG to advance our understanding of the tumor microenvironment.
Collapse
Affiliation(s)
- Kathleen Burke
- Department of Biomedical Engineering; University of Rochester ; Rochester, NY USA
| | - Edward Brown
- Department of Biomedical Engineering; University of Rochester ; Rochester, NY USA
| |
Collapse
|
33
|
Wang T, Brewer M, Zhu Q. An overview of optical coherence tomography for ovarian tissue imaging and characterization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:1-16. [PMID: 25329515 PMCID: PMC4268384 DOI: 10.1002/wnan.1306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Ovarian cancer has the lowest survival rate among all the gynecologic cancers because it is predominantly diagnosed at late stages due to the lack of reliable symptoms and efficacious screening techniques. Optical coherence tomography (OCT) is an emerging technique that provides high-resolution images of biological tissue in real time, and demonstrates great potential for imaging of ovarian tissue. In this article, we review OCT studies for visualization and diagnosis of human ovaries as well as quantitative extraction of ovarian tissue optical properties for classifying normal and malignant ovaries. OCT combined with other imaging modalities to further improve ovarian tissue diagnosis is also reviewed.
Collapse
Affiliation(s)
- Tianheng Wang
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Molly Brewer
- Division of Gynecologic Oncology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Quing Zhu
- Department of Electrical and Computer Engineering & Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
34
|
Huland DM, Jain M, Ouzounov DG, Robinson BD, Harya DS, Shevchuk MM, Singhal P, Xu C, Tewari AK. Multiphoton gradient index endoscopy for evaluation of diseased human prostatic tissue ex vivo. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:116011. [PMID: 25415446 PMCID: PMC4409031 DOI: 10.1117/1.jbo.19.11.116011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/24/2014] [Indexed: 05/04/2023]
Abstract
Multiphoton microscopy can instantly visualize cellular details in unstained tissues. Multiphoton probes with clinical potential have been developed. This study evaluates the suitability of multiphoton gradient index (GRIN) endoscopy as a diagnostic tool for prostatic tissue. A portable and compact multiphoton endoscope based on a 1-mm diameter, 8-cm length GRIN lens system probe was used. Fresh ex vivo samples were obtained from 14 radical prostatectomy patients and benign and malignant areas were imaged and correlated with subsequent H&E sections. Multiphoton GRIN endoscopy images of unfixed and unprocessed prostate tissue at a subcellular resolution are presented. We note several differences and identifying features of benign versus low-grade versus high-grade tumors and are able to identify periprostatic tissues such as adipocytes, periprostatic nerves, and blood vessels. Multiphoton GRIN endoscopy can be used to identify both benign and malignant lesions in ex vivo human prostate tissue and may be a valuable diagnostic tool for real-time visualization of suspicious areas of the prostate.
Collapse
Affiliation(s)
- David M. Huland
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York 14853, United States
- Address all correspondence to: David M. Huland, E-mail:
| | - Manu Jain
- New York-Presbyterian Hospital, Department of Urology of Weill Medical College of Cornell University, New York 10021, United States
| | - Dimitre G. Ouzounov
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York 14853, United States
| | - Brian D. Robinson
- New York-Presbyterian Hospital, Department of Surgical Pathology of Weill Medical College of Cornell University, New York 10021, United States
| | - Diana S. Harya
- Cornell University, College of Veterinary Medicine, Ithaca, New York 14853, United States
| | - Maria M. Shevchuk
- New York-Presbyterian Hospital, Department of Surgical Pathology of Weill Medical College of Cornell University, New York 10021, United States
| | - Paras Singhal
- New York-Presbyterian Hospital, Department of Urology of Weill Medical College of Cornell University, New York 10021, United States
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York 14853, United States
| | - Ashutosh K. Tewari
- New York-Presbyterian Hospital, Department of Urology of Weill Medical College of Cornell University, New York 10021, United States
| |
Collapse
|
35
|
Flesken-Nikitin A, Odai-Afotey AA, Nikitin AY. Role of the stem cell niche in the pathogenesis of epithelial ovarian cancers. Mol Cell Oncol 2014; 1:e963435. [PMID: 27308341 PMCID: PMC4905019 DOI: 10.4161/23723548.2014.963435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 01/10/2023]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the United States. Recent extensive genomic analyses of epithelial ovarian cancer (EOC), particularly the most common and deadly form of high-grade serous ovarian carcinoma, have provided important insights into the repertoire of molecular aberrations that are characteristic for this malignancy. However, interpretation of the discovered aberrations is complicated because the origin and mechanisms of progression of EOC remain uncertain. Here, we summarize current views on the cell of origin of EOC and discuss recent findings of a cancer-prone stem cell niche for ovarian surface epithelium, one of the major likely sources of EOC. We also outline future directions and challenges in studying the role of stem cell niches in EOC pathogenesis.
Collapse
Affiliation(s)
- Andrea Flesken-Nikitin
- Department of Biomedical Sciences and Stem Cell Program; Cornell University ; Ithaca, NY USA
| | - Ashley A Odai-Afotey
- Department of Biomedical Sciences and Stem Cell Program; Cornell University ; Ithaca, NY USA
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences and Stem Cell Program; Cornell University ; Ithaca, NY USA
| |
Collapse
|
36
|
Thomas G, van Voskuilen J, Gerritsen HC, Sterenborg HJCM. Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:128-38. [PMID: 25463660 DOI: 10.1016/j.jphotobiol.2014.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 11/28/2022]
Abstract
Nonlinear optical imaging (NLOI) has emerged to be a promising tool for bio-medical imaging in recent times. Among the various applications of NLOI, its utility is the most significant in the field of pre-clinical and clinical cancer research. This review begins by briefly covering the core principles involved in NLOI, such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG). Subsequently, there is a short description on the various cellular components that contribute to endogenous optical fluorescence. Later on the review deals with its main theme--the challenges faced during label-free NLO imaging in translational cancer research. While this review addresses the accomplishment of various label-free NLOI based studies in cancer diagnostics, it also touches upon the limitations of the mentioned studies. In addition, areas in cancer research that need to be further investigated by label-free NLOI are discussed in a latter segment. The review eventually concludes on the note that label-free NLOI has and will continue to contribute richly in translational cancer research, to eventually provide a very reliable, yet minimally invasive cancer diagnostic tool for the patient.
Collapse
Affiliation(s)
- Giju Thomas
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Centre for Optical Diagnostics and Therapy, Erasmus Medical Centre, Post Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Johan van Voskuilen
- Department of Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Hans C Gerritsen
- Department of Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - H J C M Sterenborg
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
37
|
Spring BQ, Palanisami A, Hasan T. Microscale receiver operating characteristic analysis of micrometastasis recognition using activatable fluorescent probes indicates leukocyte imaging as a critical factor to enhance accuracy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:066006. [PMID: 24919449 PMCID: PMC4053439 DOI: 10.1117/1.jbo.19.6.066006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Molecular-targeted probes are emerging with applications for optical biopsy of cancer. An underexplored potential clinical use of these probes is to monitor residual cancer micrometastases that escape cytoreductive surgery and chemotherapy. Here, we show that leukocytes, or white blood cells, residing in nontumor tissues--as well as those infiltrating micrometastatic lesions--uptake cancer cell-targeted, activatable immunoconjugates nonspecifically, which limits the accuracy and resolution of micrometastasis recognition using these probes. Receiver operating characteristic analysis of freshly excised tissues from a mouse model of peritoneal carcinomatosis suggests that dual-color imaging, adding an immunostain for leukocytes, offers promise for enabling accurate recognition of single cancer cells. Our results indicate that leukocyte identification improves micrometastasis recognition sensitivity and specificity from 92 to 93%--for multicellular metastases >20 to 30 μm in size--to 98 to 99.9% for resolving metastases as small as a single cell.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Akilan Palanisami
- Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Tayyaba Hasan
- Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
- Harvard University and Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
38
|
Adur J, Carvalho HF, Cesar CL, Casco VH. Nonlinear optical microscopy signal processing strategies in cancer. Cancer Inform 2014; 13:67-76. [PMID: 24737930 PMCID: PMC3981479 DOI: 10.4137/cin.s12419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023] Open
Abstract
This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
Collapse
Affiliation(s)
- Javier Adur
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Bioengineering School, National University of Entre Rios, Oro Verde, Entre Rios, Argentina. ; INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Carlos L Cesar
- INFABiC-National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, São Paulo, Brazil
| | - Víctor H Casco
- Microscopy Laboratory Applied to Molecular and Cellular Studies, Bioengineering School, National University of Entre Rios, Oro Verde, Entre Rios, Argentina
| |
Collapse
|
39
|
Orsinger GV, Watson JM, Gordon M, Nymeyer AC, de Leon EE, Brownlee JW, Hatch KD, Chambers SK, Barton JK, Kostuk RK, Romanowski M. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:36020. [PMID: 24676382 PMCID: PMC3967775 DOI: 10.1117/1.jbo.19.3.036020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/03/2014] [Indexed: 05/08/2023]
Abstract
Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Gabriel V. Orsinger
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona 85719
| | - Jennifer M. Watson
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona 85719
| | - Michael Gordon
- University of Arizona, Department of Optical Sciences, Tucson, Arizona 85721
| | - Ariel C. Nymeyer
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona 85719
| | - Erich E. de Leon
- University of Arizona, Department of Optical Sciences, Tucson, Arizona 85721
| | | | - Kenneth D. Hatch
- University of Arizona, College of Medicine, Department of Obstetrics and Gynecology, Tucson, Arizona 85724
| | - Setsuko K. Chambers
- University of Arizona, College of Medicine, Department of Obstetrics and Gynecology, Tucson, Arizona 85724
| | - Jennifer K. Barton
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona 85719
- University of Arizona, Department of Optical Sciences, Tucson, Arizona 85721
- University of Arizona, Electrical and Computer Engineering Department, Tucson, Arizona 85721
- Address all correspondence to: Jennifer K. Barton, E-mail:
| | - Raymond K. Kostuk
- University of Arizona, Department of Optical Sciences, Tucson, Arizona 85721
- University of Arizona, Electrical and Computer Engineering Department, Tucson, Arizona 85721
| | - Marek Romanowski
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona 85719
| |
Collapse
|
40
|
Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 2014; 111:E933-42. [PMID: 24572574 DOI: 10.1073/pnas.1319493111] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant micrometastases that escape standard therapies often go undetected until the emergence of lethal recurrent disease. Here, we show that it is possible to treat microscopic tumors selectively using an activatable immunoconjugate. The immunoconjugate is composed of self-quenching, near-infrared chromophores loaded onto a cancer cell-targeting antibody. Chromophore phototoxicity and fluorescence are activated by lysosomal proteolysis, and light, after cancer cell internalization, enabling tumor-confined photocytotoxicity and resolution of individual micrometastases. This unique approach not only introduces a therapeutic strategy to help destroy residual drug-resistant cells but also provides a sensitive imaging method to monitor micrometastatic disease in common sites of recurrence. Using fluorescence microendoscopy to monitor immunoconjugate activation and micrometastatic disease, we demonstrate these concepts of "tumor-targeted, activatable photoimmunotherapy" in a mouse model of peritoneal carcinomatosis. By introducing targeted activation to enhance tumor selectively in complex anatomical sites, this study offers prospects for catching early recurrent micrometastases and for treating occult disease.
Collapse
|
41
|
Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Andrade LALA, Carvalho HF, Bottcher-Luiz F, Cesar CL. Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer. JOURNAL OF BIOPHOTONICS 2014; 7:37-48. [PMID: 23024013 DOI: 10.1002/jbio.201200108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/03/2012] [Accepted: 08/22/2012] [Indexed: 05/11/2023]
Abstract
In this study we showed that second-harmonic generation (SHG) microscopy combined with precise methods for images evaluation can be used to detect structural changes in the human ovarian stroma. Using a set of scoring methods (alignment of collagen fibers, anisotropy, and correlation), we found significant differences in the distribution and organization of collagen fibers in the stroma component of serous, mucinous, endometrioid and mixed ovarian tumors as compared with normal ovary tissue. This methodology was capable to differentiate between cancerous and healthy tissue, with clear cut distinction between normal, benign, borderline, and malignant tumors of serous type. Our results indicated that the combination of different image-analysis approaches presented here represent a powerful tool to investigate collagen organization and extracellular matrix remodeling in ovarian tumors.
Collapse
Affiliation(s)
- Javier Adur
- Biomedical Lasers Application Laboratory, Optics and Photonics Research Center, "Gleb Wataghin" Institute of Physics, State University of Campinas UNICAMP, Brazil; Microscopy Laboratory Applied to Molecular and Cellular Studies, School of Bioengineering, National University of Entre Ríos UNER, Ruta 11 Km10, Oro Verde 3101, Entre Ríos, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fein MR, Egeblad M. Caught in the act: revealing the metastatic process by live imaging. Dis Model Mech 2013; 6:580-93. [PMID: 23616077 PMCID: PMC3634643 DOI: 10.1242/dmm.009282] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The prognosis of metastatic cancer in patients is poor. Interfering with metastatic spread is therefore important for achieving better survival from cancer. Metastatic disease is established through a series of steps, including breaching of the basement membrane, intravasation and survival in lymphatic or blood vessels, extravasation, and growth at distant sites. Yet, although we know the steps involved in metastasis, the cellular and molecular mechanisms of dissemination and colonization of distant organs are incompletely understood. Here, we review the important insights into the metastatic process that have been gained specifically through the use of imaging technologies in murine, chicken embryo and zebrafish model systems, including high-resolution two-photon microscopy and bioluminescence. We further discuss how imaging technologies are beginning to allow researchers to address the role of regional activation of specific molecular pathways in the metastatic process. These technologies are shedding light, literally, on almost every step of the metastatic process, particularly with regards to the dynamics and plasticity of the disseminating cancer cells and the active participation of the microenvironment in the processes.
Collapse
Affiliation(s)
- Miriam R Fein
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
43
|
Watson JM, Marion SL, Rice PF, Bentley DL, Besselsen DG, Utzinger U, Hoyer PB, Barton JK. In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis. Cancer Biol Ther 2013; 15:42-60. [PMID: 24145178 DOI: 10.4161/cbt.26605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SHG]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a long-term survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SHG. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer.
Collapse
Affiliation(s)
| | - Samuel L Marion
- Physiology Department; University of Arizona; Tucson, AZ USA
| | - Photini F Rice
- Biomedical Engineering; University of Arizona; Tucson, AZ USA
| | - David L Bentley
- Biomedical Engineering; University of Arizona; Tucson, AZ USA
| | | | - Urs Utzinger
- Biomedical Engineering; University of Arizona; Tucson, AZ USA
| | | | | |
Collapse
|
44
|
Ross KA, Williams RM, Schnabel LV, Mohammed HO, Potter HG, Bradica G, Castiglione E, Pownder SL, Satchell PW, Saska RA, Fortier LA. Comparison of Three Methods to Quantify Repair Cartilage Collagen Orientation. Cartilage 2013; 4:111-20. [PMID: 26069654 PMCID: PMC4297104 DOI: 10.1177/1947603512461440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine if the noninvasive or minimally invasive and nondestructive imaging techniques of quantitative T2-mapping or multiphoton microscopy (MPM) respectively, could detect differences in cartilage collagen orientation similar to polarized light microscopy (PLM). It was hypothesized that MRI, MPM, and PLM would all detect quantitative differences between repair and normal cartilage tissue. METHODS Osteochondral defects in the medial femoral condyle were created and repaired in 5 mature goats. Postmortem, MRI with T2-mapping and histology were performed. T2 maps were generated and a mean T2 value was calculated for each region of interest. Histologic slides were assessed using MPM with measurements of autocorrelation ellipticity, and by PLM with application of a validated scoring method. Collagen orientation using each of the 3 modalities (T2-mapping, MPM, and PLM) was measured in the center of the repair tissue and compared to remote, normal cartilage. RESULTS MRI, MPM, and PLM were able to detect a significant difference between repair and normal cartilage (n = 5). The average T2 value was longer for repair tissue (41.43 ± 9.81 ms) compared with normal cartilage (27.12 ± 14.22 ms; P = 0.04); MPM autocorrelation ellipticity was higher in fibrous tissue (3.75 ± 1.17) compared with normal cartilage (2.24 ± 0.51; P = 0.01); the average PLM score for repair tissue was lower (1.6 ± 1.02) than the score for remote normal cartilage (4.4 ± 0.42; P = 0.002). The strongest correlation among the methods was between MRI and PLM (r = -0.76; P = 0.01), followed by MPM and PLM (r = -0.58; P = 0.08), with the weakest correlation shown between MRI and MPM (r = 0.35; P = 0.31). CONCLUSION All 3 imaging methods quantitatively measured differences in collagen orientation between repair and normal cartilage, but at very different levels of resolution. PLM is destructive to tissue and requires euthanasia, but because MPM can be used arthroscopically, both T2-mapping and MPM can be performed in vivo, offering nondestructive means to assess collagen orientation that could be used to obtain longitudinal data in cartilage repair studies.
Collapse
Affiliation(s)
- Keir A. Ross
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rebecca M. Williams
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, USA
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Hussni O. Mohammed
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Hollis G. Potter
- Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
| | | | | | - Sarah L. Pownder
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Patrick W. Satchell
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
45
|
Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. NATURE PHOTONICS 2013; 7:205-209. [PMID: 24353743 PMCID: PMC3864872 DOI: 10.1038/nphoton.2012.336] [Citation(s) in RCA: 729] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-photon fluorescence microscopy (2PM)1 enables scientists in various fields including neuroscience2,3, embryology4, and oncology5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of 2PM within the mouse brain to the cortical layer, and imaging subcortical structures currently requires the removal of overlying brain tissue3 or the insertion of optical probes6,7. Here we demonstrate non-invasive, high resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy (3PM) at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein (RFP)-labeled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher order nonlinear excitation overcomes the limitations of 2PM, enabling biological investigations to take place at greater depth within tissue.
Collapse
Affiliation(s)
- Nicholas G Horton
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Ke Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Demirhan Kobat
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Catharine G Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Frank W Wise
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Chris B Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
46
|
Burke K, Tang P, Brown E. Second harmonic generation reveals matrix alterations during breast tumor progression. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:31106. [PMID: 23172133 PMCID: PMC3595714 DOI: 10.1117/1.jbo.18.3.031106] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 05/18/2023]
Abstract
Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.
Collapse
Affiliation(s)
- Kathleen Burke
- University of Rochester, Department of Biomedical Engineering, Goergen Hall Box 270168, Rochester, New York 14627
| | - Ping Tang
- University of Rochester Medical Center, School of Medicine and Dentistry, Department of Pathology and Laboratory Medicine, 601 Elmwood Avenue, Box 626, Rochester, New York 14627
| | - Edward Brown
- University of Rochester, Department of Biomedical Engineering, Goergen Hall Box 270168, Rochester, New York 14627
| |
Collapse
|
47
|
Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Almeida DB, Andrade LALA, Bottcher-Luiz F, Carvalho HF, Cesar CL. Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One 2012; 7:e47007. [PMID: 23056557 PMCID: PMC3466244 DOI: 10.1371/journal.pone.0047007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nonlinear optical (NLO) microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third-harmonic generation (THG) and fluorescence lifetime imaging microscopy (FLIM) can detect morphological and metabolic changes associated with ovarian cancer progression. METHODOLOGY/PRINCIPAL FINDINGS We obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E) and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years) including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells. CONCLUSIONS/SIGNIFICANCE NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Female
- Humans
- Microscopy
- Microscopy, Fluorescence, Multiphoton
- Middle Aged
- Neoplasms, Glandular and Epithelial/diagnosis
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Serum/metabolism
Collapse
Affiliation(s)
- Javier Adur
- Biophotonic Group, Optics and Photonics Research Center (CEPOF), Institute of Physics Gleb Wataghin, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Adur J, Pelegati VB, de Thomaz AA, D'Souza-Li L, Assunção MDC, Bottcher-Luiz F, Andrade LALA, Cesar CL. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081407-1. [PMID: 23224168 DOI: 10.1117/1.jbo.17.8.081407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.
Collapse
Affiliation(s)
- Javier Adur
- State University of Campinas (UNICAMP), "Gleb Wataghin" Institute of Physics, Optics and Photonics Research Center, Biomedical Lasers Application Laboratory, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Watson JM, Rice PF, Marion SL, Brewer MA, Davis JR, Rodriguez JJ, Utzinger U, Hoyer PB, Barton JK. Analysis of second-harmonic-generation microscopy in a mouse model of ovarian carcinoma. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:076002. [PMID: 22894485 PMCID: PMC3389559 DOI: 10.1117/1.jbo.17.7.076002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/25/2012] [Accepted: 05/18/2012] [Indexed: 05/23/2023]
Abstract
Second-harmonic-generation (SHG) imaging of mouse ovaries ex vivo was used to detect collagen structure changes accompanying ovarian cancer development. Dosing with 4-vinylcyclohexene diepoxide and 7,12-dimethylbenz[a]anthracene resulted in histologically confirmed cases of normal, benign abnormality, dysplasia, and carcinoma. Parameters for each SHG image were calculated using the Fourier transform matrix and gray-level co-occurrence matrix (GLCM). Cancer versus normal and cancer versus all other diagnoses showed the greatest separation using the parameters derived from power in the highest-frequency region and GLCM energy. Mixed effects models showed that these parameters were significantly different between cancer and normal (P<0.008). Images were classified with a support vector machine, using 25% of the data for training and 75% for testing. Utilizing all images with signal greater than the noise level, cancer versus not-cancer specimens were classified with 81.2% sensitivity and 80.0% specificity, and cancer versus normal specimens were classified with 77.8% sensitivity and 79.3% specificity. Utilizing only images with greater than of 75% of the field of view containing signal improved sensitivity and specificity for cancer versus normal to 81.5% and 81.1%. These results suggest that using SHG to visualize collagen structure in ovaries could help with early cancer detection.
Collapse
Affiliation(s)
- Jennifer M. Watson
- University of Arizona, Biomedical Engineering, 1657 E. Helen Street, Building 240, P.O. Box 210240, Tucson, Arizona 85721
| | - Photini F. Rice
- University of Arizona, Biomedical Engineering, 1657 E. Helen Street, Building 240, P.O. Box 210240, Tucson, Arizona 85721
| | - Samuel L. Marion
- University of Arizona, Department of Physiology, Basic Sciences, Room 4122, 1501 N. Campbell Avenue, P.O. Box 245051, Tucson, Arizona 85724-5051
| | - Molly A. Brewer
- University of Connecticut Health Center, Carole and Ray Neag Comprehensive Cancer Center, Division of Gynecologic Oncology, 263 Farmington Avenue, MC 1614, Farmington, Connecticut 06030-2875
| | - John R. Davis
- University of Arizona, Department of Pathology, Tucson, Arizona
| | - Jeffrey J. Rodriguez
- University of Arizona, Electrical/Computer Engineering, P.O. Box 210104, Tucson, Arizona
| | - Urs Utzinger
- University of Arizona, Biomedical Engineering, 1657 E. Helen Street, Building 240, P.O. Box 210240, Tucson, Arizona 85721
| | - Patricia B. Hoyer
- University of Arizona, Department of Physiology, Basic Sciences, Room 4122, 1501 N. Campbell Avenue, P.O. Box 245051, Tucson, Arizona 85724-5051
| | - Jennifer K. Barton
- University of Arizona, Biomedical Engineering, 1657 E. Helen Street, Building 240, P.O. Box 210240, Tucson, Arizona 85721
| |
Collapse
|
50
|
Kim TN, Goodwill PW, Chen Y, Conolly SM, Schaffer CB, Liepmann D, Wang RA. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals. PLoS One 2012; 7:e38590. [PMID: 22761686 PMCID: PMC3383695 DOI: 10.1371/journal.pone.0038590] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/10/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. METHODOLOGY/PRINCIPAL FINDINGS We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. CONCLUSIONS/SIGNIFICANCE To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies.
Collapse
Affiliation(s)
- Tyson N. Kim
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick W. Goodwill
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Yeni Chen
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Chris B. Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|