1
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae134. [PMID: 39436782 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Azerigyik FA, Faizah AN, Kobayashi D, Amoa-Bosompem M, Matsumura R, Kai I, Sasaki T, Higa Y, Isawa H, Iwanaga S, Ishino T. Evaluating the mosquito host range of Getah virus and the vector competence of selected medically important mosquitoes in Getah virus transmission. Parasit Vectors 2023; 16:99. [PMID: 36922882 PMCID: PMC10015795 DOI: 10.1186/s13071-023-05713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The Getah virus (GETV) is a mosquito-borne Alphavirus (family Togaviridae) that is of significant importance in veterinary medicine. It has been associated with major polyarthritis outbreaks in animals, but there are insufficient data on its clinical symptoms in humans. Serological evidence of GETV exposure and the risk of zoonotic transmission makes GETV a potentially medically relevant arbovirus. However, minimal emphasis has been placed on investigating GETV vector transmission, which limits current knowledge of the factors facilitating the spread and outbreaks of GETV. METHODS To examine the range of the mosquito hosts of GETV, we selected medically important mosquitoes, assessed them in vitro and in vivo and determined their relative competence in virus transmission. The susceptibility and growth kinetics of GETVs in various mosquito-derived cell lines were also determined and quantified using plaque assays. Vector competency assays were also conducted, and quantitative reverse transcription-PCR and plaque assays were used to determine the susceptibility and transmission capacity of each mosquito species evaluated in this study. RESULTS GETV infection in all of the investigated mosquito cell lines resulted in detectable cytopathic effects. GETV reproduced the fastest in Culex tritaeniorhynchus- and Aedes albopictus-derived cell lines, as evidenced by the highest exponential titers we observed. Regarding viral RNA copy numbers, mosquito susceptibility to infection, spread, and transmission varied significantly between species. The highest vector competency indices for infection, dissemination and transmission were obtained for Cx. tritaeniorhynchus. This is the first study to investigate the ability of Ae. albopictus and Anopheles stephensi to transmit GETV, and the results emphasize the role and capacity of other mosquito species to transmit GETV upon exposure to GETV, in addition to the perceived vectors from which GETV has been isolated in nature. CONCLUSIONS This study highlights the importance of GETV vector competency studies to determine all possible transmission vectors, especially in endemic regions.
Collapse
Affiliation(s)
- Faustus Akankperiwen Azerigyik
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Ryo Matsumura
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Izumi Kai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | - Shiroh Iwanaga
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Department of Molecular Protozoology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Martin-Martin I, Alves E. Silva TL, Williams AE, Vega-Rodriguez J, Calvo E. Performing Immunohistochemistry in Mosquito Salivary Glands. Cold Spring Harb Protoc 2022; 2022:Pdb.top107699. [PMID: 35960615 PMCID: PMC9811942 DOI: 10.1101/pdb.top107699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studying protein localization in mosquito salivary glands provides novel insights on the function and physiological relevance of salivary proteins and also provides an avenue to study interactions between mosquitoes and pathogens. Salivary proteins display compartmentalization. For example, proteins involved in blood feeding are stored in the medial and distal lateral lobes, whereas proteins related to sugar metabolism localize to the proximal portion of the lateral lobes. Immunohistochemistry assays use antibodies raised against recombinant salivary proteins to reveal the protein localization and interactions within the tissue. In this assay, permeabilization of the salivary glands allows the antibodies to enter the cells and bind their target proteins. The primary antibody-antigen complexes are later marked with fluorescently labeled secondary antibodies. Antibodies that recognize pathogen-specific proteins can also be incorporated in these assays, providing information about pathogen localization within the salivary glands or pathogen interactions with mosquito salivary proteins. Here, we introduce immunohistochemistry assays for use in mosquito salivary glands.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Thiago Luiz Alves E. Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA;,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA;,Correspondence:
| |
Collapse
|
4
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Ackroyd S, Vidana B, Lean FZX, Hicks D, Nuñez A, Johnson N. Temperate conditions restrict Japanese encephalitis virus infection to the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes. Sci Rep 2021; 11:6133. [PMID: 33731761 PMCID: PMC7971067 DOI: 10.1038/s41598-021-85411-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the main cause of viral encephalitis in Asia. However, with changing climate JEV has the potential to emerge in novel temperate regions. Here, we have assessed the vector competence of the temperate mosquito Culex pipiens f. pipiens to vector JEV genotype III at temperatures representative of those experienced, or predicted in the future during the summer months, in the United Kingdom. Our results show that Cx. pipiens is susceptible to JEV infection at both temperatures. In addition, at 25 °C, JEV disseminated from the midgut and was recovered in saliva samples, indicating the potential for transmission. At a lower temperature, 20 °C, following an incubation period of fourteen days, there were reduced levels of JEV dissemination and virus was not detected in saliva samples. The virus present in the bodies of these mosquitoes was restricted to the posterior midgut as determined by microscopy and viable virus was successfully recovered. Apart from the influence on virus dissemination, mosquito mortality was significantly increased at the higher temperature. Overall, our results suggest that temperature is a critical factor for JEV vector competence and infected-mosquito survival. This may in turn influence the vectorial capacity of Cx. pipiens to vector JEV genotype III in temperate areas.
Collapse
Affiliation(s)
- Arran J Folly
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| | - Daniel Dorey-Robinson
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Pirbright Institute, Ash Road, Woking, Surrey, GU24 ONF, UK
| | - Luis M Hernández-Triana
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Stuart Ackroyd
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Beatriz Vidana
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.,Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Fabian Z X Lean
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Nicholas Johnson
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
5
|
Infection of Mammals and Mosquitoes by Alphaviruses: Involvement of Cell Death. Cells 2020; 9:cells9122612. [PMID: 33291372 PMCID: PMC7762023 DOI: 10.3390/cells9122612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Alphaviruses, such as the chikungunya virus, are emerging and re-emerging viruses that pose a global public health threat. They are transmitted by blood-feeding arthropods, mainly mosquitoes, to humans and animals. Although alphaviruses cause debilitating diseases in mammalian hosts, it appears that they have no pathological effect on the mosquito vector. Alphavirus/host interactions are increasingly studied at cellular and molecular levels. While it seems clear that apoptosis plays a key role in some human pathologies, the role of cell death in determining the outcome of infections in mosquitoes remains to be fully understood. Here, we review the current knowledge on alphavirus-induced regulated cell death in hosts and vectors and the possible role they play in determining tolerance or resistance of mosquitoes.
Collapse
|
6
|
Matusali G, Colavita F, Bordi L, Lalle E, Ippolito G, Capobianchi MR, Castilletti C. Tropism of the Chikungunya Virus. Viruses 2019; 11:v11020175. [PMID: 30791607 PMCID: PMC6410217 DOI: 10.3390/v11020175] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus that displays a large cell and organ tropism, and causes a broad range of clinical symptoms in humans. It is maintained in nature through both urban and sylvatic cycles, involving mosquito vectors and human or vertebrate animal hosts. Although CHIKV was first isolated in 1953, its pathogenesis was only more extensively studied after its re-emergence in 2004. The unexpected spread of CHIKV to novel tropical and non-tropical areas, in some instances driven by newly competent vectors, evidenced the vulnerability of new territories to this infectious agent and its associated diseases. The comprehension of the exact CHIKV target cells and organs, mechanisms of pathogenesis, and spectrum of both competitive vectors and animal hosts is pivotal for the design of effective therapeutic strategies, vector control measures, and eradication actions.
Collapse
Affiliation(s)
- Giulia Matusali
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Francesca Colavita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Licia Bordi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Eleonora Lalle
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Maria R Capobianchi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| | - Concetta Castilletti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
| |
Collapse
|
7
|
Homologs of Human Dengue-Resistance Genes, FKBP1B and ATCAY, Confer Antiviral Resistance in Aedes aegypti Mosquitoes. INSECTS 2019; 10:insects10020046. [PMID: 30717390 PMCID: PMC6409984 DOI: 10.3390/insects10020046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) is transmitted by mosquitoes and is a major public health concern. The study of innate mosquito defense mechanisms against DENV have revealed crucial roles for the Toll, Imd, JAK-STAT, and RNAi pathways in mediating DENV in the mosquito. Often overlooked in such studies is the role of intrinsic cellular defense mechanisms that we hypothesize to work in concert with the classical immune pathways to affect organismal defense. Our understanding of the molecular interaction of DENV with mosquito host cells is limited, and we propose to expand upon the recent results from a genome-scale, small interfering RNA (siRNA)-based study that identified mammalian host proteins associated with resistance to dengue/West Nile virus (DENV/WNV) infection. The study identified 22 human DENV/WNV resistance genes (DVR), and we hypothesized that a subset would be functionally conserved in Aedes aegypti mosquitoes, imparting cellular defense against flaviviruses in this species. We identified 12 homologs of 22 human DVR genes in the Ae. aegypti genome. To evaluate their possible role in cellular resistance/antiviral defense against DENV, we used siRNA silencing targeted against each of the 12 homologs in an Ae. aegypti cell line (Aag2) infected with DENV2 and identified that silencing of the two candidates, AeFKBP1 and AeATCAY, homologs of human FKBP1B and ATCAY, were associated with a viral increase. We then used dsRNA to silence each of the two genes in adult mosquitoes to validate the observed antiviral functions in vivo. Depletion of AeFKBP1 or AeATCAY increased viral dissemination through the mosquito at 14 days post-infection. Our results demonstrated that AeFKBP1 and AeATCAY mediate resistance to DENV akin to what has been described for their homologs in humans. AeFKBP1 and AeATCAY provide a rare opportunity to elucidate a DENV-resistance mechanism that may be evolutionarily conserved between humans and Ae. aegypti.
Collapse
|
8
|
Dong S, Balaraman V, Kantor AM, Lin J, Grant DG, Held NL, Franz AWE. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLoS Negl Trop Dis 2017; 11:e0005976. [PMID: 28961239 PMCID: PMC5636170 DOI: 10.1371/journal.pntd.0005976] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/11/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
In the mosquito, the midgut epithelium is the initial tissue to become infected with an arthropod-borne virus (arbovirus) that has been acquired from a vertebrate host along with a viremic bloodmeal. Following its replication in midgut epithelial cells, the virus needs to exit the midgut and infect secondary tissues including the salivary glands before it can be transmitted to another vertebrate host. The viral exit mechanism from the midgut, the midgut escape barrier (MEB), is poorly understood although it is an important determinant of mosquito vector competence for arboviruses. Using chikungunya virus (CHIKV) as a model in Aedes aegypti, we demonstrate that the basal lamina (BL) of the extracellular matrix (ECM) surrounding the midgut constitutes a potential barrier for the virus. The BL, predominantly consisting of collagen IV and laminin, becomes permissive during bloodmeal digestion in the midgut lumen. Bloodmeal digestion, BL permissiveness, and CHIKV dissemination are coincident with increased collagenase activity, diminished collagen IV abundance, and BL shredding in the midgut between 24–32 h post-bloodmeal. This indicates that there may be a window-of-opportunity during which the MEB in Ae. aegypti becomes permissive for CHIKV. Matrix metalloproteinases (MMPs) are the principal extracellular endopeptidases responsible for the degradation/remodeling of the ECM including the BL. We focused on Ae. aegypti (Ae)MMP1, which is expressed in midgut epithelial cells, is inducible upon bloodfeeding, and shows collagenase (gelatinase) activity. However, attempts to inhibit AeMMP activity in general or specifically that of AeMMP1 did not seem to affect its function nor produce an altered midgut escape phenotype. As an alternative, we silenced and overexpressed the Ae. aegyptitissue inhibitor of metalloproteinases (AeTIMP) in the mosquito midgut. AeTIMP was highly upregulated in the midgut during bloodmeal digestion and was able to inhibit MMP activity in vitro. Bloodmeal-inducible, midgut-specific overexpression of AeTIMP or its expression via a recombinant CHIKV significantly increased midgut dissemination rates of the virus. Possibly, AeTIMP overexpression affected BL degradation and/or restoration thereby increasing the midgut dissemination efficiency of the virus. The biological nature of the midgut escape barrier in insects for arthropod-borne viruses has been a mystery for decades. Here we show that the basal lamina (BL) surrounding the mosquito midgut acts as a barrier for chikungunya virus, an alphavirus, which has emerged in the New World hemisphere around three years ago. The barrier became permissive for the virus during digestion of a viremic bloodmeal inside the midgut lumen. Concurrent with BL permissiveness, we observed that collagen IV, a major component of the BL became temporally degraded while the BL was visibly damaged. Based on previous findings, we hypothesized that matrix metalloproteinases such as Ae. aegypti (Ae)MMP1 may be involved in BL degradation. We confirmed that recombinant AeMMP1 exhibited strong gelatinase activity, which was profoundly reduced when recombinant AeMMP1 interacted in vitro with the recombinant Ae. aegypti tissue inhibitor of metalloproteinases (AeTIMP). When transgenically overexpressing AeTIMP in an attempt to temporally inhibit general MMP activity in the mosquito midgut, we observed that the dissemination efficiency of chikungunya virus became significantly increased, while its midgut infection was not affected. It is possible that AeTIMP overexpression affected BL degradation/restoration permitting increased quantities of virus to escape from the midgut.
Collapse
Affiliation(s)
- Shengzhang Dong
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Velmurugan Balaraman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Asher M. Kantor
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Jingyi Lin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - DeAna G. Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri, United States of America
| | - Nicole L. Held
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
9
|
Le Coupanec A, Tchankouo-Nguetcheu S, Roux P, Khun H, Huerre M, Morales-Vargas R, Enguehard M, Lavillette D, Missé D, Choumet V. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes. Int J Mol Sci 2017; 18:ijms18081708. [PMID: 28777313 PMCID: PMC5578098 DOI: 10.3390/ijms18081708] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti. The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.
Collapse
Affiliation(s)
- Alain Le Coupanec
- Unité de Génétique Moléculaire des Bunyavirus, Institut Pasteur, 75015 Paris, France.
| | | | - Pascal Roux
- Imagopole, Institut Pasteur, 75015 Paris, France.
| | - Huot Khun
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, 75015 Paris, France.
| | - Michel Huerre
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, 75015 Paris, France.
| | - Ronald Morales-Vargas
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand.
| | - Margot Enguehard
- Interspecies transmission of arboviruses and Therapeutics research Unit, Institut Pasteur of Shanghai, Shanghai Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dimitri Lavillette
- Interspecies transmission of arboviruses and Therapeutics research Unit, Institut Pasteur of Shanghai, Shanghai Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dorothée Missé
- Maladies infectieuses et vecteurs: écologie, génétique, évolution et contrôle (MIVEGEC), IRD, 34394 Montpellier, France.
| | - Valérie Choumet
- Unité Environnement et Risques Infectieux, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
10
|
Trari B, Dakki M, Harbach RE. An updated checklist of the Culicidae (Diptera) of Morocco, with notes on species of historical and current medical importance. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:94-104. [PMID: 28504435 DOI: 10.1111/jvec.12243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/17/2016] [Indexed: 06/07/2023]
Abstract
An updated checklist of the mosquito species (Diptera: Culicidae) recorded in Morocco from 1916 to 2016 is provided, including synonyms and synonymous usage for each species. Forty-three species belonging to seven genera are recorded so far: Anopheles (9), Aedes (12) Coquillettidia (2), Culex (12), Culiseta (5), Orthopodomyia (1) and Uranotaenia (2). Traditional and equivalent names in the polyphyletic concept of Aedes are provided for the aedine species. The historical importance and current potential threat of mosquitoes to human health in Morocco is reviewed.
Collapse
Affiliation(s)
- Bouchra Trari
- Unité de Recherche et Développement, Institut Supérieur des Professions Infirmières et Techniques de Santé, Rabat, Morocco
- Département de Zoologie et Biologie Générale, Faculté des Sciences, Université Mohamed V, Rabat, Morocco
- Laboratoire de Zoologie, Université Mohamed V, Institut Scientifique, Rabat, Morocco
| | - Mohamed Dakki
- Laboratoire de Zoologie, Université Mohamed V, Institut Scientifique, Rabat, Morocco
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
11
|
Leal WS, Barbosa RMR, Zeng F, Faierstein GB, Tan K, Paiva MHS, Guedes DRD, Crespo MM, Ayres CFJ. Does Zika virus infection affect mosquito response to repellents? Sci Rep 2017; 7:42826. [PMID: 28205633 PMCID: PMC5311973 DOI: 10.1038/srep42826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/13/2017] [Indexed: 11/10/2022] Open
Abstract
The World Health Organization (WHO) recommends that people travelling to or living in areas with Zika virus (ZIKV) outbreaks or epidemics adopt prophylactic measures to reduce or eliminate mosquito bites, including the use of insect repellents. It is, however, unknown whether repellents are effective against ZIKV-infected mosquitoes, in part because of the ethical concerns related to exposing a human subject’s arm to infected mosquitoes in the standard arm-in-cage assay. We used a previously developed, human subject-free behavioural assay, which mimics a human subject to evaluate the top two recommended insect repellents. Our measurements showed that DEET provided significantly higher protection than picaridin provided against noninfected, host-seeking females of the southern house mosquito, Culex quinquefasciatus, and the yellow fever mosquito, Aedes aegypti. When tested at lower doses, we observed a significant reduction in DEET-elicited protection against ZIKV-infected yellow fever mosquitoes from old and recent laboratory colonies. The reduction in protection is more likely associated with aging than the virus infection and could be compensated by applying a 5x higher dose of DEET. A substantial protection against ZIKV-infected and old noninfected mosquitoes was achieved with 5% DEET, which corresponds approximately to a 30% dose in the conventional arm-in-cage assays.
Collapse
Affiliation(s)
- Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | - Rosângela M R Barbosa
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Campus da Universidade Federal de Pernambuco, Recife, PE, 50.740-465, Brasil
| | - Fangfang Zeng
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | - Gabriel B Faierstein
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Campus da Universidade Federal de Pernambuco, Recife, PE, 50.740-465, Brasil
| | - Kaiming Tan
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | - Marcelo H S Paiva
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Campus da Universidade Federal de Pernambuco, Recife, PE, 50.740-465, Brasil.,Universidade Federal de Pernambuco, Centro Acadêmico do Agreste - Rodovia BR-104, Km 59 - Nova Caruaru, Caruaru - PE - CEP: 55002-970, Brasil
| | - Duschinka R D Guedes
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Campus da Universidade Federal de Pernambuco, Recife, PE, 50.740-465, Brasil
| | - Mônica M Crespo
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Campus da Universidade Federal de Pernambuco, Recife, PE, 50.740-465, Brasil
| | - Constância F J Ayres
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Campus da Universidade Federal de Pernambuco, Recife, PE, 50.740-465, Brasil
| |
Collapse
|
12
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Clem RJ. Arboviruses and apoptosis: the role of cell death in determining vector competence. J Gen Virol 2016; 97:1033-1036. [PMID: 26872460 DOI: 10.1099/jgv.0.000429] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A relatively small number of mosquito species transmit arboviruses such as dengue, yellow fever, chikungunya and West Nile viruses to hundreds of millions of people each year, yet we still lack a thorough understanding of the molecular factors that determine vector competence. Apoptosis has been shown to be an important factor in determining the outcome of virus infection for many viruses. However, until recently, it was not clear whether apoptosis plays a role in determining the outcome of arbovirus infections in mosquitoes. Recent work has begun to shed light on the roles of apoptosis in this important process.
Collapse
Affiliation(s)
- Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Chikungunya Virus Replication in Salivary Glands of the Mosquito Aedes albopictus. Viruses 2015; 7:5902-7. [PMID: 26593936 PMCID: PMC4664990 DOI: 10.3390/v7112917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging arbovirus transmitted to humans by mosquitoes such as Aedes albopictus. To be transmitted, CHIKV must replicate in the mosquito midgut, then disseminate in the hemocele and infect the salivary glands before being released in saliva. We have developed a standardized protocol to visualize viral particles in the mosquito salivary glands using transmission electron microscopy. Here we provide direct evidence for CHIKV replication and storage in Ae. albopictus salivary glands.
Collapse
|
15
|
Kean J, Rainey SM, McFarlane M, Donald CL, Schnettler E, Kohl A, Pondeville E. Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes. INSECTS 2015; 6:236-78. [PMID: 26463078 PMCID: PMC4553541 DOI: 10.3390/insects6010236] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023]
Abstract
Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence.
Collapse
Affiliation(s)
- Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Stephanie M Rainey
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
16
|
Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector. Proc Natl Acad Sci U S A 2015; 112:E1152-61. [PMID: 25713358 DOI: 10.1073/pnas.1424469112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors.
Collapse
|
17
|
Ciano KA, Saredy JJ, Bowers DF. Heparan sulfate proteoglycan: an arbovirus attachment factor integral to mosquito salivary gland ducts. Viruses 2014; 6:5182-97. [PMID: 25533661 PMCID: PMC4276947 DOI: 10.3390/v6125182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022] Open
Abstract
Variants of the prototype Alphavirus, Sindbis (SINV), were used in per os infections of adult female mosquitoes to investigate arbovirus interaction with the salivary gland (SG). Infection of Aedine mosquitoes with AR339, a heparan sulfate proteoglycan (HSPG)-dependent variant, resulted in gross pathology in the SG lateral lobes while infection with TR339, a HSPG-independent variant, resulted in minimal SG pathology. HSPG was detected in the internal ducts of the SG lateral lobes by immunolabeling but not in the median lobe, or beyond the triad structure and external ducts. Reports that human lactoferrin interacts with HSPG, suggested an interference with virus attachment to receptors on vertebrate cells. Pre-incubation of Aedes albopictus cultured C7-10 cells with bovine lactoferrin (bLF) followed by adsorption of SINV resulted in earlier and greater intensity of cytopathic response to TR339 compared with AR339. Following pre-treatment of C7-10 cells with bLF, plaques from tissue culture-adapted high-titer SINVTaV-GFP-TC were observed at 48 h post-infection (p.i.), while plaques from low-titer SINVTaV-GFP-TC were not observed until 120 h p.i. Confocal optics detected this reporter virus at 30 days p.i. in the SG proximal lateral lobe, a region of HSPG-immunolocalization. Altogether these data suggest an association between SINV and HSPG in the host mosquito.
Collapse
Affiliation(s)
- Kristen A Ciano
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA.
| | - Jason J Saredy
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA.
| | - Doria F Bowers
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA.
| |
Collapse
|
18
|
Neira MV, Mahmood F, Reisen WK, James CBL, Romoser WS. Comparative Study of the Pathological Effects of Western Equine Encephalomyelitis Virus in Four Strains of Culex tarsalis Coquillett (Diptera: Culicidae). Front Public Health 2014; 2:184. [PMID: 25346928 PMCID: PMC4191153 DOI: 10.3389/fpubh.2014.00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/25/2014] [Indexed: 11/24/2022] Open
Abstract
Early reports suggested that mosquito cells infected with arboviruses remain viable and undamaged. However, more recent experimental evidence suggests that arboviral infection of mosquito tissues might indeed result in pathological changes, with potential implications for vector survival and virus transmission. Here, we compare the pathological effects of western equine encephalomyelitis virus (WEEV) infection in four strains of Culex tarsalis previously reported to differ in their competence as WEEV vectors. Pathological effects were observed in cells of the midgut epithelium, salivary glands, and eggs. Cell rounding and sloughing of midgut epithelial cells was associated with those strains reported to be the least susceptible to WEEV infection, whereas midgut necrosis and vacuolation upon infection were associated with strains showing higher susceptibility. Although pathological effects were sporadically observed in infected salivary glands, further studies are required to evaluate their impact on vector competence. Additionally, the potential implications of observed C. tarsalis egg infection with WEEV are discussed.
Collapse
Affiliation(s)
- Marco V. Neira
- Center for Infectious Disease Research, College of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Tropical Disease Institute, College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Farida Mahmood
- Environmental Health and Engineering, United States Army Public Health Command Region-South, Houston, TX, USA
- Center for Vector-borne Diseases, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - William K. Reisen
- Center for Vector-borne Diseases, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Calvin B. L. James
- Department of Biomedical Sciences, Tropical Disease Institute, College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - William S. Romoser
- Department of Biomedical Sciences, Tropical Disease Institute, College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
19
|
The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013; 5:3142-70. [PMID: 24351797 PMCID: PMC3967165 DOI: 10.3390/v5123142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.
Collapse
|
20
|
Abstract
Alphaviruses are enveloped single-stranded positive sense RNA viruses of the family Togaviridae. The genus alphavirus contains nine viruses, which are of medical, theoretical, or economic importance, and which will be considered. Sindbis virus (SINV) and Semliki Forest (SFV), although of some medical importance, have largely been studied as models of viral pathogenicity. In mice, SINV and SFV infect neurons in the central nervous system and virulent strains induce lethal encephalitis, whereas avirulent strains of SFV induce demyelination. SFV infects the developing foetus and can be teratogenic. Venezuelan Equine Encephalitis virus, Eastern Equine Encephalitis virus, and Western Equine Encephalitis virus can induce encephalitis in horses and humans. They are prevalent in the Americas and are mosquito transmitted. Ross River virus, Chikungunya virus (CHIKV), and O’nyong-nyong virus (ONNV) are prevalent in Australasia, Africa and Asia, and Africa, respectively. ONNV virus is transmitted by Anopheles mosquitoes, while the other alphaviruses are transmitted by culicine mosquitoes. CHIKV has undergone adaptation to a new mosquito host which has increased its host range beyond Africa. Salmonid alphavirus is of economic importance in the farmed salmon and trout industry. It is postulated that future advances in research on alphavirus pathogenicity will come in the field of innate immunity.
Collapse
Affiliation(s)
- Gregory J. Atkins
- Department of Microbiology, Moyne Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
21
|
Encapsidation of host-derived factors correlates with enhanced infectivity of Sindbis virus. J Virol 2013; 87:12216-26. [PMID: 24006438 DOI: 10.1128/jvi.02437-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The genus Alphavirus consists of a group of enveloped, single-stranded RNA viruses, many of which are transmitted by arthropods to a wide range of vertebrate host species. Here we report that Sindbis virus (SINV) produced from a representative mammalian cell line consists of at least two unique particle subpopulations, separable on the basis of virion density. In contrast, mosquito-derived SINV consists of a homogeneous population of particles. Our findings indicate that the denser particle subpopulation, SINV(Heavy), is more infectious on a per-particle basis than SINV(Light). SINV produced in mosquito cell lines (SINV(C6/36)) exhibited particle-to-PFU ratios similar to those observed for SINV(Heavy). In mammalian cells, viral RNA was synthesized and accumulated more rapidly following infection with SINV(Heavy) or SINV(C6/36) than following infection with SINV(Light), due partly to enhanced translation of viral genomic RNA early in infection. Analysis of the individual particle subpopulations indicated that SINV(Heavy) and SINV(C6/36) contain host-derived factors whose presence correlates with the enhanced translation, RNA synthesis, and infectivity observed for these particles.
Collapse
|
22
|
Ocampo CB, Caicedo PA, Jaramillo G, Ursic Bedoya R, Baron O, Serrato IM, Cooper DM, Lowenberger C. Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus. PLoS One 2013; 8:e61187. [PMID: 23593426 PMCID: PMC3622604 DOI: 10.1371/journal.pone.0061187] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/07/2013] [Indexed: 01/06/2023] Open
Abstract
Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.
Collapse
Affiliation(s)
- Clara B. Ocampo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Paola A. Caicedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Gloria Jaramillo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Raul Ursic Bedoya
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Tekmira Pharmaceuticals Corporation, Burnaby, British Columbia, Canada
| | - Olga Baron
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Université Nice Sophia Antipolis, Nice, France
| | - Idalba M. Serrato
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Dawn M. Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
23
|
An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication. J Virol 2013; 87:4272-80. [PMID: 23365449 DOI: 10.1128/jvi.03360-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alphaviruses establish a persistent infection in arthropod vectors which is essential for the effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system expressing a self-replicating viral RNA genome analog, we have previously demonstrated antiviral roles of the Drosophila Imd (immune deficiency) and Jak-STAT innate immunity pathways in response to alphavirus replication. In the present study, comparative microarray analysis of flies harboring an alphavirus replicon and control green fluorescent protein flies identified 95 SINrep-sensitive genes. Furthermore, a subset of these genes is regulated by Rel or STAT transcription factors of the Imd and Jak-STAT pathways, respectively. We identified two antimicrobial peptide genes, attC and dptB, which are SINrep sensitive and regulated by STAT and Rel, respectively. SINrep flies heterozygous for attC had an increased viral RNA level, while knocking down dptB in SINrep flies resulted in impaired development. When injected with whole virus, the double-stranded RNA knockdowns of either attC or dptB showed a significant increase in virus titers. Our data demonstrate an antiviral response involving the Imd and Jak-STAT mediated expression of dptB and attC.
Collapse
|
24
|
Tchankouo-Nguetcheu S, Bourguet E, Lenormand P, Rousselle JC, Namane A, Choumet V. Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands. Parasit Vectors 2012; 5:264. [PMID: 23153178 PMCID: PMC3549772 DOI: 10.1186/1756-3305-5-264] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022] Open
Abstract
Background Arthropod-borne viral infections cause several emerging and resurging infectious diseases. Among the diseases caused by arboviruses, chikungunya is responsible for a high level of severe human disease worldwide. The salivary glands of mosquitoes are the last barrier before pathogen transmission. Methods We undertook a proteomic approach to characterize the key virus/vector interactions and host protein modifications that occur in the salivary glands that could be responsible for viral transmission by using quantitative two-dimensional electrophoresis. Results We defined the protein modulations in the salivary glands of Aedes aegypti that were triggered 3 and 5 days after an oral infection (3 and 5 DPI) with chikungunya virus (CHIKV). Gel profile comparisons showed that CHIKV at 3 DPI modulated the level of 13 proteins, and at 5 DPI 20 proteins. The amount of 10 putatively secreted proteins was regulated at both time points. These proteins were implicated in blood-feeding or in immunity, but many have no known function. CHIKV also modulated the quantity of proteins involved in several metabolic pathways and in cell signalling. Conclusion Our study constitutes the first analysis of the protein response of Aedes aegypti salivary glands infected with CHIKV. We found that the differentially regulated proteins in response to viral infection include structural proteins and enzymes for several metabolic pathways. Some may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by arboviruses. For example, proteins involved in blood-feeding such as the short D7, an adenosine deaminase and inosine-uridine preferring nucleoside hydrolase, may favour virus transmission by exerting an increased anti-inflammatory effect. This would allow the vector to bite without the bite being detected. Other proteins, like the anti-freeze protein, may support vector protection.
Collapse
|
25
|
Kelly EM, Moon DC, Bowers DF. Apoptosis in mosquito salivary glands: Sindbis virus-associated and tissue homeostasis. J Gen Virol 2012; 93:2419-2424. [PMID: 22894924 PMCID: PMC4091284 DOI: 10.1099/vir.0.042846-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022] Open
Abstract
Apoptosis is observed during a spectrum of conditions including exogenous virus infection and endogenous cellular turnover. Adult female Aedes albopictus mosquitoes challenged with increasing titres of Sindbis virus (SINV) via intrathoracic inoculation demonstrated that the injection dosage did not result in significantly different levels of virus growth or mosquito survival at day 10 post-infection. Tissues probed for apoptosis using an in situ TUNEL assay revealed SINV-associated apoptotic cells scattered throughout the proximal and distal regions of the salivary gland (SG) lateral lobes but which were not detected in the median lobe or the midgut and hindgut. Apoptosis was also identified in SG duct cells in both infected and uninfected mosquitoes, suggesting routine tissue homeostasis. SINV-associated apoptosis sequestered to the SG lateral lobes indicates a differential epithelial cell response to an arbovirus and provides insight into mosquito defence mechanisms against pathogens and SG infection barriers, hurdles to transmission of arboviruses of public health concern.
Collapse
Affiliation(s)
- Erica M. Kelly
- Departments of Physics and Biology, 1 UNF Drive, University of North Florida, Jacksonville, FL 32224 USA
| | - Daniel C. Moon
- Department of Biology, 1 UNF Drive, University of North Florida, Jacksonville, FL 32224, USA
| | - Doria F. Bowers
- Department of Biology, 1 UNF Drive, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
26
|
Qualls WA, Day JF, Xue RD, Bowers DF. Altered behavioral responses of Sindbis virus-infected Aedes aegypti (Diptera: Culicidae) to DEET and non-DEET based insect repellents. Acta Trop 2012; 122:284-90. [PMID: 22289669 DOI: 10.1016/j.actatropica.2012.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Changes in the time to first bite (TFB) and the bloodfeeding behavior of adult female Aedes aegypti (L.) mosquitoes following dissemination of Sindbis virus (SINV) were observed after exposure to repellents with the active ingredients (AI) DEET, picaridin, 2-undecanone (2-U), and oil of lemon eucalyptus. Dissemination of SINV significantly decreased (P<0.0001) the TFB of DEET (15%) and picaridin (15%) by 46% and 37%, respectively. Significant (P<0.0001) changes in activation, probing, and engorgement times were observed in SINV infected mosquitoes after exposure to the four repellents compared to uninfected mosquitoes. Taken together, a decrease in TFB and time to complete the four bloodfeeding stages will lessen the prey-status, and enhance both the chances of mosquito survival and arbovirus transmission.
Collapse
|
27
|
Sokoloski KJ, Hayes CA, Dunn MP, Balke JL, Hardy RW, Mukhopadhyay S. Sindbis virus infectivity improves during the course of infection in both mammalian and mosquito cells. Virus Res 2012; 167:26-33. [PMID: 22484152 DOI: 10.1016/j.virusres.2012.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022]
Abstract
Alphaviruses are enveloped, single-stranded positive sense RNA viruses that are transmitted by an arthropod vector to a wide host range, including avian and mammalian species. Arthropods and vertebrates have different cellular environments and this may cause the different cellular pathologies that are observed between the invertebrate vector and vertebrate hosts in both whole organisms and cultured cell lines. In this report, we used Sindbis virus and examined mosquito and mammalian cell lines for their ability to produce progeny virus particles. Total particles produced, viral titers, and overall infectivity (or the ratio of total particles-to-infectious particles) was investigated. Our results show (1) Sindbis infectivity is more a function of the host cell used in titering the virus rather than the cell line used to produce the virus, (2) the number of total and infectious particles produced is cell line dependent, and (3) the infectivity of released virus particles improves during the course of infection in both cells that have cytolytic infections and persistent infections.
Collapse
Affiliation(s)
- Kevin J Sokoloski
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States
| | | | | | | | | | | |
Collapse
|
28
|
Effects of manipulating apoptosis on Sindbis virus infection of Aedes aegypti mosquitoes. J Virol 2012; 86:6546-54. [PMID: 22438551 DOI: 10.1128/jvi.00125-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Improved control of vector-borne diseases requires an understanding of the molecular factors that determine vector competence. Apoptosis has been shown to play a role in defense against viruses in insects and mammals. Although some observations suggest a correlation between apoptosis and resistance to arboviruses in mosquitoes, there is no direct evidence tying apoptosis to arbovirus vector competence. To determine whether apoptosis can influence arbovirus replication in mosquitoes, we manipulated apoptosis in Aedes aegypti mosquitoes by silencing the expression of genes that either positively or negatively regulate apoptosis. Silencing of the A. aegypti anti-apoptotic gene iap1 (Aeiap1) caused apoptosis in midgut epithelium, alterations in midgut morphology, and 60 to 70% mosquito mortality. Mortality induced by Aeiap1 silencing was rescued by cosilencing the initiator caspase gene Aedronc, indicating that the mortality was due to apoptosis. When mosquitoes which had been injected with Aeiap1 double-stranded RNA (dsRNA) were orally infected with Sindbis virus (SINV), increased midgut infection and virus dissemination to other organs were observed. This increase in virus infection may have been due to the effects of widespread apoptosis on infection barriers or innate immunity. In contrast, silencing the expression of Aedronc, which would be expected to inhibit apoptosis, reduced SINV midgut infection and virus dissemination. Thus, our data suggest that some level of caspase activity and/or apoptosis may be necessary for efficient virus replication and dissemination in mosquitoes. This is the first study to directly test the roles of apoptosis and caspases in determining mosquito vector competence for arboviruses.
Collapse
|
29
|
Qualls WA, Day JF, Xue RD, Bowers DF. Sindbis virus infection alters blood feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:418-423. [PMID: 22493862 DOI: 10.1603/me11102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aedes aegypti (L.) (Diptera: Culicidae) female mosquitoes infected systemically with Sindbis virus (SINV) took longer than uninfected mosquitoes to locate and fully engorge on blood. On days 7 and 14 postexposure, blood feeding took 1.3 and 1.5 times longer in mosquitoes with a disseminated SINV infection, respectively. SINV dissemination did not affect the average weight of unfed Ae. aegypti, but did result in a 10 and 12% increase in blood imbibed compared with mosquitoes without a positive SINV dissemination and non-SINV-exposed mosquitoes, respectively. Ae. aegypti mosquitoes with a disseminated SINV infection fed an average of 4 h sooner than uninfected mosquitoes when offered a bloodmeal contained inside a DEET (N,N-diethyl-3-methylbenzamide) saturated (30%) bovine sausage casing. Together, these results indicate that behavioral changes in mosquito host-seeking, blood feeding and sensitivity to DEET occurred in mosquitoes after SINV infection and dissemination.
Collapse
Affiliation(s)
- Whitney A Qualls
- Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
30
|
Qualls WA, Day JF, Xue RD, Bowers DF. Altered response to DEET repellent after infection of Aedes aegypti (Diptera: Culicidae) with Sindbis virus. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:1226-1230. [PMID: 22238883 DOI: 10.1603/me10163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To determine whether a Sindbis virus (family Togaviridae, genus Alphavirus, SINV) infection in Aedes aegypti (L.) (Diptera: Culicidae) affected its response to the repellent DEET, we orally exposed Ae. aegypti to an artificial bloodmeal containing SINV or diluent and then allowed to feed on a 10% sucrose suspension containing 3% DEET. When tested seven or more days after the initial bloodmeal, although none of the diluent-exposed mosquitoes fed on the DEET-sucrose suspension, at least 60% of the SINV-exposed mosquitoes fed on the suspension. When legs from the SINV-exposed mosquitoes were tested to determine dissemination status, 89% of those that fed on the DEET-sucrose suspension contained virus. In contrast, only 34% of the nonfeeders had a disseminated infection. When offered a choice between sucrose with or without DEET, a significantly higher percentage of the SINV-exposed mosquitoes than the control mosquitoes fed on the sucrose containing 3% DEET. Together, these results indicate that mosquitoes with a disseminated SINV infection may be less responsive to DEET than uninfected mosquitoes. Therefore, repellent use may be less effective in deterring infected mosquitoes from biting than previously believed.
Collapse
Affiliation(s)
- Whitney A Qualls
- Anastasia Mosquito Control District, 500 Old Beach Rd., St. Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
31
|
Hernandez R, Brown DT. Growth and maintenance of mosquito cell lines. CURRENT PROTOCOLS IN MICROBIOLOGY 2010; Appendix 4:4J. [PMID: 20440680 DOI: 10.1002/9780471729259.mca04js17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mosquito cells (Aedes albopictus) are among the most common insect cells emerging as new sources of cell cultures to use in basic research and in the pharmaceutical industry. They adapt well to growth in suspension; can be used in bioreactors for the production of expressed proteins, virus, and virus-like particles; can be used in studies requiring lower growth temperatures than mammalian cells (28 degrees C or below); and (because they are cholesterol auxotrophs) can be adapted to grow in dilipidated or serum-free medium for experiments requiring these conditions. Procedures applicable to the laboratory maintenance of mosquito cell lines are described.
Collapse
|
32
|
Khoo CCH, Piper J, Sanchez-Vargas I, Olson KE, Franz AWE. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiol 2010; 10:130. [PMID: 20426860 PMCID: PMC2877022 DOI: 10.1186/1471-2180-10-130] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/28/2010] [Indexed: 11/23/2022] Open
Abstract
Background The RNA interference (RNAi) pathway acts as an innate antiviral immune response in Aedes aegypti, modulating arbovirus infection of mosquitoes. Sindbis virus (SINV; family: Togaviridae, genus: Alphavirus) is an arbovirus that infects Ae. aegypti in the laboratory. SINV strain TR339 encounters a midgut escape barrier (MEB) during infection of Ae. aegypti. The nature of this barrier is not well understood. To investigate the role of the midgut as the central organ determining vector competence for arboviruses, we generated transgenic mosquitoes in which the RNAi pathway was impaired in midgut tissue of bloodfed females. We used these mosquitoes to reveal effects of RNAi impairment in the midgut on SINV replication, midgut infection and dissemination efficiencies, and mosquito longevity. Results As a novel tool for studying arbovirus-mosquito interactions, we engineered a transgenic mosquito line with an impaired RNAi pathway in the midgut of bloodfed females by silencing expression of the Aa-dcr2 gene. In midgut tissue of the transgenic Carb/dcr16 line, Aa-dcr2 expression was reduced ~50% between 1-7 days post-bloodmeal (pbm) when compared to the recipient mosquito strain. After infection with SINV-TR339EGFP, Aa-dcr2 expression levels were enhanced in both mosquito strains. In the RNAi pathway impaired mosquito strain SINV titers and midgut infection rates were significantly higher at 7 days pbm. There was also a strong tendency for increased virus dissemination rates among the transgenic mosquitoes. Between 7-14 days pbm, SINV was diminished in midgut tissue of the transgenic mosquitoes. Transgenic impairment of the RNAi pathway and/or SINV infection did not affect longevity of the mosquitoes. Conclusions We showed that RNAi impaired transgenic mosquitoes are a useful tool for studying arbovirus-mosquito interactions at the molecular level. Following ingestion by Ae. aegypti, the recombinant SINV-TR339EGFP was confronted with both MEB and a midgut infection barrier (MIB). Impairment of the RNAi pathway in the midgut strongly reduced both midgut barriers for the virus. This confirms that the endogenous RNAi pathway of Ae. aegypti modulates vector competence for SINV in the midgut. The RNAi pathway acts as a gatekeeper to the incoming virus by affecting infection rate of the midgut, intensity of infection, and dissemination from the midgut to secondary tissues.
Collapse
Affiliation(s)
- Cynthia C H Khoo
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
33
|
Mudiganti U, Hernandez R, Brown DT. Insect response to alphavirus infection--establishment of alphavirus persistence in insect cells involves inhibition of viral polyprotein cleavage. Virus Res 2010; 150:73-84. [PMID: 20214937 DOI: 10.1016/j.virusres.2010.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Alphavirus persistence in the insect vector is an essential element in the vector-host transmission cycle of the virus and provides a model to study the biochemical and molecular basis for virus-vector coexistence. The prototype alphavirus Sindbis (SV) establishes persistent infections in invertebrate cell cultures which are characterized by low levels of virus production. We hypothesized that antiviral factors may be involved in decreasing the virus levels as virus persistence is established in invertebrate cells. Transcription profiles in Drosophila S2 cells at 5 days post-infection with SV identified families of gene products that code for factors that can explain previous observations seen in insect cells infected with alphaviruses. Genomic array analysis identified up-regulation of gene products involved in intracellular membrane vesicle formation, cell growth rate changes and immune-related functions in S2 cells infected with SV. Transcripts coding for factors involved in different aspects of the Notch signaling pathway had increased in expression. Increased expression of ankyrin, plap, syx13, unc-13, csp, rab1 and rab8 may aid in formation of virus containing vesicles and in intracellular transport of viral structural proteins. Possible functions of these gene products and relevant hypotheses are discussed. We confirmed the up-regulation of a wide-spectrum protease inhibitor, Thiol-ester containing Protein (TEP) II. We report inhibition of the viral polyprotein cleavage at 5 days post-infection (dpi) and after superinfection of SV-infected cells at 5 dpi. We propose that inefficient cleavage of the polyprotein may, at least in part, lead to reduced levels of virus seen as persistence is established.
Collapse
Affiliation(s)
- Usharani Mudiganti
- Department of Molecular and Structural Biochemistry, North Carolina State, University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
34
|
VO MAI, LINSER PAULJ, BOWERS DORIAF. Organ-associated muscles in Aedes albopictus (Diptera: Culicidae) respond differentially to Sindbis virus. JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:215-25. [PMID: 20380303 PMCID: PMC2866116 DOI: 10.1603/me09041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Differential host cell responses to the alphavirus Sindbis were observed in visceral muscles of the adult female mosquito Aedes albopictus. Following intrathoracic inoculation with SIN, muscles associated with the midgut, hindgut, and ovary resulted in clearance, persistence, and refractoriness to virus, respectively. Prominent sarcomeres characteristic of myofilaments were identified in muscles associated with these three organs by phalloidin labeling of actin, confirming these cells as muscle. The location of virus antigen mimicked the distribution of actin in both mid- and hindgut-associated muscles. Furthermore, these myofilaments remained intact following virus clearance from midgut muscles and during virus persistence in hindgut muscles. Changes in the temporal onset of virus antigen following high titer inoculum compared with standard titer inoculum was observed in anterior midgut muscles, but not in muscles associated with the posterior midgut or hindgut. Muscle bundles closely approximated the gut surface, while a wispy association was displayed at the ovary surface. Prominent ultrastructural differences were observed in the basal lamina attached to the gut compared with the ovary. Additionally, ultrastructural evidence for virus-associated pathology was observed in gut-associated muscles and gut epithelium. Visceral muscles, all composed of the same tissue type, but associated to three different organs in the insect abdomen, responded differentially to Sindbis. We speculate that variations in structure, function or physiology and ultrastructure inherent to insect host cells or organs interactions reflect the complicated milieu of the organism and contribute to differential virus phenotypic expression in muscle cells.
Collapse
Affiliation(s)
- MAI VO
- Florida State University, College of Medicine, Tallahassee, FL 32306
| | - PAUL J. LINSER
- Whitney Laboratory, University of Florida, St. Augustine, FL 32080
| | - DORIA F. BOWERS
- Corresponding author: Department of Biology, University of North Florida, Jacksonville, FL 32224,
| |
Collapse
|
35
|
Fragkoudis R, Attarzadeh-Yazdi G, Nash AA, Fazakerley JK, Kohl A. Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol 2009; 90:2061-72. [DOI: 10.1099/vir.0.013201-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
Abstract
Horizontally transmitted mosquito-borne viruses enter the midgut with a blood meal then disseminate to infect the salivary glands. En route to the salivary glands, these viruses encounter the plasma (haemolymph) and blood cells (haemocytes). Haemocytes respond to a variety of micro-organisms, but their role in virus replication and dissemination has not been described. To look for a potential haemocyte tropism for an arbovirus, a Sindbis virus was injected intrathoracically into four species of mosquito. Virus infects haemocytes as early as 6 h post injection (p.i.) and infection was evident in these cells for as long as 4 days p.i. More than 90 % of haemocytes were infected, most often the phagocytic granulocytes. Virus titres in the haemolymph increased from 24 h p.i. through 60 h p.i. Similar results were found when Aedes aegypti mosquitoes were injected with orally infectious Sindbis. These data prove that an arbovirus infects, and replicates in, haemocytes.
Collapse
Affiliation(s)
- Grishma R Parikh
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jonathan D Oliver
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| | - Lyric C Bartholomay
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
37
|
Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes. BMC Microbiol 2009; 9:49. [PMID: 19265532 PMCID: PMC2660349 DOI: 10.1186/1471-2180-9-49] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/05/2009] [Indexed: 01/06/2023] Open
Abstract
Background Arthropod-borne viruses (arboviruses) can persistently infect and cause limited damage to mosquito vectors. RNA interference (RNAi) is a mosquito antiviral response important in restricting RNA virus replication and has been shown to be active against some arboviruses. The goal of this study was to use a recombinant Sindbis virus (SINV; family Togaviridae; genus Alphavirus) that expresses B2 protein of Flock House virus (FHV; family Nodaviridae; genus Alphanodavirus), a protein that inhibits RNAi, to determine the effects of linking arbovirus infection with RNAi inhibition. Results B2 protein expression from SINV (TE/3'2J) inhibited the accumulation of non-specific small RNAs in Aedes aegypti mosquito cell culture and virus-specific small RNAs both in infected cell culture and Ae. aegypti mosquitoes. More viral genomic and subgenomic RNA accumulated in cells and mosquitoes infected with TE/3'2J virus expressing B2 (TE/3'2J/B2) compared to TE/3'2J and TE/3'2J virus expressing GFP. TE/3'2J/B2 exhibited increased infection rates, dissemination rates, and infectious virus titers in mosquitoes following oral bloodmeal. Following infectious oral bloodmeal, significantly more mosquitoes died when TE/3'2J/B2 was ingested. The virus was 100% lethal following intrathoracic inoculation of multiple mosquito species and lethality was dose-dependent in Ae. aegypti. Conclusion We show that RNAi is active in Ae. aegypti cell culture and that B2 protein inhibits RNAi in mosquito cells when expressed by a recombinant SINV. Also, SINV more efficiently replicates in mosquito cells when RNAi is inhibited. Finally, TE/3'2J/B2 kills mosquitoes in a dose-dependent manner independent of infection route and mosquito species.
Collapse
|
38
|
Wang H, Blair CD, Olson KE, Clem RJ. Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. J Gen Virol 2009; 89:2651-2661. [PMID: 18931060 DOI: 10.1099/vir.0.2008/005314-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.
Collapse
Affiliation(s)
- Hua Wang
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carol D Blair
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken E Olson
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Rollie J Clem
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
39
|
Fragkoudis R, Chi Y, Siu RWC, Barry G, Attarzadeh-Yazdi G, Merits A, Nash AA, Fazakerley JK, Kohl A. Semliki Forest virus strongly reduces mosquito host defence signaling. INSECT MOLECULAR BIOLOGY 2008; 17:647-56. [PMID: 18811601 PMCID: PMC2710796 DOI: 10.1111/j.1365-2583.2008.00834.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Alphavirus genus within the Togaviridae family contains several important mosquito-borne arboviruses. Other than the antiviral activity of RNAi, relatively little is known about alphavirus interactions with insect cell defences. Here we show that Semliki Forest virus (SFV) infection of Aedes albopictus-derived U4.4 mosquito cells reduces cellular gene expression. Activation prior to SFV infection of pathways involving STAT/IMD, but not Toll signaling reduced subsequent virus gene expression and RNA levels. These pathways are therefore not only able to mediate protective responses against bacteria but also arboviruses. However, SFV infection of mosquito cells did not result in activation of any of these pathways and suppressed their subsequent activation by other stimuli.
Collapse
Affiliation(s)
- R Fragkoudis
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, The University of Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bennett KE, Hopper JE, Stuart MA, West M, Drolet BS. Blood-feeding behavior of vesicular stomatitis virus infected Culicoides sonorensis (Diptera: Ceratopogonidae). JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:921-926. [PMID: 18826036 DOI: 10.1603/0022-2585(2008)45[921:bbovsv]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To determine whether vesicular stomatitis virus (VSV) infection of Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) affects subsequent blood-feeding behavior, midges injected with either virus-infected or virus-free cell lysates were allowed to blood feed for short (10-min) or long (60-min) periods on 2, 3, and 4 d postinoculation (DPI). Generalized linear mixed models were fit to test the effects of infection status, duration of feeding period, and DPI on the percentage of females that blood fed. VSV-infection significantly reduced the percentage of females that blood fed on 2 DPI, the day of peak virus titer. On 3 DPI a significantly greater percentage of midges blood fed when allowed 60 min to feed. This effect was not seen on 2 and 4 DPI and was not dependent on VSV infection status. The impact of changes in blood-feeding behavior by infected insects on virus transmission is discussed.
Collapse
Affiliation(s)
- Kristine E Bennett
- USDA-ARS, Arthropod-Borne Animal Diseases Research Laboratory, Ag Bldg., Room 5031, Department 3354, 1000 E. University Ave., Laramie, WY 82071, USA.
| | | | | | | | | |
Collapse
|
41
|
Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD. Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 2008; 8:47. [PMID: 18366655 PMCID: PMC2278134 DOI: 10.1186/1471-2180-8-47] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 03/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). Results SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. Conclusion We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.
Collapse
Affiliation(s)
- Corey L Campbell
- Arthropod-borne Infectious Diseases Laboratory; Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 2007; 7:9. [PMID: 17263893 PMCID: PMC1797809 DOI: 10.1186/1471-2180-7-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. RESULTS After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. CONCLUSION Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.
Collapse
|
43
|
Mudiganti U, Hernandez R, Ferreira D, Brown DT. Sindbis virus infection of two model insect cell systems--a comparative study. Virus Res 2006; 122:28-34. [PMID: 16854488 DOI: 10.1016/j.virusres.2006.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 11/17/2022]
Abstract
Sindbis, the prototype of the Alphaviruses causes mosquito-borne diseases in mammals and replicates in a wide variety of vertebrate and invertebrate cell cultures. This characteristic can be exploited to use the vast array of Drosophila genetic information available for investigations of the interaction of Sindbis virus with an alternate invertebrate host. For this purpose, a comparative study of Sindbis virus infection of Schnieder-2 Drosophila (S2) cells to cells of the mosquito Aedes albopictus (clone U4.4) was undertaken. After infection, vertebrate cells die within 24-48h, while invertebrate cell cultures survive an acute phase of infection and become persistently infected. In this study, infection of a model Drosophila system, S2 cells, was compared to U4.4 cells. Virus production, the time course of the establishment of persistence and changes in growth properties of the S2 cells upon infection, were studied in comparison to those of the U4.4 cells. S2 cells survived acute Sindbis infection without any significant cytopathology and continued to produce low levels of virus characteristic of persistently infected cells. S2 cells produced 10 PFU/cell on day 1 post-infection, which falls to 2 PFU/cell on day 2. This result is in contrast to U4.4 cells, which produce peak virus titer on day 2 post-infection and establish persistence by day 5. Onset of the persistent phase of infection of either U4.4 or S2 cells did not result in any change in morphology or growth characteristics. This study establishes S2 cells as an additional invertebrate model system to study the interactions of an invertebrate host with Sindbis virus.
Collapse
Affiliation(s)
- Usharani Mudiganti
- Department of Molecular and Structural Biochemistry, Campus Box 7622, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
44
|
Kuno G, Chang GJJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 2005; 18:608-37. [PMID: 16223950 PMCID: PMC1265912 DOI: 10.1128/cmr.18.4.608-637.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among animal viruses, arboviruses are unique in that they depend on arthropod vectors for transmission. Field research and laboratory investigations related to the three components of this unique mode of transmission, virus, vector, and vertebrate host, have produced an enormous amount of valuable information that may be found in numerous publications. However, despite many reviews on specific viruses, diseases, or interests, a systematic approach to organizing the available information on all facets of biological transmission and then to interpret it in the context of the evolutionary process has not been attempted before. Such an attempt in this review clearly demonstrates tremendous progress made worldwide to characterize the viruses, to comprehend disease transmission and pathogenesis, and to understand the biology of vectors and their role in transmission. The rapid progress in molecular biologic techniques also helped resolve many virologic puzzles and yielded highly valuable data hitherto unavailable, such as characterization of virus receptors, the genetic basis of vertebrate resistance to viral infection, and phylogenetic evidence of the history of host range shifts in arboviruses. However, glaring gaps in knowledge of many critical subjects, such as the mechanism of viral persistence and the existence of vertebrate reservoirs, are still evident. Furthermore, with the accumulated data, new questions were raised, such as evolutionary directions of virus virulence and of host range. Although many fundamental questions on the evolution of this unique mode of transmission remained unresolved in the absence of a fossil record, available observations for arboviruses and the information derived from studies in other fields of the biological sciences suggested convergent evolution as a plausible process. Overall, discussion of the diverse range of theories proposed and observations made by many investigators was found to be highly valuable for sorting out the possible mechanism(s) of the emergence of arboviral diseases.
Collapse
Affiliation(s)
- Goro Kuno
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| | | |
Collapse
|
45
|
Girard YA, Popov V, Wen J, Han V, Higgs S. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:429-44. [PMID: 15962797 DOI: 10.1093/jmedent/42.3.429] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ultrastructural features of West Nile virus (WNV) replication and dissemination in orally infected Culex pipiens quinquefasciatus Say were analyzed over a 25-d infection period. To investigate the effects of virus replication on membrane induction, cellular organization, and cell viability in midgut and salivary gland tissues, midguts were dissected on days 3, 7, 14, and 21, and salivary glands were collected on days 7, 14, 21, and 25 postinfection (d.p.i.) for examination by transmission electron microscopy (TEM). Whole mosquito heads were embedded for TEM analysis 14 d.p.i. to localize WNV particles and to investigate the effects of replication on nervous tissues of the brain. Membrane proliferation was induced by WNV in the midgut epithelium, midgut muscles, and salivary glands, although extensive endoplasmic reticulum swelling was a unique feature of salivary gland infection. TEM revealed WNV-induced pathology in salivary glands at 14, 21, and 25 d.p.i., and we hypothesize that long-term virus infection of this tissue results in severe cellular degeneration and apoptotic-like cell death. This finding indicates that the efficiency of WNV transmission may decrease with mosquito age postinfection.
Collapse
Affiliation(s)
- Yvette A Girard
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|