1
|
Krause-Sakate R, Gomes Ruschel R, Ochoa-Corona F, Andreason SA, de Marchi BR, Ribeiro-Junior MR, Nascimento DM, Trujillo R, Smith HA, Hutton SF, Wallace S. First detection of Bemisia tabaci (Hemiptera: Aleyrodidae) MED in Oklahoma and development of a high-resolution melting assay for MEAM1 and MED discrimination. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae228. [PMID: 39673486 DOI: 10.1093/jee/toae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 12/16/2024]
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a polyphagous pest recognized as composed of several cryptic or sibling species. The Middle East-Asia Minor 1 (MEAM1) and the Mediterranean (MED) putative species are invasive and destructive worldwide. The MEAM1 is established throughout the United States, while MED is documented in 27 states. This study determines the status of MED in Oklahoma and develops and validates a high-resolution melting (HRM) assay for discrimination of MEAM1 and MED. In August-October 2022, whiteflies were collected from different host plants in Stillwater, Oklahoma, and identified as species based on analysis of a diagnostic fragment of the mitochondrial cytochrome oxidase I (mtCOI) gene. MED was found in mixed infestations with MEAM1 on both sweetpotato in a greenhouse and cucumber in the field. Other cryptic species were not detected. Sequencing followed by phylogenetic analysis indicated that the MED specimens belonged to the Q2 mitotype. Additionally, the secondary endosymbionts in captured and progeny whiteflies were identified. For rapid discrimination of MEAM1 and MED species, an HRM assay using a single set of primer pairs targeting the mtCOI gene was developed. Species discrimination was tested in 2 laboratories using MEAM1 and MED Q2 mitotype genomic DNA, and a synthetic plasmid containing the MED Q1 mitotype mtCOI fragment. The HRM assay was validated to discriminate MEAM1 from MED Q1 and Q2 mitotypes. This is the first report of B. tabaci MED in Oklahoma and reinforces the need for continued monitoring of this insect species complex.
Collapse
Affiliation(s)
- Renate Krause-Sakate
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
- School of Agricultural Sciences, Department of Plant Protection, São Paulo State University (UNESP), CEP 18610-307, Botucatu (SP), Brazil
| | - Rafaela Gomes Ruschel
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Francisco Ochoa-Corona
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Sharon A Andreason
- United States Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, USA
| | - Bruno Rossito de Marchi
- Eurofins Agroscience Services, Mebane, NC, USA
- Entomology and Nematology Department, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Marcos Roberto Ribeiro-Junior
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Daniele Maria Nascimento
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Reese Trujillo
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Hugh A Smith
- Entomology and Nematology Department, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Samuel F Hutton
- Horticultural Sciences Department, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Sara Wallace
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
2
|
Barreto da Silva F, Raposo RDS, de Campos SF, Uzan J, Marubayashi JM, Ribeiro-Junior MR, Nogueira AM, Martines CDC, Bello VH, Müller C, Sartori MMP, Krause-Sakate R. Exploring Bemisia tabaci Middle East-Asia Minor I and Mediterranean Cryptic Species Relationship with Cowpea Mild Mottle Virus and Their Dynamics in Soybean Fields. INSECTS 2024; 15:624. [PMID: 39194828 DOI: 10.3390/insects15080624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Cowpea mild mottle virus (CPMMV, genus Carlavirus, family Betaflexividae) is an economically important virus infecting soybeans in Brazil, where it was initially identified in 1983. CPMMV is transmitted by the whitefly, Bemisia tabaci, and occasionally by seeds. Over the last three decades, the most invasive B. tabaci Middle East-Asia Minor 1 (MEAM1), and lately the Mediterranean (MED) cryptic species, have replaced the indigenous species in Brazil, with MEAM1 being predominant. In this study, we investigated the transmission properties of CPMMV by MEAM1 and MED, and their distribution in major soybean-growing areas in São Paulo State. Our results from transmission assays with a single insect revealed that MED is a more efficient vector compared to MEAM1, transmitting the virus within a two-minute inoculation access period. B. tabaci MEAM1 is still the predominant whitefly species in São Paulo State, but MED was also identified in different places, mainly in mixed infestations with MEAM1. Some areas transitioned to a predominance of MED over the three years, while others, where MED had previously been detected, showed a reduction in the insects during the same period. Understanding the transmission dynamics of CPMMV and the distribution of its vectors is crucial for implementing effective management strategies to control the virus spread and protect soybean crops. Further research into the mechanisms driving the shifts in whitefly species dominance and CPMMV distribution will be essential for sustaining soybean production in Brazil.
Collapse
Affiliation(s)
- Felipe Barreto da Silva
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA
| | | | - Sarah Forlani de Campos
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Juliana Uzan
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | | | | | - Angélica Maria Nogueira
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | | | - Vinicius Henrique Bello
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | | | | | - Renate Krause-Sakate
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|
3
|
Paschapur AU, Singh AK, Buski R, Guru PN, Jeevan B, Mishra KK, Kant L. Unravelling geospatial distribution and genetic diversity of greenhouse whitefly, Trialeurodes vaporariorum (Westwood) from Himalayan Region. Sci Rep 2023; 13:11946. [PMID: 37488152 PMCID: PMC10366149 DOI: 10.1038/s41598-023-37781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
The Greenhouse whitefly (GWF), Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), is a destructive pest that affects protected cultivation worldwide. The Indian Himalayan region is particularly vulnerable to GWF introduction, invasion, and spread due to the expansion of protected cultivation and climate change. In this study, we collected 32 naturally occurring GWF populations, mainly from the Uttarakhand state in the Indian Himalayan region, to investigate the distribution pattern and genetic diversity of T. vaporariorum. Our sampling was representative of the region's vegetation diversity and geographical location, and we collected samples from multiple sites within each locality to account for local variations. The mtCOI gene was used to accurately detect and identify GWF and to sequence haplotypes prevalent in the Uttarakhand state. The maximum likelihood method used for phylogenetic studies revealed that all 32 whitefly samples in this study belonged to T. vaporariorum and were prevalent in all the collected localities. Our population genetic study using mtCOI showed variation within T. vaporariorum populations, with 20 distinct haplotypes present. Notably, haplotype 2 (H2) was the most dominant haplotype among the sampled populations. These results provide fundamental knowledge for understanding the geographical distribution and ecology of T. vaporariorum in the Uttarakhand state of the Indian Himalayan region. The discovery of geospatial and genetic diversity of GWF in the Himalayan region underscores the importance of pest alertness, research prioritization, and the development of sustainable management strategies to protect crops.
Collapse
Affiliation(s)
- Amit Umesh Paschapur
- Division of Crop Protection, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - Ashish Kumar Singh
- Division of Crop Protection, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India.
| | - Ramesh Buski
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - P N Guru
- Division of Entomology, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab, 141001, India
| | - B Jeevan
- Division of Crop Protection, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - K K Mishra
- Division of Crop Protection, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - Lakshmi Kant
- Director, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| |
Collapse
|
4
|
Rossitto De Marchi B, Gama AB, Smith HA. Evidence of the association between the Q2 mitochondrial group of Bemisia tabaci MED species (Hemiptera: Aleyrodidae) and low competitive displacement capability. PLoS One 2023; 18:e0280002. [PMID: 36634115 PMCID: PMC9836299 DOI: 10.1371/journal.pone.0280002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The whitefly, Bemisia tabaci (Gennadius), is one of the most serious agricultural pests worldwide. Bemisia tabaci is a cryptic species complex of more than 40 species among which the invasive MEAM1 and MED species are the most widespread and economically important. Both MEAM1 and MED present intraspecific genetic variability and some haplotypes are reported to be more invasive than others. MED can be further deconstructed into different genetic groups, including MED-Q1 and MED-Q2. However, distinct biological phenotypes discerning the different MED mitochondrial haplotypes are yet to be characterized. Competitive displacement and life-history trials were carried out between MED-Q2 and MEAM1 populations collected in Florida, USA. In addition, a phylogenetic analysis was carried out including populations from previous whitefly competitive displacement studies for identification and comparison of the MED mitochondrial groups. In contrast to other studies with MED-Q1, the MED-Q2 population from Florida is less likely to displace MEAM1 on pepper. In addition, both pepper and watermelon were a more favorable host to MEAM1 compared to MED-Q2 according to the life history trials.
Collapse
Affiliation(s)
- Bruno Rossitto De Marchi
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
- * E-mail:
| | - Andre Bueno Gama
- Plant Pathology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
| | - Hugh A. Smith
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
| |
Collapse
|
5
|
Gautam S, Mugerwa H, Buck JW, Dutta B, Coolong T, Adkins S, Srinivasan R. Differential Transmission of Old and New World Begomoviruses by Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) Cryptic Species of Bemisia tabaci. Viruses 2022; 14:v14051104. [PMID: 35632844 PMCID: PMC9146840 DOI: 10.3390/v14051104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) are two of the most invasive members of the sweetpotato whitefly, Bemisia tabaci, cryptic species complexes and are efficient vectors of begomoviruses. Bemisia tabaci MEAM1 is the predominant vector of begomoviruses in open-field vegetable crops in the southeastern United States. However, recently B. tabaci MED also has been detected in the landscape outside of greenhouses in Florida and Georgia. This study compared the transmission efficiency of one Old-World (OW) and two New-World (NW) begomoviruses prevalent in the southeastern United States, viz.., tomato yellow leaf curl virus (TYLCV), cucurbit leaf crumple virus (CuLCrV), and sida golden mosaic virus (SiGMV) between B. tabaci MEAM1 and B. tabaci MED. Bemisia tabaci MEAM1 efficiently transmitted TYLCV, CuLCrV, or SiGMV, whereas B. tabaci MED only transmitted TYLCV. Percent acquisition and retention of OW TYLCV following a 72 h acquisition access period was significantly higher for B. tabaci MED than B. tabaci MEAM1. In contrast, B. tabaci MEAM1 acquired and retained significantly more NW bipartite begomoviruses, CuLCrV or SiGMV, than B. tabaci MED. Quantitative analysis (qPCR) of virus DNA in whitefly internal tissues revealed reduced accumulation of CuLCrV or SiGMV in B. tabaci MED than in B. tabaci MEAM1. Fluorescent in situ hybridization (FISH) showed localization of CuLCrV or SiGMV in the midgut of B. tabaci MED and B. tabaci MEAM1. However, localization of CuLCrV or SiGMV was only observed in the primary salivary glands of B. tabaci MEAM1 and not B. tabaci MED. TYLCV localization was observed in all internal tissues of B. tabaci MEAM1 and B. tabaci MED. Overall, results demonstrate that both B. tabaci MEAM1 and B. tabaci MED are efficient vectors of OW TYLCV. However, for the NW begomoviruses, CuLCrV and SiGMV, B. tabaci MEAM1 seems to a better vector.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (S.G.); (H.M.)
| | - Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (S.G.); (H.M.)
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Tim Coolong
- Department of Horticulture, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Scott Adkins
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (S.G.); (H.M.)
- Correspondence:
| |
Collapse
|
6
|
da Silva Rodrigues C, Nakasu EYT, Ortiz GV, Pereira JL, Lucena-Leandro VDS, Rêgo-Machado CDM, Souza TAD, Martins TP, Nagata AKI. Evidence of Spread of Bemisia tabaci (Hemiptera: Aleyrodidae) Mediated by Internal Transportation of Ornamental Plants in Brazil. NEOTROPICAL ENTOMOLOGY 2021; 50:850-857. [PMID: 33978919 DOI: 10.1007/s13744-021-00881-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Two Bemisia tabaci (Gennadius) species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), are major pests that are dispersed throughout the world. While MEAM1 was introduced in Brazil in the 1990s, MED was reported recently with limited spread. Here, a survey was performed to examine whether MED whiteflies are widely present in the Federal District region, in central Brazil. Whiteflies were collected in various locations in the Federal District and surroundings between 2018 and 2020, including garden centers and small- and large-scale farms. The species were identified using RFLPand sequencing of the mitochondrial cytochrome c oxidase I subunit gene region. Out of 108 whitefly batches, 63.89% were composed exclusively by MEAM1, followed by 16.67% presenting only MED, and another 7.40% containing unidentified whitefly species (NI). Plant varieties serving as hosts for more than one whitefly species were observed in 12.04% of the samples, either by MEAM1/MED, MEAM1/NI, or MED/NI. This study highlights the still limited presence of MED in the Federal District and surroundings, predominantly in garden centers and in the green belt of Brasília, closer to urban areas. In contrast, only MEAM1 was identified in large-scale cultivated areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alice Kazuko Inoue Nagata
- Dept of Plant Pathology, University of Brasília, Brasília, DF, Brazil.
- Embrapa Vegetables, CEP, Brasília, DF, 70275-970, Brazil.
| |
Collapse
|
7
|
Dângelo RAC, Michereff-Filho M, Inoue-Nagata AK, da Silva PS, Chediak M, Guedes RNC. Area-wide insecticide resistance and endosymbiont incidence in the whitefly Bemisia tabaci MEAM1 (B biotype): A Neotropical context. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1056-1070. [PMID: 34152527 DOI: 10.1007/s10646-021-02432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Agriculture insecticides are used against insect pest species, but are able to change community structure in contaminated habitats, and also the genetic pool of exposed individuals. In fact, the latter effect is a relevant tool to in situ biomonitoring of pollutant contamination and impact, besides its practical economic and management concerns. This takes place because the emergence of individuals with resistance to insecticides is particularly frequent among insect pest species and usually enhances insecticide overuse and crop losses. Pest insects of global prominence such as whiteflies are a focus of attention due to problems with insecticide resistance and association with endosymbionts, as the case of the invasive putative species Bemisia tabaci MEAM1. The scenario is particularly complex in the Neotropics, where insecticide use is ubiquitous, but whose spatial scale of occurrence is usually neglected. Here we explored the spatial-dependence of both phenomena in MEAM1 whiteflies recording resistance to two widely used insecticides, lambda-cyhalothrin and spiromesifen, and endosymbiont co-occurrence. Resistance to both insecticides was frequent exhibiting low to moderate frequency of lambda-cyhalothrin resistance and moderate to high frequency of spiromesifen resistance. Among the prevailing whitefly endosymbionts, Wolbachia, Cardinium and Arsenophonus were markedly absent. In contrast, Hamiltonella and Rickettsia prevailed and their incidence was correlated. Furthermore, Rickettsia endosymbionts were particularly associated with lambda-cyhalothrin susceptibility. These traits were spatially dependent with significant variation taking place within an area of about 700 Km2. Such findings reinforce the notion of endosymbiont-associated resistance to insecticides, and also of their local incidence allowing spatial mapping and locally-targeted mitigation.
Collapse
Affiliation(s)
- R A C Dângelo
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - M Michereff-Filho
- EMBRAPA Hortaliças, Rod. BR-060, Km 09 (Brasília/Anápolis), Cx. Postal 218, Brasília, DF, 70275-970, Brazil
| | - A K Inoue-Nagata
- EMBRAPA Hortaliças, Rod. BR-060, Km 09 (Brasília/Anápolis), Cx. Postal 218, Brasília, DF, 70275-970, Brazil
| | - P S da Silva
- EMBRAPA Hortaliças, Rod. BR-060, Km 09 (Brasília/Anápolis), Cx. Postal 218, Brasília, DF, 70275-970, Brazil
| | - M Chediak
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- ENTO+, Av. Oraida Mendes de Castro 6000, Viçosa, MG, 36570-000, Brazil
| | - R N C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
8
|
Bertin S, Parrella G, Nannini M, Guercio G, Troiano E, Tomassoli L. Distribution and Genetic Variability of Bemisia tabaci Cryptic Species (Hemiptera: Aleyrodidae) in Italy. INSECTS 2021; 12:insects12060521. [PMID: 34199806 PMCID: PMC8229085 DOI: 10.3390/insects12060521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
Bemisia tabaci is a key pest of horticultural, fibre and ornamental crops worldwide, primarily as a vector of plant viruses. In Italy, B. tabaci has established since the 1980s-1990s in southern regions as well as in Sicily and Sardinia. Recent reports of infestations in some areas of central Italy prompted a new survey to assess the whitefly distribution in the country as well as to update the species and haplotype composition of the populations present in southern Italy and in the main islands. The survey confirmed that B. tabaci is nowadays established in central Italy even at more northern latitudes than those noticed before. Most of the specimens collected throughout the country belonged to the Mediterranean (MED) species. The MEDQ1 and Q2 haplogroups were prevailing in open-field and greenhouse cultivations, respectively, except in Sardinia where only Q1 specimens were found on a wide range of crops and weeds. Population genetics analyses showed that several MEDQ1 haplotypes currently occur in Italy and their distribution is unrelated to evident temporal and geographic trends, except for a new genetic variant which seems to have originated in Sardinia. The MED species is known to better adapt to insecticide treatments and high temperatures, and its northward spread in Italy may have been favoured by the intensive agricultural practices and steady increase in both winter and summer temperatures occurring in the last few decades. The extensive presence of B. tabaci in Italy proves that a strict surveillance for possible new outbreaks of whitefly-transmitted viruses should be addressed to a range of sites that are expanding northwards.
Collapse
Affiliation(s)
- Sabrina Bertin
- CREA Research Centre for Plant Protection and Certification, via C.G. Bertero 22, 00156 Rome, Italy; (G.G.); (L.T.)
- Correspondence: ; Tel.: +39-06-8207-0242
| | - Giuseppe Parrella
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, Napoli, 80055 Portici, Italy; (G.P.); (E.T.)
| | - Mauro Nannini
- Agris Sardegna, Servizio Ricerca Studi Ambientali, Difesa delle Colture e Qualità Delle Produzioni, Viale Trieste 111, 09123 Cagliari, Italy;
| | - Giorgia Guercio
- CREA Research Centre for Plant Protection and Certification, via C.G. Bertero 22, 00156 Rome, Italy; (G.G.); (L.T.)
| | - Elisa Troiano
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, Napoli, 80055 Portici, Italy; (G.P.); (E.T.)
| | - Laura Tomassoli
- CREA Research Centre for Plant Protection and Certification, via C.G. Bertero 22, 00156 Rome, Italy; (G.G.); (L.T.)
| |
Collapse
|
9
|
Can-Vargas X, Barboza N, Fuchs EJ, Hernández EJ. Spatial Distribution of Whitefly Species (Hemiptera: Aleyrodidae) and Identification of Secondary Bacterial Endosymbionts in Tomato Fields in Costa Rica. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2900-2910. [PMID: 33073851 PMCID: PMC7724748 DOI: 10.1093/jee/toaa215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 06/11/2023]
Abstract
In Costa Rica, tomato (Solanum lycopersicum Linnaeus) Linnaeus (Solanales: Solanaceae) is one of the crops most severely affected by the whiteflies (Hemiptera: Aleyrodidae) Trialeurodes vaporariorum (Westwood) and the Bemisia tabaci (Gennadius) species complex. The objective of this study was to monitor the spatial distribution and diversity of these species and to detect the presence of secondary bacterial endosymbionts in individuals collected in areas of intensive tomato production. In total, 628 whitefly individuals were identified to the species level using restriction analysis (PCR-RFLP) of a fragment of the mitochondrial cytochrome C oxidase I gene (mtCOI). Trialeurodes vaporariorum was the predominant species, followed by B. tabaci Mediterranean (MED). Bemisia tabaci New World (NW) and B. tabaci Middle East-Asia Minor 1 (MEAM1) were present in lower numbers. The mtCOI fragment was sequenced for 89 individuals and a single haplotype was found for each whitefly species. Using molecular markers, the 628 individuals were analyzed for the presence of four endosymbionts. Arsenophonus Gherna et al. (Enterobacterales: Morganellaceae) was most frequently associated with T. vaporariorum, whereas Wolbachia Hertig (Rickettsiales: Anaplasmataceae) and Rickettsia da Rocha-Lima (Rickettsiales: Rickettsiaceae) were associated with B. tabaci MED. This study confirmed that B. tabaci NW has not been completely displaced by the invasive species B. tabaci MED and B. tabaci MEAM1 present in the country. An association was found between whitefly species present in tomato and certain secondary endosymbionts, elevation was the most likely environmental factor to affect their frequency.
Collapse
Affiliation(s)
- Xareni Can-Vargas
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Natalia Barboza
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José, Costa Rica
- Centro Nacional en Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica
| | - Eric J Fuchs
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo J Hernández
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
10
|
Low Genetic Variability in Bemisia tabaci MEAM1 Populations within Farmscapes of Georgia, USA. INSECTS 2020; 11:insects11120834. [PMID: 33255960 PMCID: PMC7760769 DOI: 10.3390/insects11120834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Sweetpotato whitefly, Bemisia tabaci Gennadius, is a serious pest of many agricultural crops worldwide. Numerous studies have examined the genetic structure of whitefly populations separated by geographical barriers; however, very few have assessed the population structure of B. tabaci at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning approximately 8 square kilometers. To assess the roles of farmscapes as drivers of B. tabaci genetic variation, thirty-five populations of the sweetpotato whitefly were collected from crop and non-crop plant species from fifteen farmscapes. Using mitochondrial COI gene sequences (mtCOI) and six nuclear microsatellite markers, the genetic diversity and genetic differentiation among collected B. tabaci MEAM1 populations were examined. Haplotype analysis using mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes of Georgia. Results from microsatellite markers further showed no significant genetic structuring among populations that corresponded to plant species or farmscapes from which they were collected. Annual whitefly population explosions and subsequent dispersal might have facilitated the persistence of a single panmictic B. tabaci population over all sampled farmscapes in this region. Abstract Bemisia tabaci is a whitefly species complex comprising important phloem feeding insect pests and plant virus vectors of many agricultural crops. Middle East–Asia Minor 1 (MEAM1) and Mediterranean (MED) are the two most invasive members of the B. tabaci species complex worldwide. The diversity of agroecosystems invaded by B. tabaci could potentially influence their population structure, but this has not been assessed at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning ~8 square kilometers. In this study, mitochondrial COI gene (mtCOI) sequences and six microsatellite markers were used to examine the population structure of B. tabaci MEAM1 colonizing different plant species at a farmscape level in Georgia, United States. Thirty-five populations of adult whiteflies on row and vegetable crops and weeds across major agricultural regions of Georgia were collected from fifteen farmscapes. Based on morphological features and mtCOI sequences, five species/cryptic species of whiteflies (B. tabaci MEAM1, B. tabaci MED, Dialeurodes citri, Trialeurodes abutiloneus, T. vaporariorum) were found. Analysis of 102 mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes in Georgia. Population genetics analyses (AMOVA, PCA and STRUCTURE) of B. tabaci MEAM1 (microsatellite data) revealed only minimal genetic differences among collected populations within and among farmscapes. Overall, our results suggest that there is a high level of gene flow among B. tabaci MEAM1 populations among farmscapes in Georgia. Frequent whitefly population explosions driven by a single or a few major whitefly-suitable hosts planted on a wide spatial scale may be the key factor behind the persistence of a single panmictic population over Georgia’s farmscapes. These population structuring effects are useful for delineating the spatial scale at which whiteflies must be managed and predicting the speed at which alleles associated with insecticide resistance might spread.
Collapse
|
11
|
Crossley MS, Snyder WE. What Is the Spatial Extent of a Bemisia tabaci Population? INSECTS 2020; 11:E813. [PMID: 33218155 PMCID: PMC7698913 DOI: 10.3390/insects11110813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Effective pest management depends on basic knowledge about insect dispersal patterns and gene flow in agroecosystems. The globally invasive sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is considered a weak flier whose life history nonetheless predisposes it to frequent dispersal, but the scale over which populations exchange migrants, and should therefore be managed, is uncertain. In this review, we synthesize the emergent literature on B. tabaci population genetics to address the question: What spatial scales define B. tabaci populations? We find that within-species genetic differentiation among sites is often low, and evidence of population structuring by host plant or geography is rare. Heterozygote deficits prevail among populations, indicating that migrants from divergent populations are frequently sampled together. Overall, these results suggest that there is high ongoing gene flow over large spatial extents. However, genetic homogeneity typical of recently invading populations could obscure power to detect real isolation among populations. Genome-wide data collected systematically across space and time could distinguish signatures of invasion history from those of ongoing gene flow. Characterizing the spatial extent of B. tabaci populations could reveal whether insecticide rotations can be tailored to specific commodities or if coordination across linked commodities and regions is justified.
Collapse
|
12
|
Pozebon H, Marques RP, Padilha G, O Neal M, Valmorbida I, Bevilaqua JG, Tay WT, Arnemann JA. Arthropod Invasions Versus Soybean Production in Brazil: A Review. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1591-1608. [PMID: 32515787 DOI: 10.1093/jee/toaa108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Soybean production in Brazil has been markedly affected by invasions of non-native arthropod species that feed on the crop, severely impacting biodiversity, food security, health, and economic development. Data on soybean production losses and increase in insecticide usage over the last two decades have not been explored in association with past invasion events, and the dynamics underlying the recent blitz of invasive species into Brazil remain largely unclear. We provide a review of arthropod invasions in the Brazilian soybean agroecosystem since 1990, indicating that the introductions of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), Tetranychus urticae (Koch) (Acari: Tetranychidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are likely correlated with periods of increase in insecticide usage for soybean production. Using these three cases as examples, we review factors that could lead to increased likelihood of future invasions by particular pests, outlining four possible criteria to evaluate potential invasiveness of non-native arthropods: likelihood of entry, likelihood of establishment, biological features of the species, and availability of control measures. Spodoptera litura (F.) (Lepidoptera: Noctuidae) and Aphis glycines (Matsumura) (Hemiptera: Sternorrhynca) are examples of highly damaging soybean pests, related to one or more of these factors, that could be introduced into Brazil over the next years and which could lead to problematic scenarios. Melanagromyza sojae (Zehnter) (Diptera: Agromyzidae) also meets these criteria and has successfully invaded and colonized Brazilian soybean fields in recent years. Our review identifies current issues within soybean pest management in Brazil and highlights the need to adopt management measures to offset future costs and minimize lost revenue.
Collapse
Affiliation(s)
- Henrique Pozebon
- Crop Protection Department, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, Santa Maria, Brazil
| | - Rafael P Marques
- Crop Protection Department, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, Santa Maria, Brazil
| | - Guilherme Padilha
- Crop Protection Department, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, Santa Maria, Brazil
| | | | | | - Julia G Bevilaqua
- Crop Protection Department, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, Santa Maria, Brazil
| | - Wee Tek Tay
- Entomology Department, CSIRO, Canberra, ACT, Australia
| | - Jonas André Arnemann
- Crop Protection Department, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, Santa Maria, Brazil
| |
Collapse
|
13
|
Johnston N, Martini X. The Influence of Visual and Olfactory Cues in Host Selection for Bemisia tabaci Biotype B in the Presence or Absence of Tomato Yellow Leaf Curl Virus. INSECTS 2020; 11:insects11020115. [PMID: 32054099 PMCID: PMC7073948 DOI: 10.3390/insects11020115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
The silverleaf whitefly, Bemisia tabaci, is one of the most destructive agricultural pests in the world, vectoring a large number of devastating viruses, including Tomato Yellow Leaf Curl Virus (TYLCV). When selecting a host, B. tabaci is primarily influenced by a range of visual and olfactory cues. Therefore, elucidating how such cues become modified in the presence of whitefly-vectored begomoviruses is critical to better understanding the epidemiology of many economically important diseases. The goal of this study was to determine how both visual and odor cues interact in the presence of TYLCV. In Y-tube olfactometer assays, whiteflies were submitted to a range of isolated visual and olfactory cues to determine behavioral changes. B. tabaci choices were then compared to both stimuli combined in the presence or absence of TYLCV. Under visual stimuli only, B. tabaci exhibited a visual attraction to the color yellow, TYLCV-infected tomato leaves, and TYLCV-infected tomato volatiles. Attraction was the strongest overall when both visual and olfactory cues from TYLCV-symptomatic tomato plants were combined, as opposed to a single isolated cue. These results highlight the importance of both sensory stimuli during B. tabaci host selection in the presence of an associated begomovirus.
Collapse
|
14
|
Karut K, Castle SJ, Karut ŞT, Karaca MM. Secondary endosymbiont diversity of Bemisia tabaci and its parasitoids. INFECTION GENETICS AND EVOLUTION 2019; 78:104104. [PMID: 31698114 DOI: 10.1016/j.meegid.2019.104104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 11/16/2022]
Abstract
Cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide. It is known as a species complex consisting of at least 40 cryptic species. Although there are substantial data regarding species composition, parasitoids and endosymbionts of B. tabaci, data on relationship between the pest, parasitoids and endosymbionts are very restricted. Therefore, in this study, secondary endosymbionts in populations of B. tabaci and their parasitoids collected from Turkey and the USA were determined by PCR-based DNA analysis. Whitefly populations in Turkey represented both Mediterranean (MED) and Middle East-Asia Minor1 (MEAM1) genotypes from single or mixed populations of both genotypes. Arsenophonus, Rickettsia and Wolbachia were found in MED, while Hamiltonella and Rickettsia in MEAM1. Whitefly populations collected from Arizona were all MEAM1 and dually infected with Hamiltonella and Rickettsia. The aphelinid parasitoids Encarsia lutea and Eretmocerus mundus predominated in all Turkish populations. While almost all En. lutea populations were infected with Wolbachia, no endosymbionts were detected in any Er. mundus. Parasitoid species and the pattern of secondary endosymbiont infection in Arizona populations were different with Rickettsia detected only from Encarsia sophia while both Rickettsia and Wolbachia were found in Eretmocerus species. As a result, four secondary endosymbionts, namely, Rickettsia, Hamiltonella, Arsenophonus and Wolbachia, were detected from B.tabaci and its parasitoids. Among them only Wolbachia and Rickettsia were found in both the pest and parasitoids. It is conclude that further studies should be pursued to determine effect of these endosymbionts on biology of the parasitoids and success in biological control of B. tabaci.
Collapse
Affiliation(s)
- Kamil Karut
- Department of Plant Protection, 01330, Cukurova University, Adana, Turkey.
| | | | | | - Mahmut Mete Karaca
- Department of Plant Protection, 01330, Cukurova University, Adana, Turkey
| |
Collapse
|
15
|
Nuclear Orthologs Derived from Whole Genome Sequencing Indicate Cryptic Diversity in the Bemisia tabaci (Insecta: Aleyrodidae) Complex of Whiteflies. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Bemisia tabaci complex of whiteflies contains globally important pests thought to contain cryptic species corresponding to geographically structured phylogenetic clades. Although mostly morphologically indistinguishable, differences have been shown to exist among populations in behavior, plant virus vector capacity, ability to hybridize, and DNA sequence divergence. These differences allow for certain populations to become invasive and cause great economic damage in a monoculture setting. Although high mitochondrial DNA divergences have been reported between putative conspecifics of the B. tabaci species complex, there is limited data that exists across the whole genome for this group. Using data from 2184 orthologs obtained from whole genome sequencing (Illumina), a phylogenetic analysis using maximum likelihood and coalescent methodologies was completed on ten individuals of the B. tabaci complex. In addition, automatic barcode gap discovery methods were employed, and results suggest the existence of five species. Although the divergences of the mitochondrial cytochrome oxidase I gene are high among members of this complex, nuclear divergences are much lower in comparison. Single-copy orthologs from whole genome sequencing demonstrate divergent population structures among members of the B. tabaci complex and the sequences provide an important resource to aid in future genomic studies of the group.
Collapse
|
16
|
Medina-Hernández D, Vargas-Salinas M, Rueda-Puente EO, Holguín-Peña RJ. Seasonal Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 Species and Impact on Incidence of Begomoviral Diseases in Baja California Sur. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1055-1061. [PMID: 30918973 DOI: 10.1093/jee/toz052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 06/09/2023]
Abstract
For more than four decades, the presence of the whitefly Bemisia tabaci Gennadius complex as a pest and transmitter of begomoviral diseases has been one of the most important phytopathological events in cultivated species worldwide. In addition, the number of whitefly species, as well as the viruses they transmit, has been increasing over time. In the state of Baja California Sur (BCS), Mexico, the diversity of B. tabaci has been delimited to MEAM1 and NW species, affecting mainly tomato, pepper, and squash. However, the relationship of these species with the dispersion of the begomoviruses previously detected in the study area is still unknown. In a 5-yr study (2012-2016), these species of whiteflies and begomoviruses were identified. Moreover, the recurrence, seasonal distribution, and impact they have on the spread of the begomoviral diseases were assessed. The identification of whiteflies was done targeting the mtCOI by PCR-DNA barcoding assay. For begomoviruses identification, a set of degenerate and specific primers targeting the IR region and CP gene were used. To determine seasonal abundance, monitoring was performed every 15 d by means of yellow traps. The MEAM1 species in all localities was observed with the highest peak population (>10 whiteflies/trap) from March to April. The guidelines for naming begomovirus species for the International Committee on Taxonomy of Viruses (ICTV) establish that the names when they are preceded by the acronym the whole name is in lowercase, not italicized (e.g. bean golden mosaic virus (BGMV)); when the name goes alone without the acronym then its capitalizes the first letter (e.g. Bean golden mosaic virus) and when these are referred to in a taxonomic sense they are italicized and the first letter is capitalized (e.g. Bean golden mosaic virus). This study provides details of the distribution and occurrence of MEAM1 species and diversity of begomoviruses that could be useful in disease management in BCS and worldwide.
Collapse
Affiliation(s)
- Diana Medina-Hernández
- Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas. Mar Bermejo. Col. Playa de Santa Rita. La Paz, B.C.S. CP, Mexico
| | - Mayela Vargas-Salinas
- Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas. Mar Bermejo. Col. Playa de Santa Rita. La Paz, B.C.S. CP, Mexico
| | - Edgar Omar Rueda-Puente
- Universidad de Sonora, Departamento de Agricultura y Ganadería, Boulevard Luis Encinas y Rosales S/N. Col. Centro. Hermosillo, Sonora. CP, Mexico
| | - Ramón Jaime Holguín-Peña
- Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas. Mar Bermejo. Col. Playa de Santa Rita. La Paz, B.C.S. CP, Mexico
| |
Collapse
|
17
|
Shadmany M, Boykin LM, Muhamad R, Omar D. Genetic Diversity of Bemisia tabaci (Hemiptera: Aleyrodidae) Species Complex Across Malaysia. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:75-84. [PMID: 30272175 DOI: 10.1093/jee/toy273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 06/08/2023]
Abstract
The tobacco whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex with members capable of inducing huge economic losses. Precise identification of members of this complex proves essential in managing existing populations and preventing new incursions. Despite records of serious outbreaks of this pest in Malaysia little is known about species status of B. tabaci in this region. To address this, a comprehensive sampling of B. tabaci from different host plants was conducted in 10 states of Malaysia from 2010 to 2012. Members of the complex were identified by sequencing partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene and constructing a Bayesian phylogenetic tree. Seven putative species were identified including Asia I, Mediterranean (MED), China 1, China 2, Asia II 6, Asia II 7, and Asia II 10. The most important finding of the study is the identification of the invasive MED species from locations without previous records of this species. All putative species except Asia I and MED are recorded from Malaysia for the first time. This study provided the first introductory map of B. tabaci species composition in Malaysia and emphasizes the urgent need for further studies to assess the status of MED invasion in this country.
Collapse
Affiliation(s)
- Mohammad Shadmany
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Perth, Australia
| | - R Muhamad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Dzolkhifli Omar
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
18
|
Clarke SKV, Brown SE. Identification and Distribution of Haplotypes of Diaphorina citri (Hemiptera: Liviidae) in Jamaica and the Caribbean. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2401-2408. [PMID: 30020494 DOI: 10.1093/jee/toy194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Psyllidae), also known as the Asian citrus psyllid, is a vector of the citrus huanglongbing (HLB) disease. D. citri transmits all three known strains of the HLB pathogen: Candidatus Liberibacter africanus, Candidatus Liberibacter americanus, and Candidatus Liberibacter asiaticus. The study involved 92 psyllids representing the Caribbean Basin and reference samples representing countries within Asia, North America, and South America. This study was aimed at characterizing D. citri on a molecular level in order to determine the haplotype diversity and uniqueness within Jamaica and the Caribbean Basin. D. citri-specific primers were used to amplify an 821 bp gene fragment from the mitochondrial cytochrome c oxidase subunit I gene (mtCOI). The statistical parsimony program, TCS, was used to determine the 12 haplotypes found within the Caribbean, with haplotypes H2 and H7 being the most prominent. The H2 haplotype was found to belong to the South Western Asia group originating from India. H2 represented 54% of the sequenced samples and dominated the Greater Antilles, 22% were grouped as H7, dominating the Lesser Antilles, while the remaining 24% of the sequences were grouped in the remaining 10 haplotypes and were variants seen within the Greater and Lesser Antilles.
Collapse
Affiliation(s)
- Sasha-Kay V Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching & Research Complex, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Sherline E Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching & Research Complex, University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
19
|
Vyskočilová S, Tay WT, van Brunschot S, Seal S, Colvin J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci Rep 2018; 8:10886. [PMID: 30022040 PMCID: PMC6052153 DOI: 10.1038/s41598-018-29305-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the "Mediterranean" (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the "African silver-leafing" (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the "ASL" does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies.
Collapse
Affiliation(s)
- Soňa Vyskočilová
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom.
| | - Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Canberra, Australia
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
| |
Collapse
|
20
|
Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience. J Invertebr Pathol 2017; 165:4-12. [PMID: 29196232 DOI: 10.1016/j.jip.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022]
Abstract
Historically, greenhouse floriculture has relied on synthetic insecticides to meet its pest control needs. But, growers are increasingly faced with the loss or failure of synthetic chemical pesticides, declining access to new chemistries, stricter environmental/health and safety regulations, and the need to produce plants in a manner that meets the 'sustainability' demands of a consumer driven market. In Canada, reports of thrips resistance to spinosad (Success™) within 6-12 months of its registration prompted a radical change in pest management philosophy and approach. Faced with a lack of registered chemical alternatives, growers turned to biological control out of necessity. Biological control now forms the foundation for pest management programs in Canadian floriculture greenhouses. Success in a biocontrol program is rarely achieved through the use of a single agent, though. Rather, it is realized through the concurrent use of biological, cultural and other strategies within an integrated plant production system. Microbial insecticides can play a critical supporting role in biologically-based integrated pest management (IPM) programs. They have unique modes of action and are active against a range of challenging pests. As commercial microbial insecticides have come to market, research to generate efficacy data has assisted their registration in Canada, and the development and adaptation of integrated programs has promoted uptake by floriculture growers. This review documents some of the work done to integrate microbial insecticides into chrysanthemum and poinsettia production systems, outlines current use practices, and identifies opportunities to improve efficacy in Canadian floriculture crops.
Collapse
|
21
|
Ben Abdelkrim A, Hattab T, Fakhfakh H, Belkadhi MS, Gorsane F. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci. PLoS One 2017; 12:e0185724. [PMID: 28972992 PMCID: PMC5626470 DOI: 10.1371/journal.pone.0185724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/18/2017] [Indexed: 11/19/2022] Open
Abstract
Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.
Collapse
Affiliation(s)
- Ahmed Ben Abdelkrim
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Tarek Hattab
- Institut Français de Recherche pour l’Exploitation de la Mer, IFREMER, UMR 248 MARBEC, Avenue Jean Monnet CS, Sète, France
| | - Hatem Fakhfakh
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Zarzouna, Université de Carthage, Bizerte, Tunisie
| | | | - Faten Gorsane
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Zarzouna, Université de Carthage, Bizerte, Tunisie
| |
Collapse
|
22
|
Andreason SA, Arif M, Brown JK, Ochoa-Corona F, Fletcher J, Wayadande A. Single-Target and Multiplex Discrimination of Whiteflies (Hemiptera: Aleyrodidae) Bemisia tabaci and Trialeurodes vaporariorum With Modified Priming Oligonucleotide Thermodynamics. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1821-1830. [PMID: 28498951 DOI: 10.1093/jee/tox125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 06/07/2023]
Abstract
The whitefly species Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) are worldwide agricultural pests and virus vectors. Bemisia tabaci, in particular, is often transported internationally via trade routes leading to potential introductions of exotic whiteflies or plant viruses. Quick identification of agriculturally important whiteflies can facilitate interventions that prevent these cross-border introductions. Polymerase chain reaction (PCR) primers were designed to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) sequence of members of the B. tabaci complex, MEAM1, MED, and NW, and T. vaporariorum. Primers incorporated an A/T-rich overhang sequence at the 5' terminus (5' flap) to test for increased primer sensitivity and assay efficiency. Single-target and multiplex endpoint PCR assays with the eight primer sets were performed using genomic DNA template extracted from individual adult whiteflies. Resultant PCR amplicons obtained for B. tabaci MEAM1, MED, and NW, and T. vaporariorum primers with the 5' flap were 559-, 717-, 353-, and 258-bp, respectively, and without the 5' flap were 550-, 712-, 329-, and 252-bp in length, respectively. In single-target and multiplex reactions, specific amplification was achieved using both the unmodified and 5' flap-modified primers. Sequencing and phylogenetic analysis confirmed primer-target amplification specificity. Using these primer sets in single-target or multiplex PCR allows for quick discrimination and specific identification of B. tabaci complex members and T. vaporariorum, and the addition of 5'A/T-rich overhang sequences increases the sensitivity and amplification of some primer sets.
Collapse
Affiliation(s)
- Sharon A Andreason
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
- Department of Entomology, University of California, Riverside, CA 92521
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Francisco Ochoa-Corona
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Astri Wayadande
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
23
|
Karut K, Mete Karaca M, Döker I, Kazak C. Analysis of Species, Subgroups, and Endosymbionts of Bemisia tabaci (Hemiptera: Aleyrodidae) From Southwestern Cotton Fields in Turkey. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1035-1040. [PMID: 28505238 DOI: 10.1093/ee/nvx093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 06/07/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide including Turkey. Although there are substantial data regarding species composition of Turkish B. tabaci populations, the situation is still not clear and further investigations are needed. Therefore, in this study, species and subgroups of B. tabaci collected from cotton fields in southwestern part of Turkey (Antalya, Aydın, Denizli, and Muğla) were determined using microsatellite analysis, AluI-based mtCOI polymerase chain reaction-random length polymorphism, and sequencing. Secondary endosymbionts were also determined using diagnostic species-specific PCR. Middle East Asia Minor 1 (MEAM1), Mediterranean (MED) Q1, and MED Q2 were the species and subgroups found in this study. The MED species (85.3%) were found to be more dominant than MEAM1. Species status of B. tabaci varied depending on the location. Although all samples collected from Aydın were found to be Q1, three species and subgroups were found in Muğla. Secondary endosymbionts varied according to species and subgroups. Arsenophonus was found only from Q2, while Hamiltonella was detected in MEAM1 and Q1. In addition, high Rickettsia and low Wolbachia infections were detected in MEAM1 and Q1 populations, respectively. In conclusion, for the first time, we report the presence and symbiotic communities of Q1 from Turkey. We also found that the symbiont complement of the Q1 is more congruent with Q1 from Greece than other regions of the world, which may have some interesting implications for movement of this invasive subgroup.
Collapse
Affiliation(s)
- Kamil Karut
- Agricultural Faculty, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology, Çukurova University, 01330 Adana, Turkey
| | - M Mete Karaca
- Agricultural Faculty, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology, Çukurova University, 01330 Adana, Turkey
| | - Ismail Döker
- Agricultural Faculty, Department of Plant Protection, Laboratory of Acarology, Çukurova University, 01330 Adana, Turkey
| | - Cengiz Kazak
- Agricultural Faculty, Department of Plant Protection, Laboratory of Acarology, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
24
|
Castle S, Palumbo J, Merten P, Cowden C, Prabhaker N. Effects of foliar and systemic insecticides on whitefly transmission and incidence of Cucurbit yellow stunting disorder virus. PEST MANAGEMENT SCIENCE 2017; 73:1462-1472. [PMID: 27862891 DOI: 10.1002/ps.4478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Cucurbit yellow stunting disorder virus (CYSDV) is a cosmopolitan viral disease transmitted by Bemisia tabaci that infects cucurbit crops. Cantaloupe production in the southwestern USA has been confronted by epidemics of CYSDV since 2006 when it was first identified in Arizona and California. As a phloem-limited virus that is vectored in a semi-persistent manner by B. tabaci, CYSDV has transmission characteristics that may be suppressed by select insecticide applications. RESULTS Eight active ingredients formulated as foliar and/or soil-applied insecticides were tested to determine the suppressive effect on transmission and incidence of CYSDV in greenhouse and field studies. Many compounds limited virus transmission to <10% infected plants even when challenged by 30 viruliferous whiteflies. Foliar formulations had greater knockdown activity than their soil-applied analogs and resulted in lower virus transmission. Insecticides that had the greatest effect on reducing virus transmission in the greenhouse also showed the lowest incidence of CYSDV in field trials. CONCLUSIONS Select insecticides can significantly reduce transmission of CYSDV. However, insecticide management of CYSDV incidence in cantaloupes has limitations in chronically high infestation areas such as the southwestern USA, and is often only able to delay disease onset rather than prevent its occurrence. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - John Palumbo
- Department of Entomology, Yuma Agricultural Center, University of Arizona, Yuma, AZ, USA
| | | | | | - Nilima Prabhaker
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
25
|
Krauter PC, Heinz KM, Arthurs S. Protecting Unrooted Cuttings From Bemisia tabaci (Hemiptera Aleyrodidae) During Propagation. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3940220. [PMID: 28973486 PMCID: PMC5501972 DOI: 10.1093/jisesa/iex056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
In North America, the sweetpotato whitefly, Bemisia tabaci Genn., is an important pest of greenhouse poinsettia. Growers have limited options to control this pest during propagation of cuttings, which are rooted under mist for several weeks. Early establishment of this pest increases the difficulty of managing the whitefly and retaining high aesthetic standard during the remaining crop production phase. We evaluated two neonicotinoids with translaminar activity, thiamethoxam (Flagship 25WG), and acetamiprid (TriStar 70 WSP), for control of B. tabaci pre-infested on unrooted cuttings propagated under mist. In an experimental greenhouse, both materials significantly reduced whitefly populations, providing an average reduction of 87.8% and 61.5% total recovered whitefly stages respectively, compared with controls. In another test, dipping cuttings in thiamethoxam (immersion treatment) did not improve control significantly, when compared with foliar sprays applied at label rate. In a commercial greenhouse operation, immersion treatments of thiamethoxam on pre-infested poinsettia cuttings maintained whiteflies at ≤ 0.02/plant, compared with up to 0.33/plant in untreated cuttings. Our data suggest that treating unrooted cuttings before or at the start of propagation can be part of an overall strategy for growers to manage whiteflies in poinsettia production.
Collapse
Affiliation(s)
- Peter C. Krauter
- Department of Entomology, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2475 (; ; )
| | - Kevin M. Heinz
- Department of Entomology, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2475 (; ; )
| | - Steven Arthurs
- Department of Entomology, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2475 (; ; )
| |
Collapse
|
26
|
Population genetics of an alien whitefly in China: implications for its dispersal and invasion success. Sci Rep 2017; 7:2228. [PMID: 28533549 PMCID: PMC5440374 DOI: 10.1038/s41598-017-02433-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/10/2017] [Indexed: 11/25/2022] Open
Abstract
Invasive genotypes may be associated with their ability to access the invasion habitat. The whitefly, Bemisia tabaci Q, has been an important agricultural pest in China since 2008. In order to identify the invasion routes and to provide insight into its invasion success in China, we analyzed the composition, distribution, and genetic diversity of mitochondrial haplotypes of B. tabaci Q. Samples were obtained from 23 provincial level administrative units in 2011, and analyses conducted based on the mtCOI. Our results revealed five haplotypes (abbreviated as Q1H1-Q1H5) were present in the Q1 subclade based on 773-bp mtCOI fragment analysis. The diversity of haplotypes indicated the B. tabaci Q populations were derived from multiple invasion sources originating from the western Mediterranean region. Among the haplotypes, Q1H1 was dominant, followed by Q1H2. The whitefly populations were generally characterized by low levels of genetic diversity based on the 773-bp mtCOI fragment. Similar results were obtained when the 657-bp fragment was analyzed using the procedure in a previous report. Potential mechanisms contributing to the dominance of the Q1H1 in China are also discussed. These results will be helpful in revealing the mechanisms that enabled the successful invasion of B. tabaci Q into the country.
Collapse
|
27
|
Abstract
The displacement of a species from a habitat by actions of another is the most severe outcome of interspecific interactions. This review focuses on recent developments in the understanding of (a) ecological mechanisms that lead to displacements, (b) how outcomes of interspecific interactions are affected by the context of where and when they occur, and (c) impacts of displacements. Displacements are likely to escalate as their primary initiating factors-the spread of non-native species and environmental change-continue at unprecedented rates. Displacements typically result from interactions of multiple mechanisms, not all of which involve direct competition. Various biotic and abiotic factors mediate these mechanisms, so variable outcomes occur when the same species interact in different environments. Though replacement of one species by another has particular relevance to pest management and conservation biology, the cascading effects that displacements have in managed and natural systems are critical to understand.
Collapse
Affiliation(s)
- Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China;
| | - Stuart R Reitz
- Department of Crop and Soil Sciences, Malheur County Extension, Oregon State University, Ontario, Oregon 97914;
| |
Collapse
|
28
|
Buitenhuis R, Brownbridge M, Brommit A, Saito T, Murphy G. How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings. INSECTS 2016; 7:insects7040048. [PMID: 27681741 PMCID: PMC5198196 DOI: 10.3390/insects7040048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
(1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers' options to control this pest; (2) This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae) and combinations of these products as immersion treatments (cutting dips) to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa) were determined; (3) Mineral oil (0.1% v/v) and insecticidal soap (0.5%) + B. bassiana (1.25 g/L) were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4) Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies.
Collapse
Affiliation(s)
- Rosemarije Buitenhuis
- Vineland Research and Innovation Centre, Vineland Station, Lincoln, ON L0R 2E0, Canada.
| | - Michael Brownbridge
- Vineland Research and Innovation Centre, Vineland Station, Lincoln, ON L0R 2E0, Canada.
| | - Angela Brommit
- Vineland Research and Innovation Centre, Vineland Station, Lincoln, ON L0R 2E0, Canada.
| | - Taro Saito
- Vineland Research and Innovation Centre, Vineland Station, Lincoln, ON L0R 2E0, Canada.
| | | |
Collapse
|
29
|
Baek JH, Lee HJ, Kim YH, Lim KJ, Lee SH, Kim BJ. Development of an antibody-based diagnostic method for the identification of Bemisia tabaci biotype B. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 131:18-23. [PMID: 27265822 DOI: 10.1016/j.pestbp.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/21/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
The whitefly Bemisia tabaci is a very destructive pest. B. tabaci is composed of various morphologically undistinguishable biotypes, among which biotypes B and Q, in particular, draw attention because of their wide distribution in Korea and differential potentials for insecticide resistance development. To develop a biotype-specific protein marker that can readily distinguishes biotypes B from other biotypes in the field, we established an ELISA protocol based on carboxylesterase 2 (COE2), which is more abundantly expressed in biotypes B compared with Q. Recombinant COE2 was expressed, purified and used for antibody construction. Polyclonal antibodies specific to B. tabaci COE2 [anti-COE2 pAb and deglycosylated anti-COE2 pAb (DG anti-COE2 pAb)] revealed a 3-9-fold higher reactivity to biotype B COE2 than biotype Q COE2 by Western blot and ELISA analyses. DG anti-COE2 pAb exhibited low non-specific activity, demonstrating its compatibility in diagnosing biotypes. Western blot and ELISA analyses determined that one of the 11 field populations examined was biotype B and the others were biotype Q, suggesting the saturation of biotype Q in Korea. DG anti-COE2 pAb discriminates B. tabaci biotypes B and Q with high specificity and accuracy and could be useful for the development of a B. tabaci biotype diagnosis kit for on-site field applications.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea
| | - Hye Jung Lee
- Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-Gu, Seoul 120-110, Republic of Korea
| | - Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, 66506, KS, USA
| | - Kook Jin Lim
- Proteometech Inc., 15-1 Yonhee-dong, Seodaemun-gu, Seoul 120-110, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Bum Joon Kim
- Proteometech Inc., 15-1 Yonhee-dong, Seodaemun-gu, Seoul 120-110, Republic of Korea.
| |
Collapse
|
30
|
Leckie BM, D'Ambrosio DA, Chappell TM, Halitschke R, De Jong DM, Kessler A, Kennedy GG, Mutschler MA. Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores. PLoS One 2016; 11:e0153345. [PMID: 27065236 PMCID: PMC4827819 DOI: 10.1371/journal.pone.0153345] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/28/2016] [Indexed: 11/19/2022] Open
Abstract
Acylsugars are secondary metabolites exuded from type IV glandular trichomes that provide broad-spectrum insect suppression for Solanum pennellii Correll, a wild relative of cultivated tomato. Acylsugars produced by different S. pennellii accessions vary by sugar moieties (glucose or sucrose) and fatty acid side chains (lengths and branching patterns). Our objective was to determine which acylsugar compositions more effectively suppressed oviposition of the whitefly Bemisia tabaci (Gennadius) (Middle East--Asia Minor 1 Group), tobacco thrips, Frankliniella fusca (Hinds), and western flower thrips, Frankliniella occidentalis (Pergande). We extracted and characterized acylsugars from four S. pennellii accessions with different compositions, as well as from an acylsugar-producing tomato breeding line. We also fractionated the acylsugars of one S. pennellii accession to examine the effects of its components. Effects of acylsugars on oviposition were evaluated by administering a range of doses to oviposition sites of adult whiteflies and thrips in non-choice and choice bioassays, respectively. The acylsugars from S. pennellii accessions and the tomato breeding line demonstrated differential functionality in their ability to alter the distribution of whitefly oviposition and suppress oviposition on acylsugar treated substrates. Tobacco thrips were sensitive to all compositions while western flower thrips and whiteflies were more sensitive to acylsugars from a subset of S. pennellii accessions. It follows that acylsugars could thus mediate plant-enemy interactions in such a way as to affect evolution of host specialization, resistance specificity, and potentially host differentiation or local adaptation. The acylsugars from S. pennellii LA1376 were separated by polarity into two fractions that differed sharply for their sugar moieties and fatty acid side chains. These fractions had different efficacies, with neither having activity approaching that of the original exudate. When these two fractions were recombined, the effect on both whiteflies and thrips exceeded the sum of the two fractions' effects, and was similar to that of the original exudate. These results suggest that increasing diversity of components within a mixture may increase suppression through synergistic interactions. This study demonstrates the potential for composition-specific deployment of acylsugars for herbivore oviposition suppression, either through in planta production by tomato lines, or as biocides applied by a foliar spray.
Collapse
Affiliation(s)
- Brian M. Leckie
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Damon A. D'Ambrosio
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas M. Chappell
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rayko Halitschke
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Darlene M. De Jong
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - George G. Kennedy
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Martha A. Mutschler
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
31
|
Wintermantel WM, Gilbertson RL, McCreight JD, Natwick ET. Host-Specific Relationship Between Virus Titer and Whitefly Transmission of Cucurbit yellow stunting disorder virus. PLANT DISEASE 2016; 100:92-98. [PMID: 30688566 DOI: 10.1094/pdis-11-14-1119-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, family Closteroviridae) was identified in the melon (Cucumis melo) production regions of the desert southwestern United States in fall 2006. It is now well established in the region, where it is transmitted efficiently by the sweet potato whitefly, Bemisia tabaci biotype B (MEAM1). In order to evaluate the spread and establishment of the virus, nearly all spring and fall cucurbit fields planted in the Imperial Valley of California from 2007 to 2009 were surveyed and representative plants were tested for CYSDV infection. Incidence of CYSDV in spring melon fields was initially low and limited to a small number of fields in 2007 but increased to 63% of fields by spring 2009. Virus incidence in fall melon fields was 100% in each year. These results suggested that the virus had become established in native vegetation, weeds, and other crop species, and represented an increasing threat to melon production in the southwestern United States. Therefore, a select set of weed and crop species which grow or are cultivated in the Imperial Valley were evaluated as CYSDV reservoir hosts. For each species, we determined the capacity of CYSDV to accumulate, the relationship between virus titer in these source plants and transmission by whiteflies, as well as subsequent accumulation in inoculated cucurbit plants. Among these hosts, there was considerable variation in virus accumulation and transmission rates. Cucurbit hosts had the highest CYSDV titers, were efficient sources for virus acquisition, and showed a positive correlation between titer in source plants and transmission. Noncucurbit hosts had significantly lower CYSDV titers and varied in their capacity to serve as sources for transmission. CYSDV titers in some noncucurbit source plants, specifically common bean (Phaseolus vulgaris) and shepherd's purse (Capsella bursa-pastoris), were not positively correlated with transmission, demonstrating that additional environmental, physical, or biochemical factors were involved. These results demonstrate that multiple factors influence the efficiency with which a host plant species will be a reservoir for vector transmission of virus to crops.
Collapse
Affiliation(s)
- William M Wintermantel
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, CA 93905
| | | | | | - Eric T Natwick
- University of California Cooperative Extension Imperial County, Holtville 92250
| |
Collapse
|
32
|
Pan H, Preisser EL, Chu D, Wang S, Wu Q, Carriére Y, Zhou X, Zhang Y. Insecticides promote viral outbreaks by altering herbivore competition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1585-95. [PMID: 26552266 DOI: 10.1890/14-0752.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
While the management of biological invasions is often characterized by a series of single-specieg decisions, invasive species exist within larger food webs. These biotic interactions can alter the impact of control/eradication programs and may cause suppression efforts to inadvertently facilitate invasion spread and impact. We document the rapid replacement of the invasive Bemisia Middle East-Asia Minor I (MEAM1) cryptic biotype by the cryptic Mediterranean (MED) biotype throughout China and demonstrate that MED is more tolerant of insecticides and a better vector of tomato yellow leaf curl virus (TYLCV) than MEAMJ. While MEAM1 usually excludes MED under natural conditions, insecticide application reverses the MEAM1-MED competitive hierarchy and allows MED to exclude MEAMI. The insecticide-mediated success of MED has led to TYLCV outbreaks throughout China. Our work strongly supports the hypothesis that insecticide use in China reverses the MEAMl-MED competitive hierarchy and allows MED to displace MEAM1 in managed landscapes. By promoting the dominance of a Bemisia species that is a competent viral vector, insecticides thus increase the spread and impact of TYLCV in heterogeneous agroecosystems.
Collapse
|
33
|
Alemandri V, Vaghi Medina CG, Dumón AD, Argüello Caro EB, Mattio MF, García Medina S, López Lambertini PM, Truol G. Three Members of the Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex Occur Sympatrically in Argentine Horticultural Crops. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:405-413. [PMID: 26470151 DOI: 10.1093/jee/tov017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/06/2015] [Indexed: 06/05/2023]
Abstract
The whitefly, Bemisia tabaci (Gennadius), is a cryptic species complex that attacks >600 different species of plants and transmits several plant viruses causing severe economic losses. Until 2010, the B. tabaci complex comprised 24 distinct putative species. Recently, at least 15 new species have been reported. The objective of this study was to identify B. tabaci species present in bean, melon, and tomato crops in Argentina by applying phylogenetic analyses and pairwise comparison of genetic distances of mitochondrial cytochrome c oxidase subunit I (mtCOI) sequences. The 39 proposed whitefly species were identified with both analyses, and the presence in Argentina of one indigenous species, New World 2 (NW2), and two introduced species, Middle East-Asia Minor one (MEAM1) and Mediterranean, was confirmed. Common bean crop presented the three whitefly species detected, with NW2, MEAM1, and Mediterranean being present all together under field conditions. Also, Mediterranean was the only species identified in tomato, whereas MEAM1 was found in melon. To the best of our knowledge, Mediterranean is a recent invasive species in open-field agriculture in the American continent and in greenhouse tomato in Argentina. Additionally, we provide the first report of MEAM1 in common bean and melon. These findings raise several questions on the future scenario of B. tabaci and the viruses it transmits in Argentina.
Collapse
Affiliation(s)
- V Alemandri
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA).
| | - C G Vaghi Medina
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)
| | - A D Dumón
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)
| | - E B Argüello Caro
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)
| | - M F Mattio
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)
| | - S García Medina
- INTA Estación Experimental Agropecuaria (EEA) Salta, Ruta Nacional 68 km 172 Cerrillos, Salta, Argentina
| | - P M López Lambertini
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)
| | - G Truol
- Instituto de Patología Vegetal - Centro de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA)
| |
Collapse
|
34
|
Hélène D, Rémy B, Nathalie B, Anne-Laure G, Traoré RS, Jean-Michel L, Bernard R. Species and endosymbiont diversity of Bemisia tabaci (Homoptera: Aleyrodidae) on vegetable crops in Senegal. INSECT SCIENCE 2015; 22:386-398. [PMID: 24789572 DOI: 10.1111/1744-7917.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Bemisia tabaci-transmitted geminiviruses are one of the major threats on cassava and vegetable crops in Africa. However, to date, few studies are available on the diversity of B. tabaci and their associated endosymbionts in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, 2 are invasive pests worldwide: MED and MEAM1. In order to assess the species diversity of B. tabaci in vegetable crops in Senegal, several samplings in different localities, hosts and seasons were collected and analyzed with nuclear (microsatellite) and mitochondrial (COI) markers. The bacterial endosymbiont community was also studied for each sample. Two species were detected: MED Q1 and MEAM1 B. Patterns of MED Q1 (dominance on most of the samples and sites, highest nuclear and mitochondrial diversity and broader secondary endosymbiont community: Hamiltonella, Cardinium, Wolbachia and Rickettsia), point toward a predominant resident begomovirus vector group for MED Q1 on market gardening crops. Furthermore, the lower prevalence of the second species MEAM1 B, its lower nuclear and mitochondrial diversity and a narrower secondary endosymbiont community (Hamiltonella/Rickettsia), indicate that this genetic group is exotic and results from a recent invasion in this area.
Collapse
Affiliation(s)
- Delatte Hélène
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | - Baudin Rémy
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | - Becker Nathalie
- Museum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB, UMR 7205 CNRS, UPMC, EPHE, 75005, Paris, France
| | - Girard Anne-Laure
- TECHNISEM, Zone d'activité Anjou Actiparc de Jumelles, 49160, Longué-Jumelles, France
| | | | | | | |
Collapse
|
35
|
McKenzie CL, Kumar V, Palmer CL, Oetting RD, Osborne LS. Chemical class rotations for control of Bemisia tabaci (Hemiptera: Aleyrodidae) on poinsettia and their effect on cryptic species population composition. PEST MANAGEMENT SCIENCE 2014; 70:1573-1587. [PMID: 24464725 DOI: 10.1002/ps.3736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bemisia tabaci, a polyphagous insect with over 900 host plants, is an effective vector of more than 100 plant viruses. Being highly fecund, B. tabaci has the potential to develop insecticide resistance rapidly, as demonstrated by reports of use failures with MEAM1 and MED cryptic species (commonly known as biotypes B and Q respectively). Insecticide resistance management is a key component of pest management practices. The research herein studied season-long rotational management programs on poinsettia and their impact on the ratio of MEAM1:MED cryptic species in the surviving treated populations. RESULTS In all four experiments, only three of the treatments completely eliminated the adult or immature whiteflies, but all significantly reduced the populations. Out of 18 active ingredients tested, dinotefuran (applied as a soil drench) was the most efficacious against both MEAM1 and MED cryptic species compared with the other chemical or biorational insecticides evaluated. Reduced susceptibility of MED was reported against a variety of treatment regimes. CONCLUSION Rotations can be used to manage MEAM1 and MED cryptic species and maintain a very low population level or completely eliminate Bemisia on poinsettia. It is imperative to continue to emphasize the importance of rotating among different modes of action in pest management programs in order to retain effective chemistries for as long as possible in the market place.
Collapse
Affiliation(s)
- Cindy L McKenzie
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | | | | | | | | |
Collapse
|
36
|
Barbosa LDF, Marubayashi JM, De Marchi BR, Yuki VA, Pavan MA, Moriones E, Navas-Castillo J, Krause-Sakate R. Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. PEST MANAGEMENT SCIENCE 2014; 70:1440-1445. [PMID: 24458534 DOI: 10.1002/ps.3731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Bemisia tabaci is a complex of at least 36 putative cryptic species. Since the late 1980s, the Middle East-Asia Minor 1 species (MEAM1, formerly known as the B biotype), has emerged in many tropical and subtropical regions of the world and in some areas has displaced the indigenous populations of B. tabaci. Based on analysis of the mtCOI gene, two indigenous species native to America have been reported: New World (NW, formerly the A biotype) and New World 2 (NW2). NW is present at least in Argentina, Brazil, Martinique, Mexico, Texas and Venezuela, and NW2 in Argentina, Bolivia and Brazil. Wild plants (Euphorbia sp. and Ipomoea sp.), as well as important crops such as tomato, bean and cotton, are still hosts for native B. tabaci populations in the Americas. MEAM1 has not completely displaced the native B. tabaci from the Americas.
Collapse
Affiliation(s)
- Leonardo da F Barbosa
- UNESP - Faculdade de Ciências Agronômicas, Botucatu, Brazil; Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Maluta NKP, Garzo E, Moreno A, Lopes JRS, Fereres A. Tomato Yellow Leaf Curl Virus Benefits Population Growth of the Q Biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). NEOTROPICAL ENTOMOLOGY 2014; 43:385-92. [PMID: 27193818 DOI: 10.1007/s13744-014-0223-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/04/2014] [Indexed: 05/13/2023]
Abstract
Plant viruses can directly influence their insect vectors, and indirectly through their shared host plant, altering their behavior and performance in a mutualistic or rather antagonistic manner. One of the most studied begomovirus, Tomato yellow leaf curl virus (TYLCV), may also facilitate the expansion of its vector, the whitefly Bemisia tabaci (Gennadius). Considering the likely expansion of the disease and its major vector, we studied the direct and the indirect effects of a Mediterranean isolate of this virus (TYLCV-IL) on the biological performance of the Q biotype of B. tabaci. The following parameters were examined: development time and viability of nymphs, sex ratio, fecundity, and fertility and longevity. The results varied from positive to neutral depending on the parameter and the effect studied. TYLCV accelerated nymphal developmental and increased male longevity of B. tabaci when viruliferous insects developed on TYLCV-immune eggplants (direct effects). An indirect, positive effect of TYLCV-infected plants was observed on fecundity of B. tabaci, which laid more eggs on virus-infected than on noninfected tomato plants. Our results show that TYLCV enhances the population increase of its whitefly vector and that there is a high risk of rapid expansion of both the virus and its vector-the MED species of B. tabaci-into new areas when both agents interact together.
Collapse
Affiliation(s)
- N K P Maluta
- Depto de Entomologia e Acarologia, ESALQ⁄ Universidade de São Paulo, CP. 9, Piracicaba, SP,, 13418-900, Brasil.
| | - E Garzo
- Depto de Protección Vegetal, Instituto de Ciencias Agrárias (ICA, CSIC), Madrid, Spain
| | - A Moreno
- Depto de Protección Vegetal, Instituto de Ciencias Agrárias (ICA, CSIC), Madrid, Spain
| | - J R S Lopes
- Depto de Entomologia e Acarologia, ESALQ⁄ Universidade de São Paulo, CP. 9, Piracicaba, SP,, 13418-900, Brasil
| | - A Fereres
- Depto de Protección Vegetal, Instituto de Ciencias Agrárias (ICA, CSIC), Madrid, Spain
| |
Collapse
|
38
|
Sun DB, Li J, Liu YQ, Crowder DW, Liu SS. Effects of reproductive interference on the competitive displacement between two invasive whiteflies. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:334-46. [PMID: 24521733 DOI: 10.1017/s0007485314000108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reproductive interference is one of the major factors mediating species exclusion among insects. The cryptic species Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) of the whitefly Bemisia tabaci complex have invaded many parts of the world and often exhibit niche overlap and reproductive interference. However, contrasting patterns of competitive displacement between the two invaders have been observed between regions such as those in USA and China. Understanding the roles of reproductive interference in competitive interactions between populations of the two species in different regions will help unravel other factors related to their invasion. We integrated laboratory population experiments, behavioural observations and simulation modelling to investigate the role of reproductive interference on species exclusion between MEAM1 and MED in China. In mixed cohorts of the two species MEAM1 always excluded MED in a few generations when the initial proportion of MEAM1 was ⩾0.25. Even when the initial proportion of MEAM1 was only 0.10, however, MEAM1 still had a higher probability of excluding MED than that for MED to exclude MEAM1. Importantly, we show that as MEAM1 increased in relative abundance, MED populations became increasingly male-biased. Detailed behavioural observations confirmed that MEAM1 showed a stronger reproductive interference than MED, leading to reduced frequency of copulation and female progeny production in MED. Using simulation modelling, we linked our behavioural observations with exclusion experiments to show that interspecific asymmetric reproductive interference predicts the rate of species exclusion of MED by MEAM1. These findings not only reveal the importance of reproductive interference in the competitive interactions between the two invasive whiteflies as well as the detailed behavioural mechanisms, but also provide a valuable framework against which the effects of other factors mediating species exclusion can be explored.
Collapse
Affiliation(s)
- Di-Bing Sun
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, PO Box 646382, Pullman, WA 99164, USA
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS One 2013; 8:e82231. [PMID: 24312646 PMCID: PMC3846826 DOI: 10.1371/journal.pone.0082231] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/22/2013] [Indexed: 11/21/2022] Open
Abstract
Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato.
Collapse
|
40
|
Legg JP, Sseruwagi P, Boniface S, Okao-Okuja G, Shirima R, Bigirimana S, Gashaka G, Herrmann HW, Jeremiah S, Obiero H, Ndyetabula I, Tata-Hangy W, Masembe C, Brown JK. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res 2013; 186:61-75. [PMID: 24291251 DOI: 10.1016/j.virusres.2013.11.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
Abstract
The greatest current threat to cassava in sub-Saharan Africa, is the continued expansion of plant virus pandemics being driven by super-abundant populations of the whitefly vector, Bemisia tabaci. To track the association of putatively genetically distinct populations of B. tabaci with pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), a comprehensive region-wide analysis examined the phylogenetic relationships and population genetics of 642 B. tabaci adults sampled from cassava in six countries of East and Central Africa, between 1997 and 2010, using a mitochondrial DNA cytochrome oxidase I marker (780 bases). Eight phylogenetically distinct groups were identified, including one, designated herein as 'East Africa 1' (EA1), not previously described. The three most frequently occurring groups comprised >95% of all samples. Among these, the Sub-Saharan Africa 2 (SSA2) group diverged by c. 8% from two SSA1 sub-groups (SSA1-SG1 and SSA1-SG2), which themselves were 1.9% divergent. During the 14-year study period, the group associated with the CMD pandemic expansion shifted from SSA2 to SSA1-SG1. Population genetics analyses of SSA1, using Tajima's D, Fu's Fs and Rojas' R2 statistics confirmed a temporal transition in SSA1 populations from neutrally evolving at the outset, to rapidly expanding from 2000 to 2003, then back to populations more at equilibrium after 2004. Based on available evidence, hybrid introgression appears to be the most parsimonious explanation for the switch from SSA2 to SSA1-SG1 in whitefly populations driving cassava virus pandemics in East and Central Africa.
Collapse
Affiliation(s)
- James P Legg
- International Institute of Tropical Agriculture (IITA), PO Box 34441, Dar es Salaam, Tanzania.
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, PO Box 6226, Dar es Salaam, Tanzania
| | - Simon Boniface
- International Institute of Tropical Agriculture (IITA), PO Box 34441, Dar es Salaam, Tanzania
| | - Geoffrey Okao-Okuja
- National Agricultural Crops Resources Research Institute, PO Box 7084, Kampala, Uganda
| | - Rudolph Shirima
- International Institute of Tropical Agriculture (IITA), PO Box 34441, Dar es Salaam, Tanzania
| | - Simon Bigirimana
- Institut des Sciences Agronomiques du Burundi, BP 173, Gitega, Burundi
| | | | | | - Simon Jeremiah
- Lake Zone Agricultural Research and Development Institute, PO Box 1433, Mwanza, Tanzania
| | | | | | - Willy Tata-Hangy
- Institut National Pour l'Etude et la Recherche Agronomique (INERA-DR Congo), BP 327, Cyangugu, Rwanda
| | | | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
41
|
Spatial genetic heterogeneity in populations of a newly invasive whitefly in china revealed by a nation-wide field survey. PLoS One 2013; 8:e79997. [PMID: 24302995 PMCID: PMC3841195 DOI: 10.1371/journal.pone.0079997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background Even though introductions of exotic species provide ready-made experiments of rapid evolution, few studies have examined the genetic structure of an exotic species shortly after its initial introduction and subsequent spread. To determine the genetic structure of its populations during the initial introduction, we investigated the invasive sweet potato whitefly (Bemisia tabaci Q, commonly known as B. tabaci biotype Q) in China, which was introduced in approximately 2003. A total of 619 B. tabaci Q individuals in 20 provinces throughout China were collected and analyzed using five microsatellite loci. Results The introduced populations of B. tabaci Q in China represent eight genetic clusters with different geographic distributions. The populations in Yunnan Province, where B. tabaci Q was first detected, are genetically different from the other populations in China. Conclusion The introduced populations of B. tabaci Q in China have high spatial genetic heterogeneity. Additional research is required to determine whether the heterogeneity results from multiple introductions, rapid evolution following one or few introductions, or some combination of multiple introductions and rapid evolution. The heterogeneity, however, is inconsistent with a single introduction at Yunnan Province, where B. tabaci Q was first detected, followed by spread.
Collapse
|
42
|
Tahiri A, Halkett F, Granier M, Gueguen G, Peterschmitt M. Evidence of gene flow between sympatric populations of the Middle East-Asia Minor 1 and Mediterranean putative species ofBemisia tabaci. Ecol Evol 2013. [DOI: 10.1002/ece3.655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Dickey AM, Hall PM, Shatters RG, Mckenzie CL. Evolution and homoplasy at the Bem6 microsatellite locus in three sweetpotato whitefly (Bemisia tabaci) cryptic species. BMC Res Notes 2013; 6:249. [PMID: 23819589 PMCID: PMC3716913 DOI: 10.1186/1756-0500-6-249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within species homoplasy can lead to an underestimate of differentiation among populations and among species homoplasy can produce a misleading interpretation regarding shared alleles and hybridization. This is especially problematic with cryptic species. RESULTS By sequencing alleles from three cryptic species of the sweetpotato whitefly (Bemisia tabaci), designated MEAM1, MED, and NW, the evolution of the putatively dinucleotide Bem6 (CA₈)imp microsatellite locus is inferred as one of primarily stepwise mutation occurring at four distinct heptaucleotide tandem repeats. In two of the species this pattern yields a compound tandem repeat. Homoplasy was detected both among species and within species. CONCLUSIONS In the absence of sequencing, size homoplasious alleles at the Bem6 locus lead to an overestimate of alleles shared and hybridization among cryptic species of Bemisia tabaci. Furthermore, the compound heptanucleotide motif structure of a putative dinucleotide microsatellite has implications for the nomenclature of heptanucleotide tandem repeats with step-wise evolution.
Collapse
Affiliation(s)
- Aaron M Dickey
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA
- Current address: Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd, Apopka, FL 32703, USA
| | - Paula M Hall
- Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd, Apopka, FL 32703, USA
| | - Robert G Shatters
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA
| | - Cindy L Mckenzie
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA
| |
Collapse
|
44
|
Sun DB, Liu YQ, Qin L, Xu J, Li FF, Liu SS. Competitive displacement between two invasive whiteflies: insecticide application and host plant effects. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:344-53. [PMID: 23458717 DOI: 10.1017/s0007485312000788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cryptic species Middle East-Asia Minor 1 (MEAM1), formerly referred to as 'B biotype', of the whitefly Bemisia tabaci complex entered China in the mid 1990s, and the Mediterranean (MED) cryptic species, formerly referred to as 'Q biotype', of the same whitefly complex entered China around 2003. Field surveys in China after 2003 indicate that in many regions MED has been replacing the earlier invader MEAM1. The factors underlying this displacement are unclear. We conducted laboratory experiments and field sampling to examine the effects of insecticide application on the competitive interactions between MEAM1 and MED. In the laboratory, on cotton, a plant showing similar levels of suitability to both whitefly species, MEAM1 displaced MED in five generations when initial populations of the two species were equal and no insecticide was applied. In contrast, MED displaced MEAM1 in seven and two generations, respectively, when 12.5 and 50.0 mg l⁻¹ imidacloprid was applied to the plants via soil drench. Field sampling indicated that in a single season MED displaced MEAM1 on crops heavily sprayed with neonicotinoid insecticides but the relative abundance of the two species changed little on crops without insecticide spray. We also examined the effects of host plants on the competitive interactions between the two species in the laboratory. When cohorts with equal abundance of MEAM1 and MED were set up on different host plants, MEAM1 displaced MED on cabbage and tomato in five and seven generations, respectively, but MED displaced MEAM1 on pepper in two generations. As field populations of MED have lower susceptibility than those of MEAM1 to nearly all commonly used insecticides including imidacloprid, insecticide application seems to have played a major role in shifting the species competitive interaction effects in favour of MED in the field across China. Host plants may also shape competition between the two species depending on the relative levels of plant suitability.
Collapse
Affiliation(s)
- Di-Bing Sun
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Wang YL, Wang YJ, Luan JB, Yan GH, Liu SS, Wang XW. Analysis of the transcriptional differences between indigenous and invasive whiteflies reveals possible mechanisms of whitefly invasion. PLoS One 2013; 8:e62176. [PMID: 23667457 PMCID: PMC3648516 DOI: 10.1371/journal.pone.0062176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/18/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The whitefly Bemisa tabaci is a species complex of more than 31 cryptic species which include some of the most destructive invasive pests of crops worldwide. Among them, Middle East-Asia Minor 1 (MEAM1) and Mediterranean have invaded many countries and displaced the native whitefly species. The successful invasion of the two species is largely due to their wide range of host plants, high resistance to insecticides and remarkable tolerance to environmental stresses. However, the molecular differences between invasive and indigenous whiteflies remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Here the global transcriptional difference between the two invasive whitefly species (MEAM1, MED) and one indigenous whitefly species (Asia II 3) were analyzed using the Illumina sequencing. Our analysis indicated that 2,422 genes between MEAM1 and MED; 3,073 genes between MEAM1 and Asia II 3; and 3,644 genes between MED and Asia II 3 were differentially expressed. Gene Ontology enrichment analysis revealed that the differently expressed genes between the invasive and indigenous whiteflies were significantly enriched in the term of 'oxidoreductase activity'. Pathway enrichment analysis showed that carbohydrate, amino acid and glycerolipid metabolisms were more active in MEAM1 and MED than in Asia II 3, which may contribute to their differences in biological characteristics. Our analysis also illustrated that the majority of genes involved in 'drug metabolic pathway' were expressed at a higher level in MEAM1 and MED than in Asia II 3. Taken together, these results revealed that the genes related to basic metabolism and detoxification were expressed at an elevated level in the invasive whiteflies, which might be responsible for their higher resistance to insecticides and environmental stresses. CONCLUSIONS/SIGNIFICANCE The extensive comparison of MEAM1, MED and Asia II 3 gene expression may serve as an invaluable resource for revealing the molecular mechanisms underlying their biological differences and the whitefly invasion.
Collapse
Affiliation(s)
- Yong-Liang Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Jun Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Bo Luan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gen-Hong Yan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (SSL); (XWW)
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (SSL); (XWW)
| |
Collapse
|
46
|
Moreno-Delafuente A, Garzo E, Moreno A, Fereres A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS One 2013; 8:e61543. [PMID: 23613872 PMCID: PMC3629040 DOI: 10.1371/journal.pone.0061543] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Aranzazu Moreno
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
47
|
Bompard A, Jaworski CC, Bearez P, Desneux N. Sharing a predator: can an invasive alien pest affect the predation on a local pest? POPUL ECOL 2013. [DOI: 10.1007/s10144-013-0371-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Scientific Opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Nauen R, Vontas J, Kaussmann M, Wölfel K. Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2013; 69:457-461. [PMID: 23325724 DOI: 10.1002/ps.3460] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Resistance to neonicotinoid insecticides such as imidacloprid in the cotton whitefly, Bemisia tabaci, is linked to its hydroxylation by constitutively overexpressed CYP6CM1, a cytochrome P450 enzyme. Here, an investigation was conducted to establish whether CYP6CM1 functionally expressed in Sf9 cells also detoxifies pymetrozine, a selective homopteran feeding blocker known to be cross-resistant to neonicotinoids in whiteflies. RESULTS Incubation of pymetrozine with functionally expressed Bemisia CYP6CM1 and subsequent LC-MS/MS analysis revealed a rapid formation of two pymetrozine metabolites by hydroxylation of its heterocyclic 1,2,4-triazine ring system. Enzyme kinetics revealed a Km value of 5.9 ± 0.3 µM and a time-dependent depletion of pymetrozine. CONCLUSION The known cross-resistance between imidacloprid, other neonicotinoid insecticides and pymetrozine in B. tabaci is most likely conferred by the very same detoxification mechanism, i.e. a monooxygenase-based hydroxylation mechanism linked to the overexpression of CYP6CM1. These insecticide chemistries should not be alternated in whitefly resistance management strategies.
Collapse
Affiliation(s)
- Ralf Nauen
- Bayer CropScience AG, RD-Research Crop Protection, Monheim, Germany.
| | | | | | | |
Collapse
|