1
|
Ntui VO, Tripathi JN, Kariuki SM, Tripathi L. Cassava molecular genetics and genomics for enhanced resistance to diseases and pests. MOLECULAR PLANT PATHOLOGY 2024; 25:e13402. [PMID: 37933591 PMCID: PMC10788594 DOI: 10.1111/mpp.13402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Cassava (Manihot esculenta) is one of the most important sources of dietary calories in the tropics, playing a central role in food and economic security for smallholder farmers. Cassava production is highly constrained by several pests and diseases, mostly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). These diseases cause significant yield losses, affecting food security and the livelihoods of smallholder farmers. Developing resistant varieties is a good way of increasing cassava productivity. Although some levels of resistance have been developed for some of these diseases, there is observed breakdown in resistance for some diseases, such as CMD. A frequent re-evaluation of existing disease resistance traits is required to make sure they are still able to withstand the pressure associated with pest and pathogen evolution. Modern breeding approaches such as genomic-assisted selection in addition to biotechnology techniques like classical genetic engineering or genome editing can accelerate the development of pest- and disease-resistant cassava varieties. This article summarizes current developments and discusses the potential of using molecular genetics and genomics to produce cassava varieties resistant to diseases and pests.
Collapse
Affiliation(s)
| | | | | | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| |
Collapse
|
2
|
Petchidurai G, Sahayaraj K, Al-Shuraym LA, Albogami BZ, Sayed SM. Insecticidal Activity of Tannins from Selected Brown Macroalgae against the Cotton Leafhopper Amrasca devastans. PLANTS (BASEL, SWITZERLAND) 2023; 12:3188. [PMID: 37765352 PMCID: PMC10537709 DOI: 10.3390/plants12183188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Seaweeds, also known as marine macroalgae, are renewable biological resources that are found worldwide and possess a wide variety of secondary metabolites, including tannins. Drifted brown seaweed (DBSW) is particularly rich in tannins and is regarded as biological trash. The cotton leaf hopper Amrasca devastans (Distant) has caused both quantitative and qualitative losses in cotton production. Drifted brown seaweeds (DBSWs) were used in this study to extract, qualitatively profile, and quantify the levels of total tannins, condensed tannins, hydrolyzable tannins, and phlorotannins in the seaweeds; test their insecticidal activity; and determine the mechanism of action. The largest amount of tannin extract was found in Sargassum wightii Greville (20.62%) using the Soxhlet method (SM). Significantly higher amounts of hydrolyzable tannins (p = 0.005), soluble phlorotannins (p = 0.005), total tannins in the SM (p = 0.003), and total tannins in the cold percolation method (p = 0.005) were recorded in S. wightii. However, high levels of condensed tannins (CTAs) were observed in Turbinaria ornata (Turner) J. Agardh (p = 0.004). A. devastans nymphs and adults were examined for oral toxicity (OT) and contact toxicity (CT) against DBSW tannin crude extract and column chromatographic fractions 1 (Rf = 0.86) and 2 (Rf = 0.88). Stoechospermum polypodioides (J.V. Lamouroux) J. Agardh crude tannin was highly effective against A. devastans using the OT method (LC50, 0.044%) when compared with the standard gallic acid (LC50, 0.044%) and tannic acid (LC50, 0.122%). Similarly, S. wightii fraction 2 (LC50, 0.007%) showed a greater insecticidal effect against A. devastans adults in OT than gallic acid (LC50, 0.034%) and tannic acid (LC50, 0.022%). The mechanism of action results show that A. devastans adults treated with crude tannin of T. ornata had significantly decreased amylase, protease (p = 0.005), and invertase (p = 0.003) levels when compared with the detoxification enzymes. The levels of glycosidase, lactate dehydrogenase, esterase, lipase, invertase, and acid phosphate activities (p = 0.005) of S. wightii were reduced when compared with those of the Vijayneem and chemical pesticide Monocrotophos. In adult insects treated with LC50 concentrations of S. wightii tannin fraction 1, the total body protein (9.00 µg/µL) was significantly reduced (OT, LC50-0.019%). The SDS-PAGE analysis results also show that S. wightii tannin fraction 1 (OT and CT), fraction 2 (OT), and S. polypodioides fraction 2 (CT) had a significant effect on the total body portion level, appearance, and disappearance of some proteins and polypeptides. This study shows that the selected brown macroalgae can be utilized for the safer management of cotton leaf hoppers.
Collapse
Affiliation(s)
- Ganeshan Petchidurai
- Crop Protection Research Centre (CPRC), Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai, Tirnelveli 627002, Tamil Nadu, India;
| | - Kitherian Sahayaraj
- Crop Protection Research Centre (CPRC), Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai, Tirnelveli 627002, Tamil Nadu, India;
| | - Laila A. Al-Shuraym
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Bader Z. Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran P.O. Box 1988, Saudi Arabia;
| | - Samy M. Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
4
|
Nicolis VF, Burger NFV, Botha AM. Whole-body transcriptome mining for candidate effectors from Diuraphis noxia. BMC Genomics 2022; 23:493. [PMID: 35799109 PMCID: PMC9264610 DOI: 10.1186/s12864-022-08712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Proteins within aphid saliva play a crucial role as the molecular interface between aphids and their host plants. These salivary effectors modulate plant responses to favour aphid feeding and facilitate infestation. The identification of effectors from economically important pest species is central in understanding the molecular events during the aphid-plant interaction. The Russian wheat aphid (Diuraphis noxia, Kurdjumov) is one such pest that causes devastating losses to wheat and barley yields worldwide. Despite the severe threat to food security posed by D. noxia, the non-model nature of this pest and its host has hindered progress towards understanding this interaction. In this study, in the absence of a salivary gland transcriptome, whole-body transcriptomics data was mined to generate a candidate effector catalogue for D. noxia. Results Mining the transcriptome identified 725 transcripts encoding putatively secreted proteins amongst which were transcripts specific to D. noxia. Six of the seven examined D. noxia putative effectors, termed DnE’s (Diuraphis noxia effectors) exhibited salivary gland-specific expression. A comparative analysis between whole-body D. noxia transcriptome data versus the head and body transcriptomes from three other aphid species allowed us to define a catalogue of transcripts putatively upregulated in D. noxia head tissue. Five of these were selected for RT-qPCR confirmation, and were found to corroborate the differential expression predictions, with a further three confirmed to be highly expressed in D. noxia salivary gland tissue. Conclusions Determining a putative effector catalogue for D. noxia from whole-transcriptome data, particularly the identification of salivary-specific sequences potentially unique to D. noxia, provide the basis for future functional characterisation studies to gain further insight into this aphid-plant interaction. Furthermore, due to a lack of publicly available aphid salivary gland transcriptome data, the capacity to use comparative transcriptomics to compile a list of putative effector candidates from whole-body transcriptomics data will further the study of effectors in various aphid species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08712-4.
Collapse
Affiliation(s)
- Vittorio F Nicolis
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - N Francois V Burger
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Maria Botha
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
5
|
Borges AR, Teixeira ADD, Martínez LC, Dos Santos MH, Serrão JE. Protein and volatile contents in the mandibular gland of the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21904. [PMID: 35419839 DOI: 10.1002/arch.21904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae) is an important sugarcane pest and mechanical injuries caused through the mandibles can allow pathogen infections. The mandibles of D. saccharalis, as well as other insects, are associated with mandibular glands with a possible function in food intake and mouthparts lubrication; however, the chemical composition of the secretion is poorly known and its elucidation is important for the comprehensive understanding of plant-insect interactions. This study characterized some proteins and volatiles in the mandibular glands of D. saccharalis larvae. MALDI-TOF/TOF mass spectrometry allowed the identification of 24 predicted proteins within 10 functional classes, including the transport and metabolism of carbohydrates, lipids, amino acids, and nucleotides; Posttranslational protein modifications; energy conversion; intracellular trafficking; transcription; translation; and cytoskeleton function. Metabolites identified from GC/MS analysis revealed the presence of hydrocarbons classified as alcohols, ether, alkanes, and esters with differences in their relative abundance. Linolenic acid, the most abundant metabolite found in this gland, when conjugated with amino acids, can be an elicitor in the plant-herbivore interaction. The results suggest the occurrence of digestive and defensive biochemical components, which may contribute to understanding of the multifunctional roles of the mandibular gland secretion of D. saccharalis larvae during feeding activity.
Collapse
Affiliation(s)
- Alex R Borges
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo H Dos Santos
- Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Zhang Y, Liu X, Fu Y, Crespo-Herrera L, Liu H, Wang Q, Zhang Y, Chen J. Salivary Effector Sm9723 of Grain Aphid Sitobion miscanthi Suppresses Plant Defense and Is Essential for Aphid Survival on Wheat. Int J Mol Sci 2022; 23:6909. [PMID: 35805913 PMCID: PMC9266898 DOI: 10.3390/ijms23136909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022] Open
Abstract
Aphid salivary effectors play important roles in modulating plant defense responses. The grain aphid Sitobion miscanthi is one of the most economically important cereal aphids worldwide. However, little information is available on the identification and functional analysis of salivary effectors of S. miscanthi. In this study, a candidate salivary effector Sm9723 was identified, which was specifically expressed in aphid salivary glands and highly induced during the aphid feeding phase. Transient overexpression of Sm9723 in Nicotiana benthamiana suppressed BAX and INF1-induced cell death. Further, Sm9723 overexpression inhibited N. benthamiana defense responses by reducing pattern-triggered immunity associated callose deposition and expression levels of jasmonic and salicylic acid-associated defense genes. In addition, the salivary effector Sm9723 of S. miscanthi was effectively silenced through nanocarrier-mediated dsRNA delivery system. After silencing Sm9723, fecundity and survival of S. miscanthi decreased significantly, and the aphid feeding behavior was also negatively affected. These results suggest salivary effector Sm9723 is involved in suppressing plant immunity and is essential in enabling aphid virulence, which could be applied as potential target gene for RNAi-mediated pest control of S. miscanthi.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | | | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yumeng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.L.); (Y.F.); (H.L.); (Q.W.); (Y.Z.)
| |
Collapse
|
7
|
Shao E, Song Y, Wang Y, Liao Y, Luo Y, Liu S, Guan X, Huang Z. Transcriptomic and proteomic analysis of putative digestive proteases in the salivary gland and gut of Empoasca (Matsumurasca) onukii Matsuda. BMC Genomics 2021; 22:271. [PMID: 33858340 PMCID: PMC8048321 DOI: 10.1186/s12864-021-07578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Infestation by tea green leafhoppers (Empoasca (Matsumurasca) onukii) can cause a series of biochemical changes in tea leaves. As a typical cell-rupture feeder, E. onukii secretes proteases while using its stylet to probe the tender shoots of tea plants (Camellia sinensis). This study identified and analyzed proteases expressed specifically in the salivary gland (SG) and gut of E. onukii through enzymatic activity assays complemented with an integrated analysis of transcriptomic and proteomic data. Results In total, 129 contigs representing seven types of putative proteases were identified. Transcript abundance of digestive proteases and enzymatic activity assays showed that cathepsin B-like protease, cathepsin L-like protease, and serine proteases (trypsin- and chymotrypsin-like protease) were highly abundant in the gut but moderately abundant in the SG. The abundance pattern of digestive proteases in the SG and gut of E. onukii differed from that of other hemipterans, including Nilaparvata lugens, Laodelphax striatellus, Acyrthosiphum pisum, Halyomorpha halys and Nephotettix cincticeps. Phylogenetic analysis showed that aminopeptidase N-like proteins and serine proteases abundant in the SG or gut of hemipterans formed two distinct clusters. Conclusions Altogether, this study provides insightful information on the digestive system of E. onukii. Compared to five other hemipteran species, we observed different patterns of proteases abundant in the SG and gut of E. onukii. These results will be beneficial in understanding the interaction between tea plants and E. onukii. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07578-2.
Collapse
Affiliation(s)
- Ensi Shao
- China National Engineering Research Center of JUNCAO Technology, School of Life Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China
| | - Yujuan Song
- China National Engineering Research Center of JUNCAO Technology, School of Life Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China
| | - Yaomin Wang
- China National Engineering Research Center of JUNCAO Technology, School of Life Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China
| | - Yichen Liao
- China National Engineering Research Center of JUNCAO Technology, School of Life Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China
| | - Yufei Luo
- China National Engineering Research Center of JUNCAO Technology, School of Life Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China
| | - Sijun Liu
- Department of Entomology, Iowa State University, 50011-3222 Ames, Iowa, USA.
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China
| | - Zhipeng Huang
- China National Engineering Research Center of JUNCAO Technology, School of Life Science, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, PR China.
| |
Collapse
|
8
|
Jekayinoluwa T, Tripathi L, Tripathi JN, Ntui VO, Obiero G, Muge E, Dale J. RNAi technology for management of banana bunchy top disease. Food Energy Secur 2020; 9:e247. [PMID: 33381301 PMCID: PMC7757248 DOI: 10.1002/fes3.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Banana bunchy top disease (BBTD) is one of the world's most destructive viral diseases of banana and plantain, causing up to 100% yield loss in severe cases. The disease is vectored by banana aphids (Pentalonia nigronervosa) and carried long distances through the movement of infected plant materials. The banana aphids harboring banana bunchy top virus (BBTV) present in banana producing regions are the sole vector and the most efficient method of transmitting the virus to the healthy plants. Controlling the spread of BBTD has been very challenging since no known banana germplasm is immune to BBTV. The disease can be managed with the use of virus-free planting material and roguing. However, once BBTD is established in the field, it is very difficult to eradicate or manage it. Therefore, a more sustainable way of controlling the disease is developing host plant resistance against the virus and the vector. Biotechnological strategies via RNA interference (RNAi) could be used to target the banana aphid as well as BBTV to reduce virus-associated yield losses of banana and plantain, which feed over 500 million people around the world. This review discusses the status of BBTD and perspectives on effective RNAi technologies for controlling BBTV and the vector, banana aphid, transmitting the virus as sustainable management of the disease.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical AgricultureNairobiKenya
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| | | | | | - George Obiero
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Edward Muge
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - James Dale
- Queensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
9
|
MacWilliams JR, Dingwall S, Chesnais Q, Sugio A, Kaloshian I. AcDCXR Is a Cowpea Aphid Effector With Putative Roles in Altering Host Immunity and Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:605. [PMID: 32499809 PMCID: PMC7243947 DOI: 10.3389/fpls.2020.00605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 06/01/2023]
Abstract
Cowpea, Vigna unguiculata, is a crop that is essential to semiarid areas of the world like Sub-Sahara Africa. Cowpea is highly susceptible to cowpea aphid, Aphis craccivora, infestation that can lead to major yield losses. Aphids feed on their host plant by inserting their hypodermal needlelike flexible stylets into the plant to reach the phloem sap. During feeding, aphids secrete saliva, containing effector proteins, into the plant to disrupt plant immune responses and alter the physiology of the plant to their own advantage. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to identify the salivary proteome of the cowpea aphid. About 150 candidate proteins were identified including diacetyl/L-xylulose reductase (DCXR), a novel enzyme previously unidentified in aphid saliva. DCXR is a member of short-chain dehydrogenases/reductases with dual enzymatic functions in carbohydrate and dicarbonyl metabolism. To assess whether cowpea aphid DCXR (AcDCXR) has similar functions, recombinant AcDCXR was purified and assayed enzymatically. For carbohydrate metabolism, the oxidation of xylitol to xylulose was tested. The dicarbonyl reaction involved the reduction of methylglyoxal, an α-β-dicarbonyl ketoaldehyde, known as an abiotic and biotic stress response molecule causing cytotoxicity at high concentrations. To assess whether cowpea aphids induce methylglyoxal in plants, we measured methylglyoxal levels in both cowpea and pea (Pisum sativum) plants and found them elevated transiently after aphid infestation. Agrobacterium-mediated transient overexpression of AcDCXR in pea resulted in an increase of cowpea aphid fecundity. Taken together, our results indicate that AcDCXR is an effector with a putative ability to generate additional sources of energy to the aphid and to alter plant defense responses. In addition, this work identified methylglyoxal as a potential novel aphid defense metabolite adding to the known repertoire of plant defenses against aphid pests.
Collapse
Affiliation(s)
- Jacob R. MacWilliams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie Dingwall
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | | | - Akiko Sugio
- INRAE, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Isgouhi Kaloshian
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
- Department of Nematology, University of California Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Escudero-Martinez C, Rodriguez PA, Liu S, Santos PA, Stephens J, Bos JIB. An aphid effector promotes barley susceptibility through suppression of defence gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2796-2807. [PMID: 31989174 PMCID: PMC7210766 DOI: 10.1093/jxb/eraa043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 05/21/2023]
Abstract
Aphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While 'omics' approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extend efforts to characterize aphid effectors with regard to their role in promoting susceptibility to the R. padi-barley interaction. We selected three R. padi effectors based on sequence similarity to previously characterized Myzus persicae effectors and assessed their subcellular localization, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant-aphid interactions, indicating that this effector enhances susceptibility by suppressing plant defences in barley. Our data suggest that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.
Collapse
Affiliation(s)
- Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Patricia A Rodriguez
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Helmholtz Zentrum München, Institute of Network Biology (INET), Munich, Germany
| | - Shan Liu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Pablo A Santos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Jorunn I B Bos
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Portillo Lemus L, Tricard J, Duclercq J, Coulette Q, Giron D, Hano C, Huguet E, Lamblin F, Cherqui A, Sallé A. Salivary proteins of Phloeomyzus passerinii, a plant-manipulating aphid, and their impact on early gene responses of susceptible and resistant poplar genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110468. [PMID: 32234233 DOI: 10.1016/j.plantsci.2020.110468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Successful plant colonization by parasites requires the circumvention of host defenses, and sometimes a reprogramming of host metabolism, mediated by effector molecules delivered into the host. Using transcriptomic and enzymatic approaches, we characterized salivary glands and saliva of Phloeomyzus passerinii, an aphid exhibiting an atypical feeding strategy. Plant responses to salivary extracts of P. passerinii and Myzus persicae were assessed with poplar protoplasts of a susceptible and a resistant genotype, and in a heterologous Arabidopsis system. We predict that P. passerinii secretes a highly peculiar saliva containing effectors potentially interfering with host defenses, biotic stress signaling and plant metabolism, notably phosphatidylinositol phosphate kinases which seemed specific to P. passerinii. Gene expression profiles indicated that salivary extracts of M. persicae markedly affected host defenses and biotic stress signaling, while salivary extracts of P. passerinii induced only weak responses. The effector-triggered susceptibility was characterized by downregulations of genes involved in cytokinin signaling and auxin homeostasis. This suggests that P. passerinii induces an intracellular accumulation of auxin in susceptible host genotypes, which is supported by histochemical assays in Arabidopsis. This might in turn affect biotic stress signaling and contribute to host tissue manipulation by the aphid.
Collapse
Affiliation(s)
- Luis Portillo Lemus
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, 45067, Orléans, France; Ecologie et Dynamique des Systèmes Anthropisés, EDYSAN UMR CNRS-UPJV 7058, Université de Picardie Jules Verne, Amiens, France
| | - Jessy Tricard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, 45067, Orléans, France; Ecologie et Dynamique des Systèmes Anthropisés, EDYSAN UMR CNRS-UPJV 7058, Université de Picardie Jules Verne, Amiens, France
| | - Jérôme Duclercq
- Ecologie et Dynamique des Systèmes Anthropisés, EDYSAN UMR CNRS-UPJV 7058, Université de Picardie Jules Verne, Amiens, France
| | - Quentin Coulette
- Ecologie et Dynamique des Systèmes Anthropisés, EDYSAN UMR CNRS-UPJV 7058, Université de Picardie Jules Verne, Amiens, France
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, 45067, Orléans, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, 45067, Orléans, France
| | - Anas Cherqui
- Ecologie et Dynamique des Systèmes Anthropisés, EDYSAN UMR CNRS-UPJV 7058, Université de Picardie Jules Verne, Amiens, France
| | - Aurélien Sallé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, 45067, Orléans, France.
| |
Collapse
|
12
|
Khan RSA, Ali Z, Niazi AK, Carolan JC, Wilkinson TL. In silico Characterization of a Candidate Protein from Aphid Gelling Saliva with Potential for Aphid Control in Plants. Protein Pept Lett 2020; 27:158-167. [DOI: 10.2174/0929866526666191014145839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sheath or gelling saliva, secreted during feeding by aphids, is a hard material that
supports the piercing mouthparts and remains in the plant after feeding. Solidification or gelling of the saliva
might be due to the composition of amino acids in the constituent proteins, many of which probably interact
with plant defenses.
Objective :
The complete complement of proteins in the gelling saliva are still unknown, although one sheath
protein (SHP) has previously been identified as a potential candidate protein to control aphid feeding, but its
structure and its physiochemical role remains obscure. The current study provides structural information and
biochemical properties of the aphid sheath protein.
Methods:
The Sheath protein encoding gene was amplified from cDNA of the pea aphid (Acyrthosiphon pisum)
through PCR using specific gene primers. Sequence was in silico characterized by using EXPASY, Berkeley
Drosophila Genome Project (BDGP) Neural Network Promoter Prediction, BioEdit, Mega7, ProtParam, Phyre
server, 3D LigandSite SMART, MEME and GSDS programs, available online.
Results:
BLASTp analysis revealed that the sequenced gene was identical (100%) to the sequence from
Acyrthosiphon pisum, with 87% identity to Metpolophium dirhodum and 84% identity to Sitobion avenae.
Phylogenetically monocot feeders such as M. dirhodum and S. avenae are in a sister taxa to dicot feeders. In
silico analysis of the sequence revealed that sheath protein has a molecular weight of 144 kDa and 50% of the
protein is composed of only six amino acids, i.e., threonine, serine, aspartic acid, glutamic acid, isoleucine and
tyrosine. The computed IP value revealed that sheath protein is acidic in nature. Ligand binding sites for sheath
protein were predicted on residues 1123 and 1125 (isoleucine and glutamine, respectively). Metallic heterogens
are also present in sheath protein that are iron, zinc and magnesium, respectively.
Conclusion :
It is conceivable that variation in the salivary gene sequences may reveal important biological
information of relevance to the insect-plant interaction. Further exploration of insect salivary proteins, their
composition and structure will provide powerful information, especially when these proteins are interacting with
plant proteins, and specific information about the sheath protein, which is interacting with plants at a
molecular/cellular level, will be important to progress strategies aimed specifically against sucking pests such as
aphids.
Collapse
Affiliation(s)
- Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zainab Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Adnan Khan Niazi
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | | | - Thomas L. Wilkinson
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Koch KG, Scully ED, Palmer NA, Geib SM, Sarath G, Heng-Moss T, Bradshaw JD. Divergent Switchgrass Cultivars Modify Cereal Aphid Transcriptomes. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1887-1901. [PMID: 30915439 PMCID: PMC7182916 DOI: 10.1093/jee/toz053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Schizaphis graminum Rondani (Hemiptera: Aphididae) and Sipha flava Forbes (Hemiptera: Aphididae) are two common pests of bioenergy grasses. Despite the fact that they are both considered generalists, they differ in their ability to colonize Panicum virgatum cultivars. For example, S. flava colonizes both P. virgatum cv. Summer and P. virgatum cv. Kanlow whereas S. graminum can only colonize Summer. To study the molecular responses of these aphids to these two switchgrass cultivars, we generated de novo transcriptome assemblies and compared the expression profiles of aphids feeding on both cultivars to profiles associated with feeding on a highly susceptible sorghum host and a starvation treatment. Transcriptome assemblies yielded 8,428 and 8,866 high-quality unigenes for S. graminum and S. flava, respectively. Overall, S. graminum responded strongly to all three treatments after 12 h with an upregulation of unigenes coding for detoxification enzymes while major transcriptional changes were not observed in S. flava until 24 h. Additionally, while the two aphids responded to the switchgrass feeding treatment by downregulating unigenes linked to growth and development, their responses to Summer and Kanlow diverged significantly. Schizaphis graminum upregulated more unigenes coding for stress-responsive enzymes in the Summer treatment compared to S. flava; however, many of these unigenes were actually downregulated in the Kanlow treatment. In contrast, S. flava appeared capable of overcoming host defenses by upregulating a larger number of unigenes coding for detoxification enzymes in the Kanlow treatment. Overall, these findings are consistent with previous studies on the interactions of these two cereal aphids to divergent switchgrass hosts.
Collapse
Affiliation(s)
- Kyle G Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE
- Current Address: Texas A&M AgriLife Research, Weslaco, TX
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS
| | - Nathan A Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Daniel K. Inouye Pacific Basin Agricultural Research Center, Hilo, HI
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE
| | | |
Collapse
|
14
|
Cui N, Lu H, Wang T, Zhang W, Kang L, Cui F. Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180314. [PMID: 30967016 PMCID: PMC6367143 DOI: 10.1098/rstb.2018.0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Effector proteins present in aphid saliva are thought to modulate aphid-plant interactions. Armet, an effector protein, is found in the phloem sap of pea-aphid-infested plants and is indispensable for the survival of aphids on plants. However, its function in plants has not been investigated. Here, we explored the functions of Armet after delivery into plants. Examination of the transcriptomes of Nicotiana benthamiana and Medicago truncatula following transgenic expression of Armet or infiltration of the protein showed that Armet activated pathways associated with plant-pathogen interactions, mitogen-activated protein kinase and salicylic acid (SA). Armet induced a fourfold increase in SA accumulation by regulating the expression of SAMT and SABP2, two genes associated with SA metabolism, in Armet-infiltrated tobacco. The increase in SA enhanced the plants' resistance to bacterial pathogen Pseudomonas syringae but had no detectable adverse effects on aphid survival or reproduction. Similar molecular responses and a chlorosis phenotype were induced in tobacco by Armet from two aphid species but not by locust Armet, suggesting that the effector function of Armet may be specific for aphids. The results suggest that Armet causes plants to make a pathogen-resistance decision and reflect a novel tripartite insect-plant-pathogen interaction. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Na Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Wenhao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
15
|
Nardelli A, Vecchi M, Mandrioli M, Manicardi GC. The Evolutionary History and Functional Divergence of Trehalase ( treh) Genes in Insects. Front Physiol 2019; 10:62. [PMID: 30828300 PMCID: PMC6384254 DOI: 10.3389/fphys.2019.00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/21/2019] [Indexed: 01/04/2023] Open
Abstract
Trehalases (treh) have been found in different organisms, such as bacteria, fungi, yeast, nematodes, insects, vertebrates, and plants. Their biochemical properties are extremely variable and not yet fully understood. Gene expression patterns have shown differences among insect species suggesting a potential functional diversification of trehalase enzymes during their evolution. A second gene family encoding for enzymes with hypothetical trehalase activity has been repeatedly annotated in insect genome as acid trehalases/acid trehalase-like (ath), but its functional role is still not clear. The currently available large amount of genomic data from many insect species may enable a better understanding of the evolutionary history, phylogenetic relationships and possible roles of trehalase encoding genes in this taxon. The aim of the present study is to infer the evolutionary history of trehalases and acid trehalase genes in insects and analyze the trehalase functional divergence during their evolution, combining phylogenetic and genomic synteny/colinearity analyses.
Collapse
Affiliation(s)
- Andrea Nardelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Vecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
16
|
Nalam V, Louis J, Shah J. Plant defense against aphids, the pest extraordinaire. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:96-107. [PMID: 30709498 DOI: 10.1016/j.plantsci.2018.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, 46805, USA.
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
17
|
Chaudhary R, Peng HC, He J, MacWilliams J, Teixeira M, Tsuchiya T, Chesnais Q, Mudgett MB, Kaloshian I. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. THE NEW PHYTOLOGIST 2019; 221:1518-1528. [PMID: 30357852 DOI: 10.1111/nph.15475] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated previously that expression of Macrosiphum euphorbiae salivary protein Me10 enhanced aphid reproduction on its host tomato (Solanum lycopersicum). However, the mechanism of action of Me10 remained elusive. To confirm the secretion of Me10 by the aphid into plant tissues, we produced Me10 polyclonal antibodies. To identify the plant targets of Me10, we developed a tomato immune induced complementary DNA yeast two-hybrid library and screened it with Me10 as bait. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays were performed to validate one of the interactions in planta, and virus-induced gene silencing was used for functional characterization in tomato. We demonstrated that Me10 is secreted into the plant tissues and interacts with tomato 14-3-3 isoform 7 (TFT7) in yeast. Immunoprecipitation assays confirmed that Me10 and its homologue in Aphis gossypii, Ag10k, interact with TFT7 in planta. Further, BiFC revealed that Me10 interaction with TFT7 occurs in the plant cell cytoplasm. While silencing of TFT7 in tomato leaves did not affect tomato susceptibility to M. euphorbiae, it enhanced longevity and fecundity of A. gossypii, the non-host aphid. Our results suggest the model whereby TFT7 plays a role in aphid resistance in tomato and effectors of the Me10/Ag10k family interfere with TFT7 function during aphid infestation.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Hsuan-Chieh Peng
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jacob MacWilliams
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
18
|
Cui N, Yang PC, Guo K, Kang L, Cui F. Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants. INSECT SCIENCE 2017; 24:431-442. [PMID: 28547891 DOI: 10.1111/1744-7917.12336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2016] [Accepted: 03/14/2016] [Indexed: 06/07/2023]
Abstract
Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme-copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR-1-like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids.
Collapse
Affiliation(s)
- Na Cui
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Cheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Guo
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Zhang W, Liu B, Lu Y, Liang G. Functional analysis of two polygalacturonase genes in Apolygus lucorum associated with eliciting plant injury using RNA interference. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21382. [PMID: 28370316 DOI: 10.1002/arch.21382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Salivary enzymes of many piercing-sucking insects lead to host plant injury. The salivary enzymes, polygalacturonase (PGs), act in insect feeding. PG family genes have been cloned from the mirid bug Apolygus lucorum, a pest of cotton and other host crops in China. We investigated the function of two PG genes that are highly expressed in A. lucorum nymphs (PG3-4) and adults (PG3-5), using siRNA injection-based RNA interference (RNAi). Accumulation of mRNA encoding both genes and their cognate proteins was significantly reduced (>60%) in experimental compared control green fluorescent protein (GFP) siRNA-treated mirids at 48 h post injection. Injury levels of cotton buds were also significantly reduced after injecting saliva isolated from PG3-4 and PG3-5 siRNA-treated A. lucorum. These results demonstrate that these two PG act in A. lucorum elicitation of plant injury.
Collapse
Affiliation(s)
- Wanna Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Burger NFV, Venter E, Botha AM. Profiling Diuraphis noxia (Hemiptera: Aphididae) Transcript Expression of the Biotypes SA1 and SAM Feeding on Various Triticum aestivum Varieties. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:692-701. [PMID: 28334389 DOI: 10.1093/jee/tow313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The intimate relationship between an aphid and its host is mediated by the composition of the secreted saliva. In the present study, aphid heads were sampled and transcript profiling conducted after aphids were fed on their preference host and transferred to a variety of preference and nonpreference hosts. It was found that the virulent Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) biotype SAM was able to selectively up-regulate more transcripts when confronted with feeding on a variety of hosts, than was the case with the less virulent D. noxia biotype SA1, suggesting increased genomic regulation when coping with a stressful environment. Collectively, the observed transcriptomic changes are supported by previous findings that host changes induce significant changes in the proteome of phytophagous hemipterans, unlike in many other entomophagous generalist species. The current data suggest that highly specialized hemipterans may be able to counter plant defenses with inducible salivary transcripts with resulting protein biosynthesis, as demonstrated here.
Collapse
Affiliation(s)
- N F V Burger
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland 7601, South Africa ( ; )
- Genetics Department, University of Pretoria, Hillcrest, Pretoria, South Africa
| | - E Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - A-M Botha
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland 7601, South Africa (; )
| |
Collapse
|
21
|
Huang HJ, Liu CW, Huang XH, Zhou X, Zhuo JC, Zhang CX, Bao YY. Screening and Functional Analyses of Nilaparvata lugens Salivary Proteome. J Proteome Res 2016; 15:1883-96. [PMID: 27142481 DOI: 10.1021/acs.jproteome.6b00086] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most phloem-feeding insects secrete gelling and watery saliva during the feeding process. However, the functions of salivary proteins are poorly understood. In this study, our purpose was to reveal the components and functions of saliva in a rice sap-sucking insect pest, Nilaparvata lugens. The accomplishment of the whole genome and transcriptome sequencing in N. lugens would be helpful for elucidating the gene information and expression specificity of the salivary proteins. In this study, we have, for the first time, identified the abundant protein components from gelling and watery saliva in a monophagous sap-sucking insect species through shotgun proteomic detection combined with the genomic and transcriptomic analysis. Eight unknown secreted proteins were limited to N. lugens, indicating species-specific saliva components. A group of annexin-like proteins first identified in the secreted saliva displayed different domain structure and expression specificity with typical insect annexins. Nineteen genes encoding five annexin-like proteins, six salivaps (salivary glands-specific proteins with unknown function), seven putative enzymes, and a mucin-like protein showed salivary gland-specific expression pattern, suggesting their importance in the physiological mechanisms of salivary gland and saliva in this insect species. RNA interference revealed that salivap-3 is a key protein factor in forming the salivary sheath, while annexin-like5 and carbonic anhydrase are indispensable for N. lugens survival. These novel findings will greatly help to clarify the detailed functions of salivary proteins in the physiological process of N. lugens and elucidate the interaction mechanisms between N. lugens and the rice plant, which could provide important targets for the future management of rice pests.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| | - Xiao-Hui Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| | - Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
22
|
Kaloshian I, Walling LL. Hemipteran and dipteran pests: Effectors and plant host immune regulators. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:350-61. [PMID: 26467026 DOI: 10.1111/jipb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Institute of Integrative Genome Biology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Department of Nematology, University of California, Riverside, California 92521, USA
| | - Linda L Walling
- Institute of Integrative Genome Biology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
23
|
Ultrastructure of the salivary glands, alimentary canal and bacteria-like organisms in the Asian citrus psyllid, vector of citrus huanglongbing disease bacteria. J Microsc Ultrastruct 2016; 5:9-20. [PMID: 30023232 PMCID: PMC6014262 DOI: 10.1016/j.jmau.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/22/2022] Open
Abstract
The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae) is the principal vector of Candidatus Liberibacter asiaticus (Las), the putative bacterial agent of citrus greening/huanglongbing (HLB); currently the most serious citrus disease worldwide. Las is transmitted in a persistent–propagative manner by ACP, and the salivary glands and midgut have been suggested as transmission barriers that can impede translocation of Las within the vector. However, no detailed ultrastructural studies have been reported on these organs in this or other psyllid species, although some bacterium-like structures have been described in them and assumed to be the causal agents of HLB. In this study, we describe the ultrastructure of the salivary glands, filter chamber, other parts of the alimentary canal, and other organs and tissues of ACP including the compound ganglionic mass (in the thorax) and the bacteriome (in the abdomen). Furthermore, in addition to two ultrastructurally apparently different symbiotic bacteria found in the bacteriome, other morphological types of bacteria were found in the gut epithelial cells and salivary glands of both Las-infected (quantitative polymerase chain reaction positive) and noninfected (quantitative polymerase chain reaction negative) ACP. These results show the importance of immunolabeling, fluorescence in situ hybridization, or other labeling techniques that must be used before identifying any bacterium-like structures in ACP or other vectors as Las or other possible agents of HLB. This ultrastructural investigation should help future work on the cellular and subcellular aspects of pathogen–psyllid relationships, including the study of receptors, binding sites, and transmission barriers of Las and other pathogens within their psyllid vectors.
Collapse
|
24
|
Teixeira M, Sela N, Ng J, Casteel CL, Peng HC, Bekal S, Girke T, Ghanim M, Kaloshian I. A novel virus from Macrosiphum euphorbiae with similarities to members of the family Flaviviridae. J Gen Virol 2016; 97:1261-1271. [PMID: 26822322 DOI: 10.1099/jgv.0.000414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A virus with a large genome was identified in the transcriptome of the potato aphid (Macrosiphum euphorbiae) and was named Macrosiphum euphorbiae virus 1 (MeV-1). The MeV-1 genome is 22 780 nt in size, including 3' and 5' non-coding regions, with a single large ORF encoding a putative polyprotein of 7333 aa. The C-terminal region of the predicted MeV-1 polyprotein contained sequences with similarities to helicase, methyltransferase and RNA-dependent RNA polymerase (RdRp) motifs, while the N-terminal region lacked any motifs including structural proteins. Phylogenetic analysis of the helicase placed MeV-1 close to pestiviruses, while the RdRp region placed it close to pestiviruses and flaviviruses, suggesting MeV-1 has a positive-polarity ssRNA genome and is a member of the family Flaviviridae. Since the MeV-1 genome is predicted to contain a methyltransferase, a gene present typically in flaviviruses but not pestiviruses, MeV-1 is likely a member of the genus Flavivirus. MeV-1 was present in nymphal and adult stages of the aphid, aphid saliva and plant tissues fed upon by aphids. However, the virus was unable to multiply and spread in tomato plants. In addition, dsRNA, the replication intermediate of RNA viruses, was isolated from virus-infected M. euphorbiae and not from tomato plants infested with the aphid. Furthermore, nymphs laid without exposure to infected plants harboured the virus, indicating that MeV-1 is an aphid-infecting virus likely transmitted transovarially. The virus was present in M. euphorbiae populations from Europe but not from North America and was absent in all other aphid species tested.
Collapse
Affiliation(s)
- Marcella Teixeira
- Department of Nematology,University of California, Riverside, California,USA
| | - Noa Sela
- Department of Plant Pathology and Weed Research,Volcani Center, Bet Dagan,Israel
| | - James Ng
- Plant Pathology and Microbiology,University of California, Riverside, California,USA.,Institute of Integrative Genome Biology,University of California, Riverside, California,USA
| | - Clare L Casteel
- Department of Plant Pathology,University of California, Davis, California,USA
| | - Hsuan-Chieh Peng
- Plant Pathology and Microbiology,University of California, Riverside, California,USA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering,University of Illinois, Urbana, IL,USA
| | - Thomas Girke
- Institute of Integrative Genome Biology,University of California, Riverside, California,USA.,Department of Botany and Plant Sciences,University of California, Riverside, California,USA
| | - Murad Ghanim
- Department of Entomology,Volcani Center, Bet Dagan,Israel
| | - Isgouhi Kaloshian
- Institute of Integrative Genome Biology,University of California, Riverside, California,USA.,Department of Nematology,University of California, Riverside, California,USA
| |
Collapse
|
25
|
Lu H, Yang P, Xu Y, Luo L, Zhu J, Cui N, Kang L, Cui F. Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration. Sci Rep 2016; 6:19344. [PMID: 26758247 PMCID: PMC4725932 DOI: 10.1038/srep19344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022] Open
Abstract
Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids.
Collapse
Affiliation(s)
- Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Plant Protection College, Shandong Agricultural University, Tai'an, Shandong, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongyu Xu
- Plant Protection College, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhu
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Na Cui
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
van Bel AJE, Will T. Functional Evaluation of Proteins in Watery and Gel Saliva of Aphids. FRONTIERS IN PLANT SCIENCE 2016; 7:1840. [PMID: 28018380 PMCID: PMC5156713 DOI: 10.3389/fpls.2016.01840] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/22/2016] [Indexed: 05/20/2023]
Abstract
Gel and watery saliva are regarded as key players in aphid-pIant interactions. The salivary composition seems to be influenced by the variable environment encountered by the stylet tip. Milieu sensing has been postulated to provide information needed for proper stylet navigation and for the required switches between gel and watery saliva secretion during stylet progress. Both the chemical and physical factors involved in sensing of the stylet's environment are discussed. To investigate the salivary proteome, proteins were collected from dissected gland extracts or artificial diets in a range of studies. We discuss the advantages and disadvantages of either collection method. Several proteins were identified by functional assays or by use of proteomic tools, while most of their functions still remain unknown. These studies disclosed the presence of at least two proteins carrying numerous sulfhydryl groups that may act as the structural backbone of the salivary sheath. Furthermore, cell-wall degrading proteins such a pectinases, pectin methylesterases, polygalacturonases, and cellulases as well as diverse Ca2+-binding proteins (e.g., regucalcin, ARMET proteins) were detected. Suppression of the plant defense may be a common goal of salivary proteins. Salivary proteases are likely involved in the breakdown of sieve-element proteins to invalidate plant defense or to increase the availability of organic N compounds. Salivary polyphenoloxidases, peroxidases and oxidoreductases were suggested to detoxify, e.g., plant phenols. During the last years, an increasing number of salivary proteins have been categorized under the term 'effector'. Effectors may act in the suppression (C002 or MIF cytokine) or the induction (e.g., Mp10 or Mp 42) of plant defense, respectively. A remarkable component of watery saliva seems the protein GroEL that originates from Buchnera aphidicola, the obligate symbiont of aphids and probably reflects an excretory product that induces plant defense responses. Furthermore, chitin fragments in the saliva may trigger defense reactions (e.g., callose deposition). The functions of identified proteins and protein classes are discussed with regard to physical and chemical characteristics of apoplasmic and symplasmic plant compartments.
Collapse
Affiliation(s)
- Aart J. E. van Bel
- Institute of General Botany, Justus-Liebig-UniversityGiessen, Germany
- *Correspondence: Aart J. E. van Bel,
| | - Torsten Will
- Institute of Phytopathology, Justus-Liebig-UniversityGiessen, Germany
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius-Kühn InstituteQuedlinburg, Germany
| |
Collapse
|
27
|
Kettles GJ, Kaloshian I. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation. FRONTIERS IN PLANT SCIENCE 2016; 7:1142. [PMID: 27536306 PMCID: PMC4971587 DOI: 10.3389/fpls.2016.01142] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/18/2016] [Indexed: 05/20/2023]
Abstract
Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.
Collapse
|
28
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
29
|
Abdellatef E, Will T, Koch A, Imani J, Vilcinskas A, Kogel KH. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:849-57. [PMID: 25586210 DOI: 10.1111/pbi.12322] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/07/2014] [Accepted: 12/04/2014] [Indexed: 05/24/2023]
Abstract
Aphids produce gel saliva during feeding which forms a sheath around the stylet as it penetrates through the apoplast. The sheath is required for the sustained ingestion of phloem sap from sieve elements and is thought to form when the structural sheath protein (SHP) is cross-linked by intermolecular disulphide bridges. We investigated the possibility of controlling aphid infestation by host-induced gene silencing (HIGS) targeting shp expression in the grain aphid Sitobion avenae. When aphids were fed on transgenic barley expressing shp double-stranded RNA (shp-dsRNA), they produced significantly lower levels of shp mRNA compared to aphids feeding on wild-type plants, suggesting that the transfer of inhibitory RNA from the plant to the insect was successful. shp expression remained low when aphids were transferred from transgenic plants and fed for 1 or 2 weeks, respectively, on wild-type plants, confirming that silencing had a prolonged impact. Reduced shp expression correlated with a decline in growth, reproduction and survival rates. Remarkably, morphological and physiological aberrations such as winged adults and delayed maturation were maintained over seven aphid generations feeding on wild-type plants. Targeting shp expression therefore appears to cause strong transgenerational effects on feeding, development and survival in S. avenae, suggesting that the HIGS technology has a realistic potential for the control of aphid pests in agriculture.
Collapse
Affiliation(s)
- Eltayb Abdellatef
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | - Torsten Will
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | - Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | - Jafargholi Imani
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | - Andreas Vilcinskas
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
- Project Group 'Bioresources', Fraunhofer Institute of Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
30
|
Nicholson SJ, Nickerson ML, Dean M, Song Y, Hoyt PR, Rhee H, Kim C, Puterka GJ. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics 2015; 16:429. [PMID: 26044338 PMCID: PMC4561433 DOI: 10.1186/s12864-015-1525-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Russian wheat aphid, Diuraphis noxia Kurdjumov, is one of the most important pests of small grains throughout the temperate regions of the world. This phytotoxic aphid causes severe systemic damage symptoms in wheat, barley, and other small grains as a direct result of the salivary proteins it injects into the plant while feeding. RESULTS We sequenced and de novo assembled the genome of D. noxia Biotype 2, the strain most virulent to resistance genes in wheat. The assembled genomic scaffolds span 393 MB, equivalent to 93% of its 421 MB genome, and contains 19,097 genes. D. noxia has the most AT-rich insect genome sequenced to date (70.9%), with a bimodal CpG(O/E) distribution and a complete set of methylation related genes. The D. noxia genome displays a widespread, extensive reduction in the number of genes per ortholog group, including defensive, detoxification, chemosensory, and sugar transporter groups in comparison to the Acyrthosiphon pisum genome, including a 65% reduction in chemoreceptor genes. Thirty of 34 known D. noxia salivary genes were found in this assembly. These genes exhibited less homology with those salivary genes commonly expressed in insect saliva, such as glucose dehydrogenase and trehalase, yet greater conservation among genes that are expressed in D. noxia saliva but not detected in the saliva of other insects. Genes involved in insecticide activity and endosymbiont-derived genes were also found, as well as genes involved in virus transmission, although D. noxia is not a viral vector. CONCLUSIONS This genome is the second sequenced aphid genome, and the first of a phytotoxic insect. D. noxia's reduced gene content of may reflect the influence of phytotoxic feeding in shaping the D. noxia genome, and in turn in broadening its host range. The presence of methylation-related genes, including cytosine methylation, is consistent with other parthenogenetic and polyphenic insects. The D. noxia genome will provide an important contrast to the A. pisum genome and advance functional and comparative genomics of insects and other organisms.
Collapse
Affiliation(s)
- Scott J Nicholson
- USDA Agricultural Research Service, Stillwater, OK, 74075, USA.
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Michael L Nickerson
- National Institutes of Health, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Michael Dean
- National Institutes of Health, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Yan Song
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Peter R Hoyt
- Department of Molecular Biology and Biochemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| | | | | | - Gary J Puterka
- USDA Agricultural Research Service, Stillwater, OK, 74075, USA.
| |
Collapse
|
31
|
Hattori M, Komatsu S, Noda H, Matsumoto Y. Proteome Analysis of Watery Saliva Secreted by Green Rice Leafhopper, Nephotettix cincticeps. PLoS One 2015; 10:e0123671. [PMID: 25909947 PMCID: PMC4409333 DOI: 10.1371/journal.pone.0123671] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
The green rice leafhopper, Nephotettix cincticeps, is a vascular bundle feeder that discharges watery and gelling saliva during the feeding process. To understand the potential functions of saliva for successful and safe feeding on host plants, we analyzed the complexity of proteinaceous components in the watery saliva of N. cincticeps. Salivary proteins were collected from a sucrose diet that adult leafhoppers had fed on through a membrane of stretched parafilm. Protein concentrates were separated using SDS-PAGE under reducing and non-reducing conditions. Six proteins were identified by a gas-phase protein sequencer and two proteins were identified using LC-MS/MS analysis with reference to expressed sequence tag (EST) databases of this species. Full -length cDNAs encoding these major proteins were obtained by rapid amplification of cDNA ends-PCR (RACE-PCR) and degenerate PCR. Furthermore, gel-free proteome analysis that was performed to cover the broad range of salivary proteins with reference to the latest RNA-sequencing data from the salivary gland of N. cincticeps, yielded 63 additional protein species. Out of 71 novel proteins identified from the watery saliva, about 60 % of those were enzymes or other functional proteins, including GH5 cellulase, transferrin, carbonic anhydrases, aminopeptidase, regucalcin, and apolipoprotein. The remaining proteins appeared to be unique and species- specific. This is the first study to identify and characterize the proteins in watery saliva of Auchenorrhyncha species, especially sheath-producing, vascular bundle-feeders.
Collapse
Affiliation(s)
- Makoto Hattori
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Hiroaki Noda
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yukiko Matsumoto
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
32
|
Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. Potato Aphid Salivary Proteome: Enhanced Salivation Using Resorcinol and Identification of Aphid Phosphoproteins. J Proteome Res 2015; 14:1762-78. [DOI: 10.1021/pr501128k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Zhouxin Shen
- Division
of Biological Sciences, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Steven P. Briggs
- Division
of Biological Sciences, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | | |
Collapse
|
33
|
Furch ACU, van Bel AJE, Will T. Aphid salivary proteases are capable of degrading sieve-tube proteins. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:533-9. [PMID: 25540441 DOI: 10.1093/jxb/eru487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva.
Collapse
Affiliation(s)
- Alexandra C U Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, D-07743 Jena, Germany
| | - Aart J E van Bel
- Department of General Botany, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Torsten Will
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
34
|
Ramsey JS, Elzinga D, Sarkar P, Xin YR, Ghanim M, Jander G. Adaptation to nicotine feeding in Myzus persicae. J Chem Ecol 2014; 40:869-77. [PMID: 25082103 PMCID: PMC4170791 DOI: 10.1007/s10886-014-0482-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/27/2014] [Accepted: 06/15/2014] [Indexed: 11/27/2022]
Abstract
Lineages of the generalist hemipteran herbivore Myzus persicae (green peach aphid) that have expanded their host range to include tobacco often have elevated nicotine tolerance. The tobacco-adapted M. persicae lineage used in this study was able to reproduce on nicotine-containing artificial diets at concentrations that were 15-fold higher than those that were lethal to a non-adapted M. persicae lineage. Fecundity of the nicotine-tolerant M. persicae lineage was increased by 100 μM nicotine in artificial diet, suggesting that this otherwise toxic alkaloid can serve as a feeding stimulant at low concentrations. This lineage also was pre-adapted to growth on tobacco, exhibiting no drop in fecundity when it was moved onto tobacco from a different host plant. Although growth of the non-tobacco-adapted M. persicae lineage improved after three generations on tobacco, this higher reproductive rate was not associated with increased nicotine tolerance. Myzus persicae gene expression microarrays were used to identify transcripts that are up-regulated in response to nicotine in the tobacco-adapted lineage. Induced expression was found for CYP6CY3, which detoxifies nicotine in M. persicae, other genes encoding known classes of detoxifying enzymes, and genes encoding secreted M. persicae salivary proteins.
Collapse
Affiliation(s)
| | | | | | - Yi-Ran Xin
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
35
|
Elzinga DA, De Vos M, Jander G. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:747-56. [PMID: 24654979 PMCID: PMC4170801 DOI: 10.1094/mpmi-01-14-0018-r] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and N. benthamiana. Together, these results demonstrate a role for Mp55, a protein with as-yet-unknown molecular function, in the interaction of M. persicae with its host plants.
Collapse
Affiliation(s)
- Dezi A. Elzinga
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Martin De Vos
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| |
Collapse
|
36
|
Botha AM, Burger NFV, Van Eck L. Hypervirulent Diuraphis noxia (Hemiptera: Aphididae) biotype SAM avoids triggering defenses in its host (Triticum aestivum) (Poales: Poaceae) during feeding. ENVIRONMENTAL ENTOMOLOGY 2014; 43:672-81. [PMID: 24874154 DOI: 10.1603/en13331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the molecular arms race between aphids and plants, both organisms rely on adaptive strategies to outcompete their evolutionary rival. In the current study, we investigated the difference in elicited defense responses of wheat (Triticum aestivum L.) near-isogenic lines with different Dn resistance genes, upon feeding by an avirulent and hypervirulent Diuraphis noxia Kurdjumov biotype. After measuring the activity of a suite of enzymes associated with plant defense, it became apparent that the host does not recognize the invasion by the hypervirulent aphid because none of these were induced, while feeding by the avirulent biotype did result in induction of enzyme activity. Genomic plasticity in D. noxia may be a likely explanation for the observed differences in virulence between D. noxia biotype SA1 and SAM, as demonstrated in the current study.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland, 7601, South Africa
| | | | | |
Collapse
|
37
|
Characterization of an aphid-specific, cysteine-rich protein enriched in salivary glands. Biophys Chem 2014; 189:25-32. [DOI: 10.1016/j.bpc.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
|
38
|
Sytykiewicz H. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings. PLoS One 2014; 9:e94847. [PMID: 24722734 PMCID: PMC3983269 DOI: 10.1371/journal.pone.0094847] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/19/2014] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Siedlce University of Natural Sciences and Humanities, Department of Biochemistry and Molecular Biology, Siedlce, Poland
- * E-mail:
| |
Collapse
|
39
|
Knoblauch M, Froelich DR, Pickard WF, Peters WS. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1879-93. [PMID: 24591057 DOI: 10.1093/jxb/eru071] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.
Collapse
Affiliation(s)
- Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
40
|
Vandermoten S, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E, Francis F. Comparative analyses of salivary proteins from three aphid species. INSECT MOLECULAR BIOLOGY 2014; 23:67-77. [PMID: 24382153 DOI: 10.1111/imb.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Saliva is a critical biochemical interface between aphids and their host plants; however, the biochemical nature and physiological functions of aphid saliva proteins are not fully elucidated. In this study we used a multidisciplinary proteomics approach combining liquid chromatography-electrospray ionization tandem mass spectrometry and two-dimensional differential in-gel electrophoresis/matrix-assisted laser desorption/ionization time-of-flight/mass spectrometry to compare the salivary proteins from three aphid species including Acyrthosiphon pisum, Megoura viciae and Myzus persicae. Comparative analyses revealed variability among aphid salivary proteomes. Among the proteins that varied, 22% were related to DNA-binding, 19% were related to GTP-binding, and 19% had oxidoreductase activity. In addition, we identified a peroxiredoxin enzyme and an ATP-binding protein that may be involved in the modulation of plant defences. Knowledge of salivary components and how they vary among aphid species may reveal how aphids target plant processes and how the aphid and host plant interact.
Collapse
Affiliation(s)
- S Vandermoten
- Gembloux Agro-Bio Tech, Department of Functional and Evolutionary Entomology, University of Liege, Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R, Escudero-Martinez C, Bos JI. Plant immunity in plant-aphid interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:663. [PMID: 25520727 PMCID: PMC4249712 DOI: 10.3389/fpls.2014.00663] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/07/2014] [Indexed: 05/06/2023]
Abstract
Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and - aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients.
Collapse
Affiliation(s)
- Maëlle Jaouannet
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Peter Thorpe
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Camille J. G. Lenoir
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Ruari MacLeod
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
| | - Jorunn I.B. Bos
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- Division of Plant Sciences, University of DundeeDundee, UK
- *Correspondence: Jorunn I. B. Bos, Division of Plant Sciences, College of Life Sciences, University of Dundee, Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK e-mail:
| |
Collapse
|
42
|
Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. J Proteomics 2013; 105:186-203. [PMID: 24355481 DOI: 10.1016/j.jprot.2013.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023]
Abstract
UNLABELLED Greenbug (Schizaphis graminum Rondani) biotypes are classified by their differential virulence to wheat, barley, and sorghum varieties possessing greenbug resistance genes. Virulent greenbug biotypes exert phytotoxic effects upon their hosts during feeding, directly inducing physiological and metabolic alterations and accompanying foliar damage. Comparative analyses of the salivary proteomes of four differentially virulent greenbug biotypes C, E, G, and H showed significant proteomic divergence between biotypes. Thirty-two proteins were identified by LC-MS/MS; the most prevalent of which were three glucose dehydrogenase paralogs (GDH), lipophorin, complementary sex determiner, three proteins of unknown function, carbonic anhydrase, fibroblast growth factor receptor, and abnormal oocyte (ABO). Seven nucleotide-binding proteins were identified, including ABO which is involved in mRNA splicing. Quantitative variation among greenbug biotypes was detected in six proteins; two GDH paralogs, carbonic anhydrase, ABO, and two proteins of unknown function. Our findings reveal that the greenbug salivary proteome differs according to biotype and diverges substantially from those reported for other aphids. The proteomic profiles of greenbug biotypes suggest that interactions between aphid salivary proteins and the plant host result in suppression of plant defenses and cellular transport, and may manipulate transcriptional regulation in the plant host, ultimately allowing the aphid to maintain phloem ingestion. BIOLOGICAL SIGNIFICANCE Greenbug (Schizaphis graminum Rondani, GB) is a major phytotoxic aphid pest of wheat, sorghum, and barley. Unlike non-phytotoxic aphids, GB directly damages its host, causing uniformly characteristic symptoms leading to host death. As saliva is the primary interface between the aphid and its plant host, saliva is also the primary aphid biotypic determinant, and differences in biotypic virulence are the result of biotypic variations in salivary content. This study analyzed the exuded saliva of four distinct Greenbug biotypes with a range of virulence to crop lines containing greenbug resistance traits in order to identify differences between salivary proteins of the examined biotypes. Our analyses confirmed that the salivary proteomes of the examined greenbug biotypes differ widely, identified 32 proteins of the greenbug salivary proteome, and found significant proteomic variation between six identified salivary proteins. The proteomic variation identified herein is likely the basis of biotypic virulence, and the proteins identified can serve as the basis for functional studies into both greenbug-induced phytotoxic damage and into the molecular basis of virulence in specific GB biotypes. This article is part of a Special Issue entitled: SI: Proteomics of non-model organisms.
Collapse
|
43
|
Will T, Furch ACU, Zimmermann MR. How phloem-feeding insects face the challenge of phloem-located defenses. FRONTIERS IN PLANT SCIENCE 2013; 4:336. [PMID: 24009620 PMCID: PMC3756233 DOI: 10.3389/fpls.2013.00336] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/09/2013] [Indexed: 05/20/2023]
Abstract
Due to the high content of nutrient, sieve tubes are a primary target for pests, e.g., most phytophagous hemipteran. To protect the integrity of the sieve tubes as well as their content, plants possess diverse chemical and physical defense mechanisms. The latter mechanisms are important because they can potentially interfere with the food source accession of phloem-feeding insects. Physical defense mechanisms are based on callose as well as on proteins and often plug the sieve tube. Insects that feed from sieve tubes are potentially able to overwhelm these defense mechanisms using their saliva. Gel saliva forms a sheath in the apoplast around the stylet and is suggested to seal the stylet penetration site in the cell plasma membrane. In addition, watery saliva is secreted into penetrated cells including sieve elements; the presence of specific enzymes/effectors in this saliva is thought to interfere with plant defense responses. Here we detail several aspects of plant defense and discuss the interaction of plants and phloem-feeding insects. Recent agro-biotechnological phloem-located aphid control strategies are presented.
Collapse
Affiliation(s)
- Torsten Will
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-UniversityGiessen, Germany
| | - Alexandra C. U. Furch
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-UniversityGiessen, Germany
| | | |
Collapse
|
44
|
Elzinga DA, Jander G. The role of protein effectors in plant-aphid interactions. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:451-6. [PMID: 23850072 DOI: 10.1016/j.pbi.2013.06.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 05/04/2023]
Abstract
Aphid salivary proteins, which are injected into the phloem sieve elements during feeding, play a central role in plant-aphid interactions. Among the dozens of known salivary proteins, many have no homology to proteins from other organisms. These aphid-specific proteins likely have evolved as effectors that inhibit plant defenses, prevent phloem sieve-element occlusion, and otherwise promote the unique phloem feeding style. However, aphid salivary proteins also are recognized by plants to mount defense responses and are likely a major factor in limiting the host range of particular aphid species and biotypes. Newly developed research tools provide excellent opportunities for analyzing the mostly unknown functions of aphid salivary proteins and elucidating their contribution to the complex interactions between aphids and their host plants.
Collapse
Affiliation(s)
- Dezi A Elzinga
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | |
Collapse
|
45
|
Rao SAK, Carolan JC, Wilkinson TL. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 2013; 8:e57413. [PMID: 23460852 PMCID: PMC3584018 DOI: 10.1371/journal.pone.0057413] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/22/2013] [Indexed: 12/29/2022] Open
Abstract
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.
Collapse
Affiliation(s)
- Sohail A. K. Rao
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James C. Carolan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Tom L. Wilkinson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Rodriguez PA, Bos JIB. Toward understanding the role of aphid effectors in plant infestation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:25-30. [PMID: 23035915 DOI: 10.1094/mpmi-05-12-0119-fi] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In recent years, immense progress has been made toward understanding the functions of effectors from a range of plant pathogens, such as oomycetes, fungi, bacteria, and nematodes. Like plant pathogens, aphids form close associations with host plants, featuring signal exchange between the two organisms. While feeding and probing, aphids deliver effector proteins mixed with saliva directly into the host-stylet interface. With the increasing availability of aphid genome and transcriptome sequence data, aphid effector biology is emerging as a new and exciting area of research. In this review, we provide an overview of recent advances in the aphid effector biology field and highlight some of the current questions.
Collapse
|
47
|
Will T, Steckbauer K, Hardt M, van Bel AJE. Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PLoS One 2012; 7:e46903. [PMID: 23056521 PMCID: PMC3462764 DOI: 10.1371/journal.pone.0046903] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/06/2012] [Indexed: 01/06/2023] Open
Abstract
In order to separate and analyze saliva types secreted during stylet propagation and feeding, aphids were fed on artificial diets. Gel saliva was deposited as chains of droplets onto Parafilm membranes covering the diets into which watery saliva was secreted. Saliva compounds collected from the diet fluid were separated by SDS-PAGE, while non-soluble gel saliva deposits were processed in a novel manner prior to protein separation by SDS-PAGE. Soluble (watery saliva) and non-soluble (gel saliva) protein fractions were significantly different. To test the effect of the stylet milieu on saliva secretion, aphids were fed on various diets. Hardening of gel saliva is strongly oxygen-dependent, probably owing to formation of sulfide bridges by oxidation of sulphydryl groups. Surface texture of gel saliva deposits is less pronounced under low-oxygen conditions and disappears in dithiothreitol containing diet. Using diets mimicking sieve-element sap and cell-wall fluid respectively showed that the soluble protein fraction was almost exclusively secreted in sieve elements while non-soluble fraction was preferentially secreted at cell wall conditions. This indicates that aphids are able to adapt salivary secretion in dependence of the stylet milieu.
Collapse
Affiliation(s)
- Torsten Will
- Plant Cell Biology Research Group, Department of General Botany, Justus-Liebig-University, Giessen, Germany.
| | | | | | | |
Collapse
|
48
|
Nicholson SJ, Hartson SD, Puterka GJ. Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteomics 2012; 75:2252-68. [DOI: 10.1016/j.jprot.2012.01.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/03/2012] [Accepted: 01/27/2012] [Indexed: 01/21/2023]
|