1
|
Kothiya A, Adlakha N. Regulatory disturbances in the dynamical signaling systems of C a 2 + and NO in fibroblasts cause fibrotic disorders. J Biol Phys 2024; 50:229-251. [PMID: 38753214 PMCID: PMC11106231 DOI: 10.1007/s10867-024-09657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium ( C a 2 + ) and nitric oxide (NO) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between NO and the control of C a 2 + dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum C a 2 + -ATPase (SERCA) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and NO dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, SERCA pump, and inositol trisphosphate ( I P 3 ) receptor, may contribute to deregulation in the calcium and NO dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.
Collapse
Affiliation(s)
- Ankit Kothiya
- DoM, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Neeru Adlakha
- DoM, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| |
Collapse
|
2
|
Muskat JC, Babbs CF, Goergen CJ, Rayz VL. Transport of nitrite from large arteries modulates regional blood flow during stress and exercise. Front Cardiovasc Med 2023; 10:1146717. [PMID: 37378407 PMCID: PMC10291090 DOI: 10.3389/fcvm.2023.1146717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
Background Acute cardiovascular stress increases systemic wall shear stress (WSS)-a frictional force exerted by the flow of blood on vessel walls-which raises plasma nitrite concentration due to enhanced endothelial nitric oxide synthase (eNOS) activity. Upstream eNOS inhibition modulates distal perfusion, and autonomic stress increases both the consumption and vasodilatory effects of endogenous nitrite. Plasma nitrite maintains vascular homeostasis during exercise and disruption of nitrite bioavailability can lead to intermittent claudication. Hypothesis During acute cardiovascular stress or strenuous exercise, we hypothesize enhanced production of nitric oxide (NO) by vascular endothelial cells raises nitrite concentrations in near-wall layers of flowing blood, resulting in cumulative NO concentrations in downstream arterioles sufficient for vasodilation. Confirmation and implications Utilizing a multiscale model of nitrite transport in bifurcating arteries, we tested the hypothesis for femoral artery flow under resting and exercised states of cardiovascular stress. Results indicate intravascular transport of nitrite from upstream endothelium could result in vasodilator-active levels of nitrite in downstream resistance vessels. The hypothesis could be confirmed utilizing artery-on-a-chip technology to measure NO production rates directly and help validate numerical model predictions. Further characterization of this mechanism may improve our understanding of symptomatic peripheral artery occlusive disease and exercise physiology.
Collapse
Affiliation(s)
- J. C. Muskat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - C. F. Babbs
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - C. J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - V. L. Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Kothiya AB, Adlakha N. Cellular nitric oxide synthesis is affected by disorders in the interdependent [Formula: see text] and [Formula: see text] dynamics during cystic fibrosis disease. J Biol Phys 2023; 49:133-158. [PMID: 36811722 PMCID: PMC10160313 DOI: 10.1007/s10867-022-09624-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 02/24/2023] Open
Abstract
Calcium ([Formula: see text]), inositol trisphosphate ([Formula: see text]), and nitric oxide (NO) signaling are essential to maintain the structural integrity and physiological activity of fibroblast cells. The accumulation of excess quantity of NO for longer periods can lead to a variety of fibrotic disorders, including heart disease, penile fibrosis in Peyronie's disease (PD), and cystic fibrosis. The dynamics of these three signaling processes and their interdependence in fibroblast cells are not clearly known to date. A systems biology model is proposed using reaction-diffusion equations for calcium, [Formula: see text], and calcium-dependent NO synthesis in fibroblast cells. The finite element method (FEM) is used to examine [Formula: see text], [Formula: see text], and NO regulation and dysregulation in cells. The results throw light on the conditions that disturb the coupled [Formula: see text] and [Formula: see text] dynamics and the influence of these factors on the levels of NO concentration in the fibroblast cell. The findings suggest that changes in source inflow, buffers, and diffusion coefficient might induce an increase or reduction in nitric oxide and [Formula: see text] synthesis, resulting in fibroblast cell diseases. Furthermore, the findings provide new information regarding the size and intensity of diseases in response to changes in several factors of their dynamics, which has been linked to the development of cystic fibrosis and cancer. This knowledge could be valuable for developing novel approaches to the diagnosis of diseases and therapies for various disorders of fibroblast cells.
Collapse
|
4
|
Zhang J, Wang F, Wu D, Zhao D. Revealing the mechanisms of Weishi Huogu I capsules used for treating osteonecrosis of the femoral head based on systems pharmacology with one mechanism validated with in vitro experiments. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115354. [PMID: 35577160 DOI: 10.1016/j.jep.2022.115354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weishi Huogu I (WH I) capsules, developed through traditional Chinese medicine, have been used to treat clinical osteonecrosis of the femoral head (ONFH) for decades. However, the mechanisms have not been systematically studied. AIM OF THE STUDY In this study, the mechanisms of WH I capsules used in treating ONFH were examined through a systems pharmacology strategy, and one mechanism was validated with in vitro experiments. MATERIALS AND METHODS WH I capsules compounds were identified by screening databases; then, a database of the potential active compounds was constructed after absorption, distribution, metabolism and excretion (ADME) evaluation. The compounds were identified through a systematic approach in which the probability of an interaction of every candidate compound with each corresponding target in the DrugBank database was calculated. Gene Ontology (GO) and pathway enrichment analyses of the targets was performed with the Metascape and KEGG DISEASE databases. Then, a compound-target network (C-T) and target-pathway network (T-P) of WH I capsule components were constructed, and network characteristics and related information were used for systematically identifying WH I capsule multicomponent-target interactions. Furthermore, the effects of WH I capsule compounds identified through the systematic pharmacology analysis of the osteogenic transformation of human umbilical mesenchymal stem cells (HUMSCs) were validated in vitro. RESULTS In total, 152 potentially important compounds and 176 associated targets were identified. Twenty-two crucial GO biological process (BP) or pathways were related to ONFH, mainly in regulatory modules regulating blood circulation, modulating growth, and affecting pathological processes closely related to ONFH. Furthermore, the GO enrichment analysis showed that corydine, isorhamnetin, and bicuculline were enriched in "RUNX2 regulates osteoblast differentiation", significantly increased alkaline phosphatase activity and calcium deposition and upregulated runt-related transcription factor 2 mRNA and protein expression and osteocalcin mRNA expression in HUMSCs, suggesting that these compounds promoted the mesenchymal stem cell (MSC) osteogenic transformation. CONCLUSIONS The study showed that the pharmacological mechanisms of WH I capsule attenuation of ONFH mainly involve three therapeutic modules: blood circulation, modulating growth, and regulating pathological processes. The crosstalk between GOBPs/pathways may constitute the basis of the synergistic effects of the compounds in WH I capsules in attenuating ONFH. One of the pharmacological mechanisms in the WH I capsule effect on ONFH involves enhancement of the osteogenic transformation of MSCs, as validated in experiments performed in vitro; however, more mechanisms should be validated in further studies.
Collapse
Affiliation(s)
- Jiaoyue Zhang
- Department of Orthopedics, Affifiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China; Ansteel Group Hospital, Anshan, 114002, China.
| | - Fanli Wang
- Ansteel Group Hospital, Anshan, 114002, China.
| | - Dengbin Wu
- Ansteel Group Hospital, Anshan, 114002, China.
| | - Dewei Zhao
- Department of Orthopedics, Affifiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
5
|
He WF, Qin R, Gao YH, Zhou J, Wei JJ, Liu J, Hou XF, Ma HP, Xian CJ, Li XY, Chen KM. The interdependent relationship between the nitric oxide signaling pathway and primary cilia in pulse electromagnetic field-stimulated osteoblastic differentiation. FASEB J 2022; 36:e22376. [PMID: 35616355 DOI: 10.1096/fj.202101577rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) have long been recognized being safe and effective in treating bone fracture nonunion and osteoporosis. However, the mechanism of osteogenic action of PEMFs is still unclear. While primary cilia are reported to be a sensory organelle for PEMFs, and nitric oxide (NO) plays an indispensable role in osteogenic effect of PEMFs, the relationship between NO and primary cilia is unknown. In this study, effects of treatment with 50 Hz 0.6 mT PEMFs on osteogenic differentiation and mineralization, NO secretion, and ciliary location of specific proteins were examined in rat calvarial osteoblasts (ROBs) with normal or abrogated primary cilia. It was found that PEMFs stimulated the osteogenic differentiation by activating the NOS/NO/sGC/cGMP/PKG signaling pathway, which need the existence of primary cilia. All components of the signaling pathway including iNOS, eNOS, sGC, PKG-1, and PKG-2 were localized to primary cilia, and eNOS was phosphorylated inside the primary cilia. Besides, primary cilia were elongated significantly by PEMF treatment and changed dynamically with the activation NO/cGMP pathway. When the pathway was blocked by L-NAME, PEMFs could no longer elongate the primary cilia and stimulate the osteoblastic differentiation. Thus, this study for the first time observed activation of the NO/cGMP signaling pathway in ciliary compartment of osteoblasts, and PEMFs could not stimulate the osteoblastic differentiation if the NO signaling pathway was blocked or the ciliogenesis was inhibited. Our findings indicate the interdependent relationship between NO and primary cilia in the PEMF-promoted osteogenesis.
Collapse
Affiliation(s)
- Wen-Fang He
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China.,Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, P. R. China
| | - Rong Qin
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Yu-Hai Gao
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Jian Zhou
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Juan-Juan Wei
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Jing Liu
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Xue-Feng Hou
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Hui-Ping Ma
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xue-Yan Li
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Ke-Ming Chen
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, P. R. China
| |
Collapse
|
6
|
Raposo A, Saraiva A, Ramos F, Carrascosa C, Raheem D, Bárbara R, Silva H. The Role of Food Supplementation in Microcirculation-A Comprehensive Review. BIOLOGY 2021; 10:616. [PMID: 34356471 PMCID: PMC8301032 DOI: 10.3390/biology10070616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
(1) Background: Cardiovascular disease (CVD) is a major public health concern worldwide and a key cause of morbidity and mortality in developed countries. Accumulating evidence shows that several CVD forms are characterized by significant microcirculatory dysfunction, which may both cause and be caused by macrovascular disease, often preceding clinical manifestations by several years. Therefore, interest in exploring food supplements to prevent and restore microcirculation has grown. Given the continuous need to expand the available therapeutic arsenal for CVD, the food supplements market has recently grown and is expected to continue growing. (2) Methods: We provide an authoritative up-to-date comprehensive review of the impact of food supplementation on microcirculation by analyzing the European and American legal food supplements framework and the importance of food safety/food quality in this industry. We review the main literature about food bioactive compounds with a focus on microcirculation and some main food supplements with proven benefits. (3) Results: Despite a lack of scientific evidence, diet and microcirculatory function are clearly connected. The main food supplement examples in the literature with potential beneficial effects on microcirculation are: Ruscus aculeatus L., Centella asiatica L., Ginkgo biloba L., Salvia miltiorrhiza Bunge, Crataegus spp., Ginseng, Mangifera indica L., Aesculus hippocastanum L., Hamamelis virginiana L., and Vitis vinifera L. (4) Conclusions: Further clinical trials are necessary to better explore the effects of these food supplements.
Collapse
Affiliation(s)
- António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Rua Dom Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Rita Bárbara
- School of Sciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisbon, Portugal;
| | - Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
7
|
Aberdeen H, Battles K, Taylor A, Garner-Donald J, Davis-Wilson A, Rogers BT, Cavalier C, Williams ED. The Aging Vasculature: Glucose Tolerance, Hypoglycemia and the Role of the Serum Response Factor. J Cardiovasc Dev Dis 2021; 8:58. [PMID: 34067715 PMCID: PMC8156687 DOI: 10.3390/jcdd8050058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The fastest growing demographic in the U.S. at the present time is those aged 65 years and older. Accompanying advancing age are a myriad of physiological changes in which reserve capacity is diminished and homeostatic control attenuates. One facet of homeostatic control lost with advancing age is glucose tolerance. Nowhere is this more accentuated than in the high proportion of older Americans who are diabetic. Coupled with advancing age, diabetes predisposes affected subjects to the onset and progression of cardiovascular disease (CVD). In the treatment of type 2 diabetes, hypoglycemic episodes are a frequent clinical manifestation, which often result in more severe pathological outcomes compared to those observed in cases of insulin resistance, including premature appearance of biomarkers of senescence. Unfortunately, molecular mechanisms of hypoglycemia remain unclear and the subject of much debate. In this review, the molecular basis of the aging vasculature (endothelium) and how glycemic flux drives the appearance of cardiovascular lesions and injury are discussed. Further, we review the potential role of the serum response factor (SRF) in driving glycemic flux-related cellular signaling through its association with various proteins.
Collapse
Affiliation(s)
- Hazel Aberdeen
- Department of Biomedical Sciences, Baptist Health Sciences University, Memphis, TN 38103, USA; or
| | - Kaela Battles
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Ariana Taylor
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Jeranae Garner-Donald
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Ana Davis-Wilson
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Bryan T. Rogers
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Candice Cavalier
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Emmanuel D. Williams
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| |
Collapse
|
8
|
Portörő I, Mukli P, Kocsis L, Hermán P, Caccia D, Perrella M, Mozzarelli A, Ronda L, Mathe D, Eke A. Model-based evaluation of the microhemodynamic effects of PEGylated HBOC molecules in the rat brain cortex: a laser speckle imaging study. BIOMEDICAL OPTICS EXPRESS 2020; 11:4150-4175. [PMID: 32923034 PMCID: PMC7449705 DOI: 10.1364/boe.388089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Hemoglobin-based oxygen carriers (HBOCs) were developed with the aim of substituting transfusions in emergency events. However, they exhibit adverse events, such as nitric oxide (NO) scavenging, vasoactivity, enhanced platelet aggregation, presently hampering their clinical application. The impact of two prototypical PEGylated HBOCs, Euro-PEG-Hb and PEG-HbO2, endowed by different oxygen affinities and hydrodynamic volumes, was assessed on the cerebrocortical parenchymal microhemodynamics, and extravasation through the blood-brain-barrier (BBB) by laser speckle contrast imaging (LSCI) method and near-infrared (NIR) imaging, respectively. By evaluating voxel-wise cerebrocortical red blood cell velocity, non-invasively for its mean kernel-wise value ( v ¯ RBC ), and model-derived kernel-wise predictions for microregional tissue hematocrit, THt, and fractional change in hematocrit-corrected vascular resistance, R', as measures of potential adverse effects (enhanced platelet aggregation and vasoactivity, respectively) we found i) no significant difference between tested HBOCs in the systemic and microregional parameters, and in the relative spatial dispersion of THt, and R' as additional measures of HBOC-related adverse effects, and ii) no extravasation through BBB by Euro-PEG-Hb. We conclude that Euro-PEG-Hb does not exhibit adverse effects in the brain microcirculation that could be directly attributed to NO scavenging.
Collapse
Affiliation(s)
- István Portörő
- Institute of Translational Medicine, Semmelweis University, Hungary
- These authors contributed equally to this work
| | - Péter Mukli
- Institute of Translational Medicine, Semmelweis University, Hungary
- Department of Physiology, Semmelweis University, Hungary
- These authors contributed equally to this work
| | - László Kocsis
- Institute of Translational Medicine, Semmelweis University, Hungary
| | - Péter Hermán
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Dario Caccia
- Department of Biomedical Science and Technology, University of Milan, Italy
- Department of Food and Drug, University of Parma, Italy
| | - Michele Perrella
- Department of Biomedical Science and Technology, University of Milan, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
- Biopharmanet-TEC, University of Parma, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy
- Biopharmanet-TEC, University of Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Domokos Mathe
- CROmed Research and Service Centers Ltd., Budapest, Hungary
| | - Andras Eke
- Institute of Translational Medicine, Semmelweis University, Hungary
- Department of Physiology, Semmelweis University, Hungary
| |
Collapse
|
9
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
11
|
Saternos HC, AbouAlaiwi WA. Signaling interplay between primary cilia and nitric oxide: A mini review. Nitric Oxide 2018; 80:108-112. [PMID: 30099097 DOI: 10.1016/j.niox.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023]
Abstract
New discoveries into the functional role of primary cilia are on the rise. In little more than 20 years, research has shown the once vestigial organelle is a signaling powerhouse involved in a vast number of essential cellular processes. In the same decade that interest in primary cilia was burgeoning, nitric oxide won molecule of the year and a Nobel prize for its role as a near ubiquitous signaling molecule. Although primary cilia and nitric oxide are both involved in signaling, a direct relationship has not been investigated; however, after a quick review of the literature, parallels between their functions can be drawn. This review aims to suggest a possible interplay between primary cilia and nitric oxide signaling especially in the areas of vascular tissue homeostasis and cellular proliferation.
Collapse
Affiliation(s)
- Hannah C Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA
| | - Wissam A AbouAlaiwi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA.
| |
Collapse
|
12
|
Liu Y, Buerk DG, Barbee KA, Jaron D. A dynamic computational network model for the role of nitric oxide and the myogenic response in microvascular flow regulation. Microcirculation 2018; 25:e12465. [PMID: 29885064 DOI: 10.1111/micc.12465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The effect of NO on smooth muscle cell contractility is crucial in regulating vascular tone, blood flow, and O2 delivery. Quantitative predictions for interactions between the NO production rate and the myogenic response for microcirculatory blood vessels are lacking. METHODS We developed a computational model of a branching microcirculatory network with four representative classes of resistance vessels to predict the effect of endothelium-derived NO on the microvascular pressure-flow response. Our model links vessel scale biotransport simulations of NO and O2 delivery to a mechanistic model of autoregulation and myogenic tone in a simplified microcirculatory network. RESULTS The model predicts that smooth muscle cell NO bioavailability significantly contributes to resting vascular tone of resistance vessels. Deficiencies in NO seen during hypoxia or ischemia lead to a decreased vessel diameter for all classes at a given intravascular pressure. At the network level, NO deficiencies lead to an increase in pressure drop across the vessels studied, a downward shift in the pressure-flow curve, and a decrease in the effective range of the autoregulatory response. CONCLUSIONS Our model predicts the steady state and transient behavior of resistance vessels to perturbations in blood pressure, including effects of NO bioavailability on vascular regulation.
Collapse
Affiliation(s)
- Yien Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Buerk DG, Liu Y, Zaccheo KA, Barbee KA, Jaron D. Nitrite-Mediated Hypoxic Vasodilation Predicted from Mathematical Modeling and Quantified from in Vivo Studies in Rat Mesentery. Front Physiol 2017; 8:1053. [PMID: 29321744 PMCID: PMC5733546 DOI: 10.3389/fphys.2017.01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) generated from nitrite through nitrite reductase activity in red blood cells has been proposed to play a major role in hypoxic vasodilation. However, we have previously predicted from mathematical modeling that much more NO can be derived from tissue nitrite reductase activity than from red blood cell nitrite reductase activity. Evidence in the literature suggests that tissue nitrite reductase activity is associated with xanthine oxidoreductase (XOR) and/or aldehyde oxidoreductase (AOR). We investigated the role of XOR and AOR in nitrite-mediated vasodilation from computer simulations and from in vivo exteriorized rat mesentery experiments. Vasodilation responses to nitrite in the superfusion medium bathing the mesentery equilibrated with 5% O2 (normoxia) or zero O2 (hypoxia) at either normal or acidic pH were quantified. Experiments were also conducted following intraperitoneal (IP) injection of nitrite before and after inhibiting XOR with allopurinol or inhibiting AOR with raloxifene. Computer simulations for NO and O2 transport using reaction parameters reported in the literature were also conducted to predict nitrite-dependent NO production from XOR and AOR activity as a function of nitrite concentration, PO2 and pH. Experimentally, the largest arteriolar responses were found with nitrite >10 mM in the superfusate, but no statistically significant differences were found with hypoxic and acidic conditions in the superfusate. Nitrite-mediated vasodilation with IP nitrite injections was reduced or abolished after inhibiting XOR with allopurinol (p < 0.001). Responses to IP nitrite before and after inhibiting AOR with raloxifene were not as consistent. Our mathematical model predicts that under certain conditions, XOR and AOR nitrite reductase activity in tissue can significantly elevate smooth muscle cell NO and can serve as a compensatory pathway when endothelial NO production is limited by hypoxic conditions. Our theoretical and experimental results provide further evidence for a role of tissue nitrite reductases to contribute additional NO to compensate for reduced NO production by endothelial nitric oxide synthase during hypoxia. Our mathematical model demonstrates that under extreme hypoxic conditions with acidic pH, endogenous nitrite levels alone can be sufficient for a functionally significant increase in NO bioavailability. However, these conditions are difficult to achieve experimentally.
Collapse
Affiliation(s)
- Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Yien Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kelly A Zaccheo
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Dov Jaron
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
14
|
The novel organic mononitrate NDHP attenuates hypertension and endothelial dysfunction in hypertensive rats. Redox Biol 2017; 15:182-191. [PMID: 29268201 PMCID: PMC5735329 DOI: 10.1016/j.redox.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
Rationale Development and progression of cardiovascular diseases, including hypertension, are often associated with impaired nitric oxide synthase (NOS) function and nitric oxide (NO) deficiency. Current treatment strategies to restore NO bioavailability with organic nitrates are hampered by undesirable side effects and development of tolerance. In this study, we evaluated NO release capability and cardiovascular effects of the newly synthesized organic nitrate 1, 3-bis (hexyloxy) propan-2-yl nitrate (NDHP). Methods A combination of in vitro and in vivo approaches was utilized to assess acute effects of NDHP on NO release, vascular reactivity and blood pressure. The therapeutic value of chronic NDHP treatment was assessed in an experimental model of angiotensin II-induced hypertension in combination with NOS inhibition. Results NDHP mediates NO formation in both cell-free system and small resistance arteries, a process which is catalyzed by xanthine oxidoreductase. NDHP-induced vasorelaxation is endothelium independent and mediated by NO release and modulation of potassium channels. Reduction of blood pressure following acute intravenous infusion of NDHP was more pronounced in hypertensive rats (two-kidney-one-clip model) than in normotensive sham-operated rats. Toxicological tests did not reveal any harmful effects following treatment with high doses of NDHP. Finally, chronic treatment with NDHP significantly attenuated the development of hypertension and endothelial dysfunction in rats with chronic NOS inhibition and angiotensin II infusion. Conclusion Acute treatment with the novel organic nitrate NDHP increases NO formation, which is associated with vasorelaxation and a significant reduction of blood pressure in hypertensive animals. Chronic NDHP treatment attenuates the progression of hypertension and endothelial dysfunction, suggesting a potential for therapeutic applications in cardiovascular disease. The organic nitrate NDHP mediates NO formation in cell-free system and blood vessels. NDHP-mediated NO release is dependent on functional XOR. NDHP induces endothelium-independent vasorelaxation and significant reduction of blood pressure. NDHP-mediated vasorelaxation involves activation of NO/cGMP/PKG pathway and K+ channels (Kv and BKCa). Chronic treatment with NDHP attenuates the development of hypertension and endothelial dysfunction.
Collapse
|
15
|
Shin H, Park Y, Choi JH, Jeon YH, Byun Y, Sung SH, Lee KY. Structure elucidation of a new triterpene from Rhus trichocarpa roots. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:763-766. [PMID: 28042674 DOI: 10.1002/mrc.4574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hyeji Shin
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Yeeun Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Ji Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Korea
| |
Collapse
|
16
|
Wang R, Pan Q, Kuebler WM, Li JKJ, Pries AR, Ning G. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network. Microvasc Res 2017; 113:40-49. [PMID: 28478072 DOI: 10.1016/j.mvr.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/14/2017] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (P<0.001), with a corresponding increase in vessel dilation by approximately 7% from 27.5±10.6% to 29.4±11.4% (P<0.001). In contrast, NO concentration and vessel size showed a far lesser increase (about 1.7%) in venules under pulsatile flow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions.
Collapse
Affiliation(s)
- Ruofan Wang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310023, China
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science of St. Michael's, University of Toronto, 30 Bond Street, Toronto M5B 1W8, Canada; Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmediz in Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - John K-J Li
- Cardiovascular Research, Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Axel R Pries
- Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmediz in Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gangmin Ning
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| |
Collapse
|
17
|
Liu Y, Buerk DG, Barbee KA, Jaron D. Nitric oxide release by deoxymyoglobin nitrite reduction during cardiac ischemia: A mathematical model. Microvasc Res 2017; 112:79-86. [PMID: 28363495 DOI: 10.1016/j.mvr.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 12/19/2022]
Abstract
Interactions between cardiac myoglobin (Mb), nitrite, and nitric oxide (NO) are vital in regulating O2 storage, transport, and NO homeostasis. Production of NO through the reduction of endogenous myocardial nitrite by deoxygenated myoglobin has been shown to significantly reduce myocardial infarction damage and ischemic injury. We developed a mathematical model for a cardiac arteriole and surrounding myocardium to examine the hypothesis that myoglobin switches functions from being a strong NO scavenger to an NO producer via the deoxymyoglobin nitrite reductase pathway. Our results predict that under ischemic conditions of flow, blood oxygen level, and tissue pH, deoxyMb nitrite reduction significantly elevates tissue and smooth muscle cell NO. The size of the effect is consistent at different flow rates, increases with decreasing blood oxygen and tissue pH and, in extreme pathophysiological conditions, NO can even be elevated above the normoxic levels. Our simulations suggest that cardiac deoxyMb nitrite reduction is a plausible mechanism for preserving or enhancing NO levels using endogenous nitrite despite the rate-limiting O2 levels for endothelial NO production. This NO could then be responsible for mitigating deleterious effects under ischemic conditions.
Collapse
Affiliation(s)
- Yien Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Parikh J, Kapela A, Tsoukias NM. Can endothelial hemoglobin-α regulate nitric oxide vasodilatory signaling? Am J Physiol Heart Circ Physiol 2017; 312:H854-H866. [PMID: 28130333 DOI: 10.1152/ajpheart.00315.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022]
Abstract
We used mathematical modeling to investigate nitric oxide (NO)-dependent vasodilatory signaling in the arteriolar wall. Detailed continuum cellular models of calcium (Ca2+) dynamics and membrane electrophysiology in smooth muscle and endothelial cells (EC) were coupled with models of NO signaling and biotransport in an arteriole. We used this theoretical approach to examine the role of endothelial hemoglobin-α (Hbα) as a modulator of NO-mediated myoendothelial feedback, as previously suggested in Straub et al. (Nature 491: 473-477, 2012). The model considers enriched expression of inositol 1,4,5-triphosphate receptors (IP3Rs), endothelial nitric oxide synthase (eNOS) enzyme, Ca2+-activated potassium (KCa) channels and Hbα in myoendothelial projections (MPs) between the two cell layers. The model suggests that NO-mediated myoendothelial feedback is plausible if a significant percentage of eNOS is localized within or near the myoendothelial projection. Model results show that the ability of Hbα to regulate the myoendothelial feedback is conditional to its colocalization with eNOS near MPs at concentrations in the high nanomolar range (>0.2 μM or 24,000 molecules). Simulations also show that the effect of Hbα observed in in vitro experimental studies may overestimate its contribution in vivo, in the presence of blood perfusion. Thus, additional experimentation is required to quantify the presence and spatial distribution of Hbα in the EC, as well as to test that the strong effect of Hbα on NO signaling seen in vitro, translates also into a physiologically relevant response in vivo.NEW & NOTEWORTHY Mathematical modeling shows that although regulation of nitric oxide signaling by hemoglobin-α (Hbα) is plausible, it is conditional to its presence in significant concentrations colocalized with endothelial nitric oxide synthase in myoendothelial projections. Additional experimentation is required to test that the strong effect of Hbα seen in vitro translates into a physiologically relevant response in vivo.
Collapse
Affiliation(s)
- Jaimit Parikh
- Department of Biomedical Engineering, Florida International University, Miami, Florida; and
| | - Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, Florida; and
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, Florida; and .,School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
19
|
Non-uniform viscosity caused by red blood cell aggregation may affect NO concentration in the microvasculature. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Liu Y, Buerk DG, Barbee KA, Jaron D. A mathematical model for the role of N 2O 3 in enhancing nitric oxide bioavailability following nitrite infusion. Nitric Oxide 2016; 60:1-9. [PMID: 27565833 PMCID: PMC5343674 DOI: 10.1016/j.niox.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
Nitrite infusion into the bloodstream has been shown to elicit vasodilation and protect against ischemia-reperfusion injury through nitric oxide (NO) release in hypoxic conditions. However, the mechanism by which nitrite-derived NO escapes scavenging by hemoglobin in the erythrocyte has not been fully elucidated, owing in part to the difficulty in measuring the reactions and transport on NO in vivo. We developed a mathematical model for an arteriole and surrounding tissue to examine the hypothesis that dinitrogen trioxide (N2O3) acts as a stable intermediate for preserving NO. Our simulations predict that with hypoxia and moderate nitrite concentrations, the N2O3 pathway can significantly preserve the NO produced by hemoglobin nitrite reductase in the erythrocyte and elevate NO reaching the smooth muscle cells. Nitrite retains its ability to increase NO bioavailability even at varying flow conditions, but there is minimal effect under normoxia or very low nitrite concentrations. Our model demonstrates a viable pathway for reconciling experimental findings of potentially beneficial effects of nitrite infusions despite previous models showing negligible NO elevation associated with hemoglobin nitrite reductase. Our results suggest that additional mechanisms may be needed to explain the efficacy of nitrite-induced vasodilation at low infusion concentrations.
Collapse
Affiliation(s)
- Yien Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Neri M, Riezzo I, Pomara C, Schiavone S, Turillazzi E. Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations. Mediators Inflamm 2016; 2016:3423450. [PMID: 27274621 PMCID: PMC4870364 DOI: 10.1155/2016/3423450] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/11/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients. AIM In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis. CONCLUSIONS Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.
Collapse
Affiliation(s)
- M. Neri
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - I. Riezzo
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - C. Pomara
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - S. Schiavone
- Institute of Pharmacology, Department of Clinical and Experimental Medicine, University of Foggia, Via L. Pinto 1, 71100 Foggia, Italy
| | - E. Turillazzi
- Institute of Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Viale degli Aviatori 1, 71100 Foggia, Italy
| |
Collapse
|
22
|
Mutchler SM, Straub AC. Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 2015; 49:8-15. [PMID: 26028569 DOI: 10.1016/j.niox.2015.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) was first described as a bioactive molecule through its ability to stimulate soluble guanylate cyclase, but the revelation that NO was the endothelium derived relaxation factor drove the field to its modern state. The wealth of research conducted over the past 30 years has provided us with a picture of how diverse NO signaling can be within the vascular wall, going beyond simple vasodilation to include such roles as signaling through protein S-nitrosation. This expanded view of NO's actions requires highly regulated and compartmentalized production. Importantly, resistance arteries house multiple proteins involved in the production and transduction of NO allowing for efficient movement of the molecule to regulate vascular tone and reactivity. In this review, we focus on the many mechanisms regulating NO production and signaling action in the vascular wall, with a focus on the control of endothelial nitric oxide synthase (eNOS), the enzyme responsible for synthesizing most of the NO within these confines. We also explore how cross talk between the endothelium and smooth muscle in the microcirculation can modulate NO signaling, illustrating that this one small molecule has the capability to produce a plethora of responses.
Collapse
Affiliation(s)
- Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
23
|
Bai R, Liu W, Zhao A, Zhao Z, Jiang D. Nitric oxide content and apoptosis rate in steroid-induced avascular necrosis of the femoral head. Exp Ther Med 2015; 10:591-597. [PMID: 26622359 DOI: 10.3892/etm.2015.2521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 03/31/2015] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to explore the effect on nitric oxide (NO) content and osteocyte apoptosis of steroid-induced avascular necrosis of the femoral head (SANFH) in an animal model of SANFH. A total of 40 Japanese white rabbits, 5 months of age and weighing 2.5±0.5 kg, were randomly divided into groups A (hormone + endotoxin group), B (endotoxin + normal saline group), C (normal saline + hormone group) and D (control group). Following the establishment of the model, a blood sample was taken from the heart of each animal and centrifuged; the levels of NO in the serum were detected. The bilateral femoral heads were conventionally dissected, fixed, decalcified and stained with hematoxylin and eosin. Subsequently, the empty bone lacunae were counted under an optical microscope. Changes in osteocyte morphology were observed using electron microscopy and osteocyte apoptosis was detected with a terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The percentage of empty bone lacunae in group A was significantly higher compared with that in groups B, C and D (P<0.01); however, there was no significant difference in percentage among groups B, C and D. The NO content in group A was significantly higher compared with that in groups B, C and D (P<0.01); however, there was no significant difference in NO content among groups B, C and D. The osteocyte apoptosis index in group A was significantly higher compared with that in the other groups (P<0.01); there was no significant difference among groups B, C and D. NO content was positively correlated with osteocyte apoptosis index (r=0.707). Thus, the present study found that NO content and the osteocyte apoptosis index were increased in SANFH, and that they play an important role in SANFH. The content of NO was positively correlated with the osteocyte apoptosis index, indicating that NO induces apoptosis.
Collapse
Affiliation(s)
- Rui Bai
- Graduate School of Chongqing Medical University, Chongqing, P.R. China
| | - Wanlin Liu
- Department of Pediatric Orthopedics, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Aiqing Zhao
- Department of Computed Tomography, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Zhengqun Zhao
- Department of Pediatric Orthopedics, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Dianming Jiang
- Department of Orthopedics, First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
24
|
Ng YC, Namgung B, Kim S. Two-dimensional transient model for prediction of arteriolar NO/O2 modulation by spatiotemporal variations in cell-free layer width. Microvasc Res 2014; 97:88-97. [PMID: 25312045 DOI: 10.1016/j.mvr.2014.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Despite the significant roles of the cell-free layer (CFL) in balancing nitric oxide (NO) and oxygen (O2) bioavailability in arteriolar tissue, many previous numerical approaches have relied on a one-dimensional (1-D) steady-state model for simplicity. However, these models are unable to demonstrate the influence of spatiotemporal variations in the CFL on the NO/O2 transport under dynamic flow conditions. Therefore, the present study proposes a new two-dimensional (2-D) transient model capable of predicting NO/O2 transport modulated by the spatiotemporal variations in the CFL width. Our model predicted that NO bioavailability was inversely related to the CFL width as expected. The enhancement of NO production by greater wall shear stress with a thinner CFL could dominate the diffusion barrier role of the CFL. In addition, NO/O2 availability along the vascular wall was inhomogeneous and highly regulated by dynamic changes of local CFL width variation. The spatial variations of CFL widths on opposite sides of the arteriole exhibited a significant inverse relation. This asymmetric formation of CFL resulted in a significantly imbalanced NO/O2 bioavailability on opposite sides of the arteriole. The novel integrative methodology presented here substantially highlighted the significance of spatiotemporal variations of the CFL in regulating the bioavailability of NO/O2, and provided further insight about the opposing effects of the CFL on arteriolar NO production.
Collapse
Affiliation(s)
- Yan Cheng Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Buerk DG, Hirai DM, Roseguini BT, Silva BM, Vagula MC, Roy TK, Secomb TW. Commentaries on viewpoint: A paradigm shift for local blood flow regulation. J Appl Physiol (1985) 2014; 116:706-7. [PMID: 24633729 DOI: 10.1152/japplphysiol.01360.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Woodcock ME, Hollands WJ, Konic-Ristic A, Glibetic M, Boyko N, Koçaoglu B, Kroon PA. Bioactive-rich extracts of persimmon, but not nettle, Sideritis, dill or kale, increase eNOS activation and NO bioavailability and decrease endothelin-1 secretion by human vascular endothelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3574-3580. [PMID: 23744813 DOI: 10.1002/jsfa.6251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/22/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND There is increasing evidence that consumption of plant bioactives such as polyphenols and glucosinolates reduces cardiovascular disease risk and improves endothelial function. In the Black Sea area, a number of plants are consumed alone and as ingredients in traditional foods, and dill, nettle, kale, Sideritis and persimmon were identified as bioactive-rich traditional food plants. The present study investigated the effects of plant extracts on cellular markers of endothelial function (eNOS activation and expression and ET-1 secretion). RESULTS Treatment of human umbilical vein endothelial cells with persimmon extract significantly increased Akt and eNOS phosphorylation and nitric oxide metabolites and significantly decreased secretion of ET-1 to the media after 24 h compared with a vehicle control (all P < 0.01). None of the other plant extracts significantly altered any markers of endothelial function. CONCLUSION These findings suggest that persimmon fruit contains bioactives that can improve endothelial function via activation of eNOS and reduction in ET-1 secretion, but that dill, kale, Sideritis and nettle do not.
Collapse
Affiliation(s)
- Mark E Woodcock
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Khan F, Choong WL, Du Q, Jovanovi'c A. Real-time RT-PCR Ct values for blood GAPDH correlate with measures of vascular endothelial function in humans. Clin Transl Sci 2013; 6:481-4. [PMID: 24330693 DOI: 10.1111/cts.12053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To date, there is a wide range of methods in use to assess endothelial function, each with its own advantages and limitations. Here, we tested hypothesis that real-time RT-PCR threshold value (Ct), which is reflective of mRNA level, for Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from whole blood is indicative of endothelial function in humans. MATERIALS AND METHODS To assess vascular function, we measured baseline skin perfusion, postocclusion reactive hyperemia (PORH), and brachial artery flow-mediated dilatation (FMD) and tested for a possible correlation between vascular responses and blood GAPDH real-time RT-PCR Ct value in 75 healthy volunteers. RESULTS Tests known to measure, at least in part, endothelial function such as baseline skin perfusion, the 2-minute recovery PORH, and FMD exhibited significant positive correlations with blood GAPDH Ct values. In contrast, there was no significant correlation between Ct values for blood GAPDH and peak PORH, an endothelium-independent parameter. CONCLUSIONS Based on these findings, we report that GAPDH mRNA level in the blood correlates with vascular function in healthy subjects. This suggests that GAPDH mRNA level could be a potential biomarker of vascular endothelial function.
Collapse
Affiliation(s)
- Faisel Khan
- Medical Research Institute, Division of Cardiovascular and Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | | | | | | |
Collapse
|
28
|
Abstract
The importance of nitric oxide (NO), superoxide (O2-), and peroxynitrite (ONOO-), interactions in physiologic functions and pathophysiological conditions such as cardiovascular disease, hypertension, and diabetes have been established extensively in in vivo and in vitro studies. Despite intense investigation of NO, O2-, and ONOO- biochemical interactions, fundamental questions regarding the role of these molecules remain unanswered. Mathematical models based on fundamental principles of mass balance and reaction kinetics have provided significant results in the case of NO. However, the models that include interaction of NO, O2-, and ONOO- have been few because of the complexity of these interactions. Not only do these mathematical and computational models provided quantitative knowledge of distributions and concentrations of NO, O2-, and ONOO- under normal physiologic and pathophysiologic conditions, they also can help to answer specific hypotheses. The focus of this review article is on the models that involve more than one of the 3 molecules (NO, O2-, and ONOO-). Specifically, kinetic models of O2- dismutase and tyrosine nitration and biotransport models in the microcirculation are reviewed. In addition, integrated experimental and computational models of dynamics of NO/O2-/ONOO- in diverse systems are reviewed.
Collapse
Affiliation(s)
- Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
29
|
Response to Dr. Annemiek J.M. Cornelissen editorial. Med Biol Eng Comput 2011. [DOI: 10.1007/s11517-011-0765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|