1
|
Lestari B, Fukushima T, Utomo RY, Wahyuningsih MSH. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta 2024; 151:37-47. [PMID: 38703713 DOI: 10.1016/j.placenta.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.
Collapse
Affiliation(s)
- Beni Lestari
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan.
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front Cell Dev Biol 2023; 11:1272536. [PMID: 37928902 PMCID: PMC10620730 DOI: 10.3389/fcell.2023.1272536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Diabetes-related pathophysiological alterations and various female reproductive difficulties were common in pregnant women with gestational diabetes mellitus (GDM), who had 21.1 million live births. Preeclampsia (PE), which increases maternal and fetal morbidity and mortality, affects approximately 3%-5% of pregnancies worldwide. Nevertheless, it is unclear what triggers PE and GDM to develop. Therefore, the development of novel moderator therapy approaches is a crucial advancement. Chemokines regulate physiological defenses and maternal-fetal interaction during healthy and disturbed pregnancies. Chemokines regulate immunity, stem cell trafficking, anti-angiogenesis, and cell attraction. CXC chemokines are usually inflammatory and contribute to numerous reproductive disorders. Fractalkine (CX3CL1) may be membrane-bound or soluble. CX3CL1 aids cell survival during homeostasis and inflammation. Evidence reveals that CXC and CX3CL1 chemokines and their receptors have been the focus of therapeutic discoveries for clinical intervention due to their considerable participation in numerous biological processes. This review aims to give an overview of the functions of CXC and CX3CL1 chemokines and their receptors in the pathophysiology of PE and GDM. Finally, we examined stimulus specificity for CXC and CX3CL1 chemokine expression and synthesis in PE and GDM and preclinical and clinical trials of CXC-based PE and GDM therapies.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
McColl ER, Henderson JT, Piquette-Miller M. Dysregulation of Amino Acid Transporters in a Rat Model of TLR7-Mediated Maternal Immune Activation. Pharmaceutics 2023; 15:1857. [PMID: 37514044 PMCID: PMC10385561 DOI: 10.3390/pharmaceutics15071857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy is linked to neurodevelopmental disorders in humans. Similarly, the TLR7 agonist imiquimod alters neurodevelopment in rodents. While the mechanisms underlying MIA-mediated neurodevelopmental changes are unknown, they could involve dysregulation of amino acid transporters essential for neurodevelopment. Therefore, we sought to determine the nature of such transporter changes in both imiquimod-treated rats and human placentas during infection. Pregnant rats received imiquimod on gestational day (GD)14. Transporter expression was measured in placentas and fetal brains via qPCR (GD14.5) and immunoblotting (GD16). To monitor function, fetal brain amino acid levels were measured by HPLC on GD16. Gene expression in the cortex of female fetal brains was further examined by RNAseq on GD19. In human placentas, suspected active infection was associated with decreased ASCT1 and SNAT2 protein expression. Similarly, in imiquimod-treated rats, ASCT1 and SNAT2 protein was also decreased in male placentas, while EAAT2 was decreased in female placentas. CAT3 was increased in female fetal brains. Consistent with this, imiquimod altered amino acid levels in fetal brains, while RNAseq demonstrated changes in expression of several genes implicated in autism. Thus, imiquimod alters amino acid transporter levels in pregnant rats, and similar changes occur in human placentas during active infection. This suggests that changes in expression of amino acid transporters may contribute to effects mediated by MIA toward altered neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
4
|
Zhang X, Hu Y, Zhang Z, Zhang X, Liang L, Cui X, Wu Y, Hu F, Wu X. Inhibition of TMUB1 blocks apoptosis and NF-κB pathway-mediated inflammation in recurrent spontaneous abortion. Immun Inflamm Dis 2023; 11:e879. [PMID: 37249279 PMCID: PMC10214570 DOI: 10.1002/iid3.879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/20/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Approximately 50% of cases with recurrent spontaneous abortion (RSA) have unexplained etiology. Aberrant expression of transmembrane and ubiquitin-like domain containing 1 (TMUB1) is closely related to a series of diseases, including RSA. However, the function and underlying mechanism of TMUB1 in the occurrence of RSA has not been described. METHODS TMUB1 expression was detected in the placental villous tissues of 30 women with normal miscarriages and 12 women with RSA. The pregnant mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce abortion. Human chorionic trophoblast cells were treated with LPS. Pathological analysis of placental tissues was performed by hematoxylin and eosin staining. RESULTS TMUB1 was highly expressed in the placental villous tissues of RSA patients compared to the patients who underwent induced abortions. After LPS administration, the mice exhibited high embryo absorption and pathological alterations, as well as presented an increase in inflammation and apoptosis (the etiology of RSA induction) in placental tissues. Moreover, the upregulated expression of TMUB1 was also found in placental tissues of LPS-induced mice, and further investigation showed that TMUB1 deficiency blocked embryo loss as well as inhibited apoptotic rate and inflammation after LPS activation. Furthermore, we found that the loss of TMUB1 suppressed the phosphorylation of IkappaB kinase (IKK) α/β and attenuated cytoplasmic-nuclear translocation of nuclear factor-κB (NF-κB) p65 in LPS-induced cells. CONCLUSION Our results indicate that TMUB1 may involve in the modulation of apoptosis and NF-κB pathway-mediated inflammation in RSA. Therefore, TMUB1 may develop as a potential biomarker for RSA treatment.
Collapse
Affiliation(s)
- Xiuping Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Yuanjing Hu
- Department of Gynecologic OncologyTianjin Central Hospital of Gynecology ObstetricsTianjinChina
| | - Zhiping Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xueluo Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Lixia Liang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xiangrong Cui
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Yuanxia Wu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Fen Hu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xueqing Wu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| |
Collapse
|
5
|
Wang D, Guan H, Xia Y. YTHDC1 maintains trophoblasts function by promoting degradation of m6A-modified circMPP1. Biochem Pharmacol 2023; 210:115456. [PMID: 36780989 DOI: 10.1016/j.bcp.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA internal modification in eukaryotic mRNAs. This study focuses on the effect of circMPP1 on placental villi function and the molecular mechanism. First, differentially expressed circular RNAs (circRNAs) in placenta tissues of large-for-gestational-age(LGA) neonates were screened by m6A-circRNA Epitranscriptomic Microarray and bioinformatics analyses. The abnormal expression of circMPP1 in placental tissues and cell lines was validated by RT-qPCR. In-vitro and in-vivo functional experiments were performed to evaluate the role of circMPP1 in placental impairment and fetal dysplasia. The interacting proteins of circMPP1 were identified and validated using RNA pull-down, RNA immunoprecipitation, fluorescence in situ hybridization, and immunofluorescence experiments. Protein interactions and expression levels were detected by Co-immunoprecipitation and western blot analysis. The m6A modification in circMPP1 was verified by methylated RNA immunoprecipitation assay. Bioinformatics analyses showed that circMPP1 was highly expressed in tissues with disordered placental function. In-vitro and in-vivo functional experiments showed that circMPP1 inhibited the function of placental villi. Further mechanism analyses showed that circMPP1 activated the NF-kappa B and MAPK3 signaling pathways. In addition, the m6A "reader" protein YTHDC1 was found to reduce circMPP1 expression via m6A modification. In conclusion, this study demonstrates that YTHDC1 maintains trophoblasts function by promoting degradation of m6A-mediated circMPP1.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
| | - Yajun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
6
|
Eaves LA, Bulka CM, Rager JE, Gardner AJ, Galusha AL, Parsons PJ, O'Shea TM, Fry RC. Metal mixtures modeling identifies birth weight-associated gene networks in the placentas of children born extremely preterm. CHEMOSPHERE 2023; 313:137469. [PMID: 36493891 PMCID: PMC10476282 DOI: 10.1016/j.chemosphere.2022.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Prenatal exposure to toxic metals is linked to numerous adverse birth and later-in-life outcomes. These outcomes are tied to disrupted biological processes in fetal-derived tissues including the placenta and umbilical cord yet the precise pathways are understudied in these target tissues. We set out to examine the relationship between metal concentrations in umbilical cord and altered gene expression networks in placental tissue. These novel relationships were investigated in a subset of the Extremely Low Gestational Age Newborn (ELGAN) cohort (n = 226). Prenatal exposure to 11 metals/metalloids was measured using inductively coupled plasma tandem-mass spectrometry (ICP-MS/MS) in cord tissue, ensuring passage through the placental barrier. RNA-sequencing was used to quantify >37,000 mRNA transcripts. Differentially expressed genes (DEGs) were identified with respect to each metal. Weighted gene co-expression analysis identified gene networks modulated by metals. Two innovative mixtures modeling techniques, namely principal components analysis and quantile-based g-computation, were employed to identify genes/gene networks associated with multi-metal exposure. Individually, lead was associated with the strongest genomic response of 191 DEGs. Joint lead and cadmium exposure was related to 657 DEGs, including DNA Methyl Transferase 1 (DNMT1). These genes were enriched for the Eukaryotic Initiation Factor 2 (EIF2) pathway. Four gene networks, each containing genes within a Nuclear Factor kappa-light-chain-enhancer of Activated B Cells (NF-kB)-mediated network, were significantly increased in average expression level in relation to increases in all metal concentrations. All four of these metal mixture-associated gene networks were negatively correlated with important predictors of neonatal health including birth weight, placenta weight, and fetal growth. Bringing together novel methodologies from epidemiological mixtures analyses and toxicogenomics, applied to a unique cohort of extremely preterm children, the present study highlighted critical genes and pathways in the placenta dysregulated by prenatal metal mixtures. These represent potential mechanisms underlying the developmental origins of metal-induced disease.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine M Bulka
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amaree J Gardner
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubrey L Galusha
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Guo KM, Li W, Wang ZH, He LC, Feng Y, Liu HS. Low-dose aspirin inhibits trophoblast cell apoptosis by activating the CREB/Bcl-2 pathway in pre-eclampsia. Cell Cycle 2022; 21:2223-2238. [PMID: 35792905 PMCID: PMC9586659 DOI: 10.1080/15384101.2022.2092814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022] Open
Abstract
Excessive apoptosis of placental trophoblast cells is considered a major cause of pre-eclampsia (PE) pathogenesis. Phosphorylation of the widely expressed cAMP response element binding protein (CREB) regulates apoptosis and may be involved in PE incidence. Low-dose aspirin (LDA) is an effective approach for preventing PE with unclear mechanisms. Thus we examined whether LDA protects against PE by inhibiting trophoblast cell apoptosis through CREB. The effects of LDA on human PE placenta, PE model rat placenta, and hydrogen peroxide (H2O2)-induced HTR-8/SVneo cell apoptosis were analyzed. TUNEL assay, immunohistochemistry, Cell Counting Assay Kit-8 (CCK-8) assay, western blot, and flow cytometry assay were performed. In the placenta of human PE and rat PE models, the TUNEL index increased and was partially corrected with LDA pre-treatment. Meanwhile, decreased Bcl-2 and increased Bax expression were significantly reversed by LDA pre-treatment. In HTR-8/SVneo cells, H2O2 decreased cell viability, promoted apoptosis, reduced the Bcl-2/Bax ratio, aggravated loss of mitochondrial membrane potential (MMP), increased cytoplasmic cytochrome c release, and simultaneously activated caspase-9 and caspase-3. These effects were effectively restored by LDA pre-treatment in the cells. Moreover, LDA promoted CREB phosphorylation in trophoblast cells. CREB interference further promoted apoptosis, reduced the Bcl-2/Bax ratio, and increased MMP loss. CREB interference also reversed the inhibitory effect of LDA on H2O2-induced apoptosis in HTR-8/SVneo cells. Thus, LDA was shown to inhibit trophoblast cell mitochondrial apoptosis by activating the CREB/Bcl-2 pathway, providing novel evidence for the protective mechanism of LDA in PE.Abbreviations; PE: Pre-eclampsia; LDA: low-dose aspirin; CREB: cAMP response element binding protein; ROS: reactive oxygen species; H2O2: hydrogen peroxide; PBS: Phosphate-buffered saline; Bcl-2: B-cell lymphoma-2; MMP: Mitochondrial membrane potential; Cyt-c: CytochromeC.
Collapse
Affiliation(s)
- Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Zhao-Hua Wang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, Guangzhou Medical University, Guangzhou, China
| | - Lang-Chi He
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Feng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui-Shu Liu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chakraborty P, Chatterjee S, Chatterjee I, Mitra I, Kalapahar S, Sharma S, Chattopadhyay R, Haldar R, Chaudhury K, Chakravarty B. Attenuation of placental pyruvate kinase M2 promotes oxidative imbalance and enhances inflammatory- apoptosis cross talk in rats with hyperhomocysteinemia associated pregnancy loss.. [DOI: 10.21203/rs.3.rs-1997950/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
10-15% of clinically recognized pregnancies end in miscarriage. Hyperhomocysteinemia in pregnant women has been associated with deep venous thrombosis, recurrent miscarriage, preeclampsia to name a few. Impaired placental function due to overt oxidative stress is one of the key mechanisms in development of pregnancy loss. Paucity of pathway–based microarray approach in embryonic–endometrial communication warrants elucidation of distinct profile of miRNAs in hyperhomocysteinemia-associated pregnancy loss (HAPL). Hyperhomocysteinemia was induced at a dose of 100mg/kg body-weight/day for D1-D18 of pregnancy. Placental histology by haematoxylin-eosin staining documented thrombus with reduced area of spongiotropoblasts in chorionic plate vessel. Placental mRNA was subjected to microarray analysis followed by pathway-analysis using Ingenuity Pathway Analysis (IPA). Genes involved in reproductive physiology, inflammatory pathways, immune responses, homocysteine metabolism, glucose metabolism, and oxidative stress were differentially expressed in HAPL. 21 pathways documented by IPA, were skewed to 10 by recursive feature elimination highlighting possible deregulation/s. Expression/s was re-confirmed by quantitative real- time PCR (qRT-PCR), western blot and flow cytometric analysis (FACS). Nine priori molecules (PKM2, AKT, PI3K, NF-κB, COX-2, sflt-1, HIF-1α, bax, caspase 9) were specifically modulated in HAPL as demonstrated by protein and mRNA expression. A parallel increase in insulin signaling (PI3K+,AKT+), inflammation (COX2+,NF-κB+), hypoxia (sflt-1+,HIF-1α+), apoptosis (bax+,caspase9+) with concomitant decrease in pyruvate kinase M2 in hyperhomocysteinemic placental cells by FACS with CD56, a marker for pregnancy loss was documented. The findings provide evidence that an oxidative stress-mediated placental damage perhaps represents the pathogenesis of HAPL, which may explore pathway-based therapeutic options for recurrent miscarriage.10–15% of clinically recognized pregnancies end in miscarriage. Hyperhomocysteinemia in pregnant women has been associated with deep venous thrombosis, recurrent miscarriage, preeclampsia to name a few. Impaired placental function due to overt oxidative stress is one of the key mechanisms in development of pregnancy loss. Paucity of pathway–based microarray approach in embryonic–endometrial communication warrants elucidation of distinct profile of miRNAs in hyperhomocysteinemia-associated pregnancy loss (HAPL). Hyperhomocysteinemia was induced at a dose of 100mg/kg body-weight/day for D1-D18 of pregnancy. Placental histology by haematoxylin-eosin staining documented thrombus with reduced area of spongiotropoblasts in chorionic plate vessel. Placental mRNA was subjected to microarray analysis followed by pathway-analysis using Ingenuity Pathway Analysis (IPA). Genes involved in reproductive physiology, inflammatory pathways, immune responses, homocysteine metabolism, glucose metabolism, and oxidative stress were differentially expressed in HAPL. 21 pathways documented by IPA, were skewed to 10 by recursive feature elimination highlighting possible deregulation/s. Expression/s was re-confirmed by quantitative real- time PCR (qRT-PCR), western blot and flow cytometric analysis (FACS). Nine priori molecules (PKM2, AKT, PI3K, NF-κB, COX-2, sflt-1, HIF-1α, bax, caspase 9) were specifically modulated in HAPL as demonstrated by protein and mRNA expression. A parallel increase in insulin signaling (PI3K+,AKT+), inflammation (COX2+,NF-κB+), hypoxia (sflt-1+,HIF-1α+), apoptosis (bax+,caspase9+) with concomitant decrease in pyruvate kinase M2 in hyperhomocysteinemic placental cells by FACS with CD56, a marker for pregnancy loss was documented. The findings provide evidence that an oxidative stress-mediated placental damage perhaps represents the pathogenesis of HAPL, which may explore pathway-based therapeutic options for recurrent miscarriage.
Collapse
Affiliation(s)
| | - Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata- 700006
| | | | - Imon Mitra
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | | | | | | - Rajen Haldar
- Department of Physiology, UCSTA, University of Calcutta
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | |
Collapse
|
9
|
Sieg W, Kiewisz J, Podolak A, Jakiel G, Woclawek-Potocka I, Lukaszuk J, Lukaszuk K. Inflammation-Related Molecules at the Maternal-Fetal Interface during Pregnancy and in Pathologically Altered Endometrium. Curr Issues Mol Biol 2022; 44:3792-3808. [PMID: 36135172 PMCID: PMC9497515 DOI: 10.3390/cimb44090260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
The blastocyst expresses paternally derived alloantigens and induces inflammation during implantation. However, it is necessary for the onset of pregnancy. An abnormal response might result in a pathological course of pregnancy or pregnancy failure. On the other hand, a state of maternal immune tolerance is necessary to ensure the normal development of pregnancy by suppressing inflammatory processes. This article discusses recognized mechanisms and the significance of inflammatory processes for embryo implantation and pregnancy establishment. We would also like to present disorders involving excessive inflammatory response and their influence on events occurring during embryo implantation. The chain of correlation between the processes responsible for embryo implantation and the subsequent physiological course of pregnancy is complicated. Many of those interrelationships are still yet to be discovered. Undoubtedly, their recognition will give hope to infertile couples for the emergence of new treatments that will increase the chance of giving birth to a healthy child.
Collapse
Affiliation(s)
| | - Jolanta Kiewisz
- Department of Human Histology and Embryology, Medical Faculty, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Amira Podolak
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Grzegorz Jakiel
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Jakub Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
10
|
Redman CW, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol 2022; 226:S907-S927. [PMID: 33546842 DOI: 10.1016/j.ajog.2020.09.047] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
Abstract
Preeclampsia evolves in 2 stages: a placental problem that generates signals to the mother to cause a range of responses that comprise the second stage (preeclampsia syndrome). The first stage of early-onset preeclampsia is poor placentation, which we here call malplacentation. The spiral arteries are incompletely remodeled, leading to later placental malperfusion, relatively early in the second half of pregnancy. The long duration of the first stage (several months) is unsurprisingly associated with fetal growth restriction. The first stage of late-onset preeclampsia, approximately 80% of total cases, is shorter (several weeks) and part of a process that is common to all pregnancies. Placental function declines as it outgrows uterine capacity, with increasing chorionic villous packing, compression of the intervillous space, and fetal hypoxia, and causes late-onset clinical presentations such as "unexplained" stillbirths, late-onset fetal growth restriction, or preeclampsia. The second stages of early- and late-onset preeclampsia share syncytiotrophoblast stress as the most relevant feature that causes the maternal syndrome. Syncytiotrophoblast stress signals in the maternal circulation are probably the most specific biomarkers for preeclampsia. In addition, soluble fms-like tyrosine kinase-1 (mainly produced by syncytiotrophoblast) is the best-known biomarker and is routinely used in clinical practice in many locations. How the stress signals change over time in normal pregnancies indicates that syncytiotrophoblast stress begins on average at 30 to 32 weeks' gestation and progresses to term. At term, syncytiotrophoblast shows increasing markers of stress, including apoptosis, pyroptosis, autophagy, syncytial knots, and necrosis. We label this phenotype the "twilight placenta" and argue that it accounts for the clinical problems of postmature pregnancies. Senescence as a stress response differs in multinuclear syncytiotrophoblast from that of mononuclear cells. Syncytiotrophoblast irreversibly acquires part of the senescence phenotype (cell cycle arrest) when it is formed by cell fusion. The 2 pathways converge on the common pathologic endpoint, syncytiotrophoblast stress, and contribute to preeclampsia subtypes. We highlight that the well-known heterogeneity of the preeclampsia syndrome arises from different pathways to this common endpoint, influenced by maternal genetics, epigenetics, lifestyle, and environmental factors with different fetal and maternal responses to the ensuing insults. This complexity mandates a reassessment of our approach to predicting and preventing preeclampsia, and we summarize research priorities to maximize what we can learn about these important issues.
Collapse
|
11
|
Sharma C, Purohit P, Khokhar M, Modi A, Singh P, Shekhar S, Sharma S, Gothwal M, Sharma P. A clinical and in-silico study exploring the association of CASP-3, NF-kB, miR-187, and miR-146 in pre-eclampsia. Hypertens Pregnancy 2021; 40:288-302. [PMID: 34727826 DOI: 10.1080/10641955.2021.1983592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Apoptosis is involved in pathogenesis of Pre-eclampsia (PE), further research is needed to determine its molecular mechanism. METHODS The study recruited two groups (controls; 09, PE; 11). Biochemical tests, RT-PCR and ELISA were employed for analysis of genes and MicroRNAs (miRNA). Bioinformatics tools were employed for interactomics analysis. RESULTS There was increased apoptosis in maternal placental tissue (MPT) and Maternal Blood Cells (MBC) as demonstrated by expression of CASP3 and NF-κB1. miR-146-5p and 187-5p were downregulated in MBC and MPT but upregulated in fetal placental tissue (FPT).. DISCUSSION An increased apoptosis in MBC and MPT is a significant contributory factor for PE in pregnancy, while FPT is immune to the aforementioned effects.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Pratibha Singh
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Shashank Shekhar
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Meenakshi Gothwal
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| |
Collapse
|
12
|
The Preeclamptic Environment Promotes the Activation of Transcription Factor Kappa B by P53/RSK1 Complex in a HTR8/SVneo Trophoblastic Cell Line. Int J Mol Sci 2021; 22:ijms221910200. [PMID: 34638542 PMCID: PMC8508006 DOI: 10.3390/ijms221910200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia is a pregnancy disorder associated with shallow placentation, forcing placental cells to live in hypoxic conditions. This activates the transcription factor kappa B (NFκB) in maternal and placental cells. Although the role of NFκB in preeclampsia is well documented, its mechanism of activation in trophoblastic cells has been never studied. This study investigates the mechanism of NFκB activation in a first trimester trophoblastic cell line (HTR8/SVneo) stimulated by a medium containing serum from preeclamptic (PE) or normotensive (C) women in hypoxic (2% O2) or normoxic (8% O2) conditions. The results indicate that in HTR8/SVneo cells, the most widely studied NFκB pathways, i.e., canonical, non-canonical and atypical, are downregulated in environment PE 2% O2 in comparison to C 8% O2. Therefore, other pathways may be responsible for NFκB activation. One such pathway depends on the activation of NFκB by the p53/RSK1 complex through its phosphorylation at Serine 536 (pNFκB Ser536). The data generated by our study show that inhibition of the p53/RSK1 pathway by p53-targeted siRNA results in a depletion of pNFκB Ser536 in the nucleus, but only in cells incubated with PE serum at 2% O2. Thus, the p53/RSK1 complex might play a critical role in the activation of NFκB in trophoblastic cells and preeclamptic placentas.
Collapse
|
13
|
Rong M, Yan X, Zhang H, Zhou C, Zhang C. Dysfunction of Decidual Macrophages Is a Potential Risk Factor in the Occurrence of Preeclampsia. Front Immunol 2021; 12:655655. [PMID: 34054819 PMCID: PMC8152936 DOI: 10.3389/fimmu.2021.655655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a multi-factorial and multi-genetic disorder that affects more than eight million mother and baby pairs each year. Currently, most of the attention to the pathogenesis of preeclampsia has been focused on placenta, but recent progresses suggest that excellent decidualization lays foundation for placentation and growth. Moreover, preeclampsia is associated with an imbalance in immunoregulatory mechanisms, however, how the immune regulatory system in the decidua affects preeclampsia is still unclear. In our study, after intersecting the genes of differentially expressed between preeclampsia and the control gotten by conventional expression profile analysis and the genes contained in the ligand receptor network, we found eight differentially expressed genes in a ligand-receptor relationship, and the eight genes have a characteristic: most of them participate in the interaction between decidual macrophages and other decidual immune cells. The results of single-cell sequencing of decidual cells further demonstrated that decidual macrophages affect the functions of other immune cells through export. As a result, abnormal gene expression affects the export function of decidual macrophages, which in turn affects the interaction of decidual macrophages with other immune cells, thereby destroying the original immune regulation mechanism, and ultimately leading to the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xingyu Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Chan Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
14
|
Yin A, Chen Q, Zhong M, Jia B. MicroRNA-138 improves LPS-induced trophoblast dysfunction through targeting RELA and NF-κB signaling. Cell Cycle 2021; 20:508-521. [PMID: 33550900 DOI: 10.1080/15384101.2021.1877927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia is a pregnancy complication classified by new onset of elevated blood pressure and proteinuria after 20 weeks of gestation. During preeclampsia, extra villous trophoblasts fail to adequately invade the myometrial spiral arteries, leading to incomplete and impaired vessel transformation and initiating or aggravating preeclampsia. Although NF-κB and proinflammatory cytokines have been reported to be related to trophoblast dysfunction, the underlying mechanism remains unclear. Herein, we demonstrated the miR-138/RELA axis modulating the migratory ability, and invasive ability of HTR-8/SVneo and JEG-3 cells, as well as the inflammatory factor levels in response to LPS stimulation. miR-138 expression was upregulated in preeclampsia placenta and LPS-stimulated HTR-8/SVneo and JEG-3 cell lines. miR-138 overexpression rescued the migratory and invasive ability of HTR-8/SVneo and JEG-3 cells inhibited by LPS stimulation, and decreased LPS-induced TNF-α and IL-6 levels. By binding the 3'-UTR of RELA, miR-138 negatively regulated p65 expression. The silencing of p65 also improved LPS-induced HTR-8/SVneo and JEG-3 cell dysfunction and TNF-α and IL-6 levels. More importantly, p65 overexpression partially reversed the functions of miR-138 overexpression upon both cells, indicating that miR-138 exerted its biological effects through targeting RELA. In conclusion, miR-138 improves LPS-induced inflammation and oxidative stress on trophoblasts through targeting RELA and affecting NF-κB signaling. The miR-138/RELA axis might be involved in preeclampsia pathogenesis, which requires further in vivo and clinical researches.
Collapse
Affiliation(s)
- Ailan Yin
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Zhong
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bei Jia
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
17
|
Sakowicz A, Bralewska M, Pietrucha T, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW, Gach A, Rybak-Krzyszkowska M, Witas PJ, Huras H, Grzesiak M, Biesiada L. Canonical, Non-Canonical and Atypical Pathways of Nuclear Factor кb Activation in Preeclampsia. Int J Mol Sci 2020; 21:E5574. [PMID: 32759710 PMCID: PMC7432517 DOI: 10.3390/ijms21155574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/31/2023] Open
Abstract
Although higher nuclear factor κB (NFκB) expression and activity is observed in preeclamptic placentas, its mechanism of activation is unknown. This is the first study to investigate whether the canonical, non-canonical, or atypical NFκB activation pathways may be responsible for the higher activation of NFκB observed in preeclamptic placentas. The study included 268 cases (130 preeclamptic women and 138 controls). We studied the expression of the genes coding for NFκB activators (NIK, IKKα, IKKβ, and CK2α) and inhibitors (IκBα and IκBβ) using RT-PCR in real time. The RT-PCR results were verified on the protein level using ELISA and Western blot. To determine the efficiency of the pathways, the ratios of activator(s) to one of the inhibitors (IκBα or IκBβ) were calculated for each studied pathway. The preeclamptic placentas demonstrated significantly lower IKKα and CK2α but higher IκBα and IκBβ protein levels. In addition, the calculated activator(s) to inhibitor (IκBα or IκBβ) ratios suggested that all studied pathways might be downregulated in preeclamptic placentas. Our results indicate that preeclamptic placentas may demonstrate mechanisms of NFκB activation other than the canonical, non-canonical, and atypical forms. In these mechanisms, inhibitors of NFκB may play a key role. These observations broaden the existing knowledge regarding the molecular background of preeclampsia development.
Collapse
Affiliation(s)
- Agata Sakowicz
- Medical University of Lodz, Department of Medical Biotechnology, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | - Michalina Bralewska
- Medical University of Lodz, Department of Medical Biotechnology, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | - Tadeusz Pietrucha
- Medical University of Lodz, Department of Medical Biotechnology, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | | | | | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute in Lodz, 93-338 Lodz, Poland;
| | - Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, University Hospital in Krakow, 31-501 Krakow, Poland; (M.R.-K.); (H.H.)
| | - Piotr J Witas
- Medical University of Lodz, Department of Haemostatic Disorders, 92-215 Lodz, Poland;
| | - Hubert Huras
- Department of Obstetrics and Perinatology, University Hospital in Krakow, 31-501 Krakow, Poland; (M.R.-K.); (H.H.)
| | - Mariusz Grzesiak
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute in Lodz, 93-338 Lodz, Poland;
- Medical University of Lodz, Department of Obstetrics and Gynecology, 93-338 Lodz, Poland
| | - Lidia Biesiada
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| |
Collapse
|
18
|
Romão-Veiga M, Bannwart-Castro CF, Borges VTM, Golim MA, Peraçoli JC, Peraçoli MTS. Increased TLR4 pathway activation and cytokine imbalance led to lipopolysaccharide tolerance in monocytes from preeclamptic women. Pregnancy Hypertens 2020; 21:159-165. [PMID: 32535227 DOI: 10.1016/j.preghy.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/02/2023]
Abstract
Preeclampsia (PE) is a pregnancy syndrome characterized by a systemic inflammatory response, and endogenous activation of monocytes. This study aimed to determine whether the activation of monocytes from preeclamptic women might interfere with the response to lipopolysaccharide (LPS)-in vitro stimulation. Fifty-two preeclamptic women and 32 normotensive (NT) pregnant women were included. Monocytes from peripheral blood were cultured with or without LPS. TLR4 expression was analyzed by flow cytometry, NF-κB activity was determined in nuclear extracts and cytokines production was evaluated by ELISA. Endogenous TLR4 ligands such as Hyaluronan, HMGB1 and Hsp70 were determined in plasma. The endogenous TLR4 expression and activation of NF-κB were statistically higher in monocytes from women with PE compared to NT group. Early-onset PE showed higher TLR4 expression compared to late-onset PE. Plasma levels of Hyaluronan, HMGB1, and Hsp70, as well as endogenous production of inflammatory cytokines, were elevated whilst lower production of IL-10 was observed in the PE group. After culture with LPS, monocytes presented lower NF-κB activation, TNF-α and IL-12 production in PE groups than in the NT group. The study demonstrates endogenous activation of monocytes from preeclamptic women, accompanied by higher expression of TLR4, NF-κB activation and elevated production of pro-inflammatory cytokines. The higher plasma levels of the TLR4 ligands hyaluronan, HMGB1 and hsp70, as well as the high concentration of TNF-α endogenously produced by monocytes, could induce the LPS tolerance phenomenon in these cells. These results suggest that monocytes play an important role in the maternal excessive systemic inflammatory response in PE.
Collapse
Affiliation(s)
- Mariana Romão-Veiga
- Department of Gynecology and Obstetrics, Botucatu São Paulo State University, Medical School, Botucatu, SP, Brazil.
| | | | | | - Marjorie Assis Golim
- Division of Hemocenter - Botucatu São Paulo State University, Medical School, Botucatu, São Paulo, SP, Brazil
| | - José Carlos Peraçoli
- Department of Gynecology and Obstetrics, Botucatu São Paulo State University, Medical School, Botucatu, SP, Brazil
| | - Maria Terezinha Serrão Peraçoli
- Department of Microbiology and Immunology, Botucatu São Paulo State University, Institute of Biosciences, Botucatu, SP, Brazil
| |
Collapse
|
19
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
20
|
Eddy AC, Howell JA, Chapman H, Taylor E, Mahdi F, George EM, Bidwell GL. Biopolymer-Delivered, Maternally Sequestered NF-κB (Nuclear Factor-κB) Inhibitory Peptide for Treatment of Preeclampsia. Hypertension 2019; 75:193-201. [PMID: 31786977 DOI: 10.1161/hypertensionaha.119.13368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that causes significant acute and long-term risk to the mother and the baby. The multifaceted maternal syndrome is driven by overproduction of circulating anti-angiogenic factors, widespread inflammation, and endothelial dysfunction. Nuclear factor-κB (NF-κB) is a transcription factor that plays a central role in the inflammatory response. Its activity is increased in the preeclamptic placenta, and it promotes the systemic endothelial dysfunction present in preeclampsia. There is an acute need for new therapeutics targeted to the causative pathways of preeclampsia. Our group has developed a drug delivery system based on the bioengineered protein ELP (elastin-like polypeptide) that is capable of stabilizing therapeutics in the maternal circulation and preventing their placental transfer. Here we used the ELP carrier system to deliver a peptide known to inhibit the NF-κB pathway. This polypeptide, containing a cell-penetrating peptide and an NF-κB inhibitory peptide derived from the p50 nuclear localization sequence (abbreviated SynB1-ELP-p50i), blocked NF-κB activation and prevented TNF-α (tumor necrosis factor alpha)-induced endothelin production in vitro. Fusion of the p50i peptide to the SynB1-ELP carrier slowed its plasma clearance and prevented its placental transfer in pregnant rats, resulting in increased deposition in the maternal kidney, liver, and placenta relative to the free peptide. When administered in a rat model of placental ischemia, SynB1-ELP-p50i partially ameliorated placental ischemia-induced hypertension and reduced placental TNF-α levels with no signs of toxicity. These data support the continued development of ELP-delivered NF-κB inhibitors as maternally sequestered anti-inflammatory agents for preeclampsia therapy.
Collapse
Affiliation(s)
- Adrian C Eddy
- From the Department of Physiology and Biophysics (A.C.E., H.C., E.T., E.M.G.), University of Mississippi Medical Center
| | - John Aaron Howell
- Graduate Program in Neuroscience (J.A.H.), University of Mississippi Medical Center.,Department of Neurology (J.A.H., F.M., G.L.B.), University of Mississippi Medical Center
| | - Heather Chapman
- From the Department of Physiology and Biophysics (A.C.E., H.C., E.T., E.M.G.), University of Mississippi Medical Center
| | - Erin Taylor
- From the Department of Physiology and Biophysics (A.C.E., H.C., E.T., E.M.G.), University of Mississippi Medical Center
| | - Fakhri Mahdi
- Department of Neurology (J.A.H., F.M., G.L.B.), University of Mississippi Medical Center
| | - Eric M George
- From the Department of Physiology and Biophysics (A.C.E., H.C., E.T., E.M.G.), University of Mississippi Medical Center.,Department of Cell and Molecular Biology (E.M.G., G.L.B.), University of Mississippi Medical Center
| | - Gene L Bidwell
- Department of Neurology (J.A.H., F.M., G.L.B.), University of Mississippi Medical Center.,Department of Cell and Molecular Biology (E.M.G., G.L.B.), University of Mississippi Medical Center.,Department of Pharmacology and Toxicology (G.L.B.), University of Mississippi Medical Center
| |
Collapse
|
21
|
Tanaka K, Nakabayashi K, Kawai T, Tanigaki S, Matsumoto K, Hata K, Kobayashi Y. Gene expression and DNA methylation changes in BeWo cells dependent on tumor necrosis factor-α and insulin-like growth factor-I. Hum Cell 2019; 33:37-46. [PMID: 31724103 DOI: 10.1007/s13577-019-00299-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023]
Abstract
Pregnant women with increased insulin resistance, characterized by elevated levels of tumor necrosis factor-alpha (TNF-α) and insulin-like growth factor-I (IGF-I), are at high risk of preeclampsia. We hypothesized that TNF-α and IGF-I affect the placentas and cause pathological changes leading to preeclampsia. To understand the genetic and epigenetic effects of TNF-α and IGF-I on trophoblast cells, gene expression microarray and DNA methylation array of BeWo cells stimulated by TNF-α (100 pg/ml, 100 ng/ml) and IGF-I (100 ng/ml) were conducted. Microarray analysis revealed the differential gene expression patterns in BeWo cells co-stimulated by TNF-α and IGF-I. Enrichment analysis identified the terms associated with NF-kappa B signaling pathways and arachidonic acid cascades such as PTGS2 and PTGER2. DNA methylation array revealed the distinct CpG methylation pattern in BeWo cells stimulated by high-TNF-α and IGF-I, while neither of them showed independent effects. Enrichment analysis identified the terms associated with major histocompatibility complex proteins. Integration of transcriptome and DNA methylome analyses identified three differentially expressed genes with significant DNA methylation change: C3, GP1BA, and NFKBIE, which are all possibly associated with pathogenesis of preeclampsia. In conclusion, co-stimulation of TNF-α and IGF-I induced the genetic and epigenetic changes associated with preeclampsia in BeWo cells. The results suggested that BeWo cells stimulated by TNF-α and IGF-I is a good in vitro model of preeclamptic placenta in pregnancy with increased insulin resistance.
Collapse
Affiliation(s)
- Kei Tanaka
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
22
|
Placental Expression of NEMO Protein in Normal Pregnancy and Preeclampsia. DISEASE MARKERS 2019; 2019:8418379. [PMID: 30723530 PMCID: PMC6339720 DOI: 10.1155/2019/8418379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/24/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
Background Preeclamptic pregnancies often present an intensified inflammatory state associated with the nuclear activity of NFκB. NEMO is an essential regulator of nuclear factor kappa B (NFκB) in cytoplasmic and nuclear cellular compartments. The aim of the present study is to examine the level and localization of the NEMO protein in preeclamptic and nonpreeclamptic placentas. Methods The study includes 97 preeclamptic cases and 88 controls. NEMO distribution was analyzed immunohistochemically. Its localization in the nuclear and cytoplasmic fractions, as well as in total homogenates of placental samples, was studied by western blot and ELISA. Results The western blot and ELISA results indicate a significant difference in NEMO concentration in the total and nuclear fractions between preeclamptic and control samples (p < 0.01 and p < 0.001, respectively). In the cytoplasmic complement, similar levels of NEMO were found in preeclamptic and control placentas. In addition, immunohistochemical staining revealed that the NEMO protein is mainly localized in the syncytiotrophoblast layer, with controls demonstrating a stronger reaction with NEMO antibodies. This study also shows that the placental level of NEMO depends on the sex of the fetus. Conclusions The depletion of the NEMO protein in the cellular compartments of placental samples may activate one of the molecular pathways influencing the development of preeclampsia, especially in pregnancies with a female fetus. A reduction of the NEMO protein in the nuclear fraction of preeclamptic placentas may intensify the inflammatory state characteristic for preeclampsia and increase the level of apoptosis and necrosis within preeclamptic placentas.
Collapse
|
23
|
Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery. Cell Death Dis 2018; 9:1150. [PMID: 30455461 PMCID: PMC6242930 DOI: 10.1038/s41419-018-1190-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Preeclampsia is a devastating pregnancy disorder. Severity varies widely, and while severe preeclampsia often requires pre-term delivery, women with mild preeclampsia may reach term with minor interventions. The mechanisms that mediate disease severity are poorly understood, but may include adaptive processes by the placenta. We aimed to establish whether in pregnancies that reached term and those that delivered pre-term, the placental response to preeclampsia was intrinsically different, and explore potential adaptive mechanisms. Hydrogen peroxide production and antioxidant activity were increased in term preeclamptic placentae, whereas pre-term preeclamptic placentae had reduced hydrogen peroxide production and reduced function of the antioxidant system superoxide dismutase compared to control placentae. Markers of mitochondrial fission/fusion, apoptosis and the expression level of mitochondrial complexes were differentially disrupted in term compared to pre-term preeclamptic placentae. Mitochondrial respiration and content were increased in term preeclamptic placentae, but mitochondria had a lower respiratory reserve capacity. Mitochondrial respiration and hydrogen peroxide production were increased in healthy term placentae after in vitro hypoxia/reoxygenation. Placentae from preeclamptic pregnancies that reached term showed multiple adaptions that were not present in pre-term preeclamptic placentae. Increased antioxidant activity, and expression of markers of mitochondrial fusion and apoptotic suppression, may relate to salvaging damaged mitochondria. Increased mitochondrial respiration may allow ongoing tissue function even with reduced respiratory efficiency in term preeclamptic pregnancies. Response after in vitro hypoxia/reoxygenation suggests that disruption of oxygen supply is key to placental mitochondrial adaptations. Reactive oxygen species signalling in term preeclamptic placentae may be at a level to trigger compensatory antioxidant and mitochondrial responses, allowing tissue level maintenance of function when there is organelle level dysfunction.
Collapse
|
24
|
Huang Z, Du G, Huang X, Han L, Han X, Xu B, Zhang Y, Yu M, Qin Y, Xia Y, Wang X, Lu C. The enhancer RNA lnc-SLC4A1-1 epigenetically regulates unexplained recurrent pregnancy loss (URPL) by activating CXCL8 and NF-kB pathway. EBioMedicine 2018; 38:162-170. [PMID: 30448228 PMCID: PMC6306333 DOI: 10.1016/j.ebiom.2018.11.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Enhancer RNAs (eRNAs) are a group of lncRNAs transcribed from enhancers, whose regulatory effects on gene expression are an emerging area of interest. However, the role of eRNAs in regulating trophoblast cells and unexplained recurrent pregnancy loss (URPL) remains elusive. Methods We profiled eRNAs in villi from URPL patients and matched controls by RNA-seq. Functions of URPL-related eRNAs were further investigated in vitro. Results We identified lnc-SLC4A1-1, which was transcribed from an active enhancer marked with H3K27ac and H3K4me1 and so-called eRNA, highly expressed in URPL patients. Gain-of-function experiments indicated that lnc-SLC4A1-1 facilitated trophoblast cell migration and apoptosis. Mechanistically, as an eRNA, lnc-SLC4A1-1 was retained in the nuclei and recruited transcription factor NF-κB to bind to CXCL8, resulting in increased H3K27ac in the CXCL8 promoter and subsequent elevation of CXCL8 expression. Activation of CXCL8 exacerbated inflammatory reactions in trophoblast cells by inducing TNF-α and IL-1β, which could be blocked by an antagonist of lnc-SLC4A1-1. Interpretation These findings indicate that an eRNA, lnc-SLC4A1-1, alters trophoblast function via activation of immune responses and by regulating the NF-κB/CXCL8 axis. Our study provides new insights in understanding lncRNA/eRNA function in pathological pregnancy, potentially informing on therapeutic strategies for URPL. Fund National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, National Key Research and Development Program, the Priority Academic Program for the Development of Jiangsu Higher Education Institutions.
Collapse
Affiliation(s)
- Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xiaomin Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Li Han
- Department of Obstetrics, Huai-An First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Qin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Preeclampsia (PE) is a hypertensive disorder exclusive for pregnancy. It affects women all over the world and poses a great threat to life, both for mother and child. No definitive treatment exists and placenta delivery comprises the only known cure for PE. One of the most severe complications observed in preeclamptic women is the occurrence of cardiovascular diseases (CVDs) later in life. RECENT FINDINGS Both PE and CVDs share some of their pathogenic pathways and gene variations. Thus far, a number of publications have examined those relationships; however, almost all of them focus only on common risk factors. The precise pathomechanism and genetic basis of PE and its associated cardiovascular complications remain unknown. Therefore, the aim of this review is to unify and clarify the current state of knowledge and provide direction for future studies, especially those regarding the genetic aspect.
Collapse
Affiliation(s)
- Michalina Lisowska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Łódź, Poland.
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Łódź, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Łódź, Poland
| |
Collapse
|
26
|
Teimoori B, Yazdi A, Rezaei M, Mohammadpour‐Gharehbagh A, Jahantigh D, Salimi S. The association of the placental CASPASE‐3 gene polymorphisms and preeclampsia susceptibility and in‐silico analysis. J Cell Biochem 2018; 119:6756-6764. [DOI: 10.1002/jcb.26869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/21/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Batool Teimoori
- Department of Obstetrics and GynecologySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Atefeh Yazdi
- Department of Obstetrics and GynecologySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Mahnaz Rezaei
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | | | - Danial Jahantigh
- Department of BiologyFaculty of ScienceUniversity of Sistan and BaluchestanZahedanIran
| | - Saeedeh Salimi
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
27
|
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article. BJOG 2018; 125:1379-1387. [PMID: 29460466 DOI: 10.1111/1471-0528.15172] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor kappa B (NFκB) controls the expression of over 400 genes, some of which are associated with reproductive events. During implantation, immune cells accumulate in the maternal-fetal interface; they secrete inflammatory mediators under the control of NFĸB, the level of which also rises. NFĸB is then downregulated to maintain gestation, but its level rises again before birth to manage prostaglandin, cytokine, and chemokine synthesis, and to stimulate uterine contraction. This review summarises the current state of knowledge about NFκB and its role in the molecular regulation of processes related to pregnancy development. TWEETABLE ABSTRACT This review examines the current state of knowledge about role of NFκB in the development of pregnancy.
Collapse
Affiliation(s)
- A Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Elevated microRNA-34a contributes to trophoblast cell apoptosis in preeclampsia by targeting BCL-2. J Hum Hypertens 2017; 31:815-820. [PMID: 29022890 DOI: 10.1038/jhh.2017.65] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is one of the most common pregnancy-specific pathologic complications, and is characterised by onset of hypertension and proteinuria. Placental trophoblast cell apoptosis is generally accepted as a major cause of PE. However, the details of the mechanism underlying the condition remain unclear. Here, we aimed to investigate a possible association between microRNA (miR)-34a and human trophoblast cell apoptosis during PE. We evaluated miR-34a expression in placentas from patients with PE compared with those from healthy pregnant individuals. Furthermore, we measured apoptosis rate after miR-34a mimic and/or inhibitor transfection in vitro, and identified B-cell CLL/lymphoma 2 (BCL-2) as a target of miR-34a. We found that miR-34a levels were significantly higher in placental tissues from patients with PE than in normal placentas. Upregulation of miR-34a induced trophoblast cell apoptosis in PE by inhibiting expression of BCL-2 protein. miR-34a inhibition reversed miR-34a-induced apoptosis in the HTR-8/SVneo human trophoblast cell line. Our findings indicate that miR-34a may be linked to the occurrence of PE via effects on BCL-2 in the human placenta, and may therefore provide a potential therapeutic target for PE.
Collapse
|
29
|
Williamson RD, McCarthy C, Kenny LC, O’Keeffe GW. Magnesium sulphate prevents lipopolysaccharide-induced cell death in an in vitro model of the human placenta. Pregnancy Hypertens 2016; 6:356-360. [DOI: 10.1016/j.preghy.2016.08.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/11/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
30
|
Brew O, Sullivan MHF, Woodman A. Comparison of Normal and Pre-Eclamptic Placental Gene Expression: A Systematic Review with Meta-Analysis. PLoS One 2016; 11:e0161504. [PMID: 27560381 PMCID: PMC4999138 DOI: 10.1371/journal.pone.0161504] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
Pre-eclampsia (PE) is a serious multi-factorial disorder of human pregnancy. It is associated with changes in the expression of placental genes. Recent transcription profiling of placental genes with microarray analyses have offered better opportunities to define the molecular pathology of this disorder. However, the extent to which placental gene expression changes in PE is not fully understood. We conducted a systematic review of published PE and normal pregnancy (NP) control placental RNA microarrays to describe the similarities and differences between NP and PE placental gene expression, and examined how these differences could contribute to the molecular pathology of the disease. A total of 167 microarray samples were available for meta-analysis. We found the expression pattern of one group of genes was the same in PE and NP. The review also identified a set of genes (PE unique genes) including a subset, that were significantly (p < 0.05) down-regulated in pre-eclamptic placentae only. Using class prediction analysis, we further identified the expression of 88 genes that were highly associated with PE (p < 0.05), 10 of which (LEP, HTRA4, SPAG4, LHB, TREM1, FSTL3, CGB, INHA, PROCR, and LTF) were significant at p < 0.001. Our review also suggested that about 30% of genes currently being investigated as possibly of importance in PE placenta were not consistently and significantly affected in the PE placentae. We recommend further work to confirm the roles of the PE unique and associated genes, currently not being investigated in the molecular pathology of the disease.
Collapse
Affiliation(s)
- O. Brew
- University of West London, Brentford, Middlesex, United Kingdom
| | - M. H. F. Sullivan
- Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - A. Woodman
- University of West London, Ealing, London, United Kingdom
| |
Collapse
|
31
|
Zheng Y, Zhao Y, Luo Q, Liu X, Liu X, Hu Y, Zou L. Edaravone protects against cobalt chloride-induced dysfunctions in apoptosis and invasion in trophoblast cells. Mol Reprod Dev 2016; 83:576-87. [PMID: 27128210 DOI: 10.1002/mrd.22652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/24/2016] [Indexed: 12/24/2022]
Affiliation(s)
- YanFang Zheng
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Yin Zhao
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - QingQing Luo
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - XiaoXia Liu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - XiaoPing Liu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Ying Hu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Li Zou
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| |
Collapse
|
32
|
El-Baz MAH, El-Deeb TS, El-Noweihi AM, Mohany KM, Shaaban OM, Abbas AM. Environmental factors and apoptotic indices in patients with intrauterine growth retardation: a nested case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:589-596. [PMID: 25682005 DOI: 10.1016/j.etap.2015.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Egypt has one of the highest incidences of IUGR. The current study investigates the effect of heavy metals toxicity as risk factors of IUGR and determines the possible role of increased apoptosis in their pathogenesis. METHODS This study was conducted in Assiut, Egypt, included 60 women diagnosed to have IUGR. We measured lead and cadmium levels in blood besides arsenic and cadmium levels in urine. Neonatal scalp hair sample were analyzed for arsenic content. Quantitative determination of human placental Bcl-2 and caspase-3 were performed. RESULTS There are significantly higher levels of heavy metals and caspase-3 and lower levels of placental Bcl-2 in the IUGR group. The levels of heavy metals were positively correlated with caspase-3 while negatively correlated (except cadmium) with Bcl-2 levels. CONCLUSIONS There is an alarming high level of heavy metals toxicity in Egypt that was positively correlated to IUGR. Increased placental apoptosis may be one of the possible mechanisms behind the effect.
Collapse
Affiliation(s)
- Mona A H El-Baz
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Thorya S El-Deeb
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amira M El-Noweihi
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Khalid M Mohany
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Omar M Shaaban
- Department of Obstetrics and Gynecology, Assiut University, Assiut, Egypt.
| | - Ahmed M Abbas
- Department of Obstetrics and Gynecology, Assiut University, Assiut, Egypt.
| |
Collapse
|
33
|
Bidwell GL, George EM. Maternally sequestered therapeutic polypeptides - a new approach for the management of preeclampsia. Front Pharmacol 2014; 5:201. [PMID: 25249978 PMCID: PMC4155872 DOI: 10.3389/fphar.2014.00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/12/2014] [Indexed: 11/13/2022] Open
Abstract
The last several decades have seen intensive research into the molecular mechanisms underlying the symptoms of preeclampsia. While the underlying cause of preeclampsia is believed to be defective placental development and resulting placental ischemia, it is only recently that the links between the ischemic placenta and maternal symptomatic manifestation have been elucidated. Several different pathways have been implicated in the development of the disorder; most notably production of the anti-angiogenic protein sFlt-1, induction of auto-immunity and inflammation, and production of reactive oxygen species. While the molecular mechanisms are becoming clearer, translating that knowledge into effective therapeutics has proven elusive. Here we describe a number of peptide based therapies we have developed to target theses pathways, and which are currently being tested in preclinical models. These therapeutics are based on a synthetic polymeric carrier elastin-like polypeptide (ELP), which can be synthesized in various sequences and sizes to stabilize the therapeutic peptide and avoid crossing the placental interface. This prevents fetal exposure and potential developmental effects. The therapeutics designed will target known pathogenic pathways, and the ELP carrier could prove to be a versatile delivery system for administration of a variety of therapeutics during pregnancy.
Collapse
Affiliation(s)
- Gene L Bidwell
- Department of Neurology, The University of Mississippi Medical Center Jackson, MS, USA ; Department of Biochemistry, The University of Mississippi Medical Center Jackson, MS, USA
| | - Eric M George
- Department of Biochemistry, The University of Mississippi Medical Center Jackson, MS, USA ; Department of Physiology and Biophysics, The University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
34
|
Huang Q, Chen H, Wang F, Brost BC, Li J, Gao Y, Li Z, Gao Y, Jiang SW. Reduced syncytin-1 expression in choriocarcinoma BeWo cells activates the calpain1-AIF-mediated apoptosis, implication for preeclampsia. Cell Mol Life Sci 2014; 71:3151-64. [PMID: 24413738 PMCID: PMC4644425 DOI: 10.1007/s00018-013-1533-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 11/02/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022]
Abstract
Placentas associated with preeclampsia are characterized by extensive apoptosis in trophoblast lineages. Syncytin-1 (HERVWE1) mediates the fusion of cytotrophoblasts to form syncytiotrophoblasts, which assume the placental barrier, fetal-maternal exchange and endocrine functions. While decreased syncytin-1 expression has been observed in preeclamptic placentas, it is not clear if this alteration is involved in trophoblast apoptosis. In the current study, we found that siRNA-mediated knockdown of syncytin-1 led to apoptosis in choriocarcinoma BeWo, a cell line of trophoblastic origin. Characterization of the apoptotic pathways indicated that this effect does not rely on the activation of caspases. Rather, decreased syncytin-1 levels activated the apoptosis inducing factor (AIF) apoptotic pathway by inducing the expression, cleavage, and nuclear translocation of AIF. Moreover, calpain1, the cysteine protease capable of cleaving AIF, was upregulated by syncytin-1 knockdown. Furthermore, treatment with calpain1 inhibitor MDL28170 effectively reversed AIF cleavage, AIF nuclear translocation, and cell apoptosis triggered by syncytin-1 downregulation, verifying the specific action of calpain1-AIF pathway in trophoblast apoptosis. We confirmed that preeclamptic placentas express lower levels of syncytin-1 than normal placentas, and observed an inverse correlation between syncytin-1 and AIF/calpain1 mRNA levels, a result consistent with the in vitro findings. Immunohistochemistry analyses indicated decreased syncytin-1 and increased AIF and calpain1 protein levels in apoptotic cells of preeclamptic placentas. These findings have for the first time revealed that decreased levels of syncytin-1 can trigger the AIF-mediated apoptosis pathway in BeWo cells. This novel mechanism may contribute to the structural and functional deficiencies of syncytium frequently observed in preeclamptic placentas.
Collapse
Affiliation(s)
- Qiang Huang
- The Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an, 710004 Shaanxi China
- Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, 515041 Guangzhou China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing, 102206 China
| | - Brian C. Brost
- Department of Obstetrics and Gynecology, Mayo Clinic, Mayo College of Medicine, Rochester, MN 55902 USA
| | - Jinping Li
- Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404 USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Mayo College of Medicine, Rochester, MN 55902 USA
| | - Yu Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Zongfang Li
- The Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an, 710004 Shaanxi China
| | - Ya Gao
- The Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an, 710004 Shaanxi China
| | - Shi-Wen Jiang
- Department of Biological Science, Mercer University School of Medicine, Savannah, GA 31404 USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Mayo College of Medicine, Rochester, MN 55902 USA
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404 USA
| |
Collapse
|
35
|
Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the watchdog of villous trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis. Mol Cell Endocrinol 2013; 381:35-45. [PMID: 23886990 DOI: 10.1016/j.mce.2013.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 06/10/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022]
Abstract
Human placenta produces melatonin and expresses its receptors. We propose that melatonin, an antioxidant, protects the human placenta against hypoxia/reoxygenation (H/R)-induced damage. Primary term villous cytotrophoblasts were cultured under normoxia (8% O2) with or without 1mM melatonin for 72h to induce differentiation into the syncytiotrophoblast. The cells were then cultured for an additional 22h under normoxia or subjected to hypoxia (0.5% O2) for 4h followed by 18h reoxygenation (8% O2) with or without melatonin. H/R induced oxidative stress, which activated the Bax/Bcl-2 mitochondrial apoptosis pathway and the downstream fragmentation of DNA. Villous trophoblast treatment with melatonin reversed all the negative effects induced by H/R to normoxic levels. This study shows that melatonin protects the villous trophoblast against H/R-induced oxidative stress and apoptosis and suggests a potential preventive and therapeutic use of this indolamine in pregnancy complications characterized by syncytiotrophoblast survival alteration.
Collapse
Affiliation(s)
- Dave Lanoix
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | | | | |
Collapse
|
36
|
Roje D, Zekic Tomas S, Capkun V, Marusic J, Resic J, Kuzmic Prusac I. Asymmetrical fetal growth is not associated with altered trophoblast apoptotic activity in idiopathic intrauterine growth retardation. J Obstet Gynaecol Res 2013; 40:410-7. [DOI: 10.1111/jog.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Damir Roje
- Clinical Hospital Center Split; Split Croatia
| | | | | | | | | | | |
Collapse
|
37
|
Muralimanoharan S, Maloyan A, Myatt L. Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta 2013; 34:1183-9. [PMID: 24140080 DOI: 10.1016/j.placenta.2013.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/26/2023]
Abstract
Preeclampsia (PE) affects 5-8% of pregnancies and is responsible for 18% of maternal deaths in the US, and for long-term complications in mother and child. PE is an inflammatory state and may influence placental function in a sex-specific manner. We determined if there is a sexual dimorphism in the placental inflammatory and apoptotic responses in preeclamptic pregnancies. Placentas were collected from normotensive and preeclamptic pregnancies with either male or female fetuses (MPE and FPE respectively) after c-section at term with no labor. Expression patterns of markers of inflammation measured by ELISA, as well as hypoxia, apoptosis and angiogenesis markers measured by Western blotting were determined in the placenta. Consistent with previous studies, an increase in inflammation, hypoxia, and apoptotic cell death was observed in PE compared to normotensive pregnancies. Levels of TNFα, IL-6 and IL-8, and HIF-1α were significantly greater, whereas the angiogenic marker VEGF was significantly reduced in MPE vs. FPE. Sexual dimorphism was also observed in the activation of cell death: the number of TUNEL-positive cells, and the expression pro-apoptotic markers PUMA and Bax being higher in MPE vs. FPE. We also found an increase in the levels of protein and DNA-binding activity of NFκB p65 in MPE vs. FPE. In summary, we show here that in preeclamptic pregnancies the placentas of males were associated with significantly higher expression of inflammatory, hypoxia and apoptotic molecules but reduced expression of a pro-angiogenic marker compared to placentas of female fetuses. We propose that the transcription factor NFκB p65 might, at least partially, be involved in sexual dimorphism during PE.
Collapse
Affiliation(s)
- S Muralimanoharan
- Center for Pregnancy and Newborn Research, Dept of OB/GYN, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
38
|
Roman A, Desai N, Rochelson B, Gupta M, Solanki M, Xue X, Chatterjee PK, Metz CN. Maternal magnesium supplementation reduces intrauterine growth restriction and suppresses inflammation in a rat model. Am J Obstet Gynecol 2013; 208:383.e1-7. [PMID: 23474429 DOI: 10.1016/j.ajog.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Intrauterine growth restriction (IUGR) is associated with increased inflammatory responses. We sought to investigate whether magnesium (Mg) attenuates inflammation and IUGR in a rat model. STUDY DESIGN Pregnant Wistar rats (12 weeks, gestational day 18) were randomly assigned to 1 of 4 groups: normal diet with bilateral uterine artery ligation (BL) (n = 6) or sham surgery (SH) (n = 5); and Mg chloride (MgCl2) 1% (wt/vol) in the drinking water throughout gestation + BL (MgBL) (n = 6) or SH (MgSH) (n = 5). Dams were euthanized 24 hours postsurgery (gestational day 19). Maternal plasma, fetal plasma (pooled), individual amniotic fluid (AF) samples, and placentas (PL) were collected and assessed from live fetal pups only (BL, n = 36; SH, n = 20; MgBL, n = 20; MgSH, n = 20). All samples were analyzed for cytokines/chemokines (interleukin [IL]-6, IL-1β, chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-C motif] ligand 2 [CCL2], and tumor necrosis factor [TNF-α] sensitivity <3 pg/mL) using a multiplex platform. Data were analyzed using Mann Whitney, analysis of variance, and Fisher exact tests. RESULTS The incidence of IUGR (pup weight <10th percentile of SH) in the MgBL group was significantly lower (31%) than the BL group (86.3%) (relative risk, 0.36; 95% confidence interval, 0.2-0.6; P < .0001). BL significantly increased AF levels of IL-6, IL-1β, TNF-α (P < .05), and CCL2 (P < .001) vs SH and PL levels of IL-6, IL-1β, CCL2 and CXCL1 (P < .001), and TNF-α (P < .05) vs SH. Maternal MgCl2 supplementation significantly decreased IL-1β, TNF-α, and CCL2 levels in AF and IL-1β in PL tissues of MgBL vs BL rats (P < .0001). CONCLUSION Maternal oral MgCl2 supplementation reduced BL-induced IUGR by 64% and suppressed cytokine/chemokine levels in the AF and PL.
Collapse
|
39
|
Shaker OG, Sadik NAH. Pathogenesis of preeclampsia: Implications of apoptotic markers and oxidative stress. Hum Exp Toxicol 2013; 32:1170-8. [PMID: 23515498 DOI: 10.1177/0960327112472998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the implication of some apoptotic and lipid peroxidation markers in preeclampsia (PE). A total of 25 women with PE and 25 age- and parity-matched normal pregnant women were enrolled in this study. The malondialdehyde (MDA) level, caspase-9 activity and the percentage of DNA fragmentation were significantly higher in placental tissue of PE than in control women. The serum level of MDA was significantly elevated in women with PE having delivery by cesarean section (CS) than in women with PE having vaginal delivery. In vitro study demonstrated that the addition of 0.5 mM Fe(2+) and 0.1 mM ascorbate caused increase in the production of MDA level in placental tissue with PE than normal placentas, and vitamin E (100 µM) caused lower inhibition of in vitro lipid peroxidation in placental tissue with PE when compared with normal tissue. The activity of caspase-9 and percentage of DNA fragmentation were associated with the severity of the PE and both could differentiate between PE and control women with 88% and 100% sensitivity and 96% and 100% specificity, respectively. The activities of caspase-8 and/or -9 were positively correlated with the maternal age but only caspase-8 was negatively correlated with neonatal birth weight and placental weight. In conclusion, the elevations of MDA, caspase-9 activity and the percentage of DNA fragmentation in the placentas of women with PE implicate the involvement of lipid peroxidation and apoptosis in PE. The placenta represents a considerable source of the elevated circulating MDA in PE.
Collapse
Affiliation(s)
- O G Shaker
- 1Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
40
|
PESNPdb: a comprehensive database of SNPs studied in association with pre-eclampsia. Placenta 2012; 33:1055-7. [PMID: 23084601 DOI: 10.1016/j.placenta.2012.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/09/2023]
Abstract
Pre-eclampsia is a pregnancy specific disorder that can be life threatening for mother and child. Multiple studies have been carried out in an attempt to identify SNPs that contribute to the genetic susceptibility of the disease. Here we describe PESNPdb (http://bejerano.stanford.edu/pesnpdb), a database aimed at centralizing SNP and study details investigated in association with pre-eclampsia. We also describe a Placenta Disorders ontology that utilizes information from PESNPdb. The main focus of PESNPdb is to help researchers study the genetic complexity of pre-eclampsia through a user-friendly interface that encourages community participation.
Collapse
|
41
|
|
42
|
Dai Y, Diao Z, Sun H, Li R, Qiu Z, Hu Y. MicroRNA-155 is involved in the remodelling of human-trophoblast-derived HTR-8/SVneo cells induced by lipopolysaccharides. Hum Reprod 2011; 26:1882-91. [PMID: 21515911 DOI: 10.1093/humrep/der118] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A low dose injection of lipopolysaccharides (LPS) may induce pre-eclampsia-like symptoms in rats, and microRNA-155 (miR-155) is elevated in the placentas of patients with pre-eclampsia. Our goal was to investigate the association of miR-155 with pre-eclampsia and the pathways involved using human-trophoblast-derived cell line (HTR-8/SVneo) stimulated with LPS. METHODS We measured miR-155 in HTR-8/SVneo cells treated with LPS (25-800 ng/ml) using real-time PCR. Western blotting was used to study transcription factor activated protein 1 (AP-1) (JunB and FosB subunits) and nuclear factor (NF)-κB p65 in the HTR-8/SVneo cells and placentas from patients with pre-eclampsia. DNA precipitation assays and luciferase reporter analysis were used to evaluate the regulation of miR-155 by AP-1 and NF-κB. Cell migration was determined by scratch assay. Syncytialization of HTR-8/SVneo cells was analysed following transfection with miR-155. RESULTS miR-155 was increased together with AP-1 and NF-κB in HTR-8/SVneo cells incubated with low dose of LPS (≤100 ng/ml; P < 0.05 versus baseline). Both JunB/FosB and p65 were increased in placenta from women with severe pre-eclampsia versus a normal pregnancy, with elevated expression of miR-155 (P < 0.05). For specific DNA-binding sites upstream of BIC/miR-155 gene promoter, the AP-1 site was more important than the NF-κB site for increasing miR-155 in HTR-8/SVneo cells. The cells with enforced expression of miR-155 showed a reduced ability to migrate (P < 0.05) and an increased number of syncytiotrophoblast-like multinuclear cells (P < 0.05). CONCLUSIONS LPS may induce remodelling of the human-trophoblast-derived HTR-8/SVneo cells by increasing miR-155, acting in part through the AP-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Obstetrics and Gynecology, Nanjing University Medical School, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Roje D, Zekic Tomas S, Kuzmic Prusac I, Capkun V, Tadin I. Trophoblast apoptosis in human term placentas from pregnancies complicated with idiopathic intrauterine growth retardation. J Matern Fetal Neonatal Med 2011; 24:745-51. [DOI: 10.3109/14767058.2010.526158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Bertucci MC, Loose JM, Wallace EM, Jenkin G, Miller SL. Anti-inflammatory therapy in an ovine model of fetal hypoxia induced by single umbilical artery ligation. Reprod Fertil Dev 2011; 23:346-52. [DOI: 10.1071/rd10110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Perinatal morbidity and mortality are significantly higher in pregnancies complicated by chronic hypoxia and intrauterine growth restriction (IUGR). Clinically, placental insufficiency and IUGR are strongly associated with a fetoplacental inflammatory response. To explore this further, hypoxia was induced in one fetus in twin-bearing pregnant sheep (n = 9) by performing single umbilical artery ligation (SUAL) at 110 days gestation. Five ewes were administered the anti-inflammatory drug sulfasalazine (SSZ) daily, beginning 24 h before surgery. Fetal blood gases and inflammatory markers were examined. In both SSZ- and placebo-treated ewes, SUAL fetuses were hypoxic and growth-restricted at 1 week (P < 0.05). A fetoplacental inflammatory response was observed in SUAL pregnancies, with elevated pro-inflammatory cytokines, activin A and prostaglandin E2. SSZ did not mitigate this inflammatory response. It is concluded that SUAL induces fetal hypoxia and a fetoplacental inflammatory response and that SSZ does not improve oxygenation or reduce inflammation. Further studies to explore whether alternative anti-inflammatory treatments may improve IUGR outcomes are warranted.
Collapse
|
45
|
Nuclear translocation of nuclear factor Kappa B in first trimester deciduas and chorionic villi in early spontaneous miscarriage women. Int J Mol Sci 2010; 11:521-531. [PMID: 20386652 PMCID: PMC2852852 DOI: 10.3390/ijms11020521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/25/2022] Open
Abstract
The nuclear factor kappa B is widely expressed in the distinct subpopulations of chorionic villi and deciduas of first-trimester pregnancies. We examined the cellular distribution and expression of nuclear factor kappa B in the human first-trimester chorionic villi and deciduas of women with early spontaneous miscarriage and viable pregnancy by confocal laser scanning microscope and immunohistochemistry. There is a greater nuclear translocation of nuclear factor kappa B is restricted to villous stromal cells, decidual stromal cells, glandular epithelial cells and vessel endothelial cells in early spontaneous miscarriage than in viable pregnancies. Collectively these observations suggest that over-activation of nuclear factor kappa B has a relationship with early spontaneous miscarriages.
Collapse
|
46
|
Hamad RR, Bremme K, Kallner A, Sten-Linder M. Increased levels of an apoptotic product in the sera from women with pre-eclampsia. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:204-8. [PMID: 19148832 DOI: 10.1080/00365510802474384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pre-eclampsia is associated with both maternal and foetal complications. Several studies have shown increased trophoblast apoptosis in the placenta of women with this condition. The aim of this study was to investigate whether increased apoptosis can be detected as elevated levels of an apoptotic product in serum samples from women with pre-eclampsia. For this purpose, we used the M30-Apoptosense ELISA assay, which measures a neo-epitope of cytokeratin 18 that is exposed after cleavage by caspases during apoptosis of epithelial cells (M30 antigen). The M30-antigen concentrations were measured in the sera of 15 healthy pregnant women and 15 patients with pre-eclampsia (gestation weeks 24-34). Patients with pre-eclampsia had significantly higher serum M30-antigen concentrations, median 120 U/L, compared to 15 healthy pregnant women matched for pregnancy length, median 104 U/L (p = 0.01). This is consistent with previous findings of increased trophoblast apoptosis in women with pre-eclampsia and raises the possibility that M30-antigen can be used as a serum marker for the severeness of this condition for the mother and child.
Collapse
Affiliation(s)
- R Rafik Hamad
- Department of Obstetrics and Gynecology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Soleymanlou N, Jurisicova A, Wu Y, Chijiiwa M, Ray JE, Detmar J, Todros T, Zamudio S, Post M, Caniggia I. Hypoxic switch in mitochondrial myeloid cell leukemia factor-1/Mtd apoptotic rheostat contributes to human trophoblast cell death in preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:496-506. [PMID: 17600131 PMCID: PMC1934524 DOI: 10.2353/ajpath.2007.070094] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preeclampsia, a disorder of pregnancy, is characterized by increased trophoblast cell death and altered trophoblast-mediated remodeling of myometrial spiral arteries resulting in reduced uteroplacental perfusion. Mitochondria-associated Bcl-2 family members are important regulators of programed cell death. The mechanism whereby hypoxia alters the mitochondrial apoptotic rheostat is essential to our understanding of placental disease. Herein, myeloid cell leukemia factor-1 (Mcl-1) isoform expression was examined in physiological/pathological models of placental hypoxia. Preeclamptic placentae were characterized by caspase-dependent cleavage of death-suppressing Mcl-1L and switch toward cell death-inducing Mcl-1S. In vitro, Mcl-1L cleavage was induced by hypoxia-reoxygenation in villous explants, whereas Mcl-1L overexpression under hypoxia-reoxygenation rescued trophoblast cells from undergoing apoptosis. Cleavage was mediated by caspase-3/-7 because pharmacological caspase inhibition prevented this process. Altitude-induced chronic hypoxia was characterized by expression of Mcl-1L; resulting in a reduction of apoptotic markers (cleaved caspase-3/-8 and p85 poly-ADP-ribose polymerase). Moreover, in both physiological (explants and high altitude) and pathological (preeclampsia) placental hypoxia, decreased trophoblast syncytin expression was observed. Hence, although both pathological and physiological placental hypoxia are associated with slowed trophoblast differentiation, trophoblast apoptosis is only up-regulated in preeclampsia, because of a hypoxia-reoxygenation-induced switch in generation of proapoptotic Mcl-1 isoforms.
Collapse
|
48
|
Prater M, Laudermilch C, Holladay S. Does Immune Stimulation or Antioxidant Therapy Reduce MNU-induced Placental Damage Via Activation of Jak-STAT and NFκB Signaling Pathways? Placenta 2007; 28:566-70. [DOI: 10.1016/j.placenta.2006.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/01/2006] [Accepted: 05/10/2006] [Indexed: 11/15/2022]
|
49
|
Webster RP, Pitzer BA, Roberts VHJ, Brockman D, Myatt L. Differences in the proteome profile in placenta from normal term and preeclamptic preterm pregnancies. Proteomics Clin Appl 2007; 1:446-56. [DOI: 10.1002/prca.200600745] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Indexed: 11/07/2022]
|
50
|
Vásárhelyi B, Cseh A, Kocsis I, Treszl A, Györffy B, Rigó J. Three mechanisms in the pathogenesis of pre-eclampsia suggested by over-represented transcription factor-binding sites detected with comparative promoter analysis. Mol Hum Reprod 2006; 12:31-4. [PMID: 16403800 DOI: 10.1093/molehr/gal001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microarray studies generating lists of genes with altered expression in placentas from pregnancies complicated with pre-eclampsia (PE) have so far been published in several different studies. Working under the assumption that altered gene expression in PE may be the result of altered expression of regulatory transcription factors (TFs), we looked for over-represented TF-binding sites (TFBSs)-which indicate the involvement of TFs in gene regulatory networks-in lists of genes (n = 143) compiled in these studies. We compared the prevalence of TFBSs in the promoter regions of 68 genes with the background prevalence of TFBSs in promoters of the human genome. The prevalence of the E47, sterol regulatory element binding protein (SREBP) and NFKB-p50 TFBSs was higher (P < 0.005) in the promoter sequences of the PE gene lists than in the background model. Each of these TFBSs could be implicated in the development of PE. The E47 protein is an E-protein or basic helix-loop-helix (bHLH) TF. Data support the role of bHLHs in the differentiation of placental tissue. SREBP-1, a lipid-sensing sterol regulatory element-binding protein, is a critical regulator of fatty acid homeostasis in the placenta. The target genes of NFKB-p50 determine inflammatory response, and aberrant cytokine homeostasis is a further sign of PE. These TFs may provide an insight into the pathogenesis of the disease.
Collapse
Affiliation(s)
- B Vásárhelyi
- Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences.
| | | | | | | | | | | |
Collapse
|