1
|
Wu M, Liu J, Zhang S, Jian Y, Guo L, Zhang H, Mi J, Qu G, Liu Y, Gao C, Cai Q, Wen D, Liu D, Sun J, Jiang J, Huang H. Shh Signaling from the Injured Lung Microenvironment Drives BMSCs Differentiation into Alveolar Type II Cells for Acute Lung Injury Treatment in Mice. Stem Cells Int 2024; 2024:1823163. [PMID: 39372681 PMCID: PMC11455595 DOI: 10.1155/2024/1823163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 08/01/2024] [Indexed: 10/08/2024] Open
Abstract
Alveolar type II (AT2) cells are key effector cells for repairing damaged lungs. Direct differentiation into AT2 cells from bone marrow mesenchymal stem cells (BMSCs) is a promising approach to treating acute lung injury (ALI). The mechanisms of BMSC differentiation into AT2 cells have not been determined. The Sonic Hedgehog (Shh) pathway is involved in regulating multiple differentiation of MSCs. However, the role of the Shh pathway in mediating the differentiation of BMSCs into AT2 cells remains to be explored. The results showed that BMSCs significantly ameliorated lung injury and improved pulmonary function in mice with ALI. These improvements were accompanied by a relatively high proportion of BMSCs differentiate into AT2 cells and an increase in the total number of AT2 cells in the lungs. Lung tissue extracts from mice with ALI (ALITEs) were used to mimic the injured lung microenvironment. The addition of ALITEs significantly improved the differentiation efficiency of BMSCs into AT2 cells along with activation of the Shh pathway. The inhibition of the Shh pathway not only reduced the differentiation rate of BMSCs but also failed to mitigate lung injury and regenerate AT2 cells. The results confirmed that promoting AT2 cell regeneration through the differentiation of BMSCs into AT2 cells is one of the important therapeutic mechanisms for the treatment of ALI with BMSCs. This differentiation process is highly dependent on Shh pathway activation in BMSCs in the injured lung microenvironment.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Jing Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Shu Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Yi Jian
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Ling Guo
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Huacai Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Junwei Mi
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Guoxin Qu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Yaojun Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Chu Gao
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Qingli Cai
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Dalin Wen
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Di Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianhui Sun
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Hong Huang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| |
Collapse
|
2
|
Yeo D, Zars Fisher EL, Khosla S, Farr JN, Westendorf JJ. Hdac3-deficiency increases senescence-associated distention of satellite DNA and telomere-associated foci in osteoprogenitor cells. J Bone Miner Res 2024; 39:994-1007. [PMID: 38843356 DOI: 10.1093/jbmr/zjae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 08/07/2024]
Abstract
Histone deacetylase 3 (Hdac3) is an epigenetic regulator of gene expression and interacts with skeletal transcription factors such as Runx2. We previously reported that conditional deletion of Hdac3 in Osterix-Cre recombinase-expressing osteoprogenitor cells (Hdac3 CKOOsx) caused osteopenia and increased marrow adiposity, both hallmarks of skeletal aging. We also showed that Runx2+ cells within osteogenic cultures of Hdac3-depleted bone marrow stromal cells (BMSCs) contain lipid droplets (LDs). Cellular senescence, a nonproliferative metabolically active state, is associated with increased marrow adiposity, bone loss, and aging. In this study, we sought to determine if Hdac3 depleted Runx2+ pre-osteoblasts from young mice exhibit chromatin changes associated with early cellular senescence and how these events correlate with the appearance of LDs. We first confirmed that BMSCs from Hdac3 CKOOsx mice have more Runx2 + LD+ cells compared with controls under osteogenic conditions. We then measured senescence-associated distention of satellite (SADS) DNA and telomere-associated foci (TAFs) in Hdac3 CKOOsx and control BMSCs. In situ, Runx2+ cells contained more SADS per nuclei in Hdac3 CKOOsx femora than in controls. Runx2+ BMSCs from Hdac3 CKOOsx mice also contained more SADS and TAFs per nuclei than Runx2+ cells from age-matched control mice in vitro. SADs and TAFs were present at similar levels in Runx2 + LD+ cells and Runx2 + LD- cells from Hdac3 CKOOsx mice. Hdac inhibitors also increased the number of SADS in Runx2 + LD+ and Runx2 + LD- WT BMSCs. Senolytics reduced viable cell numbers in Hdac3 CKOOsx BMSC cultures. These data demonstrate that the depletion of Hdac3 in osteochondral progenitor cells triggers LD formation and early events in cellular senescence in Runx2+ BMSCs through mutually exclusive mechanisms.
Collapse
Affiliation(s)
- Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Joshua N Farr
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
3
|
Harimi S, Khansarinejad B, Fesahat F, Mondanizadeh M. Hsa-miR-15b-5p/miR-195-5p Controls Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells Through Regulating Indian Hedgehog Expression. Appl Biochem Biotechnol 2024; 196:4793-4806. [PMID: 37964167 DOI: 10.1007/s12010-023-04777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Osteoblastogenesis is regulated by several signaling pathways like hedgehog signaling. Of three types of mammalian Hedgehog genes, the Indian Hedgehog (Ihh) plays an important role in the formation of the skeleton. Mesenchymal stem cells (MSCs) isolated from adipose tissue have been considered a good source of osteoblast differentiation. Evidence also suggests that miRNAs play an important role in regulating key stages of osteoblast differentiation. In this study, two miRNAs targeting the Ihh were predicted by using bioinformatics analysis. ASCs were successfully derived, purified, and characterized from human adipose tissue. ASCs were chemically induced into osteoblast cells. Then, differentiation was confirmed by alkaline phosphatase (ALP) activity and Alizarin red staining. The relative expression of Ihh and related miRNAs was evaluated after 0, 7, 14, and 21 from the differentiation duration. The results of bioinformatics data showed that has-miR-195-5p and has-miR-15b-5p target the Ihh gene. The expression of Ihh significantly increased in a time-dependent manner in the differentiation process. In contrast, miR-195-5p and miR-15b-5p were significantly downregulated dependent on time duration (P < 0.01). Overall, the data indicate the antithetical regulation of Ihh versus has-miR-195-5p and has-miR-15b-5p during the differentiation process. These results support the hypothesis that these mi-RNAs could target the Ihh in the pathway of osteoblast differentiation derived from human ASCs.
Collapse
Affiliation(s)
- Samaneh Harimi
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
4
|
Tetrault E, Aaronson B, Gilbert MC, Albertson RC. Foraging-induced craniofacial plasticity is associated with an early, robust and dynamic transcriptional response. Proc Biol Sci 2024; 291:20240215. [PMID: 38654651 PMCID: PMC11040245 DOI: 10.1098/rspb.2024.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.
Collapse
Affiliation(s)
- Emily Tetrault
- Molecular and Cell Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Ben Aaronson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michelle C. Gilbert
- Department of Biology, Pennsylvania State University, State College, PA 16802, USA
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Wu M, Mi J, Qu GX, Zhang S, Jian Y, Gao C, Cai Q, Liu J, Jiang J, Huang H. Role of Hedgehog Signaling Pathways in Multipotent Mesenchymal Stem Cells Differentiation. Cell Transplant 2024; 33:9636897241244943. [PMID: 38695366 PMCID: PMC11067683 DOI: 10.1177/09636897241244943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Junwei Mi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Guo-xin Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shu Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yi Jian
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qingli Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jing Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Yin XH, Wang XY, Liu SC, Yan L, He BR, Hao DJ, Yang M, Liu ZK. lncRNA HHIP-AS1/HHIP modulates osteogenic differentiation of BM-MSCs by regulating Hedgehog signaling pathway. Aging (Albany NY) 2022; 14:8839-8855. [DOI: 10.18632/aging.204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Xin-Hua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Xiao-Yuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi’an, China
| | - Shi-Chang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Liang Yan
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Bao-Rong He
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Zhong-Kai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| |
Collapse
|
7
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
8
|
Goutas A, Trachana V. Stem cells' centrosomes: How can organelles identified 130 years ago contribute to the future of regenerative medicine? World J Stem Cells 2021; 13:1177-1196. [PMID: 34630857 PMCID: PMC8474719 DOI: 10.4252/wjsc.v13.i9.1177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
At the core of regenerative medicine lies the expectation of repair or replacement of damaged tissues or whole organs. Donor scarcity and transplant rejection are major obstacles, and exactly the obstacles that stem cell-based therapy promises to overcome. These therapies demand a comprehensive understanding of the asymmetric division of stem cells, i.e. their ability to produce cells with identical potency or differentiated cells. It is believed that with better understanding, researchers will be able to direct stem cell differentiation. Here, we describe extraordinary advances in manipulating stem cell fate that show that we need to focus on the centrosome and the centrosome-derived primary cilium. This belief comes from the fact that this organelle is the vehicle that coordinates the asymmetric division of stem cells. This is supported by studies that report the significant role of the centrosome/cilium in orchestrating signaling pathways that dictate stem cell fate. We anticipate that there is sufficient evidence to place this organelle at the center of efforts that will shape the future of regenerative medicine.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Larisa 41500, Biopolis, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Larisa 41500, Biopolis, Greece.
| |
Collapse
|
9
|
Pakvasa M, Tucker AB, Shen T, He TC, Reid RR. The Pleiotropic Intricacies of Hedgehog Signaling: From Craniofacial Patterning to Carcinogenesis. FACE (THOUSAND OAKS, CALIF.) 2021; 2:260-274. [PMID: 35812774 PMCID: PMC9268505 DOI: 10.1177/27325016211024326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Andrew B. Tucker
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Timothy Shen
- Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| | - Tong-Chuan He
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
| | - Russell R. Reid
- Molecular Oncology Lab, Department of Orthopedic Surgery & Rehabilitation Medicine,University of Chicago Medicine, Chicago, IL
- Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
10
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
11
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
12
|
Abstract
Mesenchymal stem cells have the ability to differentiate into several cell types when exposed to determined substances, including oxysterols. Oxysterols are cholesterol products derived from its auto-oxidation by reactive species or from enzymatic action. They are present in the body in low quantities under physiological conditions and exhibit several physiological and pharmacological actions according to both the types of oxysterol and tissue. Some of them are cytotoxic while others have been shown to promote cell differentiation through the action on several different receptors, such as nuclear LXR receptors and Smoothened receptor ligands. Here, we review the main pathways by which oxysterols have been associated with cell differentiation and death of mesenchymal stem cells.
Collapse
|
13
|
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 2020; 11:456. [PMID: 33115508 PMCID: PMC7594482 DOI: 10.1186/s13287-020-01966-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation. In recent years, epigenetic enzyme inhibitors have been used as epidrugs in cancer therapy. A number of studies mentioned the role of epigenetic inhibitors in the regulation of gene expression patterns related to osteogenic differentiation. This review attempts to provide an overview of the key regulatory agents of osteogenesis: transcription factors, signaling pathways, and, especially, epigenetic mechanisms. In addition, we propose to introduce epigenetic enzyme inhibitors (epidrugs) and their applications as future therapeutic approaches for bone defect regeneration.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Di Pietro L, Barba M, Prampolini C, Ceccariglia S, Frassanito P, Vita A, Guadagni E, Bonvissuto D, Massimi L, Tamburrini G, Parolini O, Lattanzi W. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. Int J Mol Sci 2020; 21:E4356. [PMID: 32575385 PMCID: PMC7352200 DOI: 10.3390/ijms21124356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients' calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Marta Barba
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Chiara Prampolini
- Dipartimento Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Sabrina Ceccariglia
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Paolo Frassanito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Alessia Vita
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Enrico Guadagni
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Davide Bonvissuto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| |
Collapse
|
15
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
16
|
Qiu S, Chen G, Peng J, Liu J, Chen J, Wang J, Li L, Yang K. LncRNA EGOT decreases breast cancer cell viability and migration via inactivation of the Hedgehog pathway. FEBS Open Bio 2020; 10:817-826. [PMID: 32150666 PMCID: PMC7193175 DOI: 10.1002/2211-5463.12833] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023] Open
Abstract
The long noncoding RNA (lncRNA) Eosinophil Granule Ontogeny Transcript (EGOT) has been reported to inhibit the proliferation and migration of glioma cells, and promote the development and progression of gastric cancer through the Hedgehog (Hh) signaling pathway. This study was conducted to assess the role of EGOT in the progression of breast cancer. We observed that EGOT is significantly down-regulated in breast cancer tissues and cell lines, and EGOT expression is negatively correlated with the Ki67 expression. Overexpression of EGOT in BT549 cells decreased cell viability and migration. In addition, overexpression of EGOT resulted in decreases in expression of key genes in the Hh pathway, including Gli1, smoothened protein, protein patched homolog 1 and Hedgehog-interacting protein (HHIP). Breast cancer tissues exhibited an increase in Gli1 expressions. Altered expression of Gli1, smoothened protein, protein patched homolog 1 and HHIP caused by EGOT overexpression were fully restored in cells transfected with plasmid complementory DNA (pcDNA) EGOT and treated with purmorphamine, an agonist of the Hh pathway. Cell viability and migration were also restored by purmorphamine. We conclude that lncRNA EGOT may inhibit breast cancer cell viability and migration via inactivation of the Hh pathway.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Guobing Chen
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Juan Peng
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Jia Liu
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Jumin Chen
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Jianjun Wang
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Li Li
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Kunxian Yang
- Department of Breast and Thyroid SurgeryThe First People’s Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| |
Collapse
|
17
|
Wang G, Hu HB, Chang Y, Huang Y, Song ZQ, Zhou SB, Chen L, Zhang YC, Wu M, Tu HQ, Yuan JF, Wang N, Pan X, Li AL, Zhou T, Zhang XM, He K, Li HY. Rab7 regulates primary cilia disassembly through cilia excision. J Cell Biol 2019; 218:4030-4041. [PMID: 31619485 PMCID: PMC6891077 DOI: 10.1083/jcb.201811136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Wang et al. identify Rab7 as a novel regulator of primary cilia disassembly. Their findings demonstrate that Rab7 localization to primary cilia is required for intraciliary F-actin polymerization, which is indispensable for the regulation of cilia ectocytosis and disassembly. The primary cilium is a sensory organelle that protrudes from the cell surface. Primary cilia undergo dynamic transitions between assembly and disassembly to exert their function in cell signaling. In this study, we identify the small GTPase Rab7 as a novel regulator of cilia disassembly. Depletion of Rab7 potently induced spontaneous ciliogenesis in proliferating cells and promoted cilia elongation during quiescence. Moreover, Rab7 performs an essential role in cilia disassembly; knockdown of Rab7 blocked serum-induced ciliary resorption, and active Rab7 was required for this process. Further, we demonstrate that Rab7 depletion significantly suppresses cilia tip excision, referred to as cilia ectocytosis, which has been identified as required for cilia disassembly. Mechanically, the failure of F-actin polymerization at the site of excision of cilia tips caused suppression of cilia ectocytosis on Rab7 depletion. Overall, our results suggest a novel function for Rab7 in regulating cilia ectocytosis and cilia disassembly via control of intraciliary F-actin polymerization.
Collapse
Affiliation(s)
- Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,Cancer Institute, Institute of Translational Medicine, The Second Military Medical University, Shanghai, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yan Huang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Shi-Bo Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Liang Chen
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China .,Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Bodle J, Hamouda MS, Cai S, Williams RB, Bernacki SH, Loboa EG. Primary Cilia Exhibit Mechanosensitivity to Cyclic Tensile Strain and Lineage-Dependent Expression in Adipose-Derived Stem Cells. Sci Rep 2019; 9:8009. [PMID: 31142808 PMCID: PMC6541635 DOI: 10.1038/s41598-019-43351-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Non-motile primary cilia are dynamic cellular sensory structures and are expressed in adipose-derived stem cells (ASCs). We have previously shown that primary cilia are involved in chemically-induced osteogenic differentiation of human ASC (hASCs) in vitro. Further, we have reported that 10% cyclic tensile strain (1 Hz, 4 hours/day) enhances hASC osteogenesis. We hypothesize that primary cilia respond to cyclic tensile strain in a lineage dependent manner and that their mechanosensitivity may regulate the dynamics of signaling pathways localized to the cilium. We found that hASC morphology, cilia length and cilia conformation varied in response to culture in complete growth, osteogenic differentiation, or adipogenic differentiation medium, with the longest cilia expressed in adipogenically differentiating cells. Further, we show that cyclic tensile strain both enhances osteogenic differentiation of hASCs while it suppresses adipogenic differentiation as evidenced by upregulation of RUNX2 gene expression and downregulation of PPARG and IGF-1, respectively. This study demonstrates that hASC primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression, which may in part regulate signaling pathways localized to the primary cilium during the differentiation process. We highlight the importance of the primary cilium structure in mechanosensing and lineage specification and surmise that this structure may be a novel target in manipulating hASC for in tissue engineering applications.
Collapse
Affiliation(s)
- Josephine Bodle
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - Mehdi S Hamouda
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Shaobo Cai
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Ramey B Williams
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Susan H Bernacki
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA.
- College of Engineering at University of Missouri, W1051 Thomas & Nell Lafferre Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
19
|
Park S, Kim H, Kim K, Roh S. Sonic hedgehog signalling regulates the self-renewal and proliferation of skin-derived precursor cells in mice. Cell Prolif 2018; 51:e12500. [PMID: 30151845 PMCID: PMC6528853 DOI: 10.1111/cpr.12500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The sonic hedgehog (Shh) signalling pathway has an important role in the maintenance of various stem cells and organogenesis during development. However, the effect of Shh in skin-derived precursors (SKPs), which have the capacity for multipotency and self-renewal, is not yet clear. The present study investigated the effects of the Shh signalling pathway on the proliferation and self-renewal of murine SKPs (mSKPs). METHODS The Shh signalling pathway was activated by treatment with purmorphamine (Shh agonist) or recombinant Shh in mSKPs. Cyclopamine (Shh antagonist) or GANT-61 (Gli inhibitor) was used to inhibit the pathway. Western blot, qPCR, and immunofluorescence were used to analyse the expression of genes related to self-renewal, stemness, epithelial-mesenchymal transition (EMT) and the Shh signalling pathway. In addition, cell proliferation and apoptosis were examined. RESULTS Inhibiting the Shh signalling pathway reduced mSKP proliferation and sphere formation, but increased apoptosis. Activating this signalling pathway produced opposite results. The Shh signalling pathway also controlled the EMT phenotype in mSKPs. Moreover, purmorphamine recovered the self-renewal and proliferation of aged mSKPs. CONCLUSION Our results suggest that the Shh signalling pathway has an important role in the proliferation, self-renewal and apoptosis of mSKPs. These findings also provide a better understanding of the cellular mechanisms underlying SKP self-renewal and apoptosis that allow more efficient expansion of SKPs.
Collapse
Affiliation(s)
- Sangkyu Park
- Cellular Reprogramming and Embryo Biotechnology LaboratoryDental Research Institute, BK21, Seoul National University School of DentistrySeoulKorea
| | - Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology LaboratoryDental Research Institute, BK21, Seoul National University School of DentistrySeoulKorea
| | - Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology LaboratoryDental Research Institute, BK21, Seoul National University School of DentistrySeoulKorea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology LaboratoryDental Research Institute, BK21, Seoul National University School of DentistrySeoulKorea
| |
Collapse
|
20
|
Ritter A, Louwen F, Yuan J. Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy? Obes Rev 2018; 19:1317-1328. [PMID: 30015415 DOI: 10.1111/obr.12716] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Obesity alters the composition, structure and function of adipose tissue, characterized by chronic inflammation, insulin resistance and metabolic dysfunction. Adipose-derived mesenchymal stem cells (ASCs) are responsible for cell renewal, spontaneous repair and immunomodulation in adipose tissue. Increasing evidence highlights that ASCs are deficient in obesity, and the underlying mechanisms are not well understood. We have recently shown that obese ASCs have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functions. This work suggests an intertwined connection of obesity, defective cilia and dysfunctional ASCs. We have here discussed the current data regarding defective cilia in various cell types in obesity. Based on these observations, we hypothesize that obesity, a systemic chronic metainflammation, could impair cilia in diverse ciliated cells, like pancreatic islet cells, stem cells and hypothalamic neurons, making these critical cells dysfunctional by shutting down their signal sensors and transducers. In this context, obesity may represent a secondary form of ciliopathy induced by obesity-related inflammation and metabolic dysfunction. Reactivation of ciliated cells might be an alternative strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- A Ritter
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - F Louwen
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
21
|
Tsushima H, Tang YJ, Puviindran V, Hsu SHC, Nadesan P, Yu C, Zhang H, Mirando AJ, Hilton MJ, Alman BA. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development 2018; 145:dev.162396. [PMID: 29899135 PMCID: PMC6053657 DOI: 10.1242/dev.162396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here, we have investigated conditional deletion of Scap or of Insig1 and Insig2 (Scap inhibits intracellular biosynthesis and Insig proteins activate intracellular biosynthesis). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, whereas mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, whereas deletion of Insig genes in chondrocytes caused a mild dwarfism and shortening of the hypertrophic zone. In vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and these data support pharmacological modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies. Summary: Conditional deletion of genes that regulate intracellular cholesterol biosynthesis in mesenchymal cells or chondrocytes shows that precise regulation of biosynthesis is required for chondrocyte homeostasis and long bone growth.
Collapse
Affiliation(s)
- Hidetoshi Tsushima
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Shu-Hsuan Claire Hsu
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Puviindran Nadesan
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Chunying Yu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Anthony J Mirando
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
22
|
Barba M, Di Pietro L, Massimi L, Geloso MC, Frassanito P, Caldarelli M, Michetti F, Della Longa S, Romitti PA, Di Rocco C, Arcovito A, Parolini O, Tamburrini G, Bernardini C, Boyadjiev SA, Lattanzi W. BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone 2018; 112:58-70. [PMID: 29674126 PMCID: PMC5970090 DOI: 10.1016/j.bone.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Nonsyndromic craniosynostosis (NCS) is the premature ossification of skull sutures, without associated clinical features. Mutations in several genes account for a small number of NCS patients; thus, the molecular etiopathogenesis of NCS remains largely unclear. Our study aimed at characterizing the molecular signaling implicated in the aberrant ossification of sutures in NCS patients. Comparative gene expression profiling of NCS patient sutures identified a fused suture-specific signature, including 17 genes involved in primary cilium signaling and assembly. Cells from fused sutures displayed a reduced potential to form primary cilia compared to cells from control patent sutures of the same patient. We identified specific upregulated splice variants of the Bardet Biedl syndrome-associated gene 9 (BBS9), which encodes a structural component of the ciliary BBSome complex. BBS9 expression increased during in vitro osteogenic differentiation of suture-derived mesenchymal cells of NCS patients. Also, Bbs9 expression increased during in vivo ossification of rat sutures. BBS9 functional knockdown affected the expression of primary cilia on patient suture cells and their osteogenic potential. Computational modeling of the upregulated protein isoforms (observed in patients) predicted that their binding affinity within the BBSome may be affected, providing a possible explanation for the aberrant suture ossification in NCS.
Collapse
Affiliation(s)
- Marta Barba
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Lorena Di Pietro
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Paolo Frassanito
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Massimo Caldarelli
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Michetti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, 52242, IA, USA
| | - Concezio Di Rocco
- Department of Neurosurgery, International Neuroscience Institute, 30625 Hannover, Germany
| | - Alessandro Arcovito
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, 25124 Brescia, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Bernardini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Simeon A Boyadjiev
- Section of Genomics, Department of Pediatrics, University of California, 95817 Sacramento, CA, USA
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy.
| |
Collapse
|
23
|
Crosstalk between Hedgehog pathway and energy pathways in human adipose-derived stem cells: A deep sequencing analysis of polysome-associated RNA. Sci Rep 2018; 8:8411. [PMID: 29849100 PMCID: PMC5976649 DOI: 10.1038/s41598-018-26533-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells are considered promising candidates for cellular therapies due to their capacity to differentiate and self-renew. Differentiation leads to changes in the metabolism, structure, and gene expression patterns of cells. Hedgehog is one of the pathways that is involved in the enhancement of osteogenesis and chondrogenesis in adult stem cells, but its mechanisms are poorly understood. In this study, we treated adipose tissue-derived stem cells (ADSC) with two well-characterized drugs, purmorphamine (Hedgehog pathway activator) and cyclopamine (Hedgehog pathway inhibitor), and identified mRNAs associated with polysomes in each treatment group to determine the post transcriptional genetic networks governed by the Hedgehog pathway. Activation of the Hedgehog pathway by purmorphamine results in significant upregulation of mRNAs associated with cellular communication and signal transduction. Furthermore, our experiments show that cyclopamine acts late downregulating GLI1 expression in ADSCs but promotes the upregulation of mRNAs associated with energy pathways and metabolism at early times. Through in silico analysis, we identified some miRNAs, such as miR-355, that could regulate these mRNAs association with polysomes and thereby modulate the Hedgehog pathway. Our results suggest that activation of the Hedgehog pathway by purmorphamine also results in a negative regulation of mRNAs in the protein translation machinery.
Collapse
|
24
|
Ma D, Yu H, Xu S, Wang H, Zhang X, Ning T, Wu B. Stathmin inhibits proliferation and differentiation of dental pulp stem cells via sonic hedgehog/Gli. J Cell Mol Med 2018; 22:3442-3451. [PMID: 29655218 PMCID: PMC6009779 DOI: 10.1111/jcmm.13621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
The mineralization of dental pulp stem cells is an important factor in the tissue engineering of teeth, but the mechanism is not yet obvious. This study aimed to identify the effect of Stathmin on the proliferation and osteogenic/odontoblastic differentiation of human dental pulp stem cells (hDPSCs) and to explore whether the Shh signalling pathway was involved in this regulation. First, Stathmin was expressed in the cytoplasm and on the cell membranes of hDPSCs by cell immunofluorescence. Then, by constructing a lentiviral vector, the expression of Stathmin in hDPSCs was inhibited. Treatment with Stathmin shRNA (shRNA‐Stathmin group) inhibited the ability of hDPSCs to proliferate, as demonstrated by a CCK8 assay and flow cytometry analysis, and suppressed the osteogenic/odontoblastic differentiation ability, as demonstrated by alizarin red S staining and osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) activity, compared to that of hDPSCs from the control shRNA group. Molecular analyses showed that the Shh/GLI1 signalling pathway was inhibited when Stathmin was silenced, and purmorphamine, the Shh signalling pathway activator, was added to hDPSCs in the shRNA‐Stathmin group, real‐time PCR and Western blotting confirmed that expression of Shh and its downstream signalling molecules PTCH1, SMO and GLI1 increased significantly. After activating the Shh signalling pathway, the proliferation of hDPSCs increased markedly, as demonstrated by a CCK8 assay and flow cytometry analysis; osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) expression also increased significantly. Collectively, these findings firstly revealed that Stathmin‐Shh/GLI1 signalling pathway plays a positive role in hDPSC proliferation and osteogenic/odontoblastic differentiation.
Collapse
Affiliation(s)
- Dandan Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Haiyue Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- Department of Operative and Endodontic Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - He Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoyi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Tingting Ning
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Moon JS, Kim MJ, Ko HM, Kim YJ, Jung JY, Kim JH, Kim SH, Kim MS. The role of Hedgehog signaling in cementoblast differentiation. Arch Oral Biol 2018; 90:100-107. [PMID: 29587133 DOI: 10.1016/j.archoralbio.2018.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE It has been well known that Hedgehog (Hh) signaling plays an important role in bone development, however, its function in cementogenesis has not yet been reported. This study was intended to elucidate the role of Hh signaling in cementoblast differentiation. DESIGN Expression changes of various Hh signaling components and levels of skeletogenic markers (alkaline phosphatase, osteocalcin, osteopontin) and osteogenic transcription factors (RUNX2, Osterix) by Hh signaling modulators during OCCM-30 cementoblast differentiation were determined by quantitative real-time reverse transcriptase polymerase chain reaction. To investigate effects of Hh signaling modulators on the mineralization of cementoblast, alkaline phosphatase and alizarin red S staining were used. Then, the interaction between Hh and BMP signaling during cementoblast differentiation was evaluated using co-treatment of BMP7 and Hh signaling modulators. RESULTS We observed the consistent expression of Hh signaling molecules in the OCCM-30, which were up-regulated during cementoblast differentiation. We also found that the treatment of cells with Purmo, an Hh activator, enhanced cementoblast differentiation by increasing the mRNA expression of skeletogenic markers and osteogenic transcription factors, as well as increasing alkaline phosphate activity and mineralization capability. On the contrary, an Hh antagonist, like Cyclo, effectively inhibited cementoblast differentiation. Furthermore, BMP7 promoted cementoblast differentiation through crosstalk with the Hh signaling. CONCLUSION These results suggest that Hh signaling is involved in cementoblast differentiation, and Hh signaling molecules may therefore represent new therapeutic targets in periodontal treatment and regeneration.
Collapse
Affiliation(s)
- Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Ju Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Mi Ko
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Jun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hyung Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
26
|
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018; 28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health problem commonly associated with numerous metabolic disorders including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer. The burden of obesity and associated cardiometabolic diseases are believed to arise through complex interplay between genetics and epigenetics predisposition, nutrition, environment, and lifestyle. However, the molecular basis and the repertoire of obesity-affecting factors are still unknown. Emerging evidence is connecting microRNAs (miRNAs) dysregulation with adipogenesis and obesity. Alteration in miRNAs expression could result in changes in the pattern of genes controlling a range of biological processes including inflammation, lipid metabolism, insulin resistance and adipogenesis. Hence, understanding exact roles of miRNAs as well as the degree of their contribution to the regulation of adipogenesis and fat cell development in obesity would provide new therapeutic targets for the development of novel and effective anti-obesity drugs. The objective of the current review is to: (i) discuss some of the latest development on relevant miRNAs dysregulation mainly in human adipogenesis and obesity, (ii) emphasize the role of circulating miRNAs as new promising therapeutics and attractive potential biomarkers for treating obesity and associated risk factor diseases, (iii) describe how dietary factors may influence obesity through modulation of miRNAs expression, (iv) highlight some of the actual limitations to the promise of miRNAs as novel therapeutics as well as to their translation for the benefit of patients, and finally (v) provide recommendations for future research on miRNA-based therapeutics that could lead to a breakthrough in the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- M Zaiou
- Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000, Nancy, France.
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat, Morocco
| | - A Bakillah
- State University of New York, Downstate Medical Center, Department of Medicine, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| |
Collapse
|
27
|
Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther 2017; 8:203. [PMID: 28962669 PMCID: PMC5622478 DOI: 10.1186/s13287-017-0653-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Background Wharton’s jelly-derived mesenchymal stem cells (WJ-MSC) show remarkable therapeutic potential to repair tissue upon injury via paracrine signaling by secreting diverse trophic factors that promote angiogenesis. However, the mechanisms and signaling pathways that regulate the induction of these specific factors are still mostly unknown. Emerging evidence suggests that Sonic hedgehog (SHH) plays a central role in angiogenesis and tissue maintenance. However, its contribution to the angiogenic potential of MSC has not been fully addressed. The aim of this work was to characterize the expression of the SHH pathway components in WJ-MSC primary cultures and to evaluate their angiogenic responsiveness to SHH signaling. Methods Primary cell cultures obtained from human umbilical cords were treated with pharmacological modulators of the SHH pathway. We evaluated the modulation of diverse trophic factors in cell lysates, conditioned medium, and functional in vitro assays. In addition, we determined the angiogenic potential of the SHH pathway in the chicken chorioallantoic membrane, an in vivo model. Results Our results show that WJ-MSC express components of the canonical SHH pathway and are activated by its signaling. In fact, we provide evidence of basal autocrine/paracrine SHH signaling in WJ-MSC. SHH pathway stimulation promotes the secretion of angiogenic factors such as activin A, angiogenin, angiopoietin 1, granulocyte-macrophage colony-stimulating factor, matrix metallometallopeptidase -9, and urokinase-type plasminogen activator, enhancing the pro-angiogenic capabilities of WJ-MSC both in vitro and in vivo. Conclusion WJ-MSC are a cell population responsive to SHH pathway stimulation. Basal SHH signaling is in part responsible for the angiogenic inductive properties of WJ-MSC. Overall, exogenous activation of the SHH pathway enhances the angiogenic properties of WJ-MSC, making this cell population an ideal target for treating tissue injury. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0653-8) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Li J, Cui Y, Xu J, Wang Q, Yang X, Li Y, Zhang X, Qiu M, Zhang Z, Zhang Z. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 2017; 292:15814-15825. [PMID: 28794157 DOI: 10.1074/jbc.m117.777532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hedgehog signaling plays crucial roles in the development of calvarial bone, relying on the activation of Gli transcription factors. However, the molecular mechanism of the role of regulated Gli protein level in osteogenic specification of mesenchyme still remains elusive. Here, we show by conditionally inactivating Suppressor of Fused (Sufu), a critical repressor of Hedgehog signaling, in Wnt1-Cre-mediated cranial neural crest (CNC) or Dermo1-Cre-mediated mesodermal lineages that Sufu restraint of Hedgehog activity level is critical for differentiation of preosteogenic mesenchyme. Ablation of Sufu results in failure of calvarial bone formation, including CNC-derived bones and mesoderm-derived bones, depending on the Cre line being used. Although mesenchymal cells populate to frontonasal destinations, where they are then condensed, Sufu deletion significantly inhibits the proliferation of osteoprogenitor cells, and these cells no longer differentiate into osteoblasts. We show that there is suppression of Runx2 and Osterix, the osteogenic regulators, in calvarial mesenchyme in the Sufu mutant. We show that down-regulation of several genes upstream to Runx2 and Osterix is manifested within the calvarial primordia, including Bmp2 and its downstream genes Msx1/2 and Dlx5 By contrast, we find that Gli1, the Hedgehog activity readout gene, is excessively activated in mesenchyme. Deletion of Sufu in CNC leads to a discernible decrease in the repressive Gli3 form and an increase in the full-length Gli2. Finally, we demonstrate that simultaneous deletion of Gli2 and Sufu in CNC completely restores calvarial bone formation, suggesting that a sustained level of Hedgehog activity is critical in specification of the osteogenic mesenchymal cells.
Collapse
Affiliation(s)
- Jianying Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ying Cui
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Jie Xu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Qihui Wang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xueqin Yang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Yan Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xiaoyun Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Mengsheng Qiu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ze Zhang
- the Department of Ophthamology, Tulane Medical Center, Tulane University, New Orleans, Louisiana 70112
| | - Zunyi Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| |
Collapse
|
29
|
The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells. Mol Cell Biochem 2017; 428:79-86. [PMID: 28116542 DOI: 10.1007/s11010-016-2918-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/21/2016] [Indexed: 02/03/2023]
|
30
|
Phung S, Lee C, Hong C, Song M, Yi JK, Stevenson RG, Kang MK, Shin KH, Park NH, Kim RH. Effects of Bioactive Compounds on Odontogenic Differentiation and Mineralization. J Dent Res 2016; 96:107-115. [PMID: 28033065 DOI: 10.1177/0022034516675152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping involves the placement of dental materials directly onto vital pulp tissues after deep caries removal to stimulate the regeneration of reparative dentin. This physical barrier will serve as a "biological seal" between these materials and the pulp tissue. Although numerous direct pulp capping materials are available, the use of small bioactive compounds that can potently stimulate and expedite reparative dentin formation is still underexplored. Here, the authors compared and evaluated the pro-osteogenic and pro-odontogenic effects of 4 small bioactive compounds- phenamil (Phen), purmorphamine (Pur), genistein (Gen), and metformin (Met). The authors found that these compounds at noncytotoxic concentrations induced differentiation and mineralization of preosteoblastic MC3T3-E1 cells and preodontoblastic dental pulp stem cells (DPSCs) in a dose-dependent manner. Among them, Phen consistently and potently induced differentiation and mineralization in vitro. A single treatment with Phen was sufficient to enhance the mineralization potential of DPSCs in vitro. More importantly, Phen-treated DPSCs showed enhanced odontogenic differentiation and mineralization in vivo. Our study suggests that these small bioactive compounds merit further study for their potential clinical use as pulp capping materials.
Collapse
Affiliation(s)
- S Phung
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - C Lee
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - C Hong
- 3 Section of Orthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - M Song
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - J K Yi
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - R G Stevenson
- 2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - M K Kang
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K-H Shin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - N-H Park
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.,5 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R H Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Bae WJ, Auh QS, Lim HC, Kim GT, Kim HS, Kim EC. Sonic Hedgehog Promotes Cementoblastic Differentiation via Activating the BMP Pathways. Calcif Tissue Int 2016; 99:396-407. [PMID: 27289556 DOI: 10.1007/s00223-016-0155-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
Although sonic hedgehog (SHH), an essential molecule in embryogenesis and organogenesis, stimulates proliferation of human periodontal ligament (PDL) stem cells, the effects of recombinant human SHH (rh-SHH) on osteoblastic differentiation are unclear. To reveal the role of SHH in periodontal regeneration, expression of SHH in mouse periodontal tissues and its effects on the osteoblastic/cementoblastic differentiation in human cementoblasts were investigated. SHH is immunolocalized to differentiating cementoblasts, PDL cells, and osteoblasts of the developing mouse periodontium. Addition of rh-SHH increased cell growth, ALP activity, and mineralization nodule formation, and upregulated mRNA expression of osteoblastic and cementoblastic markers. The osteoblastic/cementoblastic differentiation of rh-SHH was abolished by the SHH inhibitor cyclopamine (Cy) and the BMP antagonist noggin. rh-SHH increased the expression of BMP-2 and -4 mRNA, as well as levels of phosphorylated Akt, ERK, p38, and JNK, and of MAPK and NF-κB activation, which were reversed by noggin, Cy, and BMP-2 siRNA. Collectively, this study is the first to demonstrate that SHH can promote cell growth and cell osteoblastic/cementoblastic differentiation via BMP pathway. Thus, SHH plays important roles in the development of periodontal tissue, and might represent a new therapeutic target for periodontitis and periodontal regeneration.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Q-Schick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Chang Lim
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Gyu-Tae Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Orthodontics, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
| |
Collapse
|
32
|
Manetti F, Petricci E, Gabrielli A, Mann A, Faure H, Gorojankina T, Brasseur L, Hoch L, Ruat M, Taddei M. Design, synthesis and biological characterization of a new class of osteogenic (1H)-quinolone derivatives. Eur J Med Chem 2016; 121:747-757. [DOI: 10.1016/j.ejmech.2016.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
|
33
|
Wang Y, Huang X, Tang Y, Lin H, Zhou N. Effects of panax notoginseng saponins on the osteogenic differentiation of rabbit bone mesenchymal stem cells through TGF-β1 signaling pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:319. [PMID: 27561678 PMCID: PMC5000420 DOI: 10.1186/s12906-016-1304-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/18/2016] [Indexed: 12/01/2022]
Abstract
Background Panax Notoginseng is a well-known Chinese medicinal herb which has been used in China for treatment of bone fracture for hundreds of years. However, the specific biological mechanisms of osteogenic effect of PNS are not well understood. Methods In this study, newborn rabbit BMSCs were isolated, and then identified by the positive expression rates of cell surface markers, including CD29, CD45 and HLA-DR, which were detected by flow cytometry(FCM). After the lentivirus-induced cell model of TGF-β1 gene silencing was established, the interference efficiency was tested by q-PCR and Western blot, and the growth curve of silencing cells was drawn by MTT so as to grasp the growth rhythm of silencing cells. In the alizarin red-staining experiment, the effect of 100 mg/L PNS on the activity of intracellular ALP of TGF-β1 gene silencing BMSCs was detected, so as to observe the effect of 100 mg/L PNS on the formation of calcium nodes of gene silencing BMSCs. Results By separating rabbit BMSCs, the lentivirus-induced cell model of TGF-β1 gene silencing was established. Both TGF-β1 mRNA and protein expression were restrained significantly, and the target gene kept silence stably via the verification of q-PCR and Western blot; there was no significant differences of the growth curve between RNAi cells and normal cells; the activity of intracellular APL in 100 mg RNAi group was obviously lower than that in 100 mg group (p < 0.05), but higher than that in the normal group; in the alizarin red-staining experiment, it focused on the effects of PNS on the formation of calcium nodes of gene silencing BMSCs, which showed that calcium nodes could be formed in 100 mg RNAi group but its quantity was lower than that of 100 mg group (p < 0.05). Conclusions It was shown that silencing TGF-β1 gene could interrupt the osteogenic effects of PNS. PNS may have a promoting effect on osteogenic differentiation of rabbits’ BMSCs in vitro by up-regulating the gene expression of TGF-β1.
Collapse
|
34
|
Hong Y, Zhang J, Zhang H, Li X, Qu J, Zhai J, Zhang L, Chen F, Li T. Heterozygous PTCH1 Mutations Impact the Bone Metabolism in Patients With Nevoid Basal Cell Carcinoma Syndrome Likely by Regulating SPARC Expression. J Bone Miner Res 2016; 31:1413-28. [PMID: 26890308 DOI: 10.1002/jbmr.2815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/23/2016] [Accepted: 02/13/2016] [Indexed: 01/18/2023]
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by bone and skin abnormalities and a predisposition to various tumors. Keratocystic odontogenic tumors (KCOTs), which are common tumors of the jaw that cause extensive damage to the jawbone, are usually accompanied with NBCCS. Germline PTCH1 mutations in NBCCS tumorigenesis have been frequently studied; however, little is known regarding the pathogenesis of bone abnormalities in this disease. This study sought to investigate the mechanism underlying heterozygous PTCH1 mutation-mediated abnormal bone metabolism in patients with NBCCS. Stromal cells were isolated from the fibrous capsules of patients with NBCCS-associated or non-syndromic keratocystic odontogenic tumors and non-syndromic tumor stromal cells without PTCH1 mutations served as controls. Germline PTCH1 heterozygous mutations were confirmed in all NBCCS samples and differential protein expression was identified using tandem mass tag-labeled proteomics analysis. Our findings revealed that osteonectin/SPARC expression was significantly downregulated in syndromic stromal cells compared with non-syndromic stromal cells. SPARC expression was even lower in stromal cells carrying PTCH1 protein truncation mutations. PTCH1 siRNA transfection demonstrated that SPARC downregulation correlates with decreased PTCH1 expression. Furthermore, exogenous SPARC promoted osteogenic differentiation of syndromic stromal cells with enhanced development of calcium nodules. In addition, bone mineral density tests showed that patients with NBCCS exhibit weak bone mass compared with sex- and age-matched controls. This study indicates that germline PTCH1 heterozygous mutations play a major role in bone metabolism in patients with NBCCS, in particular in those with PTCH1 protein truncation mutations. SPARC may represent an important downstream modulator of PTCH1 mediation of bone metabolism. Thus, bone mineral density monitoring is critical for patients with NBCCS for prevention of osteoporosis. In addition, surgical procedures on syndromic-associated KCOTs should be performed with consideration of the weaker bone mass in such patients. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yingying Hong
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiafei Qu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiemei Zhai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lei Zhang
- Department of Oral Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
35
|
Rezia Rad M, Khojaste M, Hasan Shahriari M, Asgary S, Khojasteh A. Purmorphamine increased adhesion, proliferation and expression of osteoblast phenotype markers of human dental pulp stem cells cultured on beta-tricalcium phosphate. Biomed Pharmacother 2016; 82:432-8. [PMID: 27470382 DOI: 10.1016/j.biopha.2016.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Growth factors play a significant role in cell proliferation and differentiation during different stages of the bone repair. However, several limitations have been brought researchers attention to an osteoinductive small molecule including Purmorphamine. In this study, we aimed to evaluate the effect of Purmorphamine on adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) seaded on beta-tricalcium phosphate (β-TCP) granules. METHODS hDPSCs were established from extracted wisdom teeth of healthy volenteers. Cells at passage 3 were seeded on β-TCP in the presence or absence of Purmorphamine. Cell adhesion and proliferation were assessed using scanning electeron microscopy (SEM) and DNA counting assay, respectively, after 1, 3 and 5days. Then, hDPSCs seeded on β-TCP were subjected to osteogenic medium with or without Purmorphamine. After 7 and 14days osteogenic diffrentiation capability of hDPSCs were determined using real-time RT-PCR and alkaline phosphatase (ALP) activity assay. RESULTS The significant increase in amount of DNA was observed at day 3 and 5 in the presence of Purmorphamine. SEM imaging also was confirmed the DNA counting assay; in all given time points, hDPSC attachment and growth was significantly higher in the presence of Purmorphamine. ALP activity was increased by Purmorphamine at both 7 and 14days of induction. Purmorphamine showed to effect on osteopontin expression at earlier stage of osteogenic differentiation, whereas for osteocalcin expression, this effect was more evident at later stage of differentiation. CONCLUSION Purmorphamine had a promotive effect on adhesion, proliferation and osteogenic differentiation of hDPSCs cultured on β-TCP. The outcome of the current study would help in development of in vitro culture conditions for better osteogenic differentiation of hDPSCs prior to transplantation.
Collapse
Affiliation(s)
- Maryam Rezia Rad
- Research Institute of Dental Sciences, Dental Research Center, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran.
| | - Moein Khojaste
- Research Institute of Dental Sciences, Dental Research Center, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran.
| | - Mehrnoosh Hasan Shahriari
- Research Institute of Dental Sciences, Dental Research Center, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran.
| | - Saeed Asgary
- Iranian Center of Endodontic Research, Dental Research Center, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran; Department of Endodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran.
| | - Arash Khojasteh
- Research Institute of Dental Sciences, Dental Research Center, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran; Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran; School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran.
| |
Collapse
|
36
|
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci 2016; 73:1787-802. [PMID: 26869233 PMCID: PMC11108551 DOI: 10.1007/s00018-016-2148-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
37
|
Bodle JC, Loboa EG. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies. Stem Cells 2016; 34:1445-54. [PMID: 26866419 DOI: 10.1002/stem.2341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.
Collapse
Affiliation(s)
- Josephine C Bodle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,College of Engineering University of Missouri, Columbia Columbia, Missouri, USA
| |
Collapse
|
38
|
Doyard M, Chappard D, Leroyer P, Roth MP, Loréal O, Guggenbuhl P. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss. PLoS One 2016; 11:e0148292. [PMID: 26829642 PMCID: PMC4734777 DOI: 10.1371/journal.pone.0148292] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/15/2016] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.
Collapse
Affiliation(s)
- Mathilde Doyard
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
| | - Daniel Chappard
- GEROM Groupe Etude Remodelage Osseux et bioMatériaux LHEA, IRIS-IBM, Institut de biologie en santé, CHU, F- 49933, Angers, France
| | - Patricia Leroyer
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
| | | | - Olivier Loréal
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
- Service des Maladies du Foie, Hôpital Pontchaillou, CHU, F- 35033, Rennes, France
| | - Pascal Guggenbuhl
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
- Service de Rhumatologie, Hôpital Sud, CHU, F- 35033, Rennes, France
- * E-mail:
| |
Collapse
|
39
|
Moseti D, Regassa A, Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17:ijms17010124. [PMID: 26797605 PMCID: PMC4730365 DOI: 10.3390/ijms17010124] [Citation(s) in RCA: 481] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Woo-Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA 30602-2772, USA.
| |
Collapse
|
40
|
McGee-Lawrence ME, Carpio LR, Schulze RJ, Pierce JL, McNiven MA, Farr JN, Khosla S, Oursler MJ, Westendorf JJ. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. J Bone Miner Res 2016; 31. [PMID: 26211746 PMCID: PMC4758691 DOI: 10.1002/jbmr.2602] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Meghan E McGee-Lawrence
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Lomeli R Carpio
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Ryan J Schulze
- Department of Medicine, Division of Gastroenterology and Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Pierce
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Division of Gastroenterology and Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Gallagher MF, Salley Y, Spillane CD, Ffrench B, El Baruni S, Blacksheilds G, Smyth P, Martin C, Sheils O, Watson W, O'Leary JJ. Enhanced regulation of cell cycle and suppression of osteoblast differentiation molecular signatures by prostate cancer stem-like holoclones. J Clin Pathol 2015; 68:692-702. [PMID: 26038242 DOI: 10.1136/jclinpath-2015-203001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/12/2015] [Indexed: 12/25/2022]
Abstract
AIMS Targeting the stem cell properties of tumor-initiating cells is an avenue through which cancer treatment may be improved. Before this can be achieved, so-called 'cancer stem cell' (CSC) models must be developed and characterized in specific malignancies. METHODS In this study, holoclone formation assays were used to characterise stem-like molecular signatures in prostate cancer (PCa) cells. RESULTS LNCaP and PC3 parent cells were capable of responding to stem cell differentiation morphogen retinoic acid (RA), suggesting the presence of inherent stem-like properties. LNCaP cells, which represent early, androgen-responsive disease, formed holoclones after twenty six days. PC3 cells, which represent advanced, metastatic, castration-resistant disease, formed holoclones after only six days. Holoclones displayed decreased expression of RA-genes, suggesting a more immature, less differentiated phenotype. Gene and microRNA arrays demonstrated that holoclones downregulated a number of stem cell differentiation regulators while displaying enhanced regulation of G2 to M transition and the mitotic spindle checkpoint components of the cell cycle. PC3 holoclones displayed pronounced downregulation of known regulators of osteoblast differentiation from mesenchymal stem cells and Epithelial Mesenchymal Transition. CONCLUSIONS Our results suggest that some PCa cells retain the ability to transition to a more immature state in which differentiation and metastatic mechanisms are suppressed. The highlighting of osteoblast differentiation regulators in this mechanism is particularly notable, considering the propensity of PCa to metastasise to bone.
Collapse
Affiliation(s)
- Michael F Gallagher
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Yvonne Salley
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Cathy D Spillane
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Brendan Ffrench
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Salah El Baruni
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Gordon Blacksheilds
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland
| | - Paul Smyth
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland
| | - Cara Martin
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Orla Sheils
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland
| | - William Watson
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - John J O'Leary
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
42
|
Dalbay MT, Thorpe SD, Connelly JT, Chapple JP, Knight MM. Adipogenic Differentiation of hMSCs is Mediated by Recruitment of IGF-1r Onto the Primary Cilium Associated With Cilia Elongation. Stem Cells 2015; 33:1952-61. [PMID: 25693948 PMCID: PMC4737234 DOI: 10.1002/stem.1975] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/26/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022]
Abstract
Primary cilia are single non-motile organelles that provide a highly regulated compartment into which specific proteins are trafficked as a critical part of various signaling pathways. The absence of primary cilia has been shown to prevent differentiation of human mesenchymal stem cells (hMSCs). Changes in primary cilia length are crucial for regulating signaling events; however it is not known how alterations in cilia structure relate to differentiation. This study tested the hypothesis that changes in primary cilia structure are required for stem cell differentiation. hMSCs expressed primary cilia that were labeled with acetylated alpha tubulin and visualized by confocal microscopy. Chemically induced differentiation resulted in lineage specific changes in cilia length and prevalence which were independent of cell cycle. In particular, adipogenic differentiation resulted in cilia elongation associated with the presence of dexamethasone, while insulin had an inhibitory effect on cilia length. Over a 7-day time course, adipogenic differentiation media resulted in cilia elongation within 2 days followed by increased nuclear PPARγ levels; an early marker of adipogenesis. Cilia elongation was associated with increased trafficking of insulin-like growth factor-1 receptor β (IGF-1Rβ) into the cilium. This was reversed on inhibition of elongation by IFT-88 siRNA transfection, which also decreased nuclear PPARγ. This is the first study to show that adipogenic differentiation requires primary cilia elongation associated with the recruitment of IGF-1Rβ onto the cilium. This study may lead to the development of cilia-targeted therapies for controlling adipogenic differentiation and associated conditions such as obesity.
Collapse
Affiliation(s)
- Melis T. Dalbay
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of LondonLondonUnited Kingdom
| | - Stephen D. Thorpe
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of LondonLondonUnited Kingdom
| | - John T. Connelly
- Institute of Bioengineering and Institute of Cellular and Molecular Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of LondonLondon, UK
| | - J. Paul Chapple
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of LondonLondonUK
| | - Martin M. Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
43
|
Lung fibroblasts share mesenchymal stem cell features which are altered in chronic obstructive pulmonary disease via the overactivation of the Hedgehog signaling pathway. PLoS One 2015; 10:e0121579. [PMID: 25815884 PMCID: PMC4376723 DOI: 10.1371/journal.pone.0121579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Background Alteration of functional regenerative properties of parenchymal lung fibroblasts is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD). However, what these functions are and how they are impaired in COPD remain poorly understood. Apart from the role of fibroblasts in producing extracellular matrix, recent studies in organs different from the lung suggest that such cells might contribute to repair processes by acting like mesenchymal stem cells. In addition, several reports sustain that the Hedgehog pathway is altered in COPD patients thus aggravating the disease. Nevertheless, whether this pathway is dysregulated in COPD fibroblasts remains unknown. Objectives and Methods We investigated the stem cell features and the expression of Hedgehog components in human lung fibroblasts isolated from histologically-normal parenchymal tissue from 25 patients—8 non-smokers/non-COPD, 8 smokers-non COPD and 9 smokers with COPD—who were undergoing surgery for lung tumor resection. Results We found that lung fibroblasts resemble mesenchymal stem cells in terms of cell surface marker expression, differentiation ability and immunosuppressive potential and that these properties were altered in lung fibroblasts from smokers and even more in COPD patients. Furthermore, we showed that some of these phenotypic changes can be explained by an over activation of the Hedgehog signaling in smoker and COPD fibroblasts. Conclusions Our study reveals that lung fibroblasts possess mesenchymal stem cell-features which are impaired in COPD via the contribution of an abnormal Hedgehog signaling. These processes should constitute a novel pathomechanism accounting for disease occurrence and progression.
Collapse
|
44
|
Regazzetti C, Dumas K, Lacas-Gervais S, Pastor F, Peraldi P, Bonnafous S, Dugail I, Le Lay S, Valet P, Le Marchand-Brustel Y, Tran A, Gual P, Tanti JF, Cormont M, Giorgetti-Peraldi S. Hypoxia inhibits Cavin-1 and Cavin-2 expression and down-regulates caveolae in adipocytes. Endocrinology 2015; 156:789-801. [PMID: 25521582 DOI: 10.1210/en.2014-1656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During obesity, a hypoxic state develops within the adipose tissue, resulting in insulin resistance. To understand the underlying mechanism, we analyzed the involvement of caveolae because they play a crucial role in the activation of insulin receptors. In the present study, we demonstrate that in 3T3-L1 adipocytes, hypoxia induces the disappearance of caveolae and inhibits the expression of Cavin-1 and Cavin-2, two proteins necessary for the formation of caveolae. In mice, hypoxia induced by the ligature of the spermatic artery results in the decrease of cavin-1 and cavin-2 expression in the epididymal adipose tissue. Down-regulation of the expression of cavins in response to hypoxia is dependent on hypoxia-inducible factor-1. Indeed, the inhibition of hypoxia-inducible factor-1 restores the expression of cavins and caveolae formation. Expression of cavins regulates insulin signaling because the silencing of cavin-1 and cavin-2 impairs insulin signaling pathway. In human, cavin-1 and cavin-2 are decreased in the sc adipose tissue of obese diabetic patients compared with lean subjects. Moreover, the expression of cavin-2 correlates negatively with the homeostatic model assessment index of insulin resistance and glycated hemoglobin level. In conclusion, we propose a new mechanism in which hypoxia inhibits cavin-1 and cavin-2 expression, resulting in the disappearance of caveolae. This leads to the inhibition of insulin signaling and the establishment of insulin resistance.
Collapse
Affiliation(s)
- Claire Regazzetti
- INSERM Unité 1065 (C.R., K.D., F.P., Y.L.M.-B., J.-F.T., M.C., S.G.-P.), C3M, Mediterranean Research Centre for Molecular Medicine, Team 7 (Cellular and Molecular Physiopathology of Obesity and Diabetes), Unité de Formation et de Recherche (UFR) Medicine (C.R., K.D., F.P., P.P., S.B., Y.L.M.-B., A.T., P.G., J.-F.T., M.C., S.G.-P.), and INSERM Unité 1065 (S.B., A.T., P.G.), C3M, Mediterranean Research Centre for Molecular Medicine, Team 8 (Hepatic Complications in Obesity),University of Nice, Sophia Antipolis F-06204 Nice, France; Centre Commun de Microscopie Appliquée (S.L.-G.), University of Nice, Sophia Antipolis, UFR Sciences, Parc Valrose, F-06108 Nice, France; Unité Mixte de Recherche Centre National de la Recherche Scientifique 7277 (P.P.), Unité Mixte de Recherche INSERM Unité 1091, UFR Medicine, F-06107 Nice, France; Centre Hospitalier Universitaire de Nice, Digestive Center (S.B., A.T.), Nice F-06202, Cedex 3, France; INSERM Unité Mixte de Recherche S872 (I.D.), Centre de Recherche des Cordeliers, Eq8, F-75006 Paris, France; INSERM Unité 1063 (S.L.L.), Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, F-49933 Angers, France; and INSERM Unité Mixte de Recherche 1048 (P.V.), Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier, F-31432 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The primary cilium undergoes dynamic size modifications during adipocyte differentiation of human adipose stem cells. Biochem Biophys Res Commun 2015; 458:117-22. [PMID: 25637533 DOI: 10.1016/j.bbrc.2015.01.078] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 12/21/2022]
Abstract
The primary cilium is an organelle present in most of the cells of the organism. Ciliopathies are genetic disorders of the primary cilium and can be associated with obesity. We have studied the primary cilium during adipocyte differentiation of human adipose stem cells (hASC). We show here that the size of the primary cilium follows several modifications during adipocyte differentiation. It is absent in growing cells and appears in confluent cells. Interestingly, during the first days of differentiation, the cilium undergoes a dramatic elongation that can be mimicked by dexamethasone alone. Thereafter, its size decreases. It can still be detected in cells that begin to accumulate lipids but is absent in cells that are filled with lipids. The cilium elongation does not seem to affect the localization of proteins associated with the cilium such as Kif3-A or Smoothened. However, Hedgehog signaling, an anti-adipogenic pathway dependent on the primary cilium, is inhibited after three days of differentiation, concomitantly with the cilium size increase. Together, these results shed new light on the primary cilium and could provide us with new information on adipocyte differentiation under normal and pathological conditions.
Collapse
|
46
|
Dai Y, Guo Y, Wang C, Liu Q, Yang Y, Li S, Guo X, Lian R, Yu R, Liu H, Chen J. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS One 2014; 9:e109856. [PMID: 25333522 PMCID: PMC4198143 DOI: 10.1371/journal.pone.0109856] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
Cell fate and function can be regulated and reprogrammed by intrinsic genetic program, extrinsic factors and niche microenvironment. Direct reprogramming has shown many advantages in the field of cellular reprogramming. Here we tried the possibility to generate corneal endothelia (CE) -like cells from human adipose-derived stem cells (ADSCs) by the non-genetic direct reprogramming of recombinant cell-penetrating proteins Oct4/Klf4/Sox2 (PTD-OKS) and small molecules (purmorphamine, RG108 and other reprogramming chemical reagents), as well as biomimetic platforms of simulate microgravity (SMG) bioreactor. Co-cultured with corneal cells and decellularized corneal ECM, Reprogrammed ADSCs revealed spherical growth and positively expressing Nanog for RT-PCR analysis and CD34 for immunofluorescence staining after 7 days-treatment of both purmorphamine and PTD-OKS (P-OKS) and in SMG culture. ADSCs changed to CEC polygonal morphology from spindle shape after the sequential non-genetic direct reprogramming and biomimetic platforms. At the same time, induced cells converted to weakly express CD31, AQP-1 and ZO-1. These findings demonstrated that the treatments were able to promote the stem-cell reprogramming for human ADSCs. Our study also indicates for the first time that SMG rotary cell culture system can be used as a non-genetic means to promote direct reprogramming. Our methods of reprogramming provide an alternative strategy for engineering patient-specific multipotent cells for cellular plasticity research and future autologous CEC replacement therapy that avoids complications associated with the use of human pluripotent stem cells.
Collapse
Affiliation(s)
- Ying Dai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Chan Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Qing Liu
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yan Yang
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shanyi Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xiaoling Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ruiling Lian
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Bioengineering Institute of Jinan University, Guangzhou, China
| | - Hongwei Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- * E-mail:
| |
Collapse
|
47
|
Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 2014; 4:105. [PMID: 24004723 PMCID: PMC3854715 DOI: 10.1186/scrt316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/02/2013] [Indexed: 01/08/2023] Open
Abstract
Introduction To stimulate healing of large bone defects research has concentrated on the application of mesenchymal stem cells (MSCs). Methods In the present study, we induced the overexpression of the growth factors bone morphogenetic protein 2 (BMP-2) and/or Indian hedgehog (IHH) in human MSCs by adenoviral transduction to increase their osteogenic potential. GFP and nontransduced MSCs served as controls. The influence of the respective genetic modification on cell metabolic activity, proliferation, alkaline phosphatase (ALP) activity, mineralization in cell culture, and osteogenic marker gene expression was investigated. Results Transduction had no negative influence on cell metabolic activity or proliferation. ALP activity showed a typical rise-and-fall pattern with a maximal activity at day 14 and 21 after osteogenic induction. Enzyme activity was significantly higher in groups cultured with osteogenic media. The overexpression of BMP-2 and especially IHH + BMP-2 resulted in a significantly higher mineralization after 28 days. This was in line with obtained quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analyses, which showed a significant increase in osteopontin and osteocalcin expression for osteogenically induced BMP-2 and IHH + BMP-2 transduced cells when compared with the other groups. Moreover, an increase in runx2 expression was observed in all osteogenic groups toward day 21. It was again more pronounced for BMP-2 and IHH + BMP-2 transduced cells cultured in osteogenic media. Conclusions In summary, viral transduction did not negatively influence cell metabolic activity and proliferation. The overexpression of BMP-2 in combination with or without IHH resulted in an increased deposition of mineralized extracellular matrix, and expression of osteogenic marker genes. Viral transduction therefore represents a promising means to increase the osteogenic potential of MSCs and the combination of different transgenes may result in synergistic effects.
Collapse
|
48
|
Faghihi F, Papadimitropoulos A, Martin I, Eslaminejad MB. Effect of Purmorphamine on Osteogenic Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Dynamic Culture System. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0343-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
49
|
Kanke K, Masaki H, Saito T, Komiyama Y, Hojo H, Nakauchi H, Lichtler AC, Takato T, Chung UI, Ohba S. Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Reports 2014; 2:751-60. [PMID: 24936463 PMCID: PMC4050355 DOI: 10.1016/j.stemcr.2014.04.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Pluripotent stem cells are a promising tool for mechanistic studies of tissue development, drug screening, and cell-based therapies. Here, we report an effective and mass-producing strategy for the stepwise differentiation of mouse embryonic stem cells (mESCs) and mouse and human induced pluripotent stem cells (miPSCs and hiPSCs, respectively) into osteoblasts using four small molecules (CHIR99021 [CHIR], cyclopamine [Cyc], smoothened agonist [SAG], and a helioxanthin-derivative 4-(4-methoxyphenyl)pyrido[4′,3′:4,5]thieno[2,3-b]pyridine-2-carboxamide [TH]) under serum-free and feeder-free conditions. The strategy, which consists of mesoderm induction, osteoblast induction, and osteoblast maturation phases, significantly induced expressions of osteoblast-related genes and proteins in mESCs, miPSCs, and hiPSCs. In addition, when mESCs defective in runt-related transcription factor 2 (Runx2), a master regulator of osteogenesis, were cultured by the strategy, they molecularly recapitulated osteoblast phenotypes of Runx2 null mice. The present strategy will be a platform for biological and pathological studies of osteoblast development, screening of bone-augmentation drugs, and skeletal regeneration. Osteoblasts were differentiated from pluripotent stem cells under defined conditions The strategy utilizes four small molecule inducers with no serum or feeder cells The strategy comprises mesoderm induction and subsequent osteoblast induction The strategy can at least partially recapitulate physiological osteoblast development
Collapse
Affiliation(s)
- Kosuke Kanke
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Masaki
- Japan Science Technology Agency, ERATO, Nakauchi Stem Cell and Organ Regeneration Project, The University of Tokyo, Tokyo 108-8639, Japan ; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Bone and Cartilage Regenerative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuske Komiyama
- Intensive Care Unit, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiromitsu Nakauchi
- Japan Science Technology Agency, ERATO, Nakauchi Stem Cell and Organ Regeneration Project, The University of Tokyo, Tokyo 108-8639, Japan ; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan ; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
Baht GS, Silkstone D, Nadesan P, Whetstone H, Alman BA. Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res 2014; 32:581-6. [PMID: 24347536 DOI: 10.1002/jor.22562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 11/19/2013] [Indexed: 02/04/2023]
Abstract
Fracture repair is a well orchestrated process involving various cell types and signaling molecules. The hedgehog signaling pathway is activated in chondrocytes during fracture repair and is known to regulate chondrogenesis however, its role in osteoblasts during injury is yet unknown. In this study we observed tibial fracture repair in mice in which hedgehog signaling was modulated through genetic alterations of the pathway activator, smoothened. Levels of the hedgehog target genes Gli1 and Ptch1 in wildtype mice were upregulated in fracture calluses throughout the repair process. Forced activation of the hedgehog pathway in ubiquitous fashion resulted in increased matrix deposition in the fracture callus. Interestingly, inhibition in chondrocytes did not alter the fracture repair phenotype, while activation of hedgehog in osteoblasts was a requirement for normal fracture repair. In vitro, transcript levels of Gli1 and Ptch1 were elevated during osteoblastogenesis. Activation of hedgehog signaling positively affected osteoblastic differentiation and mineralization as detected using alkaline phosphatase and Von Kossa staining and Alp and Col1 expression. Here we show that the hedgehog signaling pathway plays a critical role in osteoblasts during fracture repair: inhibition of the pathway in osteoblasts leads to decreased matrix at the fracture site while activation increased matrix deposition.
Collapse
Affiliation(s)
- Gurpreet S Baht
- Department of Developmental & Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|