1
|
Elavarasu SM, Vasudevan K, Sasikumar K, Doss C GP. The role of ABI2 in modulating nuclear proteins: Therapeutic implications for NUP54 and NUP153 in TNBC. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 143:97-115. [PMID: 39843146 DOI: 10.1016/bs.apcsb.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks hormone receptors, which makes it more likely to metastasize and have a poor prognosis. Despite some effectiveness of chemotherapy, TNBC remains challenging to manage, with high relapse and mortality rates. Recent findings have highlighted the role of the ubiquitin-protease system in TNBC, with ABI2 identified as a significant regulator. Reduced ABI2 expression is associated with aggressive disease and poor outcomes, whereas ABI2 overexpression (OE-ABI2) inhibits TNBC cell proliferation by modulating the PI3K/Akt signaling pathway. Although ABI2 is not a nuclear protein, it influences critical nuclear functions such as DNA repair and gene expression. Nuclear proteins, particularly those in the nuclear pore complex and nuclear matrix, are essential for cellular functions and have been linked to various diseases, including cancer. This study used RNA sequencing (RNA-seq) to examine the gene expression in MDA-MB-231 cell line and ABI2-overexpressing cells. Differentially expressed genes were annotated, and a protein-protein interaction network was constructed. Network and enrichment analysis identified the nucleoporins NUP54 and NUP153 as potential novel targets for TNBC. This study emphasizes the impact of ABI2 on nuclear proteins and suggests that targeting NUP54 and NUP153 could offer new therapeutic options for TNBC.
Collapse
Affiliation(s)
- Santhosh Mudipalli Elavarasu
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Karthick Vasudevan
- Manipal Academy of Higher Education (MAHE), Manipal, India; Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - K Sasikumar
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Hassanein MM, Hagyousif YA, Zenati RA, Al-Hroub HM, Khan FM, Abuhelwa AY, Alzoubi KH, Soares NC, El-Huneidi W, Abu-Gharbieh E, Omar H, Zaher DM, Bustanji Y, Semreen MH. Metabolomics insights into doxorubicin and 5-fluorouracil combination therapy in triple-negative breast cancer: a xenograft mouse model study. Front Mol Biosci 2025; 11:1517289. [PMID: 39872164 PMCID: PMC11769812 DOI: 10.3389/fmolb.2024.1517289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background Breast cancer is one of the most prevalent malignancies and a leading cause of death among women worldwide. Among its subtypes, triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive behavior and limited treatment options. This study aimed to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as monotherapies and in combination using an established MDA-MB-231 xenograft model in female BALB/C nude mice employing advanced metabolomics analysis to identify molecular alterations induced by these treatments. Methods We conducted comprehensive plasma and tumor tissue sample profiling using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results Each treatment group exhibited unique metabolic profiles in plasma and tumor analysis. Univariate and enrichment analyses identified alterations in metabolic pathways. The combination treatment of DOX + 5-FU induced the most extensive metabolic alterations disrupting key pathways including purine, pyrimidine, beta-alanine, and sphingolipid metabolism. It significantly reduced critical metabolites such as guanine, xanthine, inosine, L-fucose, and sphinganine, demonstrating enhanced cytotoxic effects compared to individual treatments. The DOX treatment uniquely increased ornithine levels, while 5-FU altered sphingolipid metabolism, promoting apoptosis. Significance This in vivo study highlights TNBC's metabolic alterations to chemotherapeutics, identifying potential biomarkers like L-fucose and beta-alanine, and provides insights for improving treatment strategies.
Collapse
Affiliation(s)
- Mai M. Hassanein
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yousra A. Hagyousif
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A. Zenati
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farman Matloob Khan
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M. Zaher
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Nguyen TTK, Woo SM, Seo SU, Banstola A, Kim H, Duwa R, Vu ATT, Hong IS, Kwon TK, Yook S. Enhanced anticancer efficacy of TRAIL-conjugated and odanacatib-loaded PLGA nanoparticles in TRAIL resistant cancer. Biomaterials 2025; 312:122733. [PMID: 39106819 DOI: 10.1016/j.biomaterials.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea
| | - Asmita Banstola
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Haesoo Kim
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of medicine, Stanford University, Stanford, CA, 94305, USA
| | - An Thi Thanh Vu
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Wang X, Wang X, Gu J, Wei Y, Wang Y. circUBR5 promotes ribosome biogenesis and induces docetaxel resistance in triple-negative breast cancer cell lines via the miR-340-5p/CMTM6/c-MYC axis. Neoplasia 2025; 59:101062. [PMID: 39672097 PMCID: PMC11697786 DOI: 10.1016/j.neo.2024.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Docetaxel (DTX) represents an effective chemotherapeutic agent for treating triple-negative breast cancer (TNBC), but the efficacy is strongly limited by drug resistance. c-MYC-mediated ribosome biogenesis is considered a feasible strategy to confront chemoresistance in BC. We elucidated the impact of CMTM6 on TNBC DTX chemoresistance by governing c-MYC-mediated ribosome biogenesis, and its upstream ceRNA regulatory pathways. METHODS DTX-resistant TNBC cells MDA-MB-231R and HCC1937R were generated by exposing sensitive cells MDA-MB-231 and HCC1937 to escalating doses of DTX. The expression patterns of CMTM6 and c-MYC were assessed by Western blot. The relationships between CMTM6 and miR-340-5p, circUBR5 and miR-340-5p were determined using bioinformatics analysis, luciferase assay, RIP, RNA in situ hybridization and biotin-labeled miR co-precipitation assay. Following ectopic expression and depletion experiments in DTX-resistant cells, cell chemoresistance, apoptosis, colony formation and nascent protein synthesis were evaluated. RESULTS CMTM6 expression was elevated in DTX-resistant TNBC cells. CMTM6 knockdown enhanced apoptosis of DTX-resistant TNBC cells and increased their sensitivity to DTX by blocking c-MYC-mediated ribosome biogenesis. Mechanistically, miR-340-5p targeted CMTM6 and negatively regulated the expression of CMTM6 in DTX-resistant TNBC cells. Moreover, circUBR5 attenuated the repression on CMTM6 expression as a ceRNA for miR-340-5p. circUBR5 knockdown inactivated c-MYC-mediated ribosome biogenesis, and therefore enhanced DTX efficacy by promoting miR-340-5p binding to CMTM6. CONCLUSION circUBR5 knockdown facilitated miR-340-5p-targeted CMTM6 via a ceRNA mechanism, thereby reducing c-MYC-mediated ribosome biogenesis and accelerating chemosensitization of DTX-resistant TNBC cells, which offered a theoretical guideline for clinical research on the feasibility of inhibiting ribosome biogenesis to reduce TNBC chemoresistance.
Collapse
Affiliation(s)
- Xuedong Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Xinping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Juan Gu
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Yilei Wei
- Lingbi Hospital, Anhui No.2 Provincial People's Hospital, Lingbi, Anhui, 234200, China
| | - Yueping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
- Lingbi Hospital, Anhui No.2 Provincial People's Hospital, Lingbi, Anhui, 234200, China
| |
Collapse
|
5
|
Zhang Z, Gao J, Jia L, Kong S, Zhai M, Wang S, Li W, Wang S, Su Y, Li W, Zhu C, Wang W, Lu Y, Li W. Excessive glutathione intake contributes to chemotherapy resistance in breast cancer: a propensity score matching analysis. World J Surg Oncol 2024; 22:345. [PMID: 39709466 DOI: 10.1186/s12957-024-03626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND We aim to explore the impact of excessive glutathione (GSH) intake on chemotherapy sensitivity in breast cancer. METHODS Clinicopathological data were collected from 460 breast cancer patients who underwent adjuvant chemotherapy from January 2016 to December 2019 from Zhengzhou University People's Hospital. The clinicopathological characteristics following GSH treatment were collected and compared with those in Non-GSH group after 1:2 propensity score matching (PSM). Intracellular GSH levels and the expression of antioxidant enzymes (NRF2, GPX4 and SOD1) were evaluated in tumor tissues in 51 patients receiving neoadjuvant chemotherapy. RESULTS The recurrence rate after adjuvant chemotherapy was significantly higher in the GSH group (n = 28, 31.8%) than that in the Non-GSH group (n = 39, 22.2%; P = 0.010). Additionally, patients in the HGSH group (high GSH intake, ≥ 16 days) exhibited an elevated recurrence rate compared to that in the LGSH group (low GSH intake, < 16 days) (n = 15 (46.8%) vs. n = 52 (22.4%); P = 0.003). Cox regression revealed that High GSH intake, Ki67 ≥ 30%, Triple negative and Lymphovascular invasion were independent risk factors of progression after adjuvant chemotherapy. Among patients receiving neoadjuvant chemotherapy, intracellular GSH levels and the expression levels of antioxidant enzymes (NRF2, GPX4 and SOD1) in the resistant patients were substantially higher (P < 0.001). CONCLUSIONS Excessive GSH intake may contribute to chemotherapy resistance in breast cancer, and the levels of intracellular GSH and antioxidant enzymes are elevated in resistant patients after neoadjuvant chemotherapy, indicating that the standardization of GSH intake may assist in reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Jiaru Gao
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Linjiao Jia
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Shuxin Kong
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Maosen Zhai
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Shuai Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Wenwen Li
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Shoukai Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Yuqing Su
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Wanyue Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Changzheng Zhu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanxiang Lu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China.
| | - Wentao Li
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
6
|
Bocian A, Macek P, Kędzierawski P. Triple-negative breast cancer patients treated with subcutaneous mastectomy with immediate reconstruction: single institution experience. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2024; 23:192-199. [PMID: 39811390 PMCID: PMC11726194 DOI: 10.5114/pm.2024.145951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Abstract
Introduction Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast carcinomas. In the last two decades, both nipple-sparing mastectomy (NSM) and skin-sparing mastectomy (SSM) with immediate reconstruction have been used in the surgical management. The aim of our study was to analyze the outcomes of the combined treatment of patients with TNBC treated with NSM or SSM. Material and methods A total of 114 women with TNBC were enrolled in this study. All diagnostic, therapeutic and follow-up procedures were conducted in one center of the Holycross Cancer Centre in Kielce. In all patients, subcutaneous mastectomy was performed. Overall survival was estimated by the Kaplan-Meier method. The influence of selected prognostic factors on the risk of death was analyzed using the Cox proportional hazards models. Results The probability of survival at 1, 3, and 5 years was 0.982, 0.894, 0.850, respectively. Based on the 5-factor Cox model, all included features had a significant relationship with the risk of death. In conclusion, the presence of a genetic mutation, adjuvant chemotherapy, complete pathological regression, and the absence of radiotherapy significantly reduced the risk of death. Conclusions The results of the treatment with subcutaneous mastectomy are good. The early stage of the cancer is associated with a better prognosis. Complete pathological regression after systemic treatment, particularly in patients with BRCA1 mutation, is a good prognostic factor and can help diminish the range of surgery in the axilla region.
Collapse
Affiliation(s)
- Artur Bocian
- Oncological Surgery Clinic, The Holycross Cancer Centre, Kielce, Poland
| | - Paweł Macek
- Scientific Research, Epidemiology and R&D Centre, The Holycross Cancer Centre, Kielce, Poland
- Jan Kochanowski University Collegium Medicum, Kielce, Poland
| | - Piotr Kędzierawski
- Jan Kochanowski University Collegium Medicum, Kielce, Poland
- Radiotherapy Clinic, The Holycross Cancer Centre, Kielce, Poland
| |
Collapse
|
7
|
Ye X, Cen Y, Li Q, Zhang Y, Li Q, Li J. Immunosuppressive SOX9-AS1 Resists Triple-Negative Breast Cancer Senescence Via Regulating Wnt Signalling Pathway. J Cell Mol Med 2024; 28:e70208. [PMID: 39550706 PMCID: PMC11569622 DOI: 10.1111/jcmm.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in the regulation of triple-negative breast cancer (TNBC) senescence, while pro-carcinogenic lncRNAs resist senescence onset leading to the failure of therapy-induced senescence (TIS) strategy, urgently identifying the key senescence-related lncRNAs (SRlncRNAs). We mined seven SRlncRNAs (SOX9-AS1, LINC01152, AC005152.3, RP11-161 M6.2, RP5-968 J1.1, RP11-351 J23.1 and RP11-666A20.3) by bioinformatics, of which SOX9-AS1 was reported to be pro-carcinogenic. In vitro experiments revealed the highest expression of SOX9-AS1 in MDA-MD-231 cells. SOX9-AS1 knockdown inhibited cell growth (proliferation, cycle and apoptosis) and malignant phenotypes (migration and invasion), while SOX9-AS1 overexpression rescued these effects. Additionally, SOX9-AS1 knockdown facilitated tamoxifen-induced cellular senescence and the transcription of senescence-associated secretory phenotype (SASP) factors (IL-1α, IL-1β, IL-6 and IL-8) mechanistically by resisting senescence-induced Wnt signal (GSK-3β/β-catenin) activation. Immune infiltration analysis revealed that low SOX9-AS1 expression was accompanied by a high infiltration of naïve B cells, CD8+ T cells and γδ T cells. In conclusion, SOX9-AS1 resists TNBC senescence via regulating the Wnt signalling pathway and inhibits immune infiltration. Targeted inhibition of SOX9-AS1 enhances SASP and thus mobilises immune infiltration to adjunct TIS strategy.
Collapse
Affiliation(s)
- Xuan Ye
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouPR China
| | - Quan Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Yuan‐Ping Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Qian Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangdong Provincial Clinical Research Center for Child HealthGuangzhouPR China
| |
Collapse
|
8
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
9
|
Wang W, Dong G, Yang Z, Li S, Li J, Wang L, Zhu Q, Wang Y. Single-cell analysis of tumor microenvironment and cell adhesion reveals that interleukin-1 beta promotes cancer cell proliferation in breast cancer. Animal Model Exp Med 2024; 7:617-625. [PMID: 38860503 PMCID: PMC11528385 DOI: 10.1002/ame2.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), which is so called because of the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) receptors on the cancer cells, accounts for 10%-15% of all breast cancers. The heterogeneity of the tumor microenvironment is high. However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood. METHODS We analyzed single-cell RNA sequencing data from five HER2 positive, 12 ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry. RESULTS Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2-integrin-aLb2 complex, and then release interleukin 1 beta (IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth. CONCLUSION Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC.
Collapse
Affiliation(s)
- Wenyan Wang
- Department of General Surgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziguo Yang
- Department of General Surgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jia Li
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lin Wang
- Department of General Surgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qiang Zhu
- Department of General Surgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuchen Wang
- Department of PharmacologyInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Su Y, Du Y, He W. USP1-mediated deubiquitination of KDM1A promotes the malignant progression of triple-negative breast cancer. J Biochem Mol Toxicol 2024; 38:e23864. [PMID: 39318028 DOI: 10.1002/jbt.23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Previous research has indicated the highly expressed lysine-specific histone demethylase 1A (KDM1A) in several human malignancies, including triple-negative breast cancer (TNBC). However, its detailed mechanisms in TNBC development remain poorly understood. The mRNA levels of KDM1A and Yin Yang 1 (YY1) were determined by RT-qPCR analysis. Western blot was performed to measure KDM1A and ubiquitin-specific protease 1 (USP1) protein expression. Cell proliferation, apoptosis, invasion, migration and stemness were evaluated by MTT assay, EdU assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere-formation assay, respectively. ChIP and dual-luciferase reporter assays were conducted to determine the relationship between YY1 and KDM1A. Xenograft tumor experiment and IHC were carried out to investigate the roles of USP1 and KDM1A in TNBC development in vivo. The highly expressed KDM1A was demonstrated in TNBC tissues and cells, and KDM1A knockdown significantly promoted cell apoptosis, and hampered cell proliferation, invasion, migration, and stemness in TNBC cells. USP1 could increase the stability of KDM1A via deubiquitination, and USP1 depletion restrained the progression of TNBC cells through decreasing KDM1A expression. Moreover, YY1 transcriptionally activated KDM1A expression by directly binding to its promoter in TNBC cells. Additionally, USP1 inhibition reduced KDM1A expression to suppress tumor growth in TNBC mice in vivo. In conclusion, YY1 upregulation increased KDM1A expression via transcriptional activation. USP1 stabilized KDM1A through deubiquitination to promote TNBC progression.
Collapse
Affiliation(s)
- Yang Su
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang, China
| | - Yan Du
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang, China
| | - Wenguang He
- Department of Thyroid and Breast Surgery, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Manna M, Brabant M, Greene R, Chamberlain MD, Kumar A, Alimohamed N, Brezden-Masley C. Canadian Expert Recommendations on Safety Overview and Toxicity Management Strategies for Sacituzumab Govitecan Based on Use in Metastatic Triple-Negative Breast Cancer. Curr Oncol 2024; 31:5694-5708. [PMID: 39330050 PMCID: PMC11431578 DOI: 10.3390/curroncol31090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Sacituzumab Govitecan (SG) is an antibody-drug conjugate (ADC) comprised of an anti-Trop-2 IgG1 molecule conjugated to SN-38, the active metabolite of irinotecan, via a pH-sensitive hydrolysable linker. As a result of recent Canadian funding for SG in advanced hormone receptor (HR)-positive breast cancer and triple-negative breast cancer (TNBC), experience with using SG and managing adverse events (AEs) has grown. This review presents a summary of evidence and adverse event recommendations derived from Canadian experience, with SG use in metastatic TNBC for extrapolation and guidance in all indicated settings. SG is dosed at 10 mg/kg on day 1 and day 8 of a 21-day cycle. Compared to treatment of physicians' choice (TPC) the phase III ASCENT and TROPiCS-02 studies demonstrated favorable survival data in unresectable locally advanced or metastatic TNBC and HR-positive HER2 negative metastatic breast cancer, respectively. The most common AEs were neutropenia, diarrhea, nausea, fatigue, alopecia, and anemia. This review outlines AE management recommendations for SG based on clinical trial protocols and Canadian guidelines, incorporating treatment delay, dose reductions, and the use of prophylactic and supportive medications.
Collapse
Affiliation(s)
- Mita Manna
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - Michelle Brabant
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rowen Greene
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael Dean Chamberlain
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - Aalok Kumar
- BC Cancer Surrey, University of British Columbia, Surrey, BC V3V 1Z2, Canada
| | - Nimira Alimohamed
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N2, Canada
| | | |
Collapse
|
12
|
Kim JH, Byun SJ, Kim M, Shin KH, Kim DY, Lee HB, Kim TH, Kim YJ, Kim YB, Chang JS, Kim K, Lee SY. Treatment Outcomes after Postoperative Radiotherapy in Triple-Negative Breast Cancer: Multi-Institutional Retrospective Study (KROG 17-05). J Pers Med 2024; 14:941. [PMID: 39338195 PMCID: PMC11433471 DOI: 10.3390/jpm14090941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND We designed a multi-institutional retrospective study to investigate the previously unreported failure pattern, survivals, and prognostic factors after postoperative radiotherapy (PORT) in triple negative breast cancer (TNBC) patients in South Korea. MATERIALS AND METHODS We retrospectively reviewed 699 patients with TNBC who underwent PORT at six institutions between 2008 and 2010. The median follow-up period was 94 months (range: 7-192 months). There were 216, 380, and 100 patients in stages I, II, and III, respectively. RESULTS After 94 months post-treatment, all patients with pathologic complete remission after neoadjuvant chemotherapy were alive without any failure. Distant metastasis was the main cause of failure. The 5-year overall survival rate was 91.4%, 5-year loco-regional relapse-free survival rate (LRRFS) was 92.3%, 5-year distant metastasis-free survival rate (DMFS) was 89.4%, and 5-year disease-free survival rate (DFS) was 85.2%. On multivariate (Cox) analysis, T and N stages were significant prognostic factors for survival, and lympho-vascular invasion (LVI) was a significant factor for LRRFS and DMFS. Ki-67 expression was significantly associated with LRRFS and DFS. CONCLUSION We verified that T and N stages, LVI, and Ki-67 expression were significantly associated with survival outcomes after PORT in TNBC.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Radiation Oncology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-daero Dalseo-gu, Daegu 42601, Republic of Korea; (S.J.B.); (M.K.)
| | - Sang Jun Byun
- Department of Radiation Oncology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-daero Dalseo-gu, Daegu 42601, Republic of Korea; (S.J.B.); (M.K.)
| | - Myeongsoo Kim
- Department of Radiation Oncology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-daero Dalseo-gu, Daegu 42601, Republic of Korea; (S.J.B.); (M.K.)
| | - Kyung Hwan Shin
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.H.S.); (D.Y.K.)
| | - Dong Yun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.H.S.); (D.Y.K.)
- Department of Radiation Oncology, Chung-Ang University Hospital, Seoul 06973, Republic of Korea
| | - Han Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Tae Hyun Kim
- Department of Radiation Oncology, Proton Therapy Center, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Yeon Joo Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.B.K.); (J.S.C.)
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.B.K.); (J.S.C.)
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.B.K.); (J.S.C.)
| | - Kyubo Kim
- Department of Radiation Oncology, Ewha Womans University School of Medicine, Seoul 07804, Republic of Korea;
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Sun Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| |
Collapse
|
13
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
14
|
Park H, Kim H, Park W, Cho WK, Kim N, Kim TG, Im YH, Ahn JS, Park YH, Kim JY, Nam SJ, Kim SW, Lee JE, Yu J, Chae BJ, Lee SK, Ryu JM. Oncological outcomes in patients with residual triple-negative breast cancer after preoperative chemotherapy. Radiat Oncol J 2024; 42:210-217. [PMID: 39354824 PMCID: PMC11467479 DOI: 10.3857/roj.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE This study aimed to evaluate the clinical outcomes and prognostic implications of regional nodal irradiation (RNI) after neoadjuvant chemotherapy (NAC) in patients with residual triple-negative breast cancer (TNBC). MATERIALS AND METHODS We analyzed 152 patients with residual TNBC who underwent breast-conserving surgery after NAC between December 2008 and December 2017. Most patients (n = 133; 87.5%) received taxane-based chemotherapy. Adjuvant radiotherapy (RT) was administered at a total dose of 45-65 Gy in 15-30 fractions to the whole breast, with some patients also receiving RT to regional nodes. Survival was calculated using the Kaplan-Meier method, and prognostic factors influencing survival were analyzed using the Cox proportional-hazards model. RESULTS During a median follow-up of 66 months (range, 9 to 179 months), the 5-year disease-free survival (DFS) rate was 68.0%. The 5-year locoregional recurrence-free survival, distant metastasis-free survival, and overall survival rates were 83.6%, 72.6%, and 78.7%, respectively. In the univariate analysis, the cN stage, ypT stage, ypN stage, axillary operation type, and RT field were associated with DFS. Multivariate analysis revealed that higher ypT stage (hazard ratio [HR] = 2.0; 95% confidence interval [CI] 1.00-3.82; p = 0.049) and ypN stage (HR = 4.7; 95% CI 1.57-14.24; p = 0.006) were associated with inferior DFS. Among clinically node-positive patients, those who received RT to the breast only had a 5-year DFS of 73.7%, whereas those who received RNI achieved a DFS of 59.6% (p = 0.164). There were no differences between the DFS and RNI. CONCLUSION In patients with residual TNBC, higher ypT and ypN stages were associated with poorer outcomes after NAC. RNI did not appear to improve DFS. More intensive treatments incorporating systemic therapy and RT should be considered for these patients.
Collapse
Affiliation(s)
- Hyunki Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Haeyoung Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Jin Nam
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Won Kim
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong Eon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jonghan Yu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung Joo Chae
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sei Kyung Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jai-Min Ryu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Liu SM, Huang SY, Wu HM, Chang CL, Huang HY. Ovarian stimulation response and fertility outcomes in patients with breast cancer across different stages, grades, and hormone receptor status for fertility preservation. J Formos Med Assoc 2024:S0929-6646(24)00399-1. [PMID: 39214749 DOI: 10.1016/j.jfma.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aimed to explore the potential impact of stage, grade, and hormone receptor profile on ovarian stimulation response and fertility preservation outcomes. METHODS This retrospective cohort study evaluated data from breast cancer patients who underwent fertility preservation at a tertiary medical center between 2014 and 2022. The outcomes of women with low-stage cancer (stages I and II) were compared with those of women with high-stage disease (stages III and IV or lymph node metastasis). Similarly, we compared those with low-grade (grades 1 and 2) and high-grade (grade 3) malignancies. In addition, we compared different hormone statuses of breast cancer (1) estrogen receptor (ER) positive vs. ER-negative and (2) triple-negative breast cancer (TNBC) vs. non-TNBC. The primary outcome measured was the number of mature oocytes, while the secondary outcomes included the numbers of total oocytes retrieved, peak estradiol levels, and subsequent fertility preservation outcomes. RESULTS A total of 47 patients were included. Patients with high-grade tumors had a comparable number of mature oocytes (8 vs. 10, p = 0.08) compared to patients with low grade cancers. The stage-based analysis revealed a similar number of mature oocytes (8 vs. 10, p = 0.33) between high/low stage patients. In the hormone receptor-based analysis, no differences were seen in mature oocytes collected between the ER-positive/ER-negative group (9 vs. 9, p = 0.87) and the TNBC/non-TNBC group (11 vs. 9, p = 0.13). The utilization rate was 27.6% (13/47). CONCLUSION Our study showed similar ovarian stimulation response and fertility preservation outcomes among breast cancer patients with different prognostic factors.
Collapse
Affiliation(s)
- Shang-Min Liu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shang-Yu Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan
| | - Chia-Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, 259 Wen-Hua 1st Road, Kwei-shan, Tao-Yuan, Taiwan.
| |
Collapse
|
16
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
17
|
Yang X, Liang B, Zhang L, Zhang M, Ma M, Qing L, Yang H, Huang G, Zhao J. Ursolic acid inhibits the proliferation of triple‑negative breast cancer stem‑like cells through NRF2‑mediated ferroptosis. Oncol Rep 2024; 52:94. [PMID: 38847277 PMCID: PMC11184361 DOI: 10.3892/or.2024.8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem‑like cells remains unexplored. The present study investigated the effect of UA on MDA‑MB‑231 and BT‑549 cell‑derived triple‑negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis‑related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit‑8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription‑quantitative PCR and western blotting. BALB/c‑nude mice were subcutaneously injected with MDA‑MB‑231‑derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch‑like ECH‑associated protein 1 and suppresses nuclear factor erythroid‑related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple‑negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.
Collapse
Affiliation(s)
- Xinhua Yang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lisha Zhang
- The Preparation Center, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi 330013, P.R. China
| | - Mingzhu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Ming Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lijuan Qing
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jian Zhao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
18
|
Huang J, Xu Y, Qi S, Zheng Q, Cui C, Liu L, Liu F. The potent potential of MFAP2 in prognosis and immunotherapy of triple-negative breast cancer. Discov Oncol 2024; 15:202. [PMID: 38822944 PMCID: PMC11144179 DOI: 10.1007/s12672-024-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUNDS Microfibril-associated protein 2 (MFAP2) is a protein presenting in the extracellular matrix that governs the activity of microfibrils through its interaction with fibrillin. While the involvement of MFAP2 in metabolic disorders has been documented, its expression and prognostic significance in triple-negative breast cancer (TNBC) remain unexplored. METHODS We acquired datasets pertaining to breast cancer (BC) from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Next, a Venn diagram was used to identify the differentially expressed genes (DEGs). The DEGs were used to perform Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), immune and survival analysis. The expressions of MFAP2, PD-1 and PD-L1 were examined by immunohistochemistry and western blot and their relationship with clinical pathological parameters were analyzed by clinical specimen samples from patients with TNBC. Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/ ) was adopted to calculate the immune infiltration level of TNBC. The link between gene expression and tumor mutational burden (TMB) was described using Spearman's correlation analysis. RESULTS We identified 66 differentially expressed genes (DEGs) that were up-regulated. Among these DEGs, MFAP2 was found to be overexpressed in TNBC and was associated with a lower probability of survival. This finding was confirmed through the use of immunohistochemistry and western blot techniques. Additionally, MFAP2 was found to be related to various pathological parameters in TNBC patients. Mechanistically, gene set enrichment analysis (GSEA) revealed that MFAP2 primarily influenced cellular biological behavior in terms of epithelial mesenchymal transition, glycolysis, and apical junction. Notably, MFAP2 expression was positively correlated with the abundance of macrophages, while a negative correlation was observed with the abundance of B cells, CD4 + T cells, CD8 + T cells, neutrophils and dendritic cells through immune analysis. Furthermore, it was observed that MFAP2 displayed a negative correlation not only with tumor mutational burden (TMB), a recognized biomarker for PD-1/PD-L1 immunotherapy, but also with PD-L1 in samples of TNBC. CONCLUSION MFAP2 may be an important prognostic biomarker for TNBC, as well as a viable target for immunotherapy in this disease.
Collapse
Affiliation(s)
- Jing Huang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Yuting Xu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Shengnan Qi
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, 266121, China
| | - Qi Zheng
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Can Cui
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China.
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Chongchuan District, Nantong, 226001, China.
| |
Collapse
|
19
|
Syrnioti A, Petousis S, Newman LA, Margioula-Siarkou C, Papamitsou T, Dinas K, Koletsa T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel) 2024; 16:2094. [PMID: 38893213 PMCID: PMC11171372 DOI: 10.3390/cancers16112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Lisa A. Newman
- Department of Breast Surgery, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Chrysoula Margioula-Siarkou
- MSc Program in Gynaecologic Oncology and Breast Oncology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
20
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
21
|
Chen R, Jiang Z, Cheng Y, Ye J, Li S, Xu Y, Ye Z, Shi Y, Ding J, Zhao Y, Zheng H, Wu F, Lin G, Xie C, Yao Q, Kou L. Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer. Int J Pharm 2024; 655:124016. [PMID: 38503397 DOI: 10.1016/j.ijpharm.2024.124016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to its low sensitivity to many chemotherapeutic drugs and a relatively low overall survival rate in clinical practice. Photothermal therapy has recently garnered substantial interest in cancer treatment, owing to its swift therapeutic effectiveness and minimal impact on normal cells. Metal-polyphenol nanostructures have recently garnered significant attention as photothermal transduction agents due to their facile preparation and favorable photothermal properties. In this study, we employed a coordinated approach involving Fe3+ and apigenin, a polyphenol compound, to construct the nanostructure (nFeAPG), with the assistance of β-CD and DSPE-PEG facilitating the formation of the complex nanostructure. In vitro research demonstrated that the formed nFeAPG could induce cell death by elevating intracellular oxidative stress, inhibiting antioxidative system, and promoting apoptosis and ferroptosis, and near infrared spectrum irradiation further strengthen the therapeutic outcome. In 4T1 tumor bearing mice, nFeAPG could effectively accumulate into tumor site and exhibit commendable control over tumor growth. Futher analysis demonstrated that nFeAPG ameliorated the suppressed immune microenvironment by augmenting the response of DC cells and T cells. This study underscores that nFeAPG encompasses a multifaceted capacity to combat TNBC, holding promise as a compelling therapeutic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinyao Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhanzheng Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yifan Shi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jie Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingyi Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailun Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| |
Collapse
|
22
|
Ren J, Chen W, Zhou Y, Sun J, Jiang G. The novel circRNA circ_0045881 inhibits cell proliferation and invasion by targeting mir-214-3p in triple-negative breast cancer. BMC Cancer 2024; 24:278. [PMID: 38429642 PMCID: PMC10905830 DOI: 10.1186/s12885-024-12007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer (BC). The circRNA-miRNA‒mRNA axis is a promising biomarker for the early diagnosis and prognosis of BC. However, the critical circRNA mediators involved in TNBC progression and the underlying regulatory mechanism involved remain largely unclear. METHODS In this study, we carried out a circRNA microarray analysis of 6 TNBC patients and performed a gene ontology (GO) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to characterize important circRNAs involved in TNBC progression. The interaction between circRNAs and miRNAs was determined by dual luciferase and RNA immunoprecipitation (RIP) assays. Moreover, Transwell, wound healing and Cell Counting Kit-8 (CCK8) assays were performed with altered circRNA or miRNA expression in MDA-MB-231 and BT-549 cells to investigate the roles of these genes in cell invasion, migration and proliferation. RESULTS A total of 78 circRNAs were differentially expressed in TNBC tissues, and the hsa_circ_0045881 level was significantly decreased in TNBC tissues and cells. Lentivirus-mediated hsa_circ_0045881 overexpression in MDA-MB-231 and BT-549 cells significantly reduced cell invasion and migration capacity. Additionally, hsa_circ_0045881 interacted with miR-214-3p in MDA-MB-231 cells. miR-214-3p mimics in MDA-MB-231 and BT-549 cells significantly enhanced cell invasion, migration and proliferation, but the other combinations of inhibitors had opposite effects on cell activity. CONCLUSIONS Our data indicated that the circRNA has_circ_0045881 plays key roles in TNBC progression and that hsa_circ_0045881 might act as a sponge for miR-214-3p to modulate its levels in TNBC cells, thereby regulating cell invasion, metastasis and proliferation. hsa_circ_004588 might be a potential prognostic marker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jie Ren
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, 215004, Suzhou, Jiangsu Province, China
| | - Wei Chen
- Surgery Department, Suzhou Wuzhong People's Hospital, 215128, Suzhou, Jiangsu Province, China
| | - Ya Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, 215004, Suzhou, Jiangsu Province, China
| | - Jianxiong Sun
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, 215004, Suzhou, Jiangsu Province, China
| | - Guoqin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, 215004, Suzhou, Jiangsu Province, China.
| |
Collapse
|
23
|
Shi M, Li Z, Wang T, Wang M, Liu Z, Zhao F, Ren D, Zhao J. Third-line Treatment for Metastatic Triple-negative Breast Cancer: A Systematic Review and Network Meta-analysis. Am J Clin Oncol 2024; 47:91-98. [PMID: 38108387 DOI: 10.1097/coc.0000000000001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Metastatic triple-negative breast cancer (mTNBC) is an invasive histologic subtype with a poor prognosis and rapid progression. Currently, there is no standard therapy for the third-line treatment of mTNBC. In this study, we conducted a network meta-analysis to compare regimens and determine treatment outcomes. METHODS We performed a systematic search of PubMed, EMBASE, the Cochrane Central Register of Controlled Bases, and the minutes of major conferences. Progression-free survival, overall survival, and objective response rate were analyzed through network meta-analysis using the R software (R Core Team). The efficacy of the treatment regimens was compared using hazard ratios, odds ratios, and 95% CIs. RESULTS We evaluated 15 randomized controlled trials involving 6,010 patients. Compared with the physician's choice treatment, sacituzumab govitecan showed significant advantages in progression-free survival and overall survival, with hazard ratio values of 0.41 (95% CI: 0.32-0.52) and 0.48 (95% CI, 0.39-0.60). In terms of objective response rate, sacituzumab govitecan is the best-performing therapy (odds ratio: 10.82; 95% CI: 5.58-20.97). Adverse events among grades 3 to 5 adverse reactions, the incidence of neutropenia and leukopenia in each regimen was higher, whereas the incidence of fever, headache, hypertension, and rash was lower. CONCLUSION Compared with the treatment of the physician's choice, sacituzumab govitecan appears more efficacious and is the preferred third-line treatment for mTNBC.
Collapse
Affiliation(s)
- Mingqiang Shi
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Keskinkılıc M, Gökmen-Polar Y, Badve SS. Triple Negative Breast Cancers: An Obsolete Entity? Clin Breast Cancer 2024; 24:1-6. [PMID: 38016912 DOI: 10.1016/j.clbc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Triple negative breast cancer is defined on the basis of what it is not. It has served as a useful umbrella entity for management of patients with breast cancer for the last couple of decades. However, during this period a number of novel therapies have become available. These therapies have been documented to be useful in subsets of TNBCs that can be identified on the basis of distinct biologic alterations. Herein we revisit the categorization and usage of the TNBC as an entity to assess its utility in view of the currently available therapies.
Collapse
Affiliation(s)
- Merve Keskinkılıc
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
25
|
Yuan F, Zhang C, Luo X, Cheng S, Zhu Y, Xian Y. An erythrocyte membrane-camouflaged fluorescent covalent organic framework for starving/nitric oxide/immunotherapy of triple-negative breast cancer. Chem Sci 2023; 14:14182-14192. [PMID: 38098713 PMCID: PMC10717584 DOI: 10.1039/d3sc02022c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 12/17/2023] Open
Abstract
It is a great challenge to effectively treat triple-negative breast cancer (TNBC) due to lack of therapeutic targets and drug resistance of systemic chemotherapy. Rational design of nanomedicine with good hemocompatibility is urgently desirable for combination therapy of TNBC. Herein, an erythrocyte membrane-camouflaged fluorescent covalent organic framework (COF) loaded with an NO donor (hydroxyurea, Hu), glucose oxidase (GOx) and cytosine-phosphate-guanine oligonucleotides (CPG) (COF@HGC) was developed for imaging-guided starving/nitric oxide (NO)/immunization synergistic treatment of TNBC. The substances of HGC are easily co-loaded onto the COF due to the ordered pore structure and large surface area. And a folic acid-modified erythrocyte membrane (FEM) is coated on the surface of COF@HGC to improve targeted therapy and haemocompatibility. When COF@HGC@FEM is internalized into tumor cells, hemoglobin (Hb) on FEM and GOx loaded on the COF can trigger cascade reactions to kill tumor cells due to the simultaneous production of NO and exhaustion of glucose. Meanwhile, the COF with excellent fluorescence properties can be used as a self-reporter for bioimaging. Furthermore, the CPG can reprogram tumor-associated macrophages from tumor-supportive phenotype to anti-tumor phenotype and enhance immunotherapy. Through the "three-in-one" strategy, the biomimetic nanoplatform can effectively inhibit tumor growth and reprogram the tumor immunosuppression microenvironment in the TNBC mouse model.
Collapse
Affiliation(s)
- Fang Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yingxin Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| |
Collapse
|
26
|
Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Circ_0004676 exacerbates triple-negative breast cancer progression through regulation of the miR-377-3p/E2F6/PNO1 axis. Cell Biol Toxicol 2023; 39:2183-2205. [PMID: 35870038 DOI: 10.1007/s10565-022-09704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/23/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The significant roles of circular RNAs (circRNAs) in different cancers and diseases have been reported. We now focused on the possible role of a newly recognized circRNA, circ_0004674 in triple-negative breast cancer (TNBC), and the related downstream mechanism. METHODS The expression of circ_0004674 in TNBC tissues and cells was determined followed by analysis of the correlation between circ_0004674 and TNBC patients' prognosis. The interaction between circ_0004674, miR-377-3p, E2F6, and PNO1 was then identified using bioinformatics analysis combined with FISH, RIP, RNA pull-down, RT-qPCR, and Western blot analysis. Using gain-of-function and loss-of-function methods, we analyzed the effect of circ_0004674, miR-377-3p, E2F6, and PNO1 on TNBC in vivo and in vitro. RESULTS Increased circ_0004674 and E2F6 but decreased miR-377-3p were observed in TNBC tissues and MDA-MB-231 TNBC cells, all of which findings were associated with poor prognosis in patients with TNBC. Silencing of circ_0004676 remarkably suppressed the proliferation, cell cycle progression, and migration of TNBC cells in vitro, as well as inhibiting tumorigenesis and metastasis in vivo. Additionally, circ_0004676 served as a sponge of miR-377-3p which bound to the transcription factor E2F6. In the presence of overexpression of circ_0004676, E2F6 expression and its target PNO1 expression were elevated, while miR-377-3p expression was decreased. Interestingly, overexpression of E2F6 could reverse the inhibitory effect on tumor growth caused by downregulation of circ_0004676. CONCLUSION Our study highlighted the carcinogenic effect of circ_0004676 on TNBC through regulation of the miR-377-3p/E2F6/PNO1 axis. 1. Circ_0004674 is highly expressed in TNBC tissues and cells. 2. Circ_0004674 upregulates the expression of E2F6 by sponging miR-377-3p. 3. E2F6 upregulates PNO1 by binding to the PNO1 promoter. 4. Circ_0004674 favors TNBC progression by regulating the miR-377-3p/E2F6/PNO1 axis. 5. This study provides a new target for the treatment of TNBC.
Collapse
Affiliation(s)
- Guoli Shao
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Xulong Fan
- Department of Breast Surgery, Maternity and Children's Healthcare Hospital of Foshan, Foshan, 528000, People's Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xuewen Liu
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Lei Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shufeng Ji
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
27
|
Luo J, Li X, Wei KL, Chen G, Xiong DD. Advances in the application of computational pathology in diagnosis, immunomicroenvironment recognition, and immunotherapy evaluation of breast cancer: a narrative review. J Cancer Res Clin Oncol 2023; 149:12535-12542. [PMID: 37389595 DOI: 10.1007/s00432-023-05002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Breast cancer (BC) is a prevalent and highly lethal malignancy affecting women worldwide. Immunotherapy has emerged as a promising therapeutic strategy for BC, offering potential improvements in patient survival. Neoadjuvant therapy (NAT) has also gained significant clinical traction. With the advancement of computer technology, Artificial Intelligence (AI) has been increasingly applied in pathology research, expanding and redefining the scope of the field. This narrative review aims to provide a comprehensive overview of the current literature on the application of computational pathology in BC, specifically focusing on diagnosis, immune microenvironment recognition, and the evaluation of immunotherapy and NAT response. METHODS A thorough examination of relevant literature was conducted, focusing on studies investigating the role of computational pathology in BC diagnosis, immune microenvironment recognition, and immunotherapy and NAT assessment. RESULTS The application of computational pathology has shown significant potential in BC management. AI-based techniques enable improved diagnosis and classification of BC subtypes, enhance the identification and characterization of the immune microenvironment, and facilitate the evaluation of immunotherapy and NAT response. However, challenges related to data quality, standardization, and algorithm development still need to be addressed. CONCLUSION The integration of computational pathology and AI has transformative implications for BC patient care. By leveraging AI-based technologies, clinicians can make more informed decisions in diagnosis, treatment planning, and therapeutic response assessment. Future research should focus on refining AI algorithms, addressing technical challenges, and conducting large-scale clinical validation studies to facilitate the translation of computational pathology into routine clinical practice for BC patients.
Collapse
Affiliation(s)
- Jie Luo
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, People's Republic of China
| | - Xia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Kang-Lai Wei
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
28
|
Thankamony AP, Ramkomuth S, Ramesh ST, Murali R, Chakraborty P, Karthikeyan N, Varghese BA, Jaikumar VS, Jolly MK, Swarbrick A, Nair R. Phenotypic heterogeneity drives differential disease outcome in a mouse model of triple negative breast cancer. Front Oncol 2023; 13:1230647. [PMID: 37841442 PMCID: PMC10570535 DOI: 10.3389/fonc.2023.1230647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
The triple negative breast cancer (TNBC) subtype is one of the most aggressive forms of breast cancer that has poor clinical outcome and is an unmet clinical challenge. Accumulating evidence suggests that intratumoral heterogeneity or the presence of phenotypically distinct cell populations within a tumor play a crucial role in chemoresistance, tumor progression and metastasis. An increased understanding of the molecular regulators of intratumoral heterogeneity is crucial to the development of effective therapeutic strategies in TNBC. To this end, we used an unbiased approach to identify a molecular mediator of intratumoral heterogeneity in breast cancer by isolating two tumor cell populations (T1 and T2) from the 4T1 TNBC model. Phenotypic characterization revealed that the cells are different in terms of their morphology, proliferation and self-renewal ability in vitro as well as primary tumor formation and metastatic potential in vivo. Bioinformatic analysis followed by Kaplan Meier survival analysis in TNBC patients identified Metastasis associated colon cancer 1 (Macc1) as one of the top candidate genes mediating the aggressive phenotype in the T1 tumor cells. The role of Macc1 in regulating the proliferative phenotype was validated and taken forward in a therapeutic context with Lovastatin, a small molecule transcriptional inhibitor of Macc1 to target the T1 cell population. This study increases our understanding of the molecular underpinnings of intratumoral heterogeneity in breast cancer that is critical to improve the treatment of women currently living with the highly aggressive TNBC subtype.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sonny Ramkomuth
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Shikha T. Ramesh
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Reshma Murali
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | | | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- Centre for Human Genetics, Bangalore, India
| |
Collapse
|
29
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
30
|
Yang X, Yang R, Zhang Y, Shi Y, Ma M, Li F, Xie Y, Han X, Liu S. Xianlinglianxiafang Inhibited the growth and metastasis of triple-negative breast cancer via activating PPARγ/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115164. [PMID: 37478577 DOI: 10.1016/j.biopha.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by high invasion and metastasis rates. Xian-Ling-Lian-Xia formula (XLLX) is a traditional Chinese medicine prescription widely used in China for treating TNBC. Clinical studies have shown that XLLX significantly reduces the recurrence and metastasis rate of TNBC and improves disease-free survival. However, the potential molecular mechanisms of XLLX on TNBC are not clear yet. Here, we investigated the effects of XLLX on TNBC using a mouse model and tumor cell lines. The results showed that XLLX significantly inhibited the proliferation, migration, and invasion abilities of TNBC cell lines MDA-MB-231 and 4T1 in vitro, induced apoptosis, and regulated the expression of proliferation, apoptosis, and EMT marker proteins in tumor cells. In in vivo experiments, XLLX treatment significantly reduced the progression of TNBC tumors and lung metastasis. Transcriptomics reveals that XLLX treatment significantly enriched differentially expressed genes in the peroxisome proliferator-activated receptor gamma (PPARγ) and AMP-dependent protein kinase (AMPK) signaling pathways. The western blot results confirmed that XLLX significantly upregulated the protein expression of PPARγ and p-AMPK in TNBC cells, tumors, and lung tissues. It is noteworthy that GW9662 (a PPARγ inhibitor) and Compound C (an AMPK inhibitor) partially reversed the anti-proliferation and anti-metastasis effects of XLLX in TNBC cells. Therefore, XLLX may effectively inhibit the growth and metastasis of TNBC by activating the PPARγ/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Yang
- department of breast surgery, Shanxi Provincial Cancer Hospital, Shanxi, China
| | - Yang Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youyang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Feifei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xianghui Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Zhang W, He Y, Tang Y, Dai W, Si Y, Mao F, Xu J, Yu C, Sun X. A meta-analysis of application of PD-1/PD-L1 inhibitor-based immunotherapy in unresectable locally advanced triple-negative breast cancer. Immunotherapy 2023; 15:1073-1088. [PMID: 37337734 DOI: 10.2217/imt-2023-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aims: The purpose of this study was to explore the efficacy of immunotherapy for patients with triple-negative breast cancer (TNBC). Materials & methods: Randomized clinical trials comparing immunotherapy with chemotherapy for advanced TNBC patients were included. Results: A total of six articles (3183 patients) were eligible for this meta-analysis. PD-1/PD-L1 inhibitor-based immunotherapy combined with chemotherapy can significantly increase the progression-free survival (hazard ratio [HR] = 0.82; 95% CI = 0.76-1.14; p < 0.001) of unresectable locally advanced or metastatic TNBC patients without effect on overall survival, compared with chemotherapy. Conclusion: PD-1/PD-L1 inhibitors-based immunotherapy can safely improve progression-free survival in patients with unresectable locally advanced or metastatic TNBC, but has no effect on overall survival.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuning Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Feiyan Mao
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xing Sun
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
32
|
Li F, Xian D, Huang J, Nie L, Xie T, Sun Q, Zhang X, Zhou Y. SP1-Induced Upregulation of LncRNA AFAP1-AS1 Promotes Tumor Progression in Triple-Negative Breast Cancer by Regulating mTOR Pathway. Int J Mol Sci 2023; 24:13401. [PMID: 37686205 PMCID: PMC10563082 DOI: 10.3390/ijms241713401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The long non-coding RNA (lncRNA) actin fiber-associated protein-1 antisense RNA 1 (AFAP1-AS1) exerted oncogenic activity in triple-negative breast cancer (TNBC). We designed this study and conducted it to investigate the upstream regulation mechanism of AFAP1-AS1 in TNBC tumorigenesis. In this work, we proved the localization of AFAP1-AS1 in the cytoplasm. We elucidated the mechanism by which the transcription factor specificity protein 1 (SP1) modulated AFAP1-AS1 in TNBC progression, which has yet to be thoroughly studied. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of SP1 toward the promoter regions P3 of AFAP1-AS1, proving the gene expression regulation of AFAP1-AS1 via SP1 in TNBC. Additionally, SP1 could facilitate the tumorigenesis of TNBC cells in vitro and in vivo by regulating the AFAP1-AS1 expression. Furthermore, silenced AFAP1-AS1 suppressed the expression of genes in the mTOR pathway, such as eukaryotic translation initiation factor 4B (EIF4B), mitogen-activated protein kinase-associated protein 1 (MAPKAP1), SEH1-like nucleoporin (SEH1L), serum/glucocorticoid regulated kinase 1 (SGK1), and its target NEDD4-like E3 ubiquitin protein ligase (NEDD4L), and promoted the gene expression of s-phase kinase-associated protein 2 (SKP2). Overall, this study emphasized the oncogenic role of SP1 and AFAP1-AS1 in TNBC and illustrated the AFAP1-AS1 upstream interaction with SP1 and the downstream modulatory of mTOR signaling, thus offering insights into the tumorigenesis mechanism in TNBC.
Collapse
Affiliation(s)
- Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Daheng Xian
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Junying Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Longzhu Nie
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Ting Xie
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| |
Collapse
|
33
|
Sun Y, Zhang H, Ma R, Guo X, Zhang G, Liu S, Zhu W, Liu H, Gao P. ETS-1-activated LINC01016 over-expression promotes tumor progression via suppression of RFFL-mediated DHX9 ubiquitination degradation in breast cancers. Cell Death Dis 2023; 14:507. [PMID: 37550275 PMCID: PMC10406855 DOI: 10.1038/s41419-023-06016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are key regulators during the development of breast cancer (BC) and thus may be viable treatment targets. In this study, we found that the expression of the long intergenic non-coding RNA 01016 (LINC01016) was significantly higher in BC tissue samples with positive lymph node metastasis. LINC01016, which is activated by the transcription factor ETS-1, contributes to the overt promotion of cell proliferation activity, enhanced cell migratory ability, S phase cell cycle arrest, and decreased apoptosis rate. By RNA pull-down assays and mass spectrometry analyses, we determined that LINC01016 competitively bound and stabilized DHX9 protein by preventing the E3 ubiquitin ligase RFFL from binding to DHX9, thereby inhibiting DHX9 proteasomal degradation. This ultimately led to an increase in intracellular DHX9 expression and activated PI3K/AKT signaling, with p-AKT, Bcl-2, and MMP-9 involvement. This is the first study to reveal that the LINC01016/DHX9/PI3K/AKT axis plays a critical role in the progression of BC, and thus, LINC01016 may serve as a potential therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, PR China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Ranran Ma
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiangyu Guo
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Guohao Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Sen Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Wenjie Zhu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Haiting Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Peng Gao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
34
|
He X, Wang L, Li H, Liu Y, Tong C, Xie C, Yan X, Luo D, Xiong X. CSF2 upregulates CXCL3 expression in adipocytes to promote metastasis of breast cancer via the FAK signaling pathway. J Mol Cell Biol 2023; 15:mjad025. [PMID: 37073091 PMCID: PMC10686244 DOI: 10.1093/jmcb/mjad025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Recent studies have demonstrated that cancer-associated adipocytes (CAAs) in the tumor microenvironment are involved in the malignant progression of breast cancer. However, the underlying mechanism of CAA formation and its effects on the development of breast cancer are still unknown. Here, we show that CSF2 is highly expressed in both CAAs and breast cancer cells. CSF2 promotes inflammatory phenotypic changes of adipocytes through the Stat3 signaling pathway, leading to the secretion of multiple cytokines and proteases, particularly C-X-C motif chemokine ligand 3 (CXCL3). Adipocyte-derived CXCL3 binds to its specific receptor CXCR2 on breast cancer cells and activates the FAK pathway, enhancing the mesenchymal phenotype, migration, and invasion of breast cancer cells. In addition, a combination treatment targeting CSF2 and CXCR2 shows a synergistic inhibitory effect on adipocyte-induced lung metastasis of mouse 4T1 cells in vivo. These findings elucidate a novel mechanism of breast cancer metastasis and provide a potential therapeutic strategy for breast cancer metastasis.
Collapse
Affiliation(s)
- Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Honghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Pediatric Medical School, Nanchang University, Nanchang 330031, China
| | - Caifeng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China
| |
Collapse
|
35
|
Hwang KP, Elshafeey NA, Kotrotsou A, Chen H, Son JB, Boge M, Mohamed RM, Abdelhafez AH, Adrada BE, Panthi B, Sun J, Musall BC, Zhang S, Candelaria RP, White JB, Ravenberg EE, Tripathy D, Yam C, Litton JK, Huo L, Thompson AM, Wei P, Yang WT, Pagel MD, Ma J, Rauch GM. A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer. Radiol Imaging Cancer 2023; 5:e230009. [PMID: 37505106 PMCID: PMC10413296 DOI: 10.1148/rycan.230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 06/03/2023] [Indexed: 07/29/2023]
Abstract
Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.
Collapse
Affiliation(s)
- Ken-Pin Hwang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Nabil A. Elshafeey
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Aikaterini Kotrotsou
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Huiqin Chen
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jong Bum Son
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Medine Boge
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Rania M. Mohamed
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Abeer H. Abdelhafez
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Beatriz E. Adrada
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Bikash Panthi
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jia Sun
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Benjamin C. Musall
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Shu Zhang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Rosalind P. Candelaria
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jason B. White
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Elizabeth E. Ravenberg
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Debu Tripathy
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Clinton Yam
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jennifer K. Litton
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Lei Huo
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Alastair M. Thompson
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Peng Wei
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Wei T. Yang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Mark D. Pagel
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jingfei Ma
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Gaiane M. Rauch
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| |
Collapse
|
36
|
Tang L, Zhang Z, Fan J, Xu J, Xiong J, Tang L, Jiang Y, Zhang S, Zhang G, Luo W, Xu Y. Comprehensively analysis of immunophenotyping signature in triple-negative breast cancer patients based on machine learning. Front Pharmacol 2023; 14:1195864. [PMID: 37426809 PMCID: PMC10328722 DOI: 10.3389/fphar.2023.1195864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapy is a promising strategy for triple-negative breast cancer (TNBC) patients, however, the overall survival (OS) of 5-years is still not satisfactory. Hence, developing more valuable prognostic signature is urgently needed for clinical practice. This study established and verified an effective risk model based on machine learning methods through a series of publicly available datasets. Furthermore, the correlation between risk signature and chemotherapy drug sensitivity were also performed. The findings showed that comprehensive immune typing is highly effective and accurate in assessing prognosis of TNBC patients. Analysis showed that IL18R1, BTN3A1, CD160, CD226, IL12B, GNLY and PDCD1LG2 are key genes that may affect immune typing of TNBC patients. The risk signature plays a robust ability in prognosis prediction compared with other clinicopathological features in TNBC patients. In addition, the effect of our constructed risk model on immunotherapy response was superior to TIDE results. Finally, high-risk groups were more sensitive to MR-1220, GSK2110183 and temsirolimus, indicating that risk characteristics could predict drug sensitivity in TNBC patients to a certain extent. This study proposes an immunophenotype-based risk assessment model that provides a more accurate prognostic assessment tool for patients with TNBC and also predicts new potential compounds by performing machine learning algorithms.
Collapse
|
37
|
Cao M, Lu H, Yan S, Pang H, Sun L, Li C, Chen X, Liu W, Hu J, Huang J, Xing Y, Zhang N, Chen Y, He T, Zhao D, Sun Y, Zhao L, Liu X, Cai L. Apatinib plus etoposide in pretreated patients with advanced triple-negative breast cancer: a phase II trial. BMC Cancer 2023; 23:463. [PMID: 37208633 DOI: 10.1186/s12885-023-10768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Treatment options for pretreated triple-negative breast cancer (TNBC) are limited. This study aimed to evaluate the efficacy and safety of apatinib, an antiangiogenic agent, in combination of etoposide for pretreated patients with advanced TNBC. METHODS In this single-arm phase II trial, patients with advanced TNBC who failed to at least one line of chemotherapy were enrolled. Eligible patients received oral apatinib 500 mg on day 1 to 21, plus oral etoposide 50 mg on day 1 to 14 of a 3-week cycle until disease progression or intolerable toxicities. Etoposide was administered up to six cycles. The primary endpoint was progression-free survival (PFS). RESULTS From September 2018 to September 2021, 40 patients with advanced TNBC were enrolled. All patients received previous chemotherapy in the advanced setting, with the median previous lines of 2 (1-5). At the cut-off date on January 10, 2022, the median follow-up was 26.8 (1.6-52.0) months. The median PFS was 6.0 (95% confidence interval [CI]: 3.8-8.2) months, and the median overall survival was 24.5 (95%CI: 10.2-38.8) months. The objective response rate and disease control rate was 10.0% and 62.5%, respectively. The most common adverse events (AEs) were hypertension (65.0%), nausea (47.5%) and vomiting (42.5%). Four patients developed grade 3 AE, including two with hypertension and two with proteinuria. CONCLUSIONS Apatinib combined with oral etoposide was feasible in pretreated advanced TNBC, and was easy to administer. CLINICAL TRIAL REGISTRATION Chictr.org.cn, (registration number: ChiCTR1800018497, registration date: 20/09/2018).
Collapse
Affiliation(s)
- Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hailing Lu
- The First Ward of the Oncology Department, The First Affilliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Pang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lichun Sun
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhong Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ningzhi Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingqi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ting He
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Danni Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Sun
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaomeng Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
38
|
Song J, Kim A, Hong I, Kim S, Byun WS, Lee HS, Kim HS, Lee SK, Kwon Y. Synthesis and biological evaluation of atropisomeric tetrahydroisoquinolines overcoming docetaxel resistance in triple-negative human breast cancer cells. Bioorg Chem 2023; 137:106573. [PMID: 37229969 DOI: 10.1016/j.bioorg.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.
Collapse
Affiliation(s)
- Jayoung Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Intaek Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
39
|
Chaudhari D, Kuche K, Yadav V, Ghadi R, Date T, Bhargavi N, Jain S. Exploring paclitaxel-loaded adenosine-conjugated PEGylated PLGA nanoparticles for targeting triple-negative breast cancer. Drug Deliv Transl Res 2023; 13:1074-1087. [PMID: 36528709 DOI: 10.1007/s13346-022-01273-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
In present investigation, we developed paclitaxel (PTX)-loaded adenosine (ADN)-conjugated PLGA nanoparticles for combating triple-negative breast cancer (TNBC), where ADN acts as a substrate for adenosine receptors (AR) that are overexpressed in TNBC. Using synthesized PLGA-PEG-ADN, PTX-loaded nanoparticles (PTX ADN-PEG-PLGA NPs) were prepared via emulsion diffusion evaporation process that rendered particles of size 135 ± 12 nm, PDI of 0.119 ± 0.03, and entrapment-efficiency of 79.26 ± 2.52%. The NPs showed higher %cumulative release at pH 5.5 over 7.4 with Higuchi release kinetics. The PTX ADN-PEG-PLGA NPs showed ~ 4.87- and 5.22-fold decrease in %hemolysis in comparison to free PTX and Intaxel®, indicating their hemocompatible nature. The ADN modification assisted cytoplasmic internalization of particles via AR-mediated endocytosis that resulted in ~ 3.77- and 3.51-fold reduction in IC50 and showed apoptosis index of 0.93 and 1.18 in MDA-MB-231 and 4T1 cells respectively. The pharmacokinetic profile of ADN-PEG-PLGA NPs revealed higher AUC and t1/2 than Intaxel® and Nanoxel® pharmacodynamic activity showed ~ 18.90-fold lower %tumor burden than control. The kidney and liver function biomarkers showed insignificant change in the levels, when treated with PTX ADN-PEG-PLGA NPs and exhibited no histological alterations in the liver, spleen, and kidney. Overall, the optimized particles were found to be biocompatible with improved anti-TNBC activity.
Collapse
Affiliation(s)
- Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Nallamothu Bhargavi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
40
|
Mahdieh A, Yeganeh H, Sande SA, Nyström B. Design of novel polyurethane-based ionene nanocarriers for cancer therapy: Synthesis, in-vitro, and in-vivo studies. Int J Pharm 2023; 635:122768. [PMID: 36841369 DOI: 10.1016/j.ijpharm.2023.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
New strategies for constructing versatile nanocarriers are needed for cancer therapy to overcome the multiple challenges of targeted delivery. This work explores the advantages of polyurethane with main-chain quaternary ammonium salt moieties (ionene) as a novel carrier for targeted drug delivery. We have developed a novel cationic soybean oil-based polyurethane ionene nanocarrier (CPUI) that can act as an effective anticancer agent and efficiently deliver the anticancer drug 5-fluorouracil (5FU). We also report a potential anticancer drug delivery system targeting the folate receptor. In vitro experiments with blank CPUI carriers on the 4T1 (mouse breast cancer cell line) and the NIH-3T3 (mouse fibroblast cell line) revealed high cytotoxicity for the cancer cells but only low cytotoxicity for the normal fibroblast cells. The CPUI nanoparticles were readily loaded with 5FU (5FU-CPUI) in water using electrostatic interactions between the cationic quaternary ammonium groups of ionene and the anionic 5FU. The in vivo study in mice with tumors showed that the blank CPUI carriers significantly inhibited tumor growth, even more than the free drug (5FU). The inhibitory effect on tumor growth was slightly enhanced when the carriers were loaded with 5FU. The prepared nanoparticles had a high loading capacity of 41.8 %. Further enhancement of the inhibitory effect was observed when folic acid (FA) was added as a targeting moiety to the system via ion exchange with the bromine counterion of the quaternary ammonium moieties. The results suggest that the efficacy of FA-CPUI-5FU nanoparticles as vehicles for drug delivery can be enhanced via folate receptor (FR) mediated endocytosis in 4T1 cells and these novel nanocarriers may provide a potential platform for effective targeted drug delivery to tumor tissue and breast cancer therapy in the clinic.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Sverre Arne Sande
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
41
|
Wu H, Feng J, Zhong W, Zouxu X, Xiong Z, Huang W, Zhang C, Wang X, Yi J. Model for predicting immunotherapy based on M2 macrophage infiltration in TNBC. Front Immunol 2023; 14:1151800. [PMID: 36999020 PMCID: PMC10043239 DOI: 10.3389/fimmu.2023.1151800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionCompared to other types of breast cancer, triple-negative breast cancer (TNBC) does not effectively respond to hormone therapy and HER2 targeted therapy, showing a poor prognosis. There are currently a limited number of immunotherapeutic drugs available for TNBC, a field that requires additional development.MethodsCo-expressing genes with M2 macrophages were analyzed based on the infiltration of M2 macrophages in TNBC and the sequencing data in The Cancer Genome Atlas (TCGA) database. Consequently, the influence of these genes on the prognoses of TNBC patients was analyzed. GO analysis and KEGG analysis were performed for exploring potential signal pathways. Lasso regression analysis was conducted for model construction. The TNBC patients were scored by the model, and patients were divided into high- and low-risk groups. Subsequently, the accuracy of model was further verified using GEO database and patients information from the Cancer Center of Sun Yat-sen University. On this basis, we analyzed the accuracy of prognosis prediction, correlation with immune checkpoint, and immunotherapy drug sensitivity in different groups.ResultsOur findings revealed that OLFML2B, MS4A7, SPARC, POSTN, THY1, and CD300C genes significantly influenced the prognosis of TNBC. Moreover, MS4A7, SPARC, and CD300C were finally determined for model construction, and the model showed good accuracy in prognosis prediction. And 50 immunotherapy drugs with therapeutic significance in different groups were screened, which were assessed possible immunotherapeutics that have potential application and demonstrated the high precision of our prognostic model for predictive analysis.ConclusionMS4A7, SPARC, and CD300C, the three main genes used in our prognostic model, offer good precision and clinical application potential. Fifty immune medications were assessed for their ability to predict immunotherapy drugs, providing a novel approach to immunotherapy for TNBC patients and a more reliable foundation for applying drugs in subsequent treatments.
Collapse
Affiliation(s)
- Haoming Wu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, Guangdong, China
| | - Jikun Feng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Wenjing Zhong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiazi Zouxu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Zhengchong Xiong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Weiling Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Chao Zhang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xi Wang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- *Correspondence: Xi Wang, ; Jiarong Yi,
| | - Jiarong Yi
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- *Correspondence: Xi Wang, ; Jiarong Yi,
| |
Collapse
|
42
|
Virassamy B, Caramia F, Savas P, Sant S, Wang J, Christo SN, Byrne A, Clarke K, Brown E, Teo ZL, von Scheidt B, Freestone D, Gandolfo LC, Weber K, Teply-Szymanski J, Li R, Luen SJ, Denkert C, Loibl S, Lucas O, Swanton C, Speed TP, Darcy PK, Neeson PJ, Mackay LK, Loi S. Intratumoral CD8 + T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. Cancer Cell 2023; 41:585-601.e8. [PMID: 36827978 DOI: 10.1016/j.ccell.2023.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes with a tissue-resident memory T (TRM) cell phenotype are associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, the relative contribution of CD8+ TRM cells to anti-tumor immunity and immune checkpoint blockade efficacy in breast cancer remains unknown. Here, we show that intratumoral CD8+ T cells in murine mammary tumors transcriptionally resemble those from TNBC patients. Phenotypic and transcriptional studies established two intratumoral sub-populations: one more enriched in markers of terminal exhaustion (TEX-like) and the other with a bona fide resident phenotype (TRM-like). Treatment with anti-PD-1 and anti-CTLA-4 therapy resulted in expansion of these intratumoral populations, with the TRM-like subset displaying significantly enhanced cytotoxic capacity. TRM-like CD8+ T cells could also provide local immune protection against tumor rechallenge and a TRM gene signature extracted from tumor-free tissue was significantly associated with improved clinical outcomes in TNBC patients treated with checkpoint inhibitors.
Collapse
Affiliation(s)
- Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Franco Caramia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sneha Sant
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jianan Wang
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ann Byrne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kylie Clarke
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Emmaline Brown
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Zhi Ling Teo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Bianca von Scheidt
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David Freestone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Karsten Weber
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany
| | - Julia Teply-Szymanski
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany; Department of Pathology, University Marburg-Giessen, Campus Marburg, Germany
| | - Ran Li
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen J Luen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carsten Denkert
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany; Department of Pathology, University Marburg-Giessen, Campus Marburg, Germany
| | - Sibylle Loibl
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany
| | - Olivia Lucas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Paul J Neeson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Laura K Mackay
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Li C, Geng C. GLIS Family Zinc Finger 3 Promotes Triple-Negative Breast Cancer Progression by Inducing Cell Proliferation, Migration and Invasion, and Activating the NF-κB Signaling Pathway. Biol Pharm Bull 2023; 46:209-218. [PMID: 36724950 DOI: 10.1248/bpb.b22-00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Triple-negative breast cancer (TNBC) puts a great threat to women's health. GLIS family zinc finger 3 (GLIS3) belongs to the GLI transcription factor family and acts as a critical factor in cancer progression. Nevertheless, the part of GLIS3 played in TNBC is not known. Immunohistochemical (IHC) staining analysis displayed that GLIS3 was highly expressed in TNBC tissues. The effect of GLIS3 on the malignant phenotype of TNBC was tested in two different cell lines according to GLIS3 regulation. Upregulation of GLIS3 promoted the proliferation, migration, and invasion of TNBC cell lines, whereas the knockdown of GLIS3 suppressed these tumor activities. Inhibition of GLIS3 induced TNBC cell apoptosis. Furthermore, study as immunofluorescence and electrophoretic mobility shift assay confirmed that the nuclear factor-κB (NF-κB) signaling pathway activated by GLIS3 played an important role in TNBC cells' malignant phenotype. In conclusion, the present work demonstrated that GLIS3 acts as a crucial element in TNBC progression via activating the NF-κB signaling pathway. Accordingly, above mentioned findings indicated that modulation of GLIS3 expression is a potential tactic to interfere with the progression of TNBC.
Collapse
Affiliation(s)
- Chenhao Li
- Diagnostic and Therapeutic Center for Breast Disease, The Fourth Hospital of Hebei Medical University.,The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital
| | - Cuizhi Geng
- Diagnostic and Therapeutic Center for Breast Disease, The Fourth Hospital of Hebei Medical University.,Key Laboratory of Molecular Medicine of Breast Cancer in Hebei
| |
Collapse
|
44
|
Flores Fortis M, Perez Añorve IX, Del Moral Hernandez O, Villegas N, Arechaga Ocampo E. Transcriptomic profiles-based approach to decode the role of miR-122 in triple negative breast cancer. Genes Chromosomes Cancer 2023; 62:392-404. [PMID: 36695641 DOI: 10.1002/gcc.23126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
miR-122 has been considered both as tumor suppressor miRNA and oncomiR in breast tumor phenotypes. However, the role of miR-122 in triple-negative breast cancer (TNBC) is still unknown. In this study, the clinical value of miR-122 was used to describe the transcriptomic landscape of TNBC tumors obtained from The Cancer Genome Atlas database. Low expression levels of miR-122 were associated with poor overall survival (OS) of TNBC patients than those with higher expression levels of miR-122. We identified gene expression profiles in TNBC tumors expressed lower or higher miR-122. Gene coexpression networks analysis revealed gene modules and hub genes specific to TNBC tumors with low or high miR-122 levels. Gene ontology and KEGG pathways analysis revealed that gene modules in TNBC with gain of miR-122 were related to cell cycle and DNA repair, while in TNBC with loss of miR-122 were enriched in cell cycle, proliferation, apoptosis and activation of cell migration and invasion. The expression of hub genes distinguished TNBC tumors with gain or loss of miR-122 from normal breast tissues. Furthermore, high levels of hub genes were associated with better OS in TNBC patients. Interestingly, the gene coexpression network related to loss of miR-122 were enriched with target genes of miR-122, but this did not observed in those with gain of miR-122. Target genes of miR-122 are oncogenes mainly associated with cell differentiation-related processes. Finally, 75 genes were identified exclusively associated to loss of miR-122, which are also implicated in cell differentiation. In conclusion, miR-122 could act as tumor suppressor by controlling oncogenes in TNBC.
Collapse
Affiliation(s)
- Mauricio Flores Fortis
- Posgrado en Ciencias Naturales e Ingenieria, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico.,Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico
| | - Isidro X Perez Añorve
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, Mexico City, Mexico
| | - Oscar Del Moral Hernandez
- Laboratorio de Virologia, Facultad de Ciencias Quimico Biologicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Nicolas Villegas
- Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Elena Arechaga Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
45
|
De Paolis E, Paris I, Tilocca B, Roncada P, Foca L, Tiberi G, D’Angelo T, Pavese F, Muratore M, Carbognin L, Garganese G, Masetti R, Di Leone A, Fabi A, Scambia G, Urbani A, Generali D, Minucci A, Santonocito C. Assessing the pathogenicity of BRCA1/2 variants of unknown significance: Relevance and challenges for breast cancer precision medicine. Front Oncol 2023; 12:1053035. [PMID: 36741700 PMCID: PMC9891372 DOI: 10.3389/fonc.2022.1053035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Pathogenic variants in BRCA1 and BRCA2 genes account for approximately 50% of all hereditary BC, with 60-80% of patients characterized by Triple Negative Breast Cancer (TNBC) at an early stage phenotype. The identification of a pathogenic BRCA1/2 variant has important and expanding roles in risk-reducing surgeries, treatment planning, and familial surveillance. Otherwise, finding unclassified Variants of Unknown Significance (VUS) limits the clinical utility of the molecular test, leading to an "imprecise medicine". Methods We reported the explanatory example of the BRCA1 c.5057A>C, p.(His1686Pro) VUS identified in a patient with TNBC. We integrated data from family history and clinic-pathological evaluations, genetic analyses, and bioinformatics in silico investigations to evaluate the VUS classification. Results Our evaluation posed evidences for the pathogenicity significance of the investigated VUS: 1) association of the BRCA1 variant to cancer-affected members of the family; 2) absence of another high-risk mutation; 3) multiple indirect evidences derived from gene and protein structural analysis. Discussion In line with the ongoing efforts to uncertain variants classification, we speculated about the relevance of an in-depth assessment of pathogenicity of BRCA1/2 VUS for a personalized management of patients with BC. We underlined that the efficient integration of clinical data with the widest number of supporting molecular evidences should be adopted for the proper management of patients, with the final aim of effectively guide the best prognostic and therapeutic paths.
Collapse
Affiliation(s)
- Elisa De Paolis
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Ida Paris
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,*Correspondence: Ida Paris,
| | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Laura Foca
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giordana Tiberi
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tatiana D’Angelo
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Pavese
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Margherita Muratore
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luisa Carbognin
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgia Garganese
- Gynaecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Masetti
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alba Di Leone
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Breast Cancer, Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Giovanni Scambia
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Urbani
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Concetta Santonocito
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
46
|
Raat EM, Kyle-Davidson C, Evans KK. Using global feedback to induce learning of gist of abnormality in mammograms. Cogn Res Princ Implic 2023; 8:3. [PMID: 36617595 PMCID: PMC9826776 DOI: 10.1186/s41235-022-00457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Extraction of global structural regularities provides general 'gist' of our everyday visual environment as it does the gist of abnormality for medical experts reviewing medical images. We investigated whether naïve observers could learn this gist of medical abnormality. Fifteen participants completed nine adaptive training sessions viewing four categories of unilateral mammograms: normal, obvious-abnormal, subtle-abnormal, and global signals of abnormality (mammograms with no visible lesions but from breasts contralateral to or years prior to the development of cancer) and receiving only categorical feedback. Performance was tested pre-training, post-training, and after a week's retention on 200 mammograms viewed for 500 ms without feedback. Performance measured as d' was modulated by mammogram category, with the highest performance for mammograms with visible lesions. Post-training, twelve observed showed increased d' for all mammogram categories but a subset of nine, labelled learners also showed a positive correlation of d' across training. Critically, learners learned to detect abnormality in mammograms with only the global signals, but improvements were poorly retained. A state-of-the-art breast cancer classifier detected mammograms with lesions but struggled to detect cancer in mammograms with the global signal of abnormality. The gist of abnormality can be learned through perceptual/incidental learning in mammograms both with and without visible lesions, subject to individual differences. Poor retention suggests perceptual tuning to gist needs maintenance, converging with findings that radiologists' gist performance correlates with the number of cases reviewed per year, not years of experience. The human visual system can tune itself to complex global signals not easily captured by current deep neural networks.
Collapse
Affiliation(s)
- E M Raat
- University of York, Heslington, York, YO10 5DD, UK.
| | | | - K K Evans
- University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
47
|
Bocian A, Kędzierawski P, Kopczyński J, Wabik O, Wawruszak A, Kiełbus M, Miziak P, Stepulak A. Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients. J Clin Med 2023; 12:jcm12010370. [PMID: 36615173 PMCID: PMC9821773 DOI: 10.3390/jcm12010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are histologically heterogenic invasive carcinomas of no specific type that lack distinctive histological characteristics. The prognosis for women with TNBC is poor. Regardless of the applied treatments, recurrences and deaths are observed 3-5 years after the diagnosis. Thus, new diagnostic markers and targets for personalized treatment are needed. The subject of our study-the Kaiso transcription factor has been found to correlate with the invasion and progression of breast cancer. The publicly available TCGA breast cancer cohort containing Illumina HiSeq RNAseq and clinical data was explored in the study. Additionally, Kaiso protein expression was assessed in formalin-fixed and paraffin-embedded tissue archive specimens using the tissue microarray technique. In this retrospective study, Kaiso protein expression (nuclear localization) was compared with several clinical factors in the cohort of 103 patients with TNBC with long follow-up time. In univariate and multivariate analysis, high Kaiso protein but not mRNA expression was correlated with better overall survival and disease-free survival, as well as with premenopausal age. The use of radiotherapy was correlated with better disease-free survival (DFS) and overall survival (OS). However, given the heterogeneity of TNBC and context-dependent molecular diversity of Kaiso signaling in cancer progression, these results must be taken with caution and require further studies.
Collapse
Affiliation(s)
- Artur Bocian
- Oncological Surgery Clinic, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Piotr Kędzierawski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Radiotherapy Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Janusz Kopczyński
- Pathology Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Olga Wabik
- Pathology Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-486-350
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
48
|
Calaf GM. Breast carcinogenesis induced by organophosphorous pesticides. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:71-117. [PMID: 36858780 DOI: 10.1016/bs.apha.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a major health threat to women worldwide and the leading cause of cancer-related death. The use of organophosphorous pesticides has increased in agricultural environments and urban settings, and there is evidence that estrogen may increase breast cancer risk in women. The mammary gland is an excellent model for examining its susceptibility to different carcinogenic agents due to its high cell proliferation capabilities associated with the topography of the mammary parenchyma and specific stages of gland development. Several experimental cellular models are presented here, in which the animals were exposed to chemical compounds such as pesticides, and endogenous substances such as estrogens that exert a significant effect on normal breast cell processes at different levels. Such models were developed by the effect of malathion, parathion, and eserine, influenced by estrogen demonstrating features of cancer initiation in vivo as tumor formation in rodents; and in vitro in the immortalized normal breast cell line MCF-10F, that when transformed showed signs of carcinogenesis such as increased cell proliferation, anchorage independence, invasive capabilities, modulation of receptors and genomic instability. The role of acetylcholine was also demonstrated in the MCF-10F, suggesting a role not only as a neurotransmitter but also with other functions, such as induction of cell proliferation, playing an important role in cancer. Of note, this is a unique experimental approach that identifies mechanistic signs that link organophosphorous pesticides with breast carcinogenesis.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile.
| |
Collapse
|
49
|
Banerjee DK. BIRTH OF A GLYCOTHERAPY FOR BREAST CANCER. TRENDS IN CARBOHYDRATE RESEARCH 2023; 15:25-37. [PMID: 38362162 PMCID: PMC10869124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Breast cancer is the most common malignant disease in women and is worldwide. The incidence rate of women's breast cancer in 2020 was 2,261,419 and 2022 estimates diagnosing 1,918,030 cases. The disease is heterogeneous and the pathogenesis of breast cancer still remains unclear. Much progress has been made in early detection and better treatment to improve survival. Unfortunately, the current treatment strategies destroy the patient's quality of life. The patients develop drug resistance, exhibit severe side effects, and not afford the cost creates anxiety among the patients, families, and friends. In addition, a considerable number of patients relapse as a result of organ metastasis, e.g., the triple-negative breast cancer (TNBC, ER-/PR-HER2-). The 5-year survival rate of patients who recurred with distant metastasis is less than 20%. More than half a million women worldwide still suffer from metastatic breast cancer annually, and 90% of their deaths could be attributed to metastasis. One of the reasons for the failure of cancer therapeutics is the approaches did not consider the cancer holistically. All breast cancer cells and their micro environmental capillary endothelial cells express asparagine-linked (N-linked) glycoproteins. We have tested a biologic and a small molecule, Tunicamycin-P (P = pure N-glycosylation inhibitor) to interfere with the protein N-glycosylation pathway in the endoplasmic reticulum (ER) by specifically blocking the catalytic activity of N-acetylglusosaminyl 1-phosphate transferase (GPT) activity. The outcome has been quantitative inhibition of in vitro and in vivo angiogenesis and the breast tumor progression of multiple subtypes in pre-clinical mouse models with "zero" toxicity. We have, therefore, concluded that Tunicamycin-P is expected to supersede the current therapeutics and become a Glycotherapy treating breast cancer of all subtypes.
Collapse
Affiliation(s)
- Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| |
Collapse
|
50
|
Ortiz Valdez E, Rangel-Escareño C, Matus Santos JA, Vázquez Romo R, Guijosa A, Villarreal-Garza C, Arrieta O, Rodríguez-Bautista R, Caro-Sánchez CH, Ortega Gómez A. Characterization of triple negative breast cancer gene expression profiles in Mexican patients. Mol Clin Oncol 2022; 18:5. [PMID: 36605097 PMCID: PMC9808158 DOI: 10.3892/mco.2022.2601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of cancer that accounts for ~23% of breast tumors in Mexico. In an attempt to understand in an improved way the behavior of TNBC, throughout the years, gene expression in these tumors has been studied. Lehman et al identified 6 subtypes of gene expression in TNBC with distinct characteristics. In the present study, it was aimed to assess clinical, pathological and prognostic characteristics of TNBC in a Mexican-based cohort. A total of 55 patients diagnosed with TNBC at Mexico's National Institute of Cancer (INCan) were included. Tumor needle biopsy samples were obtained and subjected to microarray analysis. Patients were thus classified into one of the 6 TNBC molecular subtypes. The prognostic, clinical and pathological information of patients was obtained, and differences across molecular subtypes were sought. Out of the 55 included patients, the following subtypes were identified: 9 basal-like-1, 11 basal-like-2 (BSL2), 16 immunomodulatory (IM), 12 mesenchymal, 6 androgen receptor-like and 1 mesenchymal stem-like. Mean follow-up time was 47.1 months. The IM molecular subtype had the best overall survival (OS) (median OS was not reached). BSL2 had the worst OS (15 months). A complete pathologic response to neoadjuvant chemotherapy was obtained more often in the IM subtype (P=0.032). No significant associations were found between any of the clinical or pathological characteristics and the TNBC molecular subtypes. The results obtained from the present study should be considered when seeking to implement a clinical-molecular model for TNBC patient care, particularly in Hispanic-based populations, as they have been frequently underrepresented in clinical studies assessing TNBC molecular subtypes.
Collapse
Affiliation(s)
- Eric Ortiz Valdez
- Breast Tumors Department, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Juan Antonio Matus Santos
- Breast Tumors Department, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Rafael Vázquez Romo
- Breast Tumors Department, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Alberto Guijosa
- School of Medicine, Universidad Panamericana, Benito Juárez, Mexico City 03920, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnológico de Monterrey, Real San Agustín, San Pedro Garza García, Nuevo León 66278, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Rubén Rodríguez-Bautista
- Thoracic Oncology Unit, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Claudia H. Caro-Sánchez
- Pathology Department, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Alette Ortega Gómez
- Laboratory of Translational Medicine, Mexico's National Institute of Cancer, Sección XVI, Tlalpan, Mexico City 14080, Mexico,Correspondence to: Dr Alette Ortega Gómez, Laboratory of Translational Medicine, Mexico's National Institute of Cancer, 22 San Fernando Avenue, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|