1
|
Rose ML, Sachdeva R, Mezgueldi Y, Yen RW, Serraj LA, Corbett KL, Yock TI. Systematic Review and Meta-Analysis of Adjuvant Radiation Dose for Pediatric Patients (≤22 years) with Nonmetastatic Intracranial Ependymomas. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03206-1. [PMID: 39147207 DOI: 10.1016/j.ijrobp.2024.07.2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Ependymomas are the third most common brain tumors in children. Standard of care is surgery followed by adjuvant radiation therapy. Controversy in the literature still exists over optimal radiation therapy dose. We completed a systematic review and meta-analysis to determine the optimal dose for local control (LC), event-free survival (EFS), and overall survival (OS) in pediatric patients. METHODS AND MATERIALS We searched MEDLINE (PubMed), Cochrane Database of Systematic Reviews, and Web of Science through January 2024. We included cohort studies that compared adjuvant radiation therapy of ≤54 Gy with >54 Gy in pediatric patients (≤22 years) with nonmetastatic intracranial ependymomas. We assessed study quality using the Newcastle-Ottawa Quality Assessment Scale of Cohort Studies. We pooled studies using a random effects meta-analysis for hazard ratios (HR), 95% confidence intervals (CI), and assessed statistical heterogeneity via I2. When HRs were unavailable, we transformed risks using established methods. We narratively summarized qualitative outcomes. RESULTS Seven studies met our inclusion criteria, covering a combined 1321 patients. Studies included a range of doses from 45 to 66.6 Gy. Compared with >54 Gy, we found no difference in LC for those receiving ≤54 Gy (HR, 0.83; 95% CI, 0.56-1.24; I2, 49.1%), in EFS (HR, 1.02; 95% CI, 0.95-1.09; I2, 0.00%), and OS (HR, 0.99; 95% CI, 0.82-1.20; I2, 37.5%). Two studies reported on subtotal resection by radiation therapy dose, neither study reporting statistical differences in LC, EFS, or OS, although the number of patients was small (n ≤ 30). Five studies reported on late effects, with brainstem radionecrosis, radiation-induced vasculopathy, and secondary tumors being the most frequent. Overall study quality was high, although lower scores were consistently seen in comparability of cohorts. To our knowledge, no studies reported on molecular subgroups. CONCLUSIONS We found no difference in LC, EFS, or OS for those treated with ≤54 Gy compared with >54 Gy. There were insufficient data to complete a subgroup meta-analysis on radiation therapy dosing based on extent of resection or molecular subgroups.
Collapse
Affiliation(s)
- Melanie L Rose
- Dartmouth Cancer Center, Dartmouth-Hitchcock, Lebanon, New Hampshire; The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
| | - Rhea Sachdeva
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Yakout Mezgueldi
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Renata W Yen
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Laila Andaloussi Serraj
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Kelly L Corbett
- The Dartmouth Institute, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Pediatrics, Dartmouth Health Children's, Lebanon, New Hampshire
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Claude L, Bouter J, Le Quellenec G, Padovani L, Laprie A. Radiotherapy management of paediatric cancers with synchronous metastasis. Cancer Radiother 2024; 28:131-140. [PMID: 37633767 DOI: 10.1016/j.canrad.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 08/28/2023]
Abstract
Cancer in childhood represent 1% of all the new diagnosed cancers. About 30% of children with cancer receive radiation therapy, representing about 600 to 700 patients per year in France. As a consequence, paediatric cancers with synchronous metastasis is a very rare situation in oncology, with usually poor standard of care. However, considerable efforts are made by paediatric oncology scientific societies to offer trials or treatment consensus despite these rare situations. The article proposes to synthesize the radiotherapy management of both primary tumour and synchronous metastasis in the most "common" childhood or adolescent cancers.
Collapse
Affiliation(s)
- L Claude
- Service de radiothérapie, centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France.
| | - J Bouter
- Service de radiothérapie, centre François-Baclesse, Caen, France
| | - G Le Quellenec
- Radiotherapy department, institut de cancérologie de l'Ouest centre René-Gauducheau, Saint-Herblain, France
| | - L Padovani
- Oncology Radiotherapy Department, Aix-Marseille Université, CRCM Inserm, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, Assistance publique des hôpitaux de Marseille, Marseille, France
| | - A Laprie
- Service d'oncologie-radiothérapie, Institut universitaire du cancer de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
3
|
Jünger ST, Zschernack V, Messing-Jünger M, Timmermann B, Pietsch T. Ependymoma from Benign to Highly Aggressive Diseases: A Review. Adv Tech Stand Neurosurg 2024; 50:31-62. [PMID: 38592527 DOI: 10.1007/978-3-031-53578-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Ependymomas comprise biologically distinct tumor types with respect to age distribution, (epi)genetics, localization, and prognosis. Multimodal risk-stratification, including histopathological and molecular features, is essential in these biologically defined tumor types. Gross total resection (GTR), achieved with intraoperative monitoring and neuronavigation, and if necessary, second-look surgery, is the most effective treatment. Adjuvant radiation therapy is mandatory in high-risk tumors and in case of residual tumor. There is yet growing evidence that some ependymal tumors may be cured by surgery alone. To date, the role of chemotherapy is unclear and subject of current studies.Even though standard therapy can achieve reasonable survival rates for the majority of ependymoma patients, long-term follow-up still reveals a high probability of relapse in certain biological entities.With increasing knowledge of biologically distinct tumor types, risk-adapted adjuvant therapy gains importance. Beyond initial tumor control, and avoidance of therapy-induced morbidity for low-risk patients, intensified treatment for high-risk patients comprises another challenge. With identification of specific risk features regarding molecular alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany.
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium, Essen, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
4
|
Myseros JS. Supratentorial and Infratentorial Ependymoma. Adv Tech Stand Neurosurg 2024; 53:93-118. [PMID: 39287805 DOI: 10.1007/978-3-031-67077-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Ependymomas are the third most common intracranial tumor in children, presenting in both the supratentorial and infratentorial compartments. They may present in infants, young children, and adolescents with symptoms depending on size, location, and the age of the patient. The ideal imaging for evaluation and treatment is MRI. This is crucial for preoperative evaluation and planning, as well as postoperative assessment and evaluating the efficacy of treatment. Essentially without exception, aggressive surgery aimed at complete resection is the initial and most important factor in the long-term outcome of all these children. Histopathologic diagnosis for intracranial pediatric ependymoma has been narrowed to grade II and grade III, no longer characterized as classic and anaplastic. Subsequent conformal photon or proton beam irradiation is an established post-surgical therapy, with solid evidence that it benefits survival and offers lower toxicity to the normal brain of the young child. Although chemotherapeutic treatment has not been generally impactful, immunotherapeutic interventions may be on the horizon. Updated molecular subgrouping of ependymoma is changing the post-resection approach of these tumors with regard to both treatment and outcome. Excluding spinal ependymoma and subependymoma, there are four subtypes that are defined by genetic characteristics, two found in the supratentorial compartment, ST-EPN-YAP1 and ST-EPN-ZFTA, and two in the posterior fossa, PF-EPN-A and PF-EPN-B. Younger children harboring ZFTA fusion-positive supratentorial and type A posterior fossa tumors, regardless of histology, tend toward the poorest outcomes. On the contrary, older children with supratentorial YAP1 fusion-positive ependymomas and type B posterior fossa tumors may survive with surgery alone. The paradigm shift regarding the behavior of the various childhood ependymoma subtypes will hopefully lead to targeted, individualized therapies and improved outcomes.
Collapse
Affiliation(s)
- John Socrates Myseros
- Neurosurgery and Pediatrics, George Washington University School of Medicine, Washington, DC, USA.
- Division of Neurosurgery, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
5
|
Ghalibafian M, Mirzaei S, Girinsky T, Sadeghi Y, Saffar A, Ghodsinezhad N, Elmi S, Bouffet E. Challenges in Treating Childhood Infratentorial Ependymoma: A Low- and Middle-Income Country Experience. Int J Radiat Oncol Biol Phys 2023; 117:1181-1190. [PMID: 37454918 DOI: 10.1016/j.ijrobp.2023.06.2294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Patients and physicians in low- and middle-income countries (LMICs) face challenges owing to limited expertise and suboptimal access to appropriate diagnostic and treatment modalities. We report our experience in treating posterior fossa ependymoma (PFE) at MAHAK, a charity organization in Iran whose radiation oncology department is the only one exclusively dedicated to childhood cancer in the whole country. METHODS AND MATERIALS Pediatric patients with PFE referred to MAHAK between November 2008 and January 2016 were identified. Details on investigations and management done before referral were collected. Management at MAHAK and patient outcomes were analyzed. RESULTS Of 80 patients diagnosed as having ependymoma, 54 with PFE were identified. Forty-three patients received adjuvant radiation therapy, and 11 were irradiated initially after recurrence. At a median follow-up of 5.1 years (range, 0.3-9.7 years), the latter group had the worst outcome, with a 5-year overall survival (OS) rate of 27% (95% CI, 7%-54%). Patients who started radiation therapy within 77 days after initial surgery had a better outcome compared with those who started later (5-year OS: 74% vs 32%; P = .05). Compliance with follow-up recommendations was poor. Only 22% of the patients had at least 2 IQ test assessments, and 50% showed some decline over time. Three cases of growth hormone deficiency were detected, but none of the patients received replacement therapy. CONCLUSIONS Access to pediatric neurosurgery, anesthesia, and timely radiation therapy are among the most challenging obstacles to be overcome in LMICs. Our series confirmed that chemotherapy is not an appropriate option for delaying radiation therapy, especially in young children. The importance of long-term follow-up should be acknowledged by the parents and medical team.
Collapse
Affiliation(s)
- Mithra Ghalibafian
- Department of Radiation Oncology, MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran.
| | - Sajad Mirzaei
- Department of Radiation Physics, MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
| | | | - Yasaman Sadeghi
- MAHAK Hematology Oncology Research Center (MAHAK-HORC), MAHAK Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Saffar
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Ghodsinezhad
- Department of Psychology, MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
| | - Sara Elmi
- Department of Audiology, MAHAK Pediatric Cancer Treatment and Research Center, Tehran, Iran
| | - Eric Bouffet
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
6
|
He A, Xu L, Yang X, Gu Z, Cai Y, Zhou H. Risk factors for surgical compliance and impact on the survival of patients with glioma: a population-based propensity score-matched study. J Cancer Res Clin Oncol 2023; 149:14797-14815. [PMID: 37589923 DOI: 10.1007/s00432-023-05261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE To comprehensively analyze the impact of surgical compliance on the survival of patients with glioma and to explore the factors that influence surgical compliance. METHODS Clinical data of patients with glioma between 2004 and 2018 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Kaplan-Meier curves and Cox regression were used to analyze the effect of surgical compliance on overall survival (OS) and disease-specific survival (DSS). Multivariate Cox regression was used to select the prediction variables and construct the nomograms. The predictive power of these models was assessed using Harell's consistency index (C-index), decision curve analysis (DCA), receiver operating characteristic (ROC) curves, and calibration curves. Multivariate logistic regression was performed to analyze the related variables of surgical compliance, and 1:1 propensity score matching (PSM) was applied to evaluate the validity of the results of patients with favorable and poor surgical compliance. RESULTS Among the 47,573 eligible glioma patients recommended for surgery, 46,380 (97.5%) were in the surgical compliance group, while 1193 (2.5%) were in the noncompliance group. Surgical compliance was an independent prognostic factor for glioma patients, as indicated by multivariate Cox regression analysis that patients with surgical compliance had worse OS (hazard ratio [HR] 1.924; 95% confidence interval [CI] 1.800-2.056, p < 0.001) and DSS (HR 1.718; 95% CI 1.592-1.853, p < 0.001) in comparison to those without surgical compliance. A nomogram was developed and internally validated to be able to predict glioma prognosis. The nomogram can well predict patients' OS (C-index: 0.745) and DSS (C-index: 0.744). ROC curve, DCA curve, and calibration curve were applied to further assess the accuracy of the nomogram. Poor surgical compliance was found to be related to older age, female gender, tumor diameter, grade II or higher, poor grading, tumor location in the cerebellum and brainstem, and low household income. CONCLUSION Surgical compliance is an independent prognostic factor for predicting the OS and DSS of patients with glioma, and good surgical compliance was significantly related to good survival.
Collapse
Affiliation(s)
- Aifeng He
- Emergency Department, Binhai County People's Hospital, Yancheng, China
| | - Leiming Xu
- Emergency Department, Binhai County People's Hospital, Yancheng, China
| | - Xudong Yang
- Neurosurgery, Binhai County People's Hospital, Yancheng, China
| | - Zhou Gu
- Oncology Department, Binhai County People's Hospital, Yancheng, China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, China
| | - Hai Zhou
- Neurosurgery, Binhai County People's Hospital, Yancheng, China.
| |
Collapse
|
7
|
Cocito C, Martin B, Giantini-Larsen AM, Valcarce-Aspegren M, Souweidane MM, Szalontay L, Dahmane N, Greenfield JP. Leptomeningeal dissemination in pediatric brain tumors. Neoplasia 2023; 39:100898. [PMID: 37011459 PMCID: PMC10124141 DOI: 10.1016/j.neo.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Leptomeningeal disease (LMD) in pediatric brain tumors (PBTs) is a poorly understood and categorized phenomenon. LMD incidence rates, as well as diagnosis, treatment, and screening practices, vary greatly depending on the primary tumor pathology. While LMD is encountered most frequently in medulloblastoma, reports of LMD have been described across a wide variety of PBT pathologies. LMD may be diagnosed simultaneously with the primary tumor, at time of recurrence, or as primary LMD without a primary intraparenchymal lesion. Dissemination and seeding of the cerebrospinal fluid (CSF) involves a modified invasion-metastasis cascade and is often the result of direct deposition of tumor cells into the CSF. Cells develop select environmental advantages to survive the harsh, nutrient poor and turbulent environment of the CSF and leptomeninges. Improved understanding of the molecular mechanisms that underlie LMD, along with improved diagnostic and treatment approaches, will help the prognosis of children affected by primary brain tumors.
Collapse
|
8
|
Obrecht D, Mynarek M, Stickan-Verfürth M, Bison B, Schüller U, Pajtler K, Hagel C, Thomale UW, Fleischhack G, Timmermann B, Rutkowski S. [Pediatric Intracranial Ependymoma - Recommendations for First-Line Treatment from the German HIT-MED study group]. KLINISCHE PADIATRIE 2023; 235:167-177. [PMID: 37172610 DOI: 10.1055/a-2070-7572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biological subtypes of ependymoma (EPN) have been introduced by the recent WHO classification and appear to have great impact on the clinical course, but have not yet found their way into clinical risk stratification. Further, the overall unfavorable prognosis underlines the fact that current therapeutic strategies need further evaluation for improvement. To date, there is no international consensus regarding first-line treatment for children with intracranial EPN. Extent of resection is known to be the most important clinical risk factor, leading to the consensus that consequent evaluation for re-surgery of postoperative residual tumor needs to have highest priority. Furthermore, efficacy of local irradiation is unquestioned and recommended for patients aged>1 year. In contrast, efficacy of chemotherapy is still under discussion. The European trial SIOP Ependymoma II aims at evaluating efficacy of different chemotherapy elements, leading to the recommendation to include German patients. The BIOMECA study, as biological accompanying study, aims at identifying new prognostic parameters. These results might help to develop targeted therapies for unfavorable biological subtypes. For patient who are not qualified for inclusion into the interventional strata, the HIT-MED Guidance 5.2 provides specific recommendations. This article is meant as an overview of national guidelines regarding diagnostics and treatment as well as of treatment according to the SIOP Ependymoma II trial protocol.
Collapse
Affiliation(s)
- Denise Obrecht
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Stickan-Verfürth
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristian Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich-Wilhelm Thomale
- Department of Neurosurgery, Section of pediatric Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Luo Y, Zhang S, Tan W, Lin G, Zhuang Y, Zeng H. The Diagnostic Efficiency of Quantitative Diffusion Weighted Imaging in Differentiating Medulloblastoma from Posterior Fossa Tumors: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12112796. [PMID: 36428860 PMCID: PMC9689934 DOI: 10.3390/diagnostics12112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma (MB) is considered the most common and highly malignant posterior fossa tumor (PFT) in children. The accurate preoperative diagnosis of MB is beneficial in choosing the appropriate surgical methods and treatment strategies. Diffusion-weighted imaging (DWI) has improved the accuracy of differential diagnosis of posterior fossa tumors. Nonetheless, further studies are needed to confirm its value for clinical application. This study aimed to evaluate the performance of DWI in differentiating MB from other PFT. A literature search was conducted using databases PubMed, Embase, and Web of Science for studies reporting the diagnostic performance of DWI for PFT from January 2000 to January 2022. A bivariate random-effects model was employed to evaluate the pooled sensitivities and specificities. A univariable meta-regression analysis was used to assess relevant factors for heterogeneity, and subgroup analyses were performed. A total of 15 studies with 823 patients were eligible for data extraction. Overall pooled sensitivity and specificity of DWI were 0.94 (95% confident interval [CI]: 0.89-0.97) and 0.94 (95% CI: 0.90-0.96) respectively. The area under the curve (AUC) of DWI was 0.98 (95% CI: 0.96-0.99). Heterogeneity was found in the sensitivity (I2 = 62.59%) and the specificity (I2 = 35.94%). Magnetic field intensity, region of interest definition and DWI diagnostic parameters are the factors that affect the diagnostic performance of DWI. DWI has excellent diagnostic accuracy for differentiating MB from other PFT. Hence, it is necessary to set DWI as a routine examination sequence for posterior fossa tumors.
Collapse
Affiliation(s)
- Yi Luo
- Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou 515041, China
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Siqi Zhang
- Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou 515041, China
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Weiting Tan
- Shenzhen Children’s Hospital of China Medical University, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Guisen Lin
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Yijiang Zhuang
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, 7019 Yitian Road, Futian District, Shenzhen 518038, China
- Correspondence:
| |
Collapse
|
10
|
Lindsay HB, Massimino M, Avula S, Stivaros S, Grundy R, Metrock K, Bhatia A, Fernández-Teijeiro A, Chiapparini L, Bennett J, Wright K, Hoffman LM, Smith A, Pajtler KW, Poussaint TY, Warren KE, Foreman NK, Mirsky DM. Response assessment in paediatric intracranial ependymoma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2022; 23:e393-e401. [DOI: 10.1016/s1470-2045(22)00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 10/16/2022]
|
11
|
MR Imaging of Pediatric Brain Tumors. Diagnostics (Basel) 2022; 12:diagnostics12040961. [PMID: 35454009 PMCID: PMC9029699 DOI: 10.3390/diagnostics12040961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Primary brain tumors are the most common solid neoplasms in children and a leading cause of mortality in this population. MRI plays a central role in the diagnosis, characterization, treatment planning, and disease surveillance of intracranial tumors. The purpose of this review is to provide an overview of imaging methodology, including conventional and advanced MRI techniques, and illustrate the MRI appearances of common pediatric brain tumors.
Collapse
|
12
|
Moore KJ, Moertel CL, Williams LA. Minority children experience a higher risk of death from many central nervous system tumor types even after accounting for treatment received: A National Cancer Database analysis. Cancer 2022; 128:1605-1615. [PMID: 35132615 DOI: 10.1002/cncr.34121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Brain tumors are the leading cause of death from disease in children. Racial/ethnic minority children have poorer outcomes than White children; however, it is not clear whether this association is mediated by treatment received. METHODS Children (aged 0-19 years) diagnosed with brain tumors in the National Cancer Database (2004-2016) were identified. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) between race/ethnicity (Black, Hispanic, Asian/Pacific Islander, American Indian/Alaska Native, or White [reference]) and death. An inverse odds weighted mediation analysis was performed with treatment received as the mediator. RESULTS Among 22,469 cases, White children (69% of the sample) had significantly better overall 12.5-year survival (P < .01). Black children (13% of the sample) and Hispanic children (14% of the sample) had an increased risk of death overall and for glioblastoma and oligodendroglioma. Compared with Whites, Asian/Pacific Islander children had a higher risk of death from choroid plexus tumors and a lower risk of death from medulloblastoma. There were no statistically significant meditating effects by treatment received, although the estimate was borderline in Hispanic children (indirect HR, 1.08; 95% CI, 0.99-1.18). A treatment-independent association between race/ethnicity and death remained for Hispanic children (direct HR, 1.18; 95% CI, 1.04-1.33) and Black children (direct HR, 1.28; 95% CI, 1.13-1.45). If deaths in minorities had equaled those in White children, 5% fewer total deaths and 15% fewer minority deaths would have occurred. CONCLUSIONS Survival disparities exist in pediatric brain tumors and are largely independent of treatment received, but other mechanisms linked to race/ethnicity remain important.
Collapse
Affiliation(s)
- Kristin J Moore
- Program in Health Disparities Research, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Moertel
- Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Brain Tumor Program, University of Minnesota, Minneapolis, Minnesota
| | - Lindsay A Williams
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Brain Tumor Program, University of Minnesota, Minneapolis, Minnesota.,Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Peters S, Merta J, Schmidt L, Jazmati D, Kramer PH, Blase C, Tippelt S, Fleischhack G, Stock A, Bison B, Rutkowski S, Pietsch T, Kortmann RD, Timmermann B. Evaluation of dose, volume and outcome in children with localized, intracranial ependymoma treated with proton therapy within the prospective KiProReg Study. Neuro Oncol 2021; 24:1193-1202. [PMID: 34964901 PMCID: PMC9248402 DOI: 10.1093/neuonc/noab301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Radiotherapy (RT) of ependymoma in children is an important part of the
interdisciplinary treatment concept. However, feasibility and dose concepts are still
under investigation, particularly in very young children. The aim of this study was to
evaluate the standard dose and volume of proton therapy (PT) in children with
ependymoma. Methods In this analysis, 105 patients with localized, intracranial ependymoma under the age of
18 years treated with PT between 2013 and 2018 were included. Patient characteristics,
treatment, outcome, and follow-up data were analyzed using descriptive statistics,
Kaplan-Meier, and Cox regression analysis. Results The median age of patients at PT was 2.8 years (0.9-17.0 years). The molecular subgroup
analysis was performed in a subset of 50 patients (37 EP-PFA, 2 EP-PFB, 7 EP-RELA, 2
EP-YAP, 2 NEC [not elsewhere classified]). The median total dose was 59.4 Gy (54.0-62.0
Gy). The median follow-up time was 1.9 years. The estimated 3-year overall survival
(OS), local control (LC), and progression-free survival (PFS) rates were 93.7%, 74.1%,
and 55.6%, respectively. Within univariable analysis, female gender and lower dose had a
positive impact on OS, whereas age ≥4 years had a negative impact on OS and PT given
after progression had a negative impact on PFS. In the multivariable analysis, multiple
tumor surgeries were associated with lower PFS. New ≥3° late toxicities occurred in 11
patients. Conclusion For children with localized ependymoma, PT was effective and well tolerable. Multiple
surgeries showed a negative impact on PFS.
Collapse
Affiliation(s)
- S Peters
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany.,Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - J Merta
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany
| | - L Schmidt
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - D Jazmati
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany.,Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - P H Kramer
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - C Blase
- AnästhesieNetz Rhein-Ruhr, Westenfelder, Bochum, Germany
| | - S Tippelt
- Pediatrics III, University Hospital Essen, Essen, Germany
| | - G Fleischhack
- Pediatrics III, University Hospital Essen, Essen, Germany
| | - A Stock
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - B Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - S Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - R D Kortmann
- Department of Radiotherapy and Radio-oncology, University Hospital Leipzig, Leipzig, Germany
| | - B Timmermann
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany.,Clinic for Particle Therapy, University Hospital Essen, Essen, Germany.,West German Cancer Center (WTZ). University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Germany
| |
Collapse
|
14
|
Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers (Basel) 2021; 13:cancers13236099. [PMID: 34885207 PMCID: PMC8656510 DOI: 10.3390/cancers13236099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Brain tumors remain the most common childhood solid tumors, accounting for approximately 25% of all pediatric cancers. They also represent the most common cause of cancer-related illness and death in this age group. Recent years have witnessed an evolution in our understanding of the biological underpinnings of many childhood brain tumors, potentially improving survival through both improved risk group allocation for patients to provide appropriate treatment intensity, and novel therapeutic breakthroughs. This review aims to summarize the molecular landscape, current trial-based standards of care, novel treatments being explored and future challenges for the three most common childhood malignant brain tumors—medulloblastomas, high-grade gliomas and ependymomas. Abstract Brain tumors are the leading cause of childhood cancer deaths in developed countries. They also represent the most common solid tumor in this age group, accounting for approximately one-quarter of all pediatric cancers. Developments in neuro-imaging, neurosurgical techniques, adjuvant therapy and supportive care have improved survival rates for certain tumors, allowing a future focus on optimizing cure, whilst minimizing long-term adverse effects. Recent times have witnessed a rapid evolution in the molecular characterization of several of the common pediatric brain tumors, allowing unique clinical and biological patient subgroups to be identified. However, a resulting paradigm shift in both translational therapy and subsequent survival for many of these tumors remains elusive, while recurrence remains a great clinical challenge. This review will provide an insight into the key molecular developments and global co-operative trial results for the most common malignant pediatric brain tumors (medulloblastoma, high-grade gliomas and ependymoma), highlighting potential future directions for management, including novel therapeutic options, and critical challenges that remain unsolved.
Collapse
|
15
|
Dury RJ, Lourdusamy A, Macarthur DC, Peet AC, Auer DP, Grundy RG, Dineen RA. Meta-Analysis of Apparent Diffusion Coefficient in Pediatric Medulloblastoma, Ependymoma, and Pilocytic Astrocytoma. J Magn Reson Imaging 2021; 56:147-157. [PMID: 34842328 DOI: 10.1002/jmri.28007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Medulloblastoma, ependymoma, and pilocytic astrocytoma are common pediatric posterior fossa tumors. These tumors show overlapping characteristics on conventional MRI scans, making diagnosis difficult. PURPOSE To investigate whether apparent diffusion coefficient (ADC) values differ between tumor types and to identify optimum cut-off values to accurately classify the tumors using different performance metrics. STUDY TYPE Systematic review and meta-analysis. SUBJECTS Seven studies reporting ADC in pediatric posterior fossa tumors (115 medulloblastoma, 68 ependymoma, and 86 pilocytic astrocytoma) were included following PubMed and ScienceDirect searches. SEQUENCE AND FIELD STRENGTH Diffusion weighted imaging (DWI) was performed on 1.5 and 3 T across multiple institution and vendors. ASSESSMENT The combined mean and standard deviation of ADC were calculated for each tumor type using a random-effects model, and the effect size was calculated using Hedge's g. STATISTICAL TESTS Sensitivity/specificity, weighted classification accuracy, balanced classification accuracy. A P value < 0.05 was considered statistically significant, and a Hedge's g value of >1.2 was considered to represent a large difference. RESULTS The mean (± standard deviation) ADCs of medulloblastoma, ependymoma, and pilocytic astrocytoma were 0.76 ± 0.16, 1.10 ± 0.10, and 1.49 ± 0.16 mm2 /sec × 10-3 . To maximize sensitivity and specificity using the mean ADC, the cut-off was found to be 0.96 mm2 /sec × 10-3 for medulloblastoma and ependymoma and 1.26 mm2 /sec × 10-3 for ependymoma and pilocytic astrocytoma. The meta-analysis showed significantly different ADC distributions for the three posterior fossa tumors. The cut-off values changed markedly (up to 7%) based on the performance metric used and the prevalence of the tumor types. DATA CONCLUSION There were significant differences in ADC between tumor types. However, it should be noted that only summary statistics from each study were analyzed and there were differences in how regions of interest were defined between studies. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Richard J Dury
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Donald C Macarthur
- Department of Neurosurgery, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Dorothee P Auer
- Radiological Sciences, Mental Health & Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Robert A Dineen
- Radiological Sciences, Mental Health & Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Pediatric Extraspinal Sacrococcygeal Ependymoma: Report of Two Cases and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11091680. [PMID: 34574021 PMCID: PMC8471863 DOI: 10.3390/diagnostics11091680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/24/2022] Open
Abstract
Primary central nervous system (CNS) tumors represent the most common solid tumors in childhood. Ependymomas arise from ependymal cells lining the wall of ventricles or central canal of spinal cord and their occurrence outside the CNS is extremely rare, published in the literature as case reports or small case series. We present two cases of extra-CNS myxopapillary ependymomas treated at our institution in the past three years; both cases originate in the sacrococcygeal region and were initially misdiagnosed as epidermoid cyst and germ cell tumor, respectively. The first case, which arose in a 9-year-old girl, was treated with a surgical excision in two stages, due to the non-radical manner of the first operation; no recurrence was observed after two years of follow-up. The other case was a 12-year-old boy who was treated with a complete resection and showed no evidence of recurrence at one-year follow-up. In this paper, we report our experience in treating an extremely rare disease that lacks a standardized approach to diagnosis, treatment and follow-up; in addition, we perform a literature review of the past 35 years.
Collapse
|
17
|
An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma. Cancers (Basel) 2021; 13:cancers13133221. [PMID: 34203272 PMCID: PMC8269186 DOI: 10.3390/cancers13133221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although biological information and the molecular classification of ependymoma have been studied, the treatment systems for ependymoma are still insufficient. In addition, because the disease occurs infrequently, it is difficult to obtain sufficient data to conduct large-scale or randomized clinical trials. Therefore, this study is intended to emphasize the importance of understanding its pathological characteristics and prognosis as well as developing treatments for ependymoma through multilateral studies. Abstract Glial cells comprise the non-sensory parts of the central nervous system as well as the peripheral nervous system. Glial cells, also known as neuroglia, constitute a significant portion of the mammalian nervous system and can be viewed simply as a matrix of neural cells. Despite being the “Nervenkitt” or “glue of the nerves”, they aptly serve multiple roles, including neuron repair, myelin sheath formation, and cerebrospinal fluid circulation. Ependymal cells are one of four kinds of glial cells that exert distinct functions. Tumorigenesis of a glial cell is termed a glioma, and in the case of an ependymal cell, it is called an ependymoma. Among the various gliomas, an ependymoma in children is one of the more challenging brain tumors to cure. Children are afflicted more severely by ependymal tumors than adults. It has appeared from several surveys that ependymoma comprises approximately six to ten percent of all tumors in children. Presently, the surgical removal of the tumor is considered a standard treatment for ependymomas. It has been conspicuously evident that a combination of irradiation therapy and surgery is much more efficacious in treating ependymomas. The main purpose of this review is to present the importance of both a deep understanding and ongoing research into histopathological features and prognoses of ependymomas to ensure that effective diagnostic methods and treatments can be developed.
Collapse
|
18
|
Khatua S, Cooper LJN, Sandberg DI, Ketonen L, Johnson JM, Rytting ME, Liu DD, Meador H, Trikha P, Nakkula RJ, Behbehani GK, Ragoonanan D, Gupta S, Kotrotsou A, Idris T, Shpall EJ, Rezvani K, Colen R, Zaky W, Lee DA, Gopalakrishnan V. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol 2021; 22:1214-1225. [PMID: 32152626 DOI: 10.1093/neuonc/noaa047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recurrent pediatric medulloblastoma and ependymoma have a grim prognosis. We report a first-in-human, phase I study of intraventricular infusions of ex vivo expanded autologous natural killer (NK) cells in these tumors, with correlative studies. METHODS Twelve patients were enrolled, 9 received protocol therapy up to 3 infusions weekly, in escalating doses from 3 × 106 to 3 × 108 NK cells/m2/infusion, for up to 3 cycles. Cerebrospinal fluid (CSF) was obtained for cellular profile, persistence, and phenotypic analysis of NK cells. Radiomic characterization on pretreatment MRI scans was performed in 7 patients, to develop a non-invasive imaging-based signature. RESULTS Primary objectives of NK cell harvest, expansion, release, and safety of 112 intraventricular infusions of NK cells were achieved in all 9 patients. There were no dose-limiting toxicities. All patients showed progressive disease (PD), except 1 patient showed stable disease for one month at end of study follow-up. Another patient had transient radiographic response of the intraventricular tumor after 5 infusions of NK cell before progressing to PD. At higher dose levels, NK cells increased in the CSF during treatment with repetitive infusions (mean 11.6-fold). Frequent infusions of NK cells resulted in CSF pleocytosis. Radiomic signatures were profiled in 7 patients, evaluating ability to predict upfront radiographic changes, although they did not attain statistical significance. CONCLUSIONS This study demonstrated feasibility of production and safety of intraventricular infusions of autologous NK cells. These findings support further investigation of locoregional NK cell infusions in children with brain malignancies.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | | | - David I Sandberg
- Department of Neurosurgery, MD Anderson Cancer Center, Houston.,Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center, Houston
| | - Leena Ketonen
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston
| | - Jason M Johnson
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston
| | | | - Diane D Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer center
| | - Heather Meador
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | - Prashant Trikha
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Robin J Nakkula
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gregory K Behbehani
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Sumit Gupta
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | | | - Tagwa Idris
- Department of Radiology, Harvard Medical School
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Rivka Colen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | - Dean A Lee
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
19
|
Jünger ST, Timmermann B, Pietsch T. Pediatric ependymoma: an overview of a complex disease. Childs Nerv Syst 2021; 37:2451-2463. [PMID: 34008056 PMCID: PMC8342354 DOI: 10.1007/s00381-021-05207-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Pediatric ependymomas comprise biologically distinct tumor entities with different (epi)genetics, age distribution and localization, as well as a different prognosis. Regarding risk stratification within these biologically defined entities, histopathological features still seem to be relevant. The mainstay of treatment is gross total resection (GTR) if possible, achieved with intraoperative monitoring and neuronavigation-and if necessary second surgery-followed by adjuvant radiation therapy. However, there is growing evidence that some ependymal tumors may be cured by surgery alone, while others relapse despite adjuvant treatment. To date, the role of chemotherapy is not clear. Current therapy achieves reasonable survival rates for the majority of ependymoma patients. The next challenge is to go beyond initial tumor control and use risk-adapted therapy to reduce secondary effect and therapy-induced morbidity for low-risk patients and to intensify treatment for high-risk patients. With identification of specific alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie Theresa Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn, Germany. .,Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Beate Timmermann
- grid.410718.b0000 0001 0262 7331Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Torsten Pietsch
- grid.15090.3d0000 0000 8786 803XDepartment of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
20
|
Seidel C, Dietzsch S, Kortmann RD, Schackert G, Hau P. Radiation Therapy in Ependymal Tumors. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_4-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|