1
|
Li Z, Chen Y, Xie H, Li Q, Wang S, Shi H. Identification of immunogenic antigens and evaluation of vaccine candidates against Clostridium perfringens. Poult Sci 2024; 103:104436. [PMID: 39467405 DOI: 10.1016/j.psj.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) has resulted in significant losses for the poultry industry worldwide. Currently, there is no widely promoted vaccine for NE. In this study, immunoprecipitation (IP) was employed to isolate immunogenic proteins of C. perfringens, and 118 potential candidate antigens were identified through liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). From these, three candidate antigen proteins were selected based on their predicted antigenicity, hydrophilicity, stability, and transmembrane signalling properties: ArcB (an ornithine aminotransferase), TmpC (a probable membrane lipoprotein), and EntB (a possible enterotoxin). These three proteins were successfully produced in large quantities using Escherichia coli (E. coli), with confirmed good solubility. Both in vitro and in vivo research demonstrated that these antigens possess strong immunogenicity, eliciting robust antigen-specific humoral and cellular immune responses in chickens and mitigating NE symptoms caused by C. perfringens. The candidate antigens identified through immunoproteomics hold potential as subunit vaccines against C. perfringens infection.
Collapse
Affiliation(s)
- Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Yifei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Haiping Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
2
|
Shamshirgaran MA, Golchin M. Necrotic enteritis in chickens: a comprehensive review of vaccine advancements over the last two decades. Avian Pathol 2024:1-46. [PMID: 39190009 DOI: 10.1080/03079457.2024.2398028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to poultry, leading to progressive deterioration of the small intestine, reduced performance, and increased mortality rates, causing economic losses in the poultry industry. The elimination of antimicrobial agents from chicken feed has imposed a need to explore alternative approaches for NE control, with vaccination emerging as a promising strategy to counteract the detrimental consequences associated with NE. This comprehensive study presents an overview of the extensive efforts made in NE vaccination from 2004 to2023. The study focuses on the development and evaluation of vaccine candidates designed to combat NE. Rigorous evaluations were conducted in both laboratory animals and broiler chickens, the target population, to assess the vaccines' capacity to elicit an immune response and provide substantial protection against toxin challenges and experimental NE infections. The review encompasses the design of vaccine candidates, the antigens employed, in vivo immune responses, and the efficacy of these vaccines in protecting birds from experimental NE infection. This review contributes to the existing knowledge of NE vaccination strategies, offering valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
4
|
Niu L, Gao M, Ren H, De X, Jiang Z, Zhou X, Liu R, Li H, Duan H, Zhang C, Wang F, Ge J. A novel bacterium-like particles platform displaying antigens by new anchoring proteins induces efficacious immune responses. Front Microbiol 2024; 15:1395837. [PMID: 38841059 PMCID: PMC11150769 DOI: 10.3389/fmicb.2024.1395837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterium-like particles (BLP) are the peptidoglycan skeleton particles of lactic acid bacteria, which have high safety, mucosal delivery efficiency, and adjuvant effect. It has been widely used in recent years in the development of vaccines. Existing anchoring proteins for BLP surfaces are few in number, so screening and characterization of new anchoring proteins are necessary. In this research, we created the OACD (C-terminal domain of Escherichia coli outer membrane protein A) to serve as an anchoring protein on the surface of BLP produced by the immunomodulatory bacteria Levilactobacillus brevis 23017. We used red fluorescent protein (RFP) to demonstrate the novel surface display system's effectiveness, stability, and ability to be adapted to a wide range of lactic acid bacteria. Furthermore, this study employed this surface display method to develop a novel vaccine (called COB17) by using the multi-epitope antigen of Clostridium perfringens as the model antigen. The vaccine can induce more than 50% protection rate against C. perfringens type A challenge in mice immunized with a single dose and has been tested through three routes. The vaccine yields protection rates of 75% for subcutaneous, 50% for intranasal, and 75% for oral immunization. Additionally, it elicits a strong mucosal immune response, markedly increasing levels of specific IgG, high-affinity IgG, specific IgA, and SIgA antibodies. Additionally, we used protein anchors (PA) and OACD simultaneous to show several antigens on the BLP surface. The discovery of novel BLP anchoring proteins may expand the possibilities for creating mucosal immunity subunit vaccines. Additionally, it may work in concert with PA to provide concepts for the creation of multivalent or multiple vaccines that may be used in clinical practice to treat complex illnesses.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongkun Ren
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Jiang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyao Zhou
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Runhang Liu
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Wang Z, He Y, Wang W, Tian Y, Ge C, Jia F, Zhang T, Zhang G, Wang M, Gong J, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Jiang Y, Yang G, Wang C. A novel "prime and pull" strategy mediated by the combination of two dendritic cell-targeting designs induced protective lung tissue-resident memory T cells against H1N1 influenza virus challenge. J Nanobiotechnology 2023; 21:479. [PMID: 38093320 PMCID: PMC10717309 DOI: 10.1186/s12951-023-02229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Vaccination is still the most promising strategy for combating influenza virus pandemics. However, the highly variable characteristics of influenza virus make it difficult to develop antibody-based universal vaccines, until now. Lung tissue-resident memory T cells (TRM), which actively survey tissues for signs of infection and react rapidly to eliminate infected cells without the need for a systemic immune reaction, have recently drawn increasing attention towards the development of a universal influenza vaccine. We previously designed a sequential immunization strategy based on orally administered Salmonella vectored vaccine candidates. To further improve our vaccine design, in this study, we used two different dendritic cell (DC)-targeting strategies, including a single chain variable fragment (scFv) targeting the surface marker DC-CD11c and DC targeting peptide 3 (DCpep3). Oral immunization with Salmonella harboring plasmid pYL230 (S230), which displayed scFv-CD11c on the bacterial surface, induced dramatic production of spleen effector memory T cells (TEM). On the other hand, intranasal boost immunization using purified DCpep3-decorated 3M2e-ferritin nanoparticles in mice orally immunized twice with S230 (S230inDC) significantly stimulated the differentiation of lung CD11b+ DCs, increased intracellular IL-17 production in lung CD4+ T cells and elevated chemokine production in lung sections, such as CXCL13 and CXCL15, as determined by RNAseq and qRT‒PCR assays, resulting in significantly increased percentages of lung TRMs, which could provide efficient protection against influenza virus challenge. The dual DC targeting strategy, together with the sequential immunization approach described in this study, provides us with a novel "prime and pull" strategy for addressing the production of protective TRM cells in vaccine design.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingkai He
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yawen Tian
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chongbo Ge
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Futing Jia
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongyu Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gerui Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyue Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jinshuo Gong
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
6
|
Jia F, Sun C, Ge C, Wang Z, Zhang T, Zhang M, Wang W, Tian Y, He Y, Yang G, Yang W, Shi C, Wang J, Huang H, Jiang Y, Wang C. Chicken dendritic cell-targeting nanobodies mediated improved protective effects against H9N2 influenza virus challenge in a homologous sequential immunization study. Vet Microbiol 2023; 285:109875. [PMID: 37729705 DOI: 10.1016/j.vetmic.2023.109875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Global poultry production is still severely affected by H9N2 avian influenza virus (AIV), and the development of a novel universal AIV vaccine is still urgently needed. Neuraminidase (NA) has recently been shown to be an efficient conserved protective antigen. In this study, we fused the extracellular region of the NA gene with a ferritin cassette (pYL281), which resulted in self-assembled 24-mer nanoparticles with the NA protein displayed outside the nanoparticles. In addition, a chicken dendritic cell-targeting nanobody-phage74 was also inserted ahead of the NA protein to yield pYL294. Incubation with chicken bone marrow-derived dendritic cells (chBMDCs) showed that the DC-targeting nanoparticles purified from the pYL294 strain significantly increased the maturation of chBMDCs, as shown by increased levels of CCL5, CCR7, CD83 and CD86 compared with nontargeting proteins. Then, a chicken study was performed using Salmonella oral administration together with intranasal boost with purified proteins. Compared with the other groups, oral immunization with Salmonella harboring pYL294 followed by intranasal boost with purified DC-targeting nanoparticles dramatically increased the humoral IgY and mucosal IgA antibody response, as well as increased the cellular immune response, as shown by elevated splenic lymphocyte proliferation and intracellular mRNA levels of IL-4 and IFN-γ. Finally, sequential immunization with DC-targeting nanoparticles showed increased protection against G57 subtype H9N2 virus challenge compared with other groups, as shown by significantly decreased virus RNA copy numbers in oropharyngeal washes (Days 3, 5 and 7 post challenge) and cloacal washes (Day 7), significantly decreased lung virus titers on Day 5 post challenge and increased body weight gains during the challenge.
Collapse
Affiliation(s)
- Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chao Sun
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Menglei Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Deslauriers N, Boulianne M. Evolution of Bacterial Vaccines: from Pasteur to Genomics. Avian Dis 2023; 67:1-6. [PMID: 39126419 DOI: 10.1637/aviandiseases-d-23-99994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2024]
Abstract
Vaccination against bacteria offers its share of challenges, and important progress has been made in recent years. Conventional vaccinology has protected poultry for decades with killed and attenuated bacterial vaccines. Because of the limitations of these vaccines, and given the latest technological advances, other types of vaccines were developed using various strategies. New vaccines are also being commercialized using viral or bacterial recombinant vectors or in the form of subunit vaccines developed by a genomic approach and bioinformatics analyses. As bacteria are forever-evolving microorganisms, there is no doubt that vaccine strategies preventing bacterial diseases will also evolve and that new generations of vaccines are yet to come.
Collapse
Affiliation(s)
- Nicolas Deslauriers
- Chair in Poultry Research, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada QC J2S 2M2
| | - Martine Boulianne
- Chair in Poultry Research, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada QC J2S 2M2,
| |
Collapse
|
8
|
Gruzdev N, Pitcovski J, Katz C, Ruimi N, Eliahu D, Noach C, Rosenzweig E, Finger A, Shahar E. Development of toxin-antitoxin self-destructive bacteria, aimed for salmonella vaccination. Vaccine 2023:S0264-410X(23)00777-6. [PMID: 37400285 DOI: 10.1016/j.vaccine.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The most common source of foodborne Salmonella infection in humans is poultry eggs and meat, such that prevention of human infection is mostly achieved by vaccination of farm animals. While inactivated and attenuated vaccines are available, both present drawbacks. This study aimed to develop a novel vaccination strategy, which combines the effectiveness of live-attenuated and safety of inactivated vaccines by construction of inducible self-destructing bacteria utilizing toxin-antitoxin (TA) systems. Hok-Sok and CeaB-CeiB toxin-antitoxin systems were coupled with three induction systems aimed for activating cell killing upon lack of arabinose, anaerobic conditions or low concentration of metallic di-cations. The constructs were transformed into a pathogenic Salmonella enterica serovar Enteritidis strain and bacteria elimination was evaluated in vitro under specific activating conditions and in vivo following administration to chickens. Four constructs induced bacterial killing under the specified conditions, both in growth media and within macrophages. Cloacal swabs of all chicks orally administered transformed bacteria had no detectable levels of bacteria within 9 days of inoculation. By day ten, no bacteria were identified in the spleen and liver of most birds. Antibody immune response was raised toward TA carrying Salmonella which resembled response toward the wildtype bacteria. The constructs described in this study led to self-destruction of virulent Salmonella enteritidis both in vitro and in inoculated animals within a period which is sufficient for the induction of a protective immune response. This system may serve as a safe and effective live vaccine platform against Salmonella as well as other pathogenic bacteria.
Collapse
Affiliation(s)
- Nady Gruzdev
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Jacob Pitcovski
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Chen Katz
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Nili Ruimi
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Dalia Eliahu
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | | | | | | | - Ehud Shahar
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
9
|
Wang Z, Zhang T, Jia F, Ge C, He Y, Tian Y, Wang W, Yang G, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Wang C, Jiang Y. Homologous Sequential Immunization Using Salmonella Oral Administration Followed by an Intranasal Boost with Ferritin-Based Nanoparticles Enhanced the Humoral Immune Response against H1N1 Influenza Virus. Microbiol Spectr 2023; 11:e0010223. [PMID: 37154735 PMCID: PMC10269571 DOI: 10.1128/spectrum.00102-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The influenza virus continues to pose a great threat to public health due to the frequent variations in RNA viruses. Vaccines targeting conserved epitopes, such as the extracellular domain of the transmembrane protein M2 (M2e), a nucleoprotein, and the stem region of hemagglutinin proteins, have been developed, but more efficient strategies, such as nanoparticle-based vaccines, are still urgently needed. However, the labor-intensive in vitro purification of nanoparticles is still necessary, which could hinder the application of nanoparticles in the veterinary field in the future. To overcome this limitation, we used regulated lysis Salmonella as an oral vector with which to deliver three copies of M2e (3M2e-H1N1)-ferritin nanoparticles in situ and evaluated the immune response. Then, sequential immunization using Salmonella-delivered nanoparticles followed by an intranasal boost with purified nanoparticles was performed to further improve the efficiency. Compared with 3M2e monomer administration, Salmonella-delivered in situ nanoparticles significantly increased the cellular immune response. Additionally, the results of sequential immunization showed that the intranasal boost with purified nanoparticles dramatically stimulated the activation of lung CD11b dendritic cells (DCs) and elevated the levels of effector memory T (TEM) cells in both spleen and lung tissues as well as those of CD4 and CD8 tissue-resident memory T (TRM) cells in the lungs. The increased production of mucosal IgG and IgA antibody titers was also observed, resulting in further improvements to protection against a virus challenge, compared with the pure oral immunization group. Salmonella-delivered in situ nanoparticles efficiently increased the cellular immune response, compared with the monomer, and sequential immunization further improved the systemic immune response, as shown by the activation of DCs, the production of TEM cells and TRM cells, and the mucosal immune response, thereby providing us with a novel strategy by which to apply nanoparticle-based vaccines in the future. IMPORTANCE Salmonella-delivered in situ nanoparticle platforms may provide novel nanoparticle vaccines for oral administration, which would be beneficial for veterinary applications. The combination of administering Salmonella-vectored, self-assembled nanoparticles and an intranasal boost with purified nanoparticles significantly increased the production of effector memory T cells and lung resident memory T cells, thereby providing partial protection against an influenza virus challenge. This novel strategy could open a novel avenue for the application of nanoparticle vaccines for veterinary purposes.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
11
|
Oral Administration with Recombinant Attenuated Regulated Delayed Lysis Salmonella Vaccines Protecting against Staphylococcus aureus Kidney Abscess Formation. Vaccines (Basel) 2022; 10:vaccines10071073. [PMID: 35891237 PMCID: PMC9324569 DOI: 10.3390/vaccines10071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Abscess formation is one of the main symptoms of Staphylococcus aureus infection. It is very important to inhibit abscess formation for preventing S. aureus persistent infection. To find a feasible solution, the live oral vaccines delivering S. aureus antigens, rEsxAB and rHlam, were constructed, which were based on the attenuated regulated delayed lysis Salmonella enterica subspecies Serovar Typhimurium strain χ11802, and the inhibiting effect on abscess formation was evaluated in mice kidneys. As the results showed, after oral administration, humoral immunity was induced via the mucosal route as the antigen-specific IgG in the serum and IgA in the intestinal mucus both showed significant increases. Meanwhile, the production of IFN-γ and IL-17 in the kidney tissue suggested that Th1/Th17-biased cellular immunity played a role in varying degrees. After challenged intravenously (i.v.) with S. aureus USA300, the χ11802(pYA3681−esxAB)-vaccinated group showed obvious inhibition in kidney abscess formation among the vaccinated group, as the kidney abscess incidence rate and the staphylococcal load significantly reduced, and the kidney pathological injury was improved significantly. In conclusion, this study provided experimental data and showed great potential for live oral vaccine development with the attenuated regulated delayed lysis Salmonella Typhimurium strains against S. aureus infection.
Collapse
|
12
|
Yuan B, Sun Z, Lu M, Lillehoj H, Lee Y, Liu L, Yan X, Yang DA, Li C. Immunization with Pooled Antigens for Clostridium perfringens Conferred Partial Protection against Experimental Necrotic Enteritis in Broiler Chickens. Vaccines (Basel) 2022; 10:vaccines10060979. [PMID: 35746587 PMCID: PMC9229587 DOI: 10.3390/vaccines10060979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Necrotic enteritis (NE) is a multifactorial and important enteric infectious disease etiologically caused by pathogenic C. perfringens infection, accounting for the estimated loss of around USD 6 billion in the global poultry industry. The increasing incidence of NE was found to be associated with the voluntary reduction or withdrawal of antibiotic growth promoters from animal feed during recent years. Therefore, the development of effective vaccines specific to NE assumes a priority for the poultry industry. This study aimed to identify the potential C. perfringens proteins as vaccine targets for NE. Three recombinant C. perfringens proteins targeting five antigens were prepared: two chimeric proteins (alpha-toxin and NetB, fructose-1,6-bisphosphate aldolase (FBA) and a zinc metalloprotease (Zm)), and one single collagen adhesion protein (Cna). Their protection efficacies were evaluated with a potent challenge model of Eimeria maxima/C. perfringens dual infections using a netB+tpeL+ C. perfringens strain. Young chicks were immunized twice subcutaneously with adjuvanted C. perfringens proteins on Days 4 and 15. At six days after the second immunization, the chickens immunized with Cna, FBA, and Zm antigens, and alpha-toxin had much higher serum antibody titers than unvaccinated controls prior to the challenge. Following the challenge, the pooled antigen-immunized group demonstrated no mortality and the least lesion scores against virulent challenge. The results indicate that the immunization with multicomponent antigens, including C. perfringens housekeeping protein Cna, may confer partial protection.
Collapse
Affiliation(s)
- Baohong Yuan
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
- School of Basic Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Liheng Liu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA;
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705, USA; (B.Y.); (Z.S.); (M.L.); (H.L.); (Y.L.); (L.L.)
- Correspondence:
| |
Collapse
|
13
|
Vaccines Using Clostridium perfringens Sporulation Proteins Reduce Necrotic Enteritis in Chickens. Microorganisms 2022; 10:microorganisms10061110. [PMID: 35744628 PMCID: PMC9228780 DOI: 10.3390/microorganisms10061110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridium perfringens is the prevalent enteric pathogen in humans and animals including chickens, and it remains largely elusive on the mechanism of C. perfringens-induced enteritis because of limited animal models available. In this study, we investigated the role of C. perfringens sporulation proteins as vaccine candidates in chickens to reduce necrotic enteritis (NE). C. perfringens soluble proteins of vegetative cells (CP-super1 and CP-super2) and spores (CP-spor-super1 and CP-spor-super2) were prepared, and cell and chicken experiments were conducted. We found that deoxycholic acid reduced C. perfringens invasion and sporulation using the Eimeria maxima and C. perfringens co-infection necrotic enteritis (NE) model. C. perfringens enterotoxin (CPE) was detected in the CP-spor-super1&2. CP-spor-super1 or 2 induced cell death in mouse epithelial CMT-93 and macrophage Raw 264.7 cells. CP-spor-super1 or 2 also induced inflammatory gene expression and necrosis in the Raw cells. Birds immunized with CP-spor-super1 or 2 were resistant to C. perfringens-induced severe clinical NE on histopathology and body weight gain loss. CP-spor-super1 vaccine reduced NE-induced proinflammatory Ifnγ gene expression as well as C. perfringens luminal colonization and tissue invasion in the small intestine. Together, this study showed that CP-spor-super vaccines reduced NE histopathology and productivity loss.
Collapse
|
14
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
15
|
Protection against genotype VII Newcastle disease virus challenge by a minicircle DNA vaccine coexpressing F protein and chicken IL-18 adjuvant. Vet Microbiol 2022; 270:109474. [DOI: 10.1016/j.vetmic.2022.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
|
16
|
Gangaiah D, Ryan V, Van Hoesel D, Mane SP, Mckinley ET, Lakshmanan N, Reddy ND, Dolk E, Kumar A. Recombinant
Limosilactobacillus
(
Lactobacillus
) delivering nanobodies against
Clostridium perfringens
NetB and alpha toxin confers potential protection from necrotic enteritis. Microbiologyopen 2022; 11:e1270. [PMID: 35478283 PMCID: PMC8924699 DOI: 10.1002/mbo3.1270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dharanesh Gangaiah
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Valerie Ryan
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Daphne Van Hoesel
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Shrinivasrao P. Mane
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Enid T. Mckinley
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | | | - Nandakumar D. Reddy
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| | - Edward Dolk
- Division of Nanobody Discovery and Development QVQ Holding BV Utrecht The Netherlands
| | - Arvind Kumar
- Division of Bacteriology and Microbiome Elanco Animal Health Greenfield Indiana USA
| |
Collapse
|
17
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, El-Shall NA, Saad AM, Salem HM, El-Tahan AM, Khafaga AF, Taha AE, AbuQamar SF, El-Tarabily KA. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult Sci 2022; 101:101590. [PMID: 34953377 PMCID: PMC8715378 DOI: 10.1016/j.psj.2021.101590] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In line with the substantial increase in the broiler industry worldwide, Clostridium perfringens-induced necrotic enteritis (NE) became a continuous challenge leading to high economic losses, especially after banning antimicrobial growth promoters in feeds by many countries. The disease is distributed worldwide in either clinical or subclinical form, causing a reduction in body weight or body weight gain and the feed conversion ratio, impairing the European Broiler Index or European Production Efficiency Factor. There are several predisposing factors in the development of NE. Clinical signs varied from inapparent signs in case of subclinical infection (clostridiosis) to obvious enteric signs (morbidity), followed by an increase in mortality level (clostridiosis or clinical infection). Clinical and laboratory diagnoses are based on case history, clinical signs, gross and histopathological lesions, pathogenic agent identification, serological testing, and molecular identification. Drinking water treatment is the most common route for the administration of several antibiotics, such as penicillin, bacitracin, and lincomycin. Strict hygienic management practices in the farm, careful selection of feed ingredients for ration formulation, and use of alternative antibiotic feed additives are all important in maintaining broiler efficiency and help increase the profitability of broiler production. The current review highlights NE caused by C. perfringens and explains the advances in the understanding of C. perfringens virulence factors involved in the pathogenesis of NE with special emphasis on the use of available antibiotic alternatives such as herbal extracts and essential oils as well as vaccines for the control and prevention of NE in broiler chickens.
Collapse
|
18
|
A triple-sugar regulated Salmonella vaccine protects against Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poult Sci 2021; 101:101592. [PMID: 34922043 PMCID: PMC8686071 DOI: 10.1016/j.psj.2021.101592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
Gram-positive Clostridium perfringens type G, the causative agent of necrotic enteritis (NE), has gained more attention in the poultry industry due to governmental restrictions on the use of growth-promoting antibiotics in poultry feed. Our previous work has proved that regulated delayed lysis Salmonella vaccines delivering a plasmid encoding an operon fusion of the nontoxic C-terminal adhesive part of alpha toxin and a GST-NetB toxin fusion were able to elicit significant protective immunity in broilers against C. perfringens challenge. We recently improved our S. Typhimurium antigen delivery vaccine strain by integrating a rhamnose-regulated O-antigen synthesis gene enabling a triple-sugar regulation system to control virulence, antigen-synthesis and lysis in vivo traits. The strain also includes a ΔsifA mutation that was previously shown to increase the immunogenicity of and level of protective immunity induced by Salmonella vectored influenza and Eimeria antigens. The new antigen-delivery vaccine vector system confers on the vaccine strain a safe profile and improved protection against C. perfringens challenge. The strain with the triple-sugar regulation system delivering a regulated lysis plasmid pG8R220 encoding the PlcC and GST-NetB antigens protected chickens at a similar level observed in antibiotic-treated chickens. Feed conversion and growth performance were also similar to antibiotic-treated chickens. These studies made use of a severe C. perfringens challenge with lesion formation and mortality enhanced by pre-exposure to Eimeria maxima oocysts. The vaccine achieved effectiveness through three different immunization routes, oral, spray and in drinking water. The vaccine has a potential for application in commercial hatcher and broiler-rearing conditions.
Collapse
|
19
|
Troxell B, Mendoza M, Ali R, Koci M, Hassan H. Attenuated Salmonella enterica Serovar Typhimurium, Strain NC983, Is Immunogenic, and Protective against Virulent Typhimurium Challenges in Mice. Vaccines (Basel) 2020; 8:vaccines8040646. [PMID: 33153043 PMCID: PMC7711481 DOI: 10.3390/vaccines8040646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars are significant health burden worldwide. Although much effort has been devoted to developing typhoid-based vaccines for humans, currently there is no NTS vaccine available. Presented here is the efficacy of a live attenuated serovar Typhimurium strain (NC983). Oral delivery of strain NC983 was capable of fully protecting C57BL/6 and BALB/c mice against challenge with virulent Typhimurium. Strain NC983 was found to elicit an anti-Typhimurium IgG response following administration of vaccine and boosting doses. Furthermore, in competition experiments with virulent S. Typhimurium (ATCC 14028), NC983 was highly defective in colonization of the murine liver and spleen. Collectively, these results indicate that strain NC983 is a potential live attenuated vaccine strain that warrants further development.
Collapse
Affiliation(s)
- Bryan Troxell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Mary Mendoza
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Rizwana Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
- Microbiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +919-515-7081; Fax: +919-515-2625
| |
Collapse
|
20
|
Redweik GAJ, Jochum J, Mellata M. Live Bacterial Prophylactics in Modern Poultry. Front Vet Sci 2020; 7:592312. [PMID: 33195630 PMCID: PMC7655978 DOI: 10.3389/fvets.2020.592312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
Commercial poultry farms frequently use live bacterial prophylactics like vaccines and probiotics to prevent bacterial infections. Due to the emergence of antibiotic-resistant bacteria in poultry animals, a closer examination into the health benefits and limitations of commercial, live prophylactics as an alternative to antibiotics is urgently needed. In this review, we summarize the peer-reviewed literature of several commercial live bacterial vaccines and probiotics. Per our estimation, there is a paucity of peer-reviewed published research regarding these products, making repeatability, product-comparison, and understanding biological mechanisms difficult. Furthermore, we briefly-outline significant issues such as probiotic-label accuracy, lack of commercially available live bacterial vaccines for major poultry-related bacteria such as Campylobacter and Clostridium perfringens, as well research gaps (i.e., probiotic-mediated vaccine adjuvancy, gut-brain-microbiota axis). Increased emphasis on these areas would open several avenues for research, ranging from improving protection against bacterial pathogens to using these prophylactics to modulate animal behavior.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jared Jochum
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Kong W, Wang X, Fields E, Okon B, Jenkins MC, Wilkins G, Brovold M, Golding T, Gonzales A, Golden G, Clark-Curtiss J, Curtiss R. Mucosal Delivery of a Self-destructing Salmonella-Based Vaccine Inducing Immunity Against Eimeria. Avian Dis 2020; 64:254-268. [PMID: 33112952 DOI: 10.1637/aviandiseases-d-19-00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2019] [Indexed: 11/05/2022]
Abstract
A programmed self-destructive Salmonella vaccine delivery system was developed to facilitate efficient colonization in host tissues that allows release of the bacterial cell contents after lysis to stimulate mucosal, systemic, and cellular immunities against a diversity of pathogens. Adoption and modification of these technological improvements could form part of an integrated strategy for cost-effective control and prevention of infectious diseases, including those caused by parasitic pathogens. Avian coccidiosis is a common poultry disease caused by Eimeria. Coccidiosis has been controlled by medicating feed with anticoccidial drugs or administering vaccines containing low doses of virulent or attenuated Eimeria oocysts. Problems of drug resistance and nonuniform administration of these Eimeria resulting in variable immunity are prompting efforts to develop recombinant Eimeria vaccines. In this study, we designed, constructed, and evaluated a self-destructing recombinant attenuated Salmonella vaccine (RASV) lysis strain synthesizing the Eimeria tenella SO7 antigen. We showed that the RASV lysis strain χ11791(pYA5293) with a ΔsifA mutation enabling escape from the Salmonella-containing vesicle (or endosome) successfully colonized chicken lymphoid tissues and induced strong mucosal and cell-mediated immunities, which are critically important for protection against Eimeria challenge. The results from animal clinical trials show that this vaccine strain significantly increased food conversion efficiency and protection against weight gain depression after challenge with 105E. tenella oocysts with concomitant decreased oocyst output. More importantly, the programmed regulated lysis feature designed into this RASV strain promotes bacterial self-clearance from the host, lessening persistence of vaccine strains in vivo and survival if excreted, which is a critically important advantage in a vaccine for livestock animals. Our approach should provide a safe, cost-effective, and efficacious vaccine to control coccidiosis upon addition of additional protective Eimeria antigens. These improved RASVs can also be modified for use to control other parasitic diseases infecting other animal species.
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Xiao Wang
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Emilia Fields
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Blessing Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Gary Wilkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Tiana Golding
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Amanda Gonzales
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
22
|
Wenzel CQ, Mills DC, Dobruchowska JM, Vlach J, Nothaft H, Nation P, Azadi P, Melville SB, Carlson RW, Feldman MF, Szymanski CM. An atypical lipoteichoic acid from Clostridium perfringens elicits a broadly cross-reactive and protective immune response. J Biol Chem 2020; 295:9513-9530. [PMID: 32424044 DOI: 10.1074/jbc.ra119.009978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against C. perfringens is currently available. Using an antiserum screen of mutants generated from a C. perfringens transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate. Following injection of formalin-fixed whole cells of C. perfringens HN13 (a laboratory strain) and JGS4143 (chicken isolate) intramuscularly into chickens, the HN13-derived antiserum was cross-reactive in immunoblots with all tested 32 field isolates, whereas only 5 of 32 isolates were recognized by JGS4143-derived antiserum. The immunoreactive antigens from both HN13 and JGS4143 were isolated, and structural analysis by MALDI-TOF-MS, GC-MS, and 2D NMR revealed that both were atypical lipoteichoic acids (LTAs) with poly-(β1→4)-ManNAc backbones substituted with phosphoethanolamine. However, although the ManNAc residues in JGS4143 LTA were phosphoethanolamine-modified, a few of these residues were instead modified with phosphoglycerol in the HN13 LTA. The JGS4143 LTA also had a terminal ribose and ManNAc instead of ManN in the core region, suggesting that these differences may contribute to the broadly cross-reactive response elicited by HN13. In a passive-protection chicken experiment, oral challenge with C. perfringens JGS4143 lead to 22% survival, whereas co-gavage with JGS4143 and α-HN13 antiserum resulted in 89% survival. This serum also induced bacterial killing in opsonophagocytosis assays, suggesting that HN13 LTA is an attractive target for future vaccine-development studies.
Collapse
Affiliation(s)
- Cory Q Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic C Mills
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Stephen B Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mario F Feldman
- VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Molecular Microbiology, Washington University of Medicine, St. Louis, Missouri, USA
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada .,VaxAlta Inc., Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
23
|
Liu Q, Jiang Y, Yang W, Liu Y, Shi C, Liu J, Gao X, Huang H, Niu T, Yang G, Wang C. Protective effects of a food-grade recombinant Lactobacillus plantarum with surface displayed AMA1 and EtMIC2 proteins of Eimeria tenella in broiler chickens. Microb Cell Fact 2020; 19:28. [PMID: 32046719 PMCID: PMC7014946 DOI: 10.1186/s12934-020-1297-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Avian coccidiosis posts a severe threat to poultry production. In addition to commercial attenuated vaccines, other strategies to combat coccidiosis are urgently needed. Lactobacillus plantarum has been frequently used for expression of foreign proteins as an oral vaccine delivery system using traditional erythromycin resistance gene (erm). However, antibiotic selection markers were often used during protein expression and they pose a risk of transferring antibiotic resistance genes to the environment, and significantly restricting the application in field production. Therefore, a food-grade recombinant L. plantarum vaccine candidate would dramatically improve its application potential in the poultry industry. Results In this study, we firstly replaced the erythromycin resistance gene (erm) of the pLp_1261Inv-derived expression vector with a non-antibiotic, asd-alr fusion gene, yielding a series of non-antibiotic and reliable, food grade expression vectors. In addition, we designed a dual-expression vector that displayed two foreign proteins on the surface of L. plantarum using the anchoring sequences from either a truncated poly-γ-glutamic acid synthetase A (pgsA′) from Bacillus subtilis or the L. acidophilus surface layer protein (SlpA). EGFP and mCherry were used as marker proteins to evaluate the surface displayed properties of recombinant L. plantarum strains and were inspected by western blot, flow cytometry and fluorescence microscopy. To further determine its application as oral vaccine candidate, the AMA1 and EtMIC2 genes of E. tenella were anchored on the surface of L. plantarum strain. After oral immunization in chickens, the recombinant L. plantarum strain was able to induce antigen specific humoral, mucosal, and T cell-mediated immune responses, providing efficient protection against coccidiosis challenge. Conclusions The novel constructed food grade recombinant L. plantarum strain with double surface displayed antigens provides a potential efficient oral vaccine candidate for coccidiosis.![]()
Collapse
Affiliation(s)
- Qiong Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.,College of Food Engineering, Jilin Engineering Normal University, 3050 KaiXuan Road, Changchun, 130052, Jilin, China
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yongshi Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xing Gao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Haibin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Tianming Niu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
24
|
Rabie NS, Amin Girh ZMS. Bacterial vaccines in poultry. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2020; 44:15. [PMID: 32435127 PMCID: PMC7223244 DOI: 10.1186/s42269-019-0260-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/18/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND Poultry bacterial pathogens are mainly controlled by using high-cost sanitary measures and medical treatment. However, the drug-resistant strains of pathogens continuously emerge, and medical treatments are often ineffective. Moreover, there is increasing public objections to drug residues in poultry products. The other important type of control is the vaccination which depends on immunity. This immunological control is the major practical alternative to chemotherapy. Success of vaccines in combating poultry diseases depends mainly on the choice of the proper type of vaccines, correct time of its usage, and method of administration.The types of vaccines include attenuated live vaccines, and these vaccines were shown to be effective in inducing protection. The second type is killed vaccine or whole bacteria extracts which is less successful in providing protection compared to live vaccines. The metabolic product vaccine (toxoids) is the third type of vaccine. The recombinant DNA technique was adopted to produce the protective antigens in a sufficient amount and in cost-effective ways. CONCLUSIONS Protection studies against bacterial diseases were performed by using several trials: living vaccines (live attenuated vaccines; live, non-pathogenic microorganisms; live, low virulence microorganism), inactivated (killed) vaccines (heat-inactivated, chemical inactivates, radiation), metabolic product vaccines (toxoids), subunit vaccines (whole cell proteins, outer membrane proteins, purified flagellar proteins (flagellin), fimbrial proteins, pilus proteins, lipopolysaccharides), vaccines produced by recombinant deoxyribonucleic acid (DNA) technology, and DNA vaccines.
Collapse
Affiliation(s)
- Nagwa S. Rabie
- Department of Poultry Diseases, National Research Centre, 33 Bohouth St, Dokki, Giza, Egypt
| | - Zeinab M. S. Amin Girh
- Department of Poultry Diseases, National Research Centre, 33 Bohouth St, Dokki, Giza, Egypt
| |
Collapse
|
25
|
Hunter JGL, Wilde S, Tafoya AM, Horsman J, Yousif M, Diamos AG, Roland KL, Mason HS. Evaluation of a toxoid fusion protein vaccine produced in plants to protect poultry against necrotic enteritis. PeerJ 2019; 7:e6600. [PMID: 30944775 PMCID: PMC6441560 DOI: 10.7717/peerj.6600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/08/2019] [Indexed: 12/27/2022] Open
Abstract
Background Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens. Total global economic losses to the poultry industry due to NE is estimated to be over two billion dollars annually. Traditionally, NE has been effectively controlled by inclusion of antibiotics in the diet of poultry. However, recent concerns regarding the impact of this practice on increasing antibiotic resistance in human pathogens have led us to consider alternative approaches, such as vaccination, for controlling this disease. NE strains of C. perfringens produce two major toxins, a-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. Methods We have developed a fusion protein combining a non-toxic carboxyl-terminal domain of a-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system, purified by metal affinity chromatography, and used to immunize broiler birds. Results Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB toxoid is a promising vaccine candidate for controlling NE in poultry.
Collapse
Affiliation(s)
- Joseph G L Hunter
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shyra Wilde
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amanda M Tafoya
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jamie Horsman
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Miranda Yousif
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Andrew G Diamos
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kenneth L Roland
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
26
|
Gao X, Xu K, Yang G, Shi C, Huang H, Wang J, Yang W, Liu J, Liu Q, Kang Y, Jiang Y, Wang C. Construction of a novel DNA vaccine candidate targeting F gene of genotype VII Newcastle disease virus and chicken IL-18 delivered by Salmonella. J Appl Microbiol 2019; 126:1362-1372. [PMID: 30785663 DOI: 10.1111/jam.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
AIMS Genotype VII Newcastle disease (ND) is one of the most epidemic and serious infectious diseases in the poultry industry. A novel vaccine targeting VII Newcastle disease virus (NDV) is still proving elusive. METHODS AND RESULTS In this study, we constructed regulated delayed lysis Salmonella strains expressing either a fusion protein (F) alone under an eukaryotic CMV promoter or together with chicken IL-18 (chIL-18) as a molecular adjuvant under prokaryotic Ptrc promoter, named pYL1 and pYL23 respectively. Oral immunization with recombinant strains induced NDV-specific serum IgG antibodies in both pYL1- and pYL23-immunized chickens. The presence of chIL-18 significantly increased lymphocyte proliferation in immunized chickens, as well as the percentages of CD3+ CD4+ and CD3+ CD8+ T cells in serum, even if a statistically significant difference did not exist. After a virulent challenge, pYL23 immunization provided about 80% protection at day 10 postinfection, compared with 60% of protection offered by pYL1 immunization and 100% protection in the inactivated vaccine group, indicating the enhanced immune response provided by chIL-18, which was also confirmed by histochemical analysis. CONCLUSIONS Recombinant lysis Salmonella-vectored DNA vaccine could provide us a novel potential option for controlling NDV infection. SIGNIFICANCE AND IMPACT OF THE STUDY This study took use of a regulated delayed lysis Salmonella vector for the design of an orally administrated vaccine against NDV.
Collapse
Affiliation(s)
- X Gao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - K Xu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - G Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - C Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - H Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - J Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - W Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - J Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Q Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Y Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Y Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - C Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
27
|
Wilde S, Jiang Y, Tafoya AM, Horsman J, Yousif M, Vazquez LA, Roland KL. Salmonella-vectored vaccine delivering three Clostridium perfringens antigens protects poultry against necrotic enteritis. PLoS One 2019; 14:e0197721. [PMID: 30753181 PMCID: PMC6372158 DOI: 10.1371/journal.pone.0197721] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022] Open
Abstract
Necrotic enteritis is an economically important poultry disease caused by the bacterium Clostridium perfringens. There are currently no necrotic enteritis vaccines commercially available for use in broiler birds, the most important target population. Salmonella-vectored vaccines represent a convenient and effective option for controlling this disease. We used a single attenuated Salmonella vaccine strain, engineered to lyse within the host, to deliver up to three C. perfringens antigens. Two of the antigens were toxoids, based on C. perfringens α-toxin and NetB toxin. The third antigen was fructose-1,6-bisphosphate aldolase (Fba), a metabolic enzyme with an unknown role in virulence. Oral immunization with a single Salmonella vaccine strain producing either Fba, α-toxoid and NetB toxoid, or all three antigens, was immunogenic, inducing serum, cellular and mucosal responses against Salmonella and the vectored C. perfringens antigens. All three vaccine strains were partially protective against virulent C. perfringens challenge. The strains delivering Fba only or all three antigens provided the best protection. We also demonstrate that both toxins and Fba are present on the C. perfringens cell surface. The presence of Fba on the cell surface suggests that Fba may function as an adhesin.
Collapse
Affiliation(s)
- Shyra Wilde
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Yanlong Jiang
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Amanda M. Tafoya
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jamie Horsman
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Miranda Yousif
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Luis Armando Vazquez
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sanapala S, Mosca L, Wang S, Curtiss R. Comparative evaluation of Salmonella Typhimurium vaccines derived from UK-1 and 14028S: Importance of inherent virulence. PLoS One 2018; 13:e0203526. [PMID: 30192849 PMCID: PMC6130210 DOI: 10.1371/journal.pone.0203526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/22/2018] [Indexed: 11/18/2022] Open
Abstract
The initial virulence and invasiveness of a bacterial strain may play an important role in leading to a maximally efficacious attenuated live vaccine. Here we show that χ9909, derived from Salmonella Typhimurium UK-1 χ3761 (the most virulent S. Typhimurium strain known to us), is effective in protecting mice against lethal UK-1 and 14028S (less virulent S. Typhimurium strain) challenge. As opposed to this, 14028S-derived vaccine χ12359 induces suboptimal levels of protection, with survival percentages that are significantly lower when challenged with lethal UK-1 challenge doses. T-cell assays have revealed that significantly greater levels of Th1 cytokines IFN-γ and TNF-α were secreted by stimulated T-lymphocytes obtained from UK-1(ΔaroA) immunized mice than those from mice immunized with 14028S(ΔaroA). In addition, UK-1(ΔaroA) showed markedly higher colonizing ability in the spleen, liver, and cecum when compared to 14028S(ΔaroA). Enumeration of bacteria in fecal pellets has also revealed that UK-1(ΔaroA) can persist in the host for over 10 days whereas 14028S(ΔaroA) titers dropped significantly by day 10. Moreover, co-infection of parent strains UK-1 and 14028S resulted in considerably greater recovery of the former in multiple mucosal and gut associated lymphatic tissues. Mice immunized with UK-1(ΔaroA) were also able to clear UK-1 infection remarkably more efficiently from the target organs than 14028S(ΔaroA). Together, these results provide ample evidence to support the hypothesis that attenuated derivatives of parent strains with higher initial virulence make better vaccines.
Collapse
Affiliation(s)
- Shilpa Sanapala
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Leandra Mosca
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Shifeng Wang
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Roy Curtiss
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
Stromberg ZR, Van Goor A, Redweik GAJ, Mellata M. Characterization of Spleen Transcriptome and Immunity Against Avian Colibacillosis After Immunization With Recombinant Attenuated Salmonella Vaccine Strains. Front Vet Sci 2018; 5:198. [PMID: 30186843 PMCID: PMC6113917 DOI: 10.3389/fvets.2018.00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes extraintestinal infections in poultry. Vaccines targeting APEC in chickens have been partially successful, but many lack heterologous protection. Recombinant attenuated Salmonella vaccine (RASV) strains can induce broad immunity against Salmonella and be modified to deliver E. coli antigens. Along with vaccine characteristics, understanding the host response is crucial for developing improved vaccines. The objectives of this study were to evaluate host responses to vaccination with an RASV producing E. coli common pilus (ECP) and assess protection against APEC infection in chickens. Four-day-old White Leghorn chickens were unvaccinated or orally vaccinated and boosted 2 weeks later with RASV χ8025(pYA3337), RASV χ8025(pYA4428) carrying ecp operon genes, or a combination of χ8025(pYA3337) and χ8025(pYA4428) (Combo). To assess host responses, serum IgY and intestinal IgA antibody titers were measured, and spleen samples (n = 4/group) were collected from unvaccinated and Combo vaccinated 4-week-old chickens for RNA-seq. Vaccine protection potential against Salmonella and APEC was evaluated in vitro using bacterial inhibition assays. Five-week-old chickens were challenged via air sac with either an APEC O2 or O78 strain. E. coli was enumerated from internal organs, and gross colibacillosis lesions were scored at necropsy. RASV immunized chickens elicited anti-E. coli antibodies. The spleen transcriptome revealed that 93% (89/96) of differentially expressed genes (DEG) were more highly expressed in Combo vaccinated compared to unvaccinated chickens, with signal as the most significantly impacted category. RNA-seq analysis also revealed altered cellular and metabolic processes, response to stimulus after vaccination, and immune system processes. Six DEG including genes linked to transcription regulation, actin cytoskeleton, and signaling were highly positively correlated with antibody levels. Samples from RASV immunized chickens showed protection potential against Salmonella strains using in vitro assays, but a variable response was found for APEC strains. After APEC challenges, significant differences were not detected for bacterial loads or gross lesions scores, but χ8025(pYA3337) immunized and χ8025(pYA4428) immunized chickens had significantly fewer number of APEC-O2-positive samples than unvaccinated chickens. This study shows that RASVs can prime the immune system for APEC infection, and is a first step toward developing improved therapeutics for APEC infections in chickens.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F. Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions. Vet Res 2018; 49:70. [PMID: 30060759 PMCID: PMC6066917 DOI: 10.1186/s13567-018-0561-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public–private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.
Collapse
Affiliation(s)
- Karin Hoelzer
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA.
| | - Lisa Bielke
- Ohio Agriculture and Research Development Center, Animal Sciences, Ohio State University, 202 Gerlaugh Hall, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Elisabeth Erlacher-Vindel
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Kemal Karaca
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, USA
| | | | - Martin Metzner
- RIPAC-LABOR GmbH, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - Margot Raicek
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | | | - Nora M Wong
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA
| | - Cyril Gay
- Office of National Programs, Agricultural Research Service, USDA, Sunnyside Ave, 5601, Beltsville, MD, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
31
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
32
|
Mishra N, Smyth JA. Oral vaccination of broiler chickens against necrotic enteritis using a non-virulent NetB positive strain of Clostridium perfringens type A. Vaccine 2017; 35:6858-6865. [PMID: 29102330 DOI: 10.1016/j.vaccine.2017.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
Necrotic enteritis (NE) is a severe disease of chickens and turkeys caused by some strains of Clostridium perfringens type A. The disease is well controlled by the use of in-feed antibiotic growth promoters (AGPs). However, due to worldwide public and regulatory pressure to reduce the use of AGPs inter alia, there is an urgent need to develop non-antibiotic based preventative measures. Vaccination would be a suitable control measure, but currently there is no commercial vaccine. NetB (necrotic enteritis toxin B-like) is a pore-forming toxin produced by C. perfringens that has been reported as an important virulence factor in the pathogenesis of NE. The present study tests a non-virulent NetB producing strain of C. perfringens (nvNetB+), with or without adjuvants, as an orally administered live vaccine. Adjuvants used were Gel 01™, Cholera toxin (CT), Escherichia coli wild type heat-labile holotoxin (LT) and mutant E. coli LT (dmLT) (R192G/L211A). Several vaccine administration regimes were tested. All vaccination regimes elicited serum and mucosal antibody responses to alpha toxin and to secreted proteins of both nvNetB+ and a very virulent NetB positive (vvNetB+) strain (p<0.0001 to p<0.05). In some vaccinated groups, there was milder intestinal pathology upon disease challenge. 55% of birds vaccinated orally at days 2, 12 with nvNetB+ adjuvanted with CT did not develop any lesions of NE by 6 days post challenge, compared to a 100% incidence of NE lesions in the unvaccinated disease challenged group.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pathobiology & Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA.
| | - Joan A Smyth
- Department of Pathobiology & Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
33
|
|
34
|
Sanapala S, Rahav H, Patel H, Sun W, Curtiss R. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague. Vaccine 2016; 34:2410-2416. [PMID: 27060051 DOI: 10.1016/j.vaccine.2016.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/29/2016] [Indexed: 01/14/2023]
Abstract
Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine.
Collapse
Affiliation(s)
- Shilpa Sanapala
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hannah Rahav
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hetal Patel
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Roy Curtiss
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|