1
|
Kawahara M, Cody TT, Yanong RPE, Henderson E, Yazdi Z, Soto E. Francisella sciaenopsi sp. nov. isolated from diseased red drum Sciaenops ocellatus in Florida, USA. DISEASES OF AQUATIC ORGANISMS 2024; 159:79-89. [PMID: 39145474 DOI: 10.3354/dao03803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Piscine francisellosis is one of the most important bacterial diseases affecting various fish species worldwide. Francisella orientalis, F. noatunensis, and F. salimarina (F. marina) have been reported as etiological agents of disease in fish. A Francisella sp. was isolated from several diseased red drum Sciaenops ocellatus experiencing morbidity in Florida, USA, in 2008. In this study, molecular and phenotypic characterization of the recovered isolate was conducted. Phenotypically, the isolate showed a biochemical reaction profile distinct from that of F. orientalis and F. salimarina. Although the 16S rRNA sequence of this isolate shared 99.61% identity to the type strain of F. philomiragia O#319LT, whole genome analysis (average nucleotide identity <95%; digital DNA-DNA hybridization <70%) and a multilocus sequence analysis of 8 concatenated housekeeping genes in comparison with other Francisella spp. indicated that this isolate was a novel Francisella species, more closely related to F. orientalis. Immersion, intracoelomic injection, and co-habitation challenges using a Nile tilapia Oreochromis niloticus fingerling model of infection were done to investigate virulence in a piscine model. Variably pigmented granulomas and pigmented macrophage aggregates were observed in the kidneys and spleens of the challenged fish, but no mortality was recorded during the 15 d challenge period, suggesting that this novel Francisella sp. might be an opportunistic pathogen of fish. Based on the phenotypic and genotypic differences from other Francisella spp. observed in this study, we propose the name Francisella sciaenopsi sp. nov. for this novel isolate.
Collapse
Affiliation(s)
- Miku Kawahara
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Theresa T Cody
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida 33701, USA
| | - Roy P E Yanong
- Tropical Aquaculture Laboratory, Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida 33570, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Lab, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408, USA
| | - Zeinab Yazdi
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
2
|
Chang CH, Poudyal S, Pulpipat T, Wang PC, Chen SC. Pathological Manifestations of Francisella orientalis in the Green Texas Cichlid ( Herichthys cyanoguttatus). Animals (Basel) 2021; 11:ani11082284. [PMID: 34438742 PMCID: PMC8388529 DOI: 10.3390/ani11082284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The following study demonstrates the pathological manifestations of an emerging virulent bacterium, Francisella orientalis, in an ornamental cichlid fish, the green Texas cichlid (Herichthys cyanoguttatus). This study was conducted to prove that Francisella orientalis can cause a disease in the green Texas cichlid that is similar to natural infection. Francisella orientalis was discovered for the first time in green Texas cichlid by our team in Taiwan in 2015. The present study simply tried to prove the susceptibility of Francisella orientalis in green Texas cichlid by conducting a challenge experiment, where healthy fish were injected with a dose of the bacteria. After the challenge, the healthy fish showed the same disease progression as was seen in the case of natural outbreak. The mortality rate, clinical symptoms, gross findings, and histopathological findings were similar to natural infection. Francisella orientalis could also be recovered in artificial media from challenged fish, thus indicating that the bacteria had multiplied inside the fish. These findings prove that green Texas cichlid (Herichthys cyanoguttatus) is susceptible to Francisela orientalis, and new management and vaccination strategies are necessary in the farming of this fish. This study also helps by adding to the knowledge of the growing host base for Francisella orientalis. Abstract Francisella orientalis (Fo) is considered to be one of the major pathogens of tilapia because of the high mortalities observed during outbreaks. Other cichlids belonging to the same family (Cichlidae) as tilapia are also quite susceptible to this pathogen. On various occasions, Fo has also been isolated from other warm water fish, including three-line grunt, hybrid striped bass, French grunt, Caesar grunt, and Indo-Pacific reef fish. However, only a few studies have reported the pathogenicity of Francisella orientalis in ornamental cichlid fish. This study fulfills Koch’s postulates by showing that a strain of Fo obtained from green Texas cichlid (Herichthys cyanoguttatus) was able to produce the same pathogenicity in healthy fish. A mortality of 100% was observed after healthy green Texas cichlid were experimentally injected with Fo at a dose of 8.95 × 105 CFU/fish. DNA extracted from the organs of predilection (spleen, head kidney) gave positive results by PCR for all fish that died during the experimental period. Spleen and head kidney presented with multifocal white nodules in the affected fish, corresponding to typical vacuolated granulomas on histopathological examination of the tissues. Based on the results of this study, it is evident that Fo can indeed infect green Texas cichlid and produce a disease typical of francisellosis.
Collapse
Affiliation(s)
- Chia-Hsuan Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Theeraporn Pulpipat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (P.-C.W.); (S.-C.C.); Tel.: +886-8-7740569 (P.-C.W. & S.-C.C.)
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (P.-C.W.); (S.-C.C.); Tel.: +886-8-7740569 (P.-C.W. & S.-C.C.)
| |
Collapse
|
3
|
The Use of Extracellular Membrane Vesicles for Immunization against Francisellosis in Nile Tilapia ( Oreochromis niloticus) and Atlantic Cod ( Gadus morhua L.). Vaccines (Basel) 2021; 9:vaccines9010034. [PMID: 33435503 PMCID: PMC7827370 DOI: 10.3390/vaccines9010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Francisellosis in fish is caused by the facultative intracellular Gram-negative bacterial pathogens Francisella noatunensis ssp. noatunensis and Francisella orientalis. The disease is affecting both farmed and wild fish worldwide and no commercial vaccines are currently available. In this study, we tested isolated membrane vesicles (MVs) as possible vaccine candidates based on previous trials in zebrafish (Danio rerio) indicating promising vaccine efficacy. Here, the MV vaccine-candidates were tested in their natural hosts, Atlantic cod (Gadus morhua L.) and Nile tilapia (Oreochromis niloticus). Injection of MVs did not display any toxicity or other negative influence on the fish and gene expression analysis indicated an influence on the host immune response. However, unlike in other tested fish species, a protective immunity following vaccine application and immunization period could not be detected in the Atlantic cod or tilapia. Further in vivo studies are required to achieve a better understanding of the development of immunological memory in different fish species.
Collapse
|
4
|
McDermott C, Palmeiro B. Updates on Selected Emerging Infectious Diseases of Ornamental Fish. Vet Clin North Am Exot Anim Pract 2020; 23:413-428. [PMID: 32327045 DOI: 10.1016/j.cvex.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Emerging infectious diseases of ornamental fish are discussed with special focus on clinical relevance, detection, and treatment, where applicable. Important emerging infectious diseases of fish include goldfish herpesvirus, koi herpesvirus, carp edema virus, Erysipelothrix, Edwardsiella ictaluri, Edwardseilla piscicida, and Francisella. Some diseases are more species or genus specific, but many emerging diseases do not seem to have a species preference and affect a variety of species worldwide. Proper husbandry and biosecurity with a disease detection plan for ornamental fish is essential to monitor and prevent future outbreaks.
Collapse
Affiliation(s)
- Colin McDermott
- Zodiac Pet and Exotic Hospital, Victoria Centre, Shop 101A, 1/F, 15 Watson Road, Fortress Hill, Hong Kong.
| | - Brian Palmeiro
- Lehigh Valley Veterinary Dermatology & Fish Hospital, Pet Fish Doctor, 4580 Crackersport Road, Allentown, PA 18104, USA
| |
Collapse
|
5
|
Poudyal S, Pulpipat T, Wang PC, Chen SC. Comparison of the pathogenicity of Francisella orientalis in Nile tilapia (Oreochromis niloticus), Asian seabass (Lates calcarifer) and largemouth bass (Micropterus salmoides) through experimental intraperitoneal infection. JOURNAL OF FISH DISEASES 2020; 43:1097-1106. [PMID: 32700447 DOI: 10.1111/jfd.13217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106 CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.
Collapse
Affiliation(s)
- Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
6
|
Shahin K, Shinn AP, Metselaar M, Ramirez-Paredes JG, Monaghan SJ, Thompson KD, Hoare R, Adams A. Efficacy of an inactivated whole-cell injection vaccine for nile tilapia, Oreochromis niloticus (L), against multiple isolates of Francisella noatunensis subsp. orientalis from diverse geographical regions. FISH & SHELLFISH IMMUNOLOGY 2019; 89:217-227. [PMID: 30951851 DOI: 10.1016/j.fsi.2019.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Francisellosis, induced by Francisella noatunensis subsp. orientalis (Fno), is an emerging bacterial disease representing a major threat to the global tilapia industry. There are no commercialised vaccines presently available against francisellosis for use in farmed tilapia, and the only available therapeutic practices used in the field are either the prolonged use of antibiotics or increasing water temperature. Recently, an autogenous whole cell-adjuvanted injectable vaccine was developed that gave 100% relative percent survival (RPS) in tilapia challenged with a homologous isolate of Fno. In this study, we evaluated the efficacy of this vaccine against challenge with heterologous Fno isolates. Healthy Nile tilapia, Oreochromis niloticus (∼15 g) were injected intraperitoneally (i.p.) with the vaccine, adjuvant-alone or phosphate buffer saline (PBS) followed by an i.p. challenge with three Fno isolates from geographically distinct locations. The vaccine provided significant protection in all groups of vaccinated tilapia, with a significantly higher RPS of 82.3% obtained against homologous challenge, compared to 69.8% and 65.9% with the heterologous challenges. Protection correlated with significantly higher specific antibody responses, and western blot analysis demonstrated cross-isolate antigenicity with fish sera post-vaccination and post-challenge. Moreover, a significantly lower bacterial burden was detected by qPCR in conjunction with significantly greater expression of IgM, IL-1 β, TNF-α and MHCII, 72 h post-vaccination (hpv) in spleen samples from vaccinated tilapia compared to fish injected with adjuvant-alone and PBS. The Fno vaccine described in this study may provide a starting point for development a broad-spectrum highly protective vaccine against francisellosis in tilapia.
Collapse
Affiliation(s)
- Khalid Shahin
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK; Aquatic Animal Diseases Lab, Aquaculture Department, National Institute of Oceanography and Fisheries (NIOF), P.O. Box 43511, Suez, Egypt.
| | - Andrew P Shinn
- Fish Vet Group Asia, 21/359 Premjairard Road, Chonburi, 20130, Thailand
| | - Matthijs Metselaar
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Midlothian, Edinburgh, EH26 0BB, UK
| | | | - Sean J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Rowena Hoare
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| |
Collapse
|
7
|
Pulpipat T, Lin KH, Chen YH, Wang PC, Chen SC. Molecular characterization and pathogenicity of Francisella noatunensis subsp. orientalis isolated from cultured tilapia (Oreochromis sp.) in Taiwan. JOURNAL OF FISH DISEASES 2019; 42:643-655. [PMID: 30715744 DOI: 10.1111/jfd.12964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Francisella noatunensis subsp. orientalis is a causative agent of systemic granulomatous disease in tilapia. The present study was designed to understand the genetic and phenotypic diversities among Taiwanese Fno isolates obtained from tilapia (n = 17) and green Texas cichlid (Herichthys cyanoguttatus) (n = 1). The enzymatic profiles of the isolates were studied using the API ZYM system. Phylogenetic tree analysis of the 16S rRNA and housekeeping gene and pulsed-field gel electrophoresis (PFGE) were carried out to determine the genotypic characters of all isolates. The phylogenetic tree showed similarity of 99%-100% nucleotide sequences of 16S rRNA and housekeeping genes compared to the Fno references genes from GenBank database. Comparatively, the results revealed an identical profile of enzymatic and PFGE pattern which was distincted from that of F. philomiragia. To understand the pathogenicity, the isolates were intraperitoneal injected to tilapia the gross lesions were observed concomitant with natural outbreak. Median lethal dose upon Nile tilapia and red tilapia were 9.06 × 103 CFU/fish and 2.08 × 102 CFU/fish, respectively. Thus, our data provide understanding the epidemiology of Taiwanese Fno isolates, and help in development of future control and prevention.
Collapse
Affiliation(s)
- Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Kuo-Hua Lin
- Animal Protection Office, Taoyuan City, Taiwan
| | | | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
8
|
Solbakken MH, Jentoft S, Reitan T, Mikkelsen H, Gregers TF, Bakke O, Jakobsen KS, Seppola M. Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:333-346. [PMID: 31054474 DOI: 10.1016/j.cbd.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The genetic repertoire underlying teleost immunity has been shown to be highly variable. A rare example is Atlantic cod and its relatives Gadiformes that lacks a hallmark of vertebrate immunity: Major Histocompatibility Complex class II. No immunological studies so far have fully unraveled the functionality of this particular immune system. Through global transcriptomic profiling, we investigate the immune response and host-pathogen interaction of Atlantic cod infected with the facultative intracellular bacterium Francisella noatunensis. We find that Atlantic cod displays an overall classic innate immune response with inflammation, acute-phase proteins and cell recruitment through up-regulation of e.g. IL1B, fibrinogen, cathelicidin, hepcidin and several chemotactic cytokines such as the neutrophil attractants CXCL1 and CXCL8. In terms of adaptive immunity, we observe up-regulation of interferon gamma followed by up-regulation of several MHCI transcripts and genes related to antigen transport and loading. Finally, we find up-regulation of immunoglobulins and down-regulation of T-cell and NK-like cell markers. Our analyses also uncover some contradictory transcriptional findings such as up-regulation of anti-inflammatory IL10 as well as down-regulation of the NADPH oxidase complex and myeloperoxidase. This we interpret as the result of host-pathogen interactions where F. noatunensis modulates the immune response. In summary, our results suggest that Atlantic cod mounts a classic innate immune response as well as a neutrophil-driven response. In terms of adaptive immunity, both endogenous and exogenous antigens are being presented on MHCI and antibody production is likely enabled through direct B-cell stimulation with possible neutrophil help. Collectively, we have obtained novel insight in the orchestration of the Atlantic cod immune system and determined likely targets of F. noatunensis host-pathogen interactions.
Collapse
Affiliation(s)
- Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.
| | - Trond Reitan
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | | | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marit Seppola
- Department of Medical Biology, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
9
|
Francisella marina sp. nov., Etiologic Agent of Systemic Disease in Cultured Spotted Rose Snapper (Lutjanus guttatus) in Central America. Appl Environ Microbiol 2018; 84:AEM.00144-18. [PMID: 29915103 DOI: 10.1128/aem.00144-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022] Open
Abstract
Historically, piscine francisellosis in various warm-, temperate-, and cold-water fish hosts has been attributed to Francisella noatunensis From 2015 to 2016, an undescribed Francisella sp. was recovered during mortality events in cultured spotted rose snapper (Lutjanus guttatus) off the Pacific coast of Central America. Despite high mortality and emaciation, limited gross findings were observed in affected fish. Histological examination revealed multifocal granulomatous lesions, with the presence of numerous small, pleomorphic coccobacilli, predominantly in the peritoneum, spleen, kidneys, liver, pancreas, heart, and intestine. Sequencing of an ∼1,400-bp fragment of the 16S rRNA gene demonstrated these isolates to be most similar (99.9% identity) to Francisella sp. isolate TX077308 cultured from seawater in the Gulf of Mexico, while sharing <99% similarity to other Fransicella spp. Biochemical analysis, multilocus sequence comparisons of select housekeeping genes, repetitive extragenic palindromic PCR fingerprinting, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and fatty acid methyl ester analysis revealed marked differences between these isolates and other described members of the genus. Koch's postulates were fulfilled by experimental intracoelomic injection and immersion trials using Nile (Oreochromis niloticus) and blue (Oreochromis aureus) tilapia. Based on observed phenotypic and genotypic differences from recognized Francisella spp., the name Francisellamarina sp. nov. (NRRL B-65518) is proposed to accommodate these novel strains.IMPORTANCE Finfish aquaculture is the fastest growing global food production sector. Infectious disease, particularly emergent pathogens, pose a significant threat to established and nascent aquaculture industries worldwide. Herein, we characterize a novel pathogen isolated from mortality events in cultured spotted rose snapper in Central America. The bacteria recovered from these outbreaks were genetically and phenotypically dissimilar from other known Francisella spp. from fish, representing a previously unrecognized member of the genus Francisella, for which the name Francisella marina sp. nov. is proposed.
Collapse
|
10
|
Assis GBN, de Oliveira TF, Gardner IA, Figueiredo HCP, Leal CAG. Sensitivity and specificity of real-time PCR and bacteriological culture for francisellosis in farm-raised Nile tilapia (Oreochromis niloticus L.). JOURNAL OF FISH DISEASES 2017; 40:785-795. [PMID: 27670740 DOI: 10.1111/jfd.12559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Despite the worldwide occurrence of Francisella noatunensis subsp. orientalis (Fno) infection in farmed tilapia, sensitivity and specificity estimates of commonly used diagnostic tests have not been reported. This study aimed to estimate the sensitivity and specificity of bacteriological culture and qPCR to detect Fno infection. We tested 559 fish, sampled from four farms with different epidemiological scenarios: (i) healthy fish in a hatchery free of Fno; (ii) targeted sampling of diseased fish with suggestive external clinical signs of francisellosis during an outbreak; (iii) convenience sampling of diseased and clinically healthy fish during an outbreak; and (iv) sampling of healthy fish in a cage farm without a history of outbreaks, but with francisellosis reported in other farms in the same reservoir. The qPCR had higher median sensitivity (range, 48.8-99.5%) than culture (range, 1.6-74.4%). Culture had a substantially lower median sensitivity (1.6%) than qPCR (48.8%) to detect Fno in carrier tilapia (farm 4). Median specificity estimates for both tests were >99.2%. The qPCR is the superior test for use in surveillance and monitoring programmes for francisellosis in farmed Nile tilapia, but both tests have high sensitivity and specificity which make them fit for use in the diagnosis of Fno outbreaks.
Collapse
Affiliation(s)
- G B N Assis
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - T F de Oliveira
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - I A Gardner
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - H C P Figueiredo
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C A G Leal
- AQUAVET, Laboratory of Aquatic Animal Diseases, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Characterization and Vaccine Potential of Membrane Vesicles Produced by Francisella noatunensis subsp. orientalis in an Adult Zebrafish Model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00557-16. [PMID: 28331079 PMCID: PMC5424235 DOI: 10.1128/cvi.00557-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/11/2017] [Indexed: 11/20/2022]
Abstract
Vaccine development against extracellular bacteria has been important for the sustainability of the aquaculture industry. In contrast, infections with intracellular pathogens remain largely an unresolved problem. Francisella noatunensis subsp. orientalis is a Gram-negative, facultative intracellular bacterium that causes the disease francisellosis in fish. Francisellosis is commonly characterized as a chronic granulomatous disease with high morbidity and can result in high mortality depending on the host. In this study, we explored the potential of bacterial membrane vesicles (MVs) as a vaccine agent against F. noatunensis subsp. orientalis. Bacterial MVs are spherical structures naturally released from the membrane of bacteria and are often enriched with selected bacterial components such as toxins and signaling molecules. MVs were isolated from broth-cultured F. noatunensis subsp. orientalis in the present work, and proteomic analysis by mass spectrometry revealed that MVs contained a variety of immunogenic factors, including the intracellular growth proteins IglC and IglB, known to be part of a Francisella pathogenicity island (FPI), as well as outer membrane protein OmpA, chaperonin GroEL, and chaperone ClpB. By using flow cytometry and electron microscopy, we observed that F. noatunensis subsp. orientalis mainly infects myelomonocytic cells, both in vivo and in vitro. Immunization with MVs isolated from F. noatunensis subsp. orientalis protects zebrafish from subsequent challenge with a lethal dose of F. noatunensis subsp. orientalis. To determine if MVs induce a typical acute inflammatory response, mRNA expression levels were assessed by quantitative real-time PCR. Expression of tnfa, il1b, and ifng, as well as mhcii, mpeg1.1, and ighm, was upregulated, thus confirming the immunogenic properties of F. noatunensis subsp. orientalis-derived MVs.
Collapse
|
12
|
Soto E, Halliday-Simmonds I, Francis S, Fraites T, Martínez-López B, Wiles J, Hawke JP, Endris RD. Improved Broth Microdilution Method for Antimicrobial Susceptibility Testing of Francisella Noatunensis Orientalis. JOURNAL OF AQUATIC ANIMAL HEALTH 2016; 28:199-207. [PMID: 27484609 DOI: 10.1080/08997659.2016.1185051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this project we optimized a minimal inhibitory concentration testing protocol for Francisella noatunensis orientalis. Thirty-three F. noatunensis orientalis isolates recovered from different fish species and locations were tested, and Escherichia coli ATCC 25922 was used as a quality control reference strain. A modified cation-adjusted Mueller Hinton broth supplemented with 2% IsoVitalex and 0.1% glucose (MMH) was tested at a pH of 6.4 ± 0.1, 7.1 ± 0.1, and 7.3 ± 0.1. Growth curves generated for F. noatunensis orientalis indicated that MMH at a pH of 6.4 ± 0.1 provided optimal growth. There were no significant differences in the growth curves obtained from isolates recovered from different fish species or from fresh or marine water. The pH of 6.4 ± 0.1 in the MMH media interfered with the inhibitory properties of the potentiated sulfonamides (ormetoprim-sulfadimethoxine and trimethoprim-sulfamethoxazole) when using the E. coli ATCC reference strain. Minimal inhibitory concentrations of eight antimicrobials (gentamicin, enrofloxacin, ampicillin, oxytetracycline, erythromycin, florfenicol, flumequine, and oxolinic acid) were similar for all F. noatunensis orientalis isolates. The in vitro susceptibility data provided here can provide a baseline for monitoring the development of antimicrobial resistance among F. noatunensis orientalis isolates, as well as provide valuable data in the development of potential therapeutics. Received October 27, 2015; accepted April 13, 2016.
Collapse
Affiliation(s)
- Esteban Soto
- a Department of Medicine and Epidemiology, School of Veterinary Medicine , University of California , Tupper Hall 2108, 1 Shields Avenue, Davis , California 95616 , USA
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Iona Halliday-Simmonds
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Stewart Francis
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Trellor Fraites
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Beatriz Martínez-López
- c Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, School of Veterinary Medicine , University of California , Tupper Hall 2108, 1 Shields Avenue, Davis , California 95616 , USA
| | - Judy Wiles
- d Department of Pathobiological Sciences , Louisiana State University, School of Veterinary Medicine ,1909 Skip Bertman Drive, Baton Rouge , Louisiana 70803 , USA
| | - John P Hawke
- d Department of Pathobiological Sciences , Louisiana State University, School of Veterinary Medicine ,1909 Skip Bertman Drive, Baton Rouge , Louisiana 70803 , USA
| | - Richard D Endris
- e Endris Consulting , Inc., 492 Foothill Road, Bridgewater , New Jersey 08807 , USA
| |
Collapse
|
13
|
Soto E, Halliday-Simmonds I, Francis S, Kearney MT, Hansen JD. Biofilm formation of Francisella noatunensis subsp. orientalis. Vet Microbiol 2015; 181:313-7. [PMID: 26507830 DOI: 10.1016/j.vetmic.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC) and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon(®), bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in the iglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA 95616, USA; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies.
| | - Iona Halliday-Simmonds
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Stewart Francis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Michael T Kearney
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|