1
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Görlitz M, Justen L, Rochette PJ, Buonanno M, Welch D, Kleiman NJ, Eadie E, Kaidzu S, Bradshaw WJ, Javorsky E, Cridland N, Galor A, Guttmann M, Meinke MC, Schleusener J, Jensen P, Söderberg P, Yamano N, Nishigori C, O'Mahoney P, Manstein D, Croft R, Cole C, de Gruijl FR, Forbes PD, Trokel S, Marshall J, Brenner DJ, Sliney D, Esvelt K. Assessing the safety of new germicidal far-UVC technologies. Photochem Photobiol 2024; 100:501-520. [PMID: 37929787 DOI: 10.1111/php.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
The COVID-19 pandemic underscored the crucial importance of enhanced indoor air quality control measures to mitigate the spread of respiratory pathogens. Far-UVC is a type of germicidal ultraviolet technology, with wavelengths between 200 and 235 nm, that has emerged as a highly promising approach for indoor air disinfection. Due to its enhanced safety compared to conventional 254 nm upper-room germicidal systems, far-UVC allows for whole-room direct exposure of occupied spaces, potentially offering greater efficacy, since the total room air is constantly treated. While current evidence supports using far-UVC systems within existing guidelines, understanding the upper safety limit is critical to maximizing its effectiveness, particularly for the acute phase of a pandemic or epidemic when greater protection may be needed. This review article summarizes the substantial present knowledge on far-UVC safety regarding skin and eye exposure and highlights research priorities to discern the maximum exposure levels that avoid adverse effects. We advocate for comprehensive safety studies that explore potential mechanisms of harm, generate action spectra for crucial biological effects and conduct high-dose, long-term exposure trials. Such rigorous scientific investigation will be key to determining safe and effective levels for far-UVC deployment in indoor environments, contributing significantly to future pandemic preparedness and response.
Collapse
Affiliation(s)
- Maximilian Görlitz
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Lennart Justen
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice Quebec, Quebec City, Quebec, Canada
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - David Welch
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Ewan Eadie
- Photobiology Unit, Ninewells Hospital, Dundee, UK
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - William J Bradshaw
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Future of Life Institute, Cambridge, Massachusetts, USA
| | - Nigel Cridland
- Radiation, Chemicals and Environment Directorate, UK Health Security Agency, Didcot, UK
| | - Anat Galor
- Miami Veterans Affairs Medical Center, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | | | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Jensen
- Final Approach Inc., Port Orange, Florida, USA
| | - Per Söderberg
- Ophthalmology, Department of Surgical Sciences, Uppsala Universitet, Uppsala, Sweden
| | - Nozomi Yamano
- Division of Dermatology, Department of Internal Related, Kobe University, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University, Kobe, Japan
- Japanese Red Cross Hyogo Blood Center, Kobe, Japan
| | - Paul O'Mahoney
- Optical Radiation Effects, UK Health Security Agency, Chilton, UK
| | - Dieter Manstein
- Department of Dermatology, Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rodney Croft
- International Commission on Non-Ionizing Radiation Protection (ICNIRP), Chair, Wollongong, New South Wales, Australia
- University of Wollongong, Wollongong, New South Wales, Australia
| | - Curtis Cole
- Sun & Skin Consulting LLC, New Holland, Pennsylvania, USA
| | - Frank R de Gruijl
- Department of Dermatology, Universiteit Leiden, Leiden, South Holland, The Netherlands
| | | | - Stephen Trokel
- Department of Ophthalmology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - John Marshall
- Institute of Ophthalmology, University College London, London, UK
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - David Sliney
- IES Photobiology Committee, Chair, Fallston, Maryland, USA
- Consulting Medical Physicist, Fallston, Maryland, USA
| | - Kevin Esvelt
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Kleiman NJ, Edmondson EF, Weil MM, Fallgren CM, King A, Schmidt C, Hall EJ. Radiation cataract in Heterogeneous Stock mice after γ-ray or HZE ion exposure. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:97-105. [PMID: 38245354 PMCID: PMC10800003 DOI: 10.1016/j.lssr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024]
Abstract
Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.
Collapse
Affiliation(s)
- Norman J Kleiman
- Department of Environmental Health Sciences, Eye Radiation and Environmental Research Laboratory, Columbia University, Mailman School of Public Health, 722 West 168th St., 11th Floor, New York, NY, 10032, United States.
| | - Elijah F Edmondson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, United States; Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Michael M Weil
- Department of Environment and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Christina M Fallgren
- Department of Environment and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Adam King
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, United States; MedVet Chicago, Chicago, IL, 60618, United States
| | - Catherine Schmidt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, United States; Veterinary Eye Specialists, Thornwood, NY, 10594, , United States
| | - Eric J Hall
- Center for Radiological Research, Columbia University, College of Physicians and Surgeons, 630W. 168th St., New York, NY,10032, , United States
| |
Collapse
|
4
|
Abstract
PURPOSE Cataract (opacification of the ocular lens) is a typical tissue reaction (deterministic effect) following ionizing radiation exposure, for which prevention dose limits have been recommended in the radiation protection system. Manifestations of radiation cataracts can vary among individuals, but such potential individual responses remain uncharacterized. Here we review relevant literature and discuss implications for radiation protection. This review assesses evidence for significant modification of radiation-induced cataractogenesis by age at exposure, sex and genetic factors based on current scientific literature. CONCLUSIONS In addition to obvious physical factors (e.g. dose, dose rate, radiation quality, irradiation volume), potential factors modifying individual responses for radiation cataracts include sex, age and genetics, with comorbidity and coexposures also having important roles. There are indications and preliminary data identifying such potential modifiers of radiation cataract incidence or risk, although no firm conclusions can yet be drawn. Further studies and a consensus on the evidence are needed to gain deeper insights into factors determining individual responses regarding radiation cataracts and the implications for radiation protection.
Collapse
Affiliation(s)
- Stephen G R Barnard
- UK Health Security Agency (UKHSA), Radiation, Chemical and Environmental Hazards Division (RCEHD), Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
5
|
Tanno B, Babini G, Leonardi S, De Stefano I, Merla C, Novelli F, Antonelli F, Casciati A, Tanori M, Pasquali E, Giardullo P, Pazzaglia S, Mancuso M. miRNA-Signature of Irradiated Ptch1+/- Mouse Lens is Dependent on Genetic Background. Radiat Res 2022; 197:22-35. [PMID: 33857324 DOI: 10.1667/rade-20-00245.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - C Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
6
|
Ainsbury EA, Barnard SGR. Sensitivity and latency of ionising radiation-induced cataract. Exp Eye Res 2021; 212:108772. [PMID: 34562436 DOI: 10.1016/j.exer.2021.108772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
When managed with appropriate radiation protection procedures, ionising radiation is of great benefit to society. Opacification of the lens, and vision impairing cataract, have recently been recognised at potential effects of relatively low dose radiation exposure, on the order of 1 Gy or below. Within the last 10 years, understanding of the effects of low dose ionising radiation on the lens has increased, particularly in terms of DNA damage and responses, and how multiple radiation or other events in the lens might contribute to the overall risk of cataract. However, gaps remain, not least in the understanding of how radiation interacts with other risk factors such as aging, as well as the relative radiosensitivity of the lens compared to tissues of the body. This paper reviews the current literature in the field of low dose radiation cataract, with a particular focus on sensitivity and latency.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| | - Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| |
Collapse
|
7
|
Ahmadi M, Barnard S, Ainsbury E, Kadhim M. Early Responses to Low-Dose Ionizing Radiation in Cellular Lens Epithelial Models. Radiat Res 2021; 197:78-91. [PMID: 34324666 DOI: 10.1667/rade-20-00284.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/06/2021] [Indexed: 11/03/2022]
Abstract
Cataract is the leading cause of visual impairment which can result in blindness. Cataract formation has been associated with radiation exposure; however, the mechanistic understanding of this phenomenon is still lacking. The goal of this study was to investigate mechanisms of cataract induction in isolated lens epithelial cells (LEC) exposed to ionizing radiation. Human LECs from different genetic backgrounds (SV40 immortalized HLE-B3 and primary HLEC cells) were exposed to varying doses of 137Cs gamma rays (0, 0.1, 0.25 and 0.5 Gy), at low (0.065 Gy/min) and higher (0.3 Gy/min) dose rates. Different assays were used to measure LEC response for, e.g., viability, oxidative stress, DNA damage studies, senescence and changes to telomere length/telomerase activity at two time points (1 h and 24 h, or 24 h and 15 days, depending on the type of assay and expected response time). The viability of cells decreased in a dose-dependent manner within 24 h of irradiation. Measurement of reactive oxygen species showed an increase at 1 h postirradiation, which was alleviated within 24 h. This was consistent with DNA damage results showing high DNA damage after 1 h postirradiation which reduced significantly (but not completely) within 24 h. Induction of senescence was also observed 15 days postirradiation, but this was not attributed to telomere erosion or telomerase activity reduction. Overall, these findings provide a mechanistic understanding of low-dose radiation-induced cataractogenesis which will ultimately help to inform judgements on the magnitude of risk and improve existing radiation protection procedures.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Genomic Instability and Cell Communication Research Group, Department of Biological and Medical Science, Oxford Brookes University, Oxford, United Kingdom.,Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford, United Kingdom
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford, United Kingdom
| | - Munira Kadhim
- Genomic Instability and Cell Communication Research Group, Department of Biological and Medical Science, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
8
|
McCarron RA, Barnard SGR, Babini G, Dalke C, Graw J, Leonardi S, Mancuso M, Moquet JE, Pawliczek D, Pazzaglia S, De Stefano I, Ainsbury EA. Radiation-Induced Lens Opacity and Cataractogenesis: A Lifetime Study Using Mice of Varying Genetic Backgrounds. Radiat Res 2021; 197:57-66. [PMID: 33984859 DOI: 10.1667/rade-20-00266.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Recent epidemiological findings and reanalysis of historical data suggest lens opacities resulting from ionizing radiation exposures are likely induced at lower doses than previously thought. These observations have led to ICRP recommendations for a reduction in the occupational dose limits for the eye lens, as well as subsequent implementation in EU member states. The EU CONCERT LDLensRad project was initiated to further understand the effects of ionizing radiation on the lens and identify the mechanism(s) involved in radiation-induced cataract, as well as the impact of dose and dose-rate. Here, we present the results of a long-term study of changes to lens opacity in male and female adult mice from a variety of different genetic (radiosensitive or radioresistant) backgrounds, including mutant strains Ercc2 and Ptch1, which were assumed to be susceptible to radiation-induced lens opacities. Mice received 0.5, 1 and 2 Gy 60Co gamma-ray irradiation at dose rates of 0.063 and 0.3 Gy min-1. Scheimpflug imaging was used to quantify lens opacification as an early indicator of cataract, with monthly observations taken postirradiation for an 18-month period in all strains apart from 129S2, which were observed for 12 months. Opacification of the lens was found to increase with time postirradiation (with age) for most mouse models, with ionizing radiation exposure increasing opacities further. Sex, dose, dose rate and genetic background were all found to be significant contributors to opacification; however, significant interactions were identified, which meant that the impact of these factors was strain dependent. Mean lens density increased with higher dose and dose rate in the presence of Ercc2 and Ptch1 mutations. This project was the first to focus on low (<1 Gy) dose, multiple dose rate, sex and strain effects in lens opacification, and clearly demonstrates the importance of these experimental factors in radiobiological investigations on the lens. The results provide insight into the effects of ionizing radiation on the lens as well as the need for further work in this area to underpin appropriate radiation protection legislation and guidance.
Collapse
Affiliation(s)
- R A McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - S G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom.,Durham University, School of Biosciences, Durham, United Kingdom
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy.,Department of Woman and Child Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - C Dalke
- Helmholtz Zentrum München GmbH, German Research Centre for Environmental Health, Neuherberg, Germany
| | - J Graw
- Helmholtz Zentrum München GmbH, German Research Centre for Environmental Health, Neuherberg, Germany
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - J E Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - D Pawliczek
- Helmholtz Zentrum München GmbH, German Research Centre for Environmental Health, Neuherberg, Germany
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| |
Collapse
|
9
|
Barnard SGR, McCarron R, Mancuso M, De Stefano I, Pazzaglia S, Pawliczek D, Dalke C, Ainsbury EA. Radiation-induced DNA Damage and Repair in Lens Epithelial Cells of both Ptch1(+/-) and Ercc2(+/-) Mutated Mice. Radiat Res 2021; 197:36-42. [PMID: 33652474 DOI: 10.1667/rade-20-00264.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 11/03/2022]
Abstract
Epidemiological studies suggest an increased incidence and risk of cataract after low-dose (<2 Gy) ionizing radiation exposures. However, the biological mechanism(s) of this process are not fully understood. DNA damage and repair are thought to have a contributing role in radiation-induced cataractogenesis. Recently we have reported an inverse dose-rate effect, as well as the low-dose response, of DNA damage and repair in lens epithelial cells (LECs). Here, we present further initial findings from two mutated strains (Ercc2+/- and Ptch1+/-) of mice, both reportedly susceptible to radiation-induced cataract, and their DNA damage and repair response to low-dose and low-dose-rate gamma rays. Our results support the hypothesis that the lens epithelium responds differently to radiation than other tissues, with reported radiation susceptibility to DNA damage not necessarily translating to the LECs. Genetic predisposition and strain(s) of mice have a significant role in radiation-induced cataract susceptibility.
Collapse
Affiliation(s)
- S G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, United Kingdom.,Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - R McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, United Kingdom
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - D Pawliczek
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - C Dalke
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, United Kingdom
| |
Collapse
|
10
|
Kunze S, Cecil A, Prehn C, Möller G, Ohlmann A, Wildner G, Thurau S, Unger K, Rößler U, Hölter SM, Tapio S, Wagner F, Beyerlein A, Theis F, Zitzelsberger H, Kulka U, Adamski J, Graw J, Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. Int J Radiat Biol 2021; 97:529-540. [PMID: 33464160 DOI: 10.1080/09553002.2021.1876951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
Collapse
Affiliation(s)
- Sarah Kunze
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Fabian Theis
- Institute of Computational Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
11
|
Udroiu I, Sgura A, Chendi A, Lasagni L, Bertolini M, Fioroni F, Piccagli V, Moramarco A, Romano MG, Fontana L, D'Alessio D, Bruzzaniti V, Rosi A, Grande S, Palma A, Giliberti C, Iori M, Piergallini L, Sumini M, Isolan L, Cucchi G, Compagnone G, Strigari L. DNA damage in lens epithelial cells exposed to occupationally-relevant X-ray doses and role in cataract formation. Sci Rep 2020; 10:21693. [PMID: 33303795 PMCID: PMC7728785 DOI: 10.1038/s41598-020-78383-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
The current framework of radiological protection of occupational exposed medical workers reduced the eye-lens equivalent dose limit from 150 to 20 mSv per year requiring an accurate dosimetric evaluation and an increase understanding of radiation induced effects on Lens cells considering the typical scenario of occupational exposed medical operators. Indeed, it is widely accepted that genomic damage of Lens epithelial cells (LEC) is a key mechanism of cataractogenesis. However, the relationship between apoptosis and cataractogenesis is still controversial. In this study biological and physical data are combined to improve the understanding of radiation induced effects on LEC. To characterize the occupational exposure of medical workers during angiographic procedures an INNOVA 4100 (General Electric Healthcare) equipment was used (scenario A). Additional experiments were conducted using a research tube (scenario B). For both scenarios, the frequencies of binucleated cells, micronuclei, p21-positive cells were assessed with different doses and dose rates. A Monte-Carlo study was conducted using a model for the photon generation with the X-ray tubes and with the Petri dishes considering the two different scenarios (A and B) to reproduce the experimental conditions and validate the irradiation setups to the cells. The simulation results have been tallied using the Monte Carlo code MCNP6. The spectral characteristics of the different X-ray beams have been estimated. All irradiated samples showed frequencies of micronuclei and p21-positive cells higher than the unirradiated controls. Differences in frequencies increased with the delivered dose measured with Gafchromic films XR-RV3. The spectrum incident on eye lens and Petri, as estimated with MCNP6, was in good agreement in the scenario A (confirming the experimental setup), while the mean energy spectrum was higher in the scenario B. Nevertheless, the response of LEC seemed mainly related to the measured absorbed dose. No effects on viability were detected. Our results support the hypothesis that apoptosis is not responsible for cataract induced by low doses of X-ray (i.e. 25 mGy) while the induction of transient p21 may interfere with the disassembly of the nuclear envelop in differentiating LEC, leading to cataract formation. Further studies are needed to better clarify the relationship we suggested between DNA damage, transient p21 induction and the inability of LEC enucleation.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Agnese Chendi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy.,Postgraduate School in Medical Physics, University of Bologna, Bologna, Italy
| | - Lorenzo Lasagni
- Postgraduate School in Medical Physics, University of Firenze, Florence, Italy
| | - Marco Bertolini
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Federica Fioroni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Vando Piccagli
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Antonio Moramarco
- Ophthalmology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | | | - Luigi Fontana
- Ophthalmology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Daniela D'Alessio
- Department of Medical Physics, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Vicente Bruzzaniti
- Laboratory of Medical Physics and Expert Systems, Regina Elena Cancer Institute IRCCS, Rome, Italy
| | - Antonella Rosi
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Rome, Italy
| | - Sveva Grande
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Rome, Italy
| | - Alessandra Palma
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Rome, Italy
| | - Claudia Giliberti
- Inail-Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti ed Insediamenti Antropici, Rome, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Lorenzo Piergallini
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy.,Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy
| | - Marco Sumini
- Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy.,INFN, Bologna, Italy.,Interdepartmental Center "L. Galvani" CIG, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Lorenzo Isolan
- Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" CIG, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giorgio Cucchi
- Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" CIG, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gaetano Compagnone
- Department of Medical Physics, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, St. Orsola-Malpighi University Hospital, Bologna, Italy.
| |
Collapse
|
12
|
Laskowski L, Williams D, Seymour C, Mothersill C. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol 2020; 98:1074-1082. [PMID: 32396040 DOI: 10.1080/09553002.2020.1767820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This review discusses recent developments in our understanding of biological and physiological mechanisms underlying radiation cataractogenesis. The areas discussed include effects of low-dose exposures to the lens including potential relevance of non-targeted effects, the development of new personal-protective equipment (PPE) and standards in clinical and nuclear settings motivated by the updated ICRP recommendations to mitigate exposures to the lens of the eye. The review also looks at evidence from the field linking cataracts in birds and mammals to low dose exposures.Conclusions: The review suggests that there is evidence that cataractogenesis is not a tissue reaction (deterministic effect) but rather is a low dose effect which shows a saturable dose response relationship similar to that seen for non-targeted effects in general. The review concludes that new research is needed to determine the dose response relationship in environmental studies where field data are contradictory and lab studies confined to rodent models for human exposure studies.
Collapse
Affiliation(s)
- Lukasz Laskowski
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - David Williams
- Department of Veterinary Medicine, University of Cambridge, Cambrige, UK
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
13
|
Loganovsky KN, Marazziti D, Fedirko PA, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Mucci F, Zdorenko LL, Della Vecchia A, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV. Radiation-Induced Cerebro-Ophthalmic Effects in Humans. Life (Basel) 2020; 10:E41. [PMID: 32316206 PMCID: PMC7235763 DOI: 10.3390/life10040041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to ionizing radiation (IR) could affect the human brain and eyes leading to both cognitive and visual impairments. The aim of this paper was to review and analyze the current literature, and to comment on the ensuing findings in the light of our personal contributions in this field. The review was carried out according to the PRISMA guidelines by searching PubMed, Scopus, Embase, PsycINFO and Google Scholar English papers published from January 2000 to January 2020. The results showed that prenatally or childhood-exposed individuals are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. In adulthood and medical/interventional radiologists, the most frequent IR-induced ophthalmic effects include cataracts, glaucoma, optic neuropathy, retinopathy and angiopathy, sometimes associated with specific neurocognitive deficits. According to available information that eye alterations may induce or may be associated with brain dysfunctions and vice versa, we propose to label this relationship "eye-brain axis", as well as to deepen the diagnosis of eye pathologies as early and easily obtainable markers of possible low dose IR-induced brain damage.
Collapse
Affiliation(s)
- Konstantin N. Loganovsky
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
| | - Pavlo A. Fedirko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Kostiantyn V. Kuts
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Katerina Y. Antypchuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Iryna V. Perchuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Tetyana F. Babenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Tetyana K. Loganovska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Olena O. Kolosynska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - George Y. Kreinis
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Marina V. Gresko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Sergii V. Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Federico Mucci
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
- Dipartimento di Biochimica Biologia Molecolare, University of Siena, 53100 Siena, Italy
| | - Leonid L. Zdorenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Alessandra Della Vecchia
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
| | - Natalia A. Zdanevich
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Natalia A. Garkava
- Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine, 9 Vernadsky Street, 49044 Dnipro, Ukraine;
| | - Raisa Y. Dorichevska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Zlata L. Vasilenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Victor I. Kravchenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Nataliya V. Drosdova
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| |
Collapse
|
14
|
Loganovsky KN, Fedirko PA, Kuts KV, Marazziti D, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT. Part І. THE CONSEQUENCES OF IRRADIATION OF THE PARTICIPANTS OF THE LIQUIDATION OF THE CHORNOBYL ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:90-129. [PMID: 33361831 DOI: 10.33145/2304-8336-2020-25-90-129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, includinginterventional radiological procedures, long-term space flights, and radiation accidents. OBJECTIVE The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. MATERIALS AND METHODS In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM - theleading institution in the field of studying the medical effects of ionizing radiation - were used. RESULTS The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts,radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerativediseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and inchildhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. CONCLUSIONS The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visualsystem and central nervous system (CNS) radiosensitivity is given. The necessity for further international studieswith adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation riskcohorts is justified. The first part of the study currently being published presents the results of the study of theeffects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP).
Collapse
Affiliation(s)
- K N Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Street, Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| |
Collapse
|
15
|
Barnard SGR, McCarron R, Moquet J, Quinlan R, Ainsbury E. Inverse dose-rate effect of ionising radiation on residual 53BP1 foci in the eye lens. Sci Rep 2019; 9:10418. [PMID: 31320710 PMCID: PMC6639373 DOI: 10.1038/s41598-019-46893-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
The influence of dose rate on radiation cataractogenesis has yet to be extensively studied. One recent epidemiological investigation suggested that protracted radiation exposure increases radiation-induced cataract risk: cumulative doses of radiation mostly <100 mGy received by US radiologic technologists over 5 years were associated with an increased excess hazard ratio for cataract development. However, there are few mechanistic studies to support and explain such observations. Low-dose radiation-induced DNA damage in the epithelial cells of the eye lens (LECs) has been proposed as a possible contributor to cataract formation and thus visual impairment. Here, 53BP1 foci was used as a marker of DNA damage. Unexpectedly, the number of 53BP1 foci that persisted in the mouse lens samples after γ-radiation exposure increased with decreasing dose-rate at 4 and 24 h. The C57BL/6 mice were exposed to 0.5, 1 and 2 Gy ƴ-radiation at 0.063 and 0.3 Gy/min and also 0.5 Gy at 0.014 Gy/min. This contrasts the data we obtained for peripheral blood lymphocytes collected from the same animal groups, which showed the expected reduction of residual 53BP1 foci with reducing dose-rate. These findings highlight the likely importance of dose-rate in low-dose cataract formation and, furthermore, represent the first evidence that LECs process radiation damage differently to blood lymphocytes.
Collapse
Affiliation(s)
- Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK.
- Durham University, Department of Biosciences, Durham, UK.
| | - Roisin McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| | - Roy Quinlan
- Durham University, Department of Biosciences, Durham, UK.
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| |
Collapse
|
16
|
Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol 2018; 94:1116-1124. [PMID: 30359158 DOI: 10.1080/09553002.2018.1532609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Epidemiological evidence regarding the radiosensitivity of the lens of the eye and radiation cataract development has led to changes in the EU Basic Safety Standards for protection of the lens against ionizing radiation. However, mechanistic details of lens radiation response pathways and their significance for cataractogenesis remain unclear. Radiation-induced DNA damage and the potential impairment of repair pathways within the lens epithelium, a cell monolayer that covers the anterior hemisphere of the lens, are likely to be involved. MATERIALS AND METHODS In this work, the lens epithelium has been analyzed for its DNA double-strand break (DSB) repair response to ionizing radiation. The responses of epithelial cells located at the anterior pole (central region) have been compared to at the very periphery of the monolayer (germinative and transitional zones). Described here are the different responses in the two regions and across four strains (C57BL/6, 129S2, BALB/c and CBA/Ca) over a low dose (0-25 mGy) in-vivo whole body X-irradiation range up to 24 hours post exposure. RESULTS DNA damage and repair as visualized through 53BP1 staining was present across the lens epithelium, although repair kinetics appeared non-uniform. Epithelial cells in the central region have significantly more 53BP1 foci. The sensitivities of different mouse strains have also been compared. CONCLUSIONS 129S2 and BALB/c showed higher levels of DNA damage, with BALB/c showing significantly less inter-individual variability and appearing to be a more robust model for future DNA damage and repair studies. As a result of this study, BALB/c was identified as a suitable radiosensitive lens strain to detect and quantify early low dose ionizing radiation DNA damage effects in the mouse eye lens specifically, as an indicator of cataract formation.
Collapse
Affiliation(s)
- S G R Barnard
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,b Department of Biosciences , Durham University , Durham , UK
| | - J Moquet
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - S Lloyd
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,c School of Biosciences , The University of Birmingham , Edgbaston , UK
| | - M Ellender
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - E A Ainsbury
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - R A Quinlan
- b Department of Biosciences , Durham University , Durham , UK
| |
Collapse
|
17
|
Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ 2018; 26:969-980. [PMID: 30154445 DOI: 10.1038/s41418-018-0181-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Zygotic chromatin undergoes extensive reprogramming immediately after fertilization. It is generally accepted that maternal factors control this process. However, little is known about the underlying mechanisms. Here we report that maternal RAD9A, a key protein in DNA damage response pathway, is involved in post-zygotic embryo development, via a mouse model with conditional depletion of Rad9a alleles in oocytes of primordial follicles. Post-zygotic losses originate from delayed zygotic chromatin decondensation after depletion of maternal RAD9A. Pronucleus formation and DNA replication of most mutant zygotes are therefore deferred, which subsequently trigger the G2/M checkpoint and arrest development of most mutant zygotes. Delayed zygotic chromatin decondensation could also lead to increased reabsorption of post-implantation mutant embryos. In addition, our data indicate that delayed zygotic chromatin decondensation may be attributed to deferred epigenetic modification of histone in paternal chromatin after fertilization, as fertilization and resumption of secondary meiosis in mutant oocytes were both normal. More interestingly, most mutant oocytes could not support development beyond one-cell stage after parthenogenetic activation. Therefore, RAD9A may also play an important role in maternal chromatin reprogramming. In summary, our data reveal an important role of RAD9A in zygotic chromatin reprogramming and female fertility.
Collapse
|
18
|
Dalke C, Neff F, Bains SK, Bright S, Lord D, Reitmeir P, Rößler U, Samaga D, Unger K, Braselmann H, Wagner F, Greiter M, Gomolka M, Hornhardt S, Kunze S, Kempf SJ, Garrett L, Hölter SM, Wurst W, Rosemann M, Azimzadeh O, Tapio S, Aubele M, Theis F, Hoeschen C, Slijepcevic P, Kadhim M, Atkinson M, Zitzelsberger H, Kulka U, Graw J. Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:99-113. [PMID: 29327260 PMCID: PMC5902533 DOI: 10.1007/s00411-017-0728-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 05/28/2023]
Abstract
Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.
Collapse
Affiliation(s)
- Claudia Dalke
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Frauke Neff
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Pathology, Neuherberg, Germany
- Present Address: Municipal Clinical Center Munich, Munich, Germany
| | - Savneet Kaur Bains
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Present Address: Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Scott Bright
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Present Address: University of Texas, MD Anderson, Houston, TX USA
| | - Deborah Lord
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Peter Reitmeir
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Daniel Samaga
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
- Present Address: Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Kristian Unger
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Herbert Braselmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Florian Wagner
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg, Germany
- Present Address: Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg, Germany
| | - Matthias Greiter
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg, Germany
- Present Address: Helmholtz Center Munich, German Research Center for Environmental Health, Individual Monitoring Service, Neuherberg, Germany
| | - Maria Gomolka
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sabine Hornhardt
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sarah Kunze
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Stefan J. Kempf
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Present Address: Department of Bioanalytical Sciences, CSL Behring GmbH, Marburg, Germany
| | - Lillian Garrett
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Sabine M. Hölter
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Michael Rosemann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Michaela Aubele
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Pathology, Neuherberg, Germany
| | - Fabian Theis
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Christoph Hoeschen
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg, Germany
- Present Address: Chair of Medical Systems Technology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Michael Atkinson
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit of Radiation Cytogenetics, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Jochen Graw
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| |
Collapse
|
19
|
Kleiman NJ, Stewart FA, Hall EJ. Modifiers of radiation effects in the eye. LIFE SCIENCES IN SPACE RESEARCH 2017; 15:43-54. [PMID: 29198313 DOI: 10.1016/j.lssr.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
World events, including the threat of radiological terrorism and the fear of nuclear accidents, have highlighted an urgent need to develop medical countermeasures to prevent or reduce radiation injury. Similarly, plans for manned spaceflight to a near-Earth asteroid or journey to Mars raise serious concerns about long-term effects of space radiation on human health and the availability of suitable therapeutic interventions. At the same time, the need to protect normal tissue from the deleterious effects of radiotherapy has driven considerable research into the design of effective radioprotectors. For more than 70 years, animal models of radiation cataract have been utilized to test the short and long-term efficacy of various radiation countermeasures. While some compounds, most notably the Walter Reed (WR) class of radioprotectors, have reported limited effectiveness when given before exposure to low-LET radiation, the human toxicity of these molecules at effective doses limits their usefulness. Furthermore, while there has been considerable testing of eye responses to X- and gamma irradiation, there is limited information about using such models to limit the injurious effects of heavy ions and neutrons on eye tissue. A new class of radioprotector molecules, including the sulfhydryl compound PrC-210, are reported to be effective at much lower doses and with far less side effects. Their ability to modify ocular radiation damage has not yet been examined. The ability to non-invasively measure sensitive, radiation-induced ocular changes over long periods of time makes eye models an attractive option to test the radioprotective and radiation mitigating abilities of new novel compounds.
Collapse
Affiliation(s)
- Norman J Kleiman
- Department of Environmental Health Sciences, Eye Radiation and Environmental Research Laboratory, Columbia University, Mailman School of Public Health, 722 West 168th St., 11th Floor, New York, NY 10032, USA.
| | - Fiona A Stewart
- Division of Biological Stress Response, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Eric J Hall
- Center for Radiological Research, Columbia University, College of Physicians and Surgeons, 630 W. 168th St., New York, NY 10032, USA
| |
Collapse
|
20
|
Karatasakis A, Brilakis HS, Danek BA, Karacsonyi J, Martinez-Parachini JR, Nguyen-Trong PKJ, Alame AJ, Roesle MK, Rangan BV, Rosenfield K, Mehran R, Mahmud E, Chambers CE, Banerjee S, Brilakis ES. Radiation-associated lens changes in the cardiac catheterization laboratory: Results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc Interv 2017; 91:647-654. [PMID: 28707381 DOI: 10.1002/ccd.27173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the relationship between occupational exposure to ionizing radiation and the prevalence of lens changes in interventional cardiologists (ICs) and catheterization laboratory ("cath-lab") staff. BACKGROUND Exposure to ionizing radiation is associated with the development of lens opacities. ICs and cath-lab staff can receive high doses of ionizing radiation without protection, and may thus be at risk for lens opacity formation. METHODS We conducted a cross-sectional study at an interventional cardiology conference. Study participants completed a questionnaire pertaining to occupational exposure to radiation and potential confounders for the development of cataracts, followed by slit-lamp examination and grading of lens findings. RESULTS A total of 117 attendees participated in the study, including 99 (85%; 49 ± 11 years-old; 82% male) with occupational exposure to ionizing radiation and 18 (15%; 39 ± 12 years-old; 61% male) unexposed controls. The prevalence of overall cortical and posterior subcapsular lens changes (including subclinical findings) was higher in exposed participants compared with controls (47 vs. 17%, P = 0.015). Occupational exposure and age over 60 were independent predictors of lens changes (odds ratio [95% CI]: 6.07 [1.38-43.45] and 7.72 [1.60-43.34], respectively). The prevalence of frank opacities was low and similar between the two groups (14 vs. 6%, P = 0.461). Most lens findings consisted of subclinical changes in the periphery of the lens without impact on visual acuity. CONCLUSIONS Compared with unexposed controls, ICs and cath-lab staff had a higher prevalence of lens changes that may be attributable to ionizing radiation exposure. While most of these changes were subclinical, they are important due to the potential to progress to clinical symptoms, highlighting the importance of minimizing staff radiation exposure.
Collapse
Affiliation(s)
- Aris Karatasakis
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Barbara A Danek
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Judit Karacsonyi
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jose Roberto Martinez-Parachini
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Phuong-Khanh J Nguyen-Trong
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aya J Alame
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michele K Roesle
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bavana V Rangan
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Rosenfield
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Roxana Mehran
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ehtisham Mahmud
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California
| | - Charles E Chambers
- Heart and Vascular Institute, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Subhash Banerjee
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emmanouil S Brilakis
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas.,Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, Minnesota
| |
Collapse
|
21
|
Forssell-Aronsson E, Quinlan RA. THE IMPACT OF CIRCADIAN RHYTHMS ON MEDICAL IMAGING AND RADIOTHERAPY REGIMES FOR THE PAEDIATRIC PATIENT. RADIATION PROTECTION DOSIMETRY 2017; 173:16-20. [PMID: 27885090 DOI: 10.1093/rpd/ncw328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Daily rhythmic changes are found in cellular events in cell cycle, DNA repair, apoptosis and angiogenesis in both normal and tumour tissue, as well as in enzymatic activity and drug metabolism. In this paper, we hypothesize that circadian rhythms need to be considered in radiation protection and optimization in personalized medicine, especially for paediatric care. The sensitivity of the eye lens to ionizing radiation makes the case for limiting damage to the lens epithelium by planning medical radio-imaging procedures for the afternoon, rather than the morning. Equally, the tumour and normal tissue response to radiotherapy is also subject to diurnal variation enabling optimization of time of treatment.
Collapse
Affiliation(s)
- E Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center,Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, SE 413 45 Gothenburg, Sweden
| | - R A Quinlan
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH1 3LE, UK
| |
Collapse
|
22
|
Khan DZ, Lacasse MC, Khan R, Murphy KJ. Radiation Cataractogenesis: The Progression of Our Understanding and Its Clinical Consequences. J Vasc Interv Radiol 2017; 28:412-419. [DOI: 10.1016/j.jvir.2016.11.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 11/02/2016] [Accepted: 11/19/2016] [Indexed: 02/06/2023] Open
|
23
|
Wang ML, Hoffler CE, Ilyas AM, Kirkpatrick WH, Beredjiklian PK, Leinberry CF. Hand Surgery and Fluoroscopic Eye Radiation Dosage: A Prospective Pilot Comparison of Large Versus Mini C-Arm Fluoroscopy Use. Hand (N Y) 2017; 12:21-25. [PMID: 28082838 PMCID: PMC5207279 DOI: 10.1177/1558944716643279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The purpose of this study is to (1) perform a prospective pilot comparison of the impact of large versus mini C-arm fluoroscopy on resultant eye radiation exposure and (2) test the hypothesis that the use of either modality during routine hand surgery does not exceed the current recommended limits to critical eye radiation dosage. Methods: Over a 12-month period, eye radiation exposure was prospectively measured by a board-certified hand surgeon using both large and mini C-arm fluoroscopy. For each modality, accumulated eye radiation dosage was measured monthly, while fluoroscopic radiation output was recorded, including total exposure time and dose rate. Results: A total of 58 cases were recorded using large C-arm and 25 cases using mini C-arm. Between the 2 groups, there was not a significant difference with total exposure time (P = .88) and average dose rate per case (P = .10). With the use of either modality, average monthly eye radiation exposure fell within the undetectable range (<30 mrem), significantly less than the current recommended limit of critical eye radiation (167 mrem/month). Conclusions: The impact of various fluoroscopic sources on eye radiation exposure remains relatively unexplored. In this study, the minimal detectable eye radiation dosages observed in both groups were reliably consistent. Our findings suggest that accumulated eye radiation dosage, from the use of either fluoroscopic modality, does not approach previously reported levels of critical radiation loads.
Collapse
Affiliation(s)
- Mark L. Wang
- Thomas Jefferson University, Philadelphia, PA, USA,Mark L. Wang, Department of Orthopedic Surgery, The Rothman Institute at Thomas Jefferson University, 925 Chestnut Street, Philadelphia, PA 19107-1216, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence. Int J Radiat Biol 2016; 93:1024-1034. [DOI: 10.1080/09553002.2016.1266407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
25
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
26
|
Individual response to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:369-386. [PMID: 27919342 DOI: 10.1016/j.mrrev.2016.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
The human response to ionizing radiation (IR) varies among individuals. The first evidence of the individual response to IR was reported in the beginning of the 20th century. Considering nearly one century of observations, we here propose three aspects of individual IR response: radiosensitivity for early or late adverse tissue events after radiotherapy on normal tissues (non-cancer effects attributable to cell death); radiosusceptibility for IR-induced cancers; and radiodegeneration for non-cancer effects that are often attributable to mechanisms other than cell death (e.g., cataracts and circulatory disease). All the molecular and cellular mechanisms behind IR-induced individual effects are not fully elucidated. However, some specific assays may help their quantification according to the dose and to the genetic status. Accumulated data on individual factors have suggested that the individual IR response cannot be ignored and raises some clinical and societal issues. The individual IR response therefore needs to be taken into account to better evaluate the risks related to IR exposure.
Collapse
|
27
|
Markiewicz E, Barnard S, Haines J, Coster M, van Geel O, Wu W, Richards S, Ainsbury E, Rothkamm K, Bouffler S, Quinlan RA. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biol 2016; 5:150011. [PMID: 25924630 PMCID: PMC4422125 DOI: 10.1098/rsob.150011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Elevated cataract risk after radiation exposure was established soon after the discovery of X-rays in 1895. Today, increased cataract incidence among medical imaging practitioners and after nuclear incidents has highlighted how little is still understood about the biological responses of the lens to low-dose ionizing radiation (IR). Here, we show for the first time that in mice, lens epithelial cells (LECs) in the peripheral region repair DNA double strand breaks (DSB) after exposure to 20 and 100 mGy more slowly compared with circulating blood lymphocytes, as demonstrated by counts of γH2AX foci in cell nuclei. LECs in the central region repaired DSBs faster than either LECs in the lens periphery or lymphocytes. Although DSB markers (γH2AX, 53BP1 and RAD51) in both lens regions showed linear dose responses at the 1 h timepoint, nonlinear responses were observed in lenses for EdU (5-ethynyl-2′-deoxy-uridine) incorporation, cyclin D1 staining and cell density after 24 h at 100 and 250 mGy. After 10 months, the lens aspect ratio was also altered, an indicator of the consequences of the altered cell proliferation and cell density changes. A best-fit model demonstrated a dose-response peak at 500 mGy. These data identify specific nonlinear biological responses to low (less than 1000 mGy) dose IR-induced DNA damage in the lens epithelium.
Collapse
Affiliation(s)
- Ewa Markiewicz
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Jackie Haines
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Margaret Coster
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Orry van Geel
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK Faculty of Science, KU Leuven, Kasteelpark Arenberg 11, Leuven 3001, Belgium
| | - Weiju Wu
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK Biophysical Sciences Institute, University of Durham, Durham DH1 3LE, UK
| | - Shane Richards
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Simon Bouffler
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Roy A Quinlan
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK Biophysical Sciences Institute, University of Durham, Durham DH1 3LE, UK
| |
Collapse
|
28
|
Hamada N, Fujimichi Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett 2015; 368:262-74. [DOI: 10.1016/j.canlet.2015.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
29
|
Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. Emerging issues in radiogenic cataracts and cardiovascular disease. JOURNAL OF RADIATION RESEARCH 2014; 55:831-46. [PMID: 24824673 PMCID: PMC4202294 DOI: 10.1093/jrr/rru036] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 05/26/2023]
Abstract
In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yuki Fujimichi
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Noriko Fujii
- Kyoto University Research Reactor Institute (KURRI), 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Kahoku, Ishikawa 920-0293, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-754 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Takaharu Nomura
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki 300-0394, Japan
| |
Collapse
|
30
|
Vasileva A, Hopkins KM, Wang X, Weisbach MM, Friedman RA, Wolgemuth DJ, Lieberman HB. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse. J Cell Sci 2013; 126:3927-38. [PMID: 23788429 PMCID: PMC3757332 DOI: 10.1242/jcs.126763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/01/2023] Open
Abstract
In mitotic cells, RAD9A functions in repairing DNA double-strand breaks (DSBs) by homologous recombination and facilitates the process by cell cycle checkpoint control in response to DNA damage. DSBs occur naturally in the germline during meiosis but whether RAD9A participates in repairing such breaks is not known. In this study, we determined that RAD9A is indeed expressed in the male germ line with a peak of expression in late pachytene and diplotene stages, and the protein was found associated with the XY body. As complete loss of RAD9A is embryonic lethal, we constructed and characterized a mouse strain with Stra8-Cre driven germ cell-specific ablation of Rad9a beginning in undifferentiated spermatogonia in order to assess its role in spermatogenesis. Adult mutant male mice were infertile or sub-fertile due to massive loss of spermatogenic cells. The onset of this loss occurs during meiotic prophase, and there was an increase in the numbers of apoptotic spermatocytes as determined by TUNEL. Spermatocytes lacking RAD9A usually arrested in meiotic prophase, specifically in pachytene. The incidence of unrepaired DNA breaks increased, as detected by accumulation of γH2AX and DMC1 foci on the axes of autosomal chromosomes in pachytene spermatocytes. The DNA topoisomerase IIβ-binding protein 1 (TOPBP1) was still localized to the sex body, albeit with lower intensity, suggesting that RAD9A may be dispensable for sex body formation. We therefore show for the first time that RAD9A is essential for male fertility and for repair of DNA DSBs during meiotic prophase I.
Collapse
Affiliation(s)
- Ana Vasileva
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
| | - Xiangyuan Wang
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Melissa M. Weisbach
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource of the Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, Room 824, New York, NY 10032, USA
| | - Debra J. Wolgemuth
- Genetics & Development and Obstetrics and Gynecology, The Institute of Human Nutrition, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Russ Berrie 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Howard B. Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., VC 11-219/220, New York, NY 10032, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
31
|
Lyndaker AM, Vasileva A, Wolgemuth DJ, Weiss RS, Lieberman HB. Clamping down on mammalian meiosis. Cell Cycle 2013; 12:3135-45. [PMID: 24013428 DOI: 10.4161/cc.26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline.
Collapse
Affiliation(s)
- Amy M Lyndaker
- Department of Biomedical Sciences; Cornell University; Ithaca, NY USA
| | - Ana Vasileva
- Center for Radiological Research; College of Physicians and Surgeons; Columbia University Medical Center; New York, NY USA
| | - Debra J Wolgemuth
- Genetics & Development and Obstetrics & Gynecology; The Institute of Human Nutrition; Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| | - Robert S Weiss
- Department of Biomedical Sciences; Cornell University; Ithaca, NY USA
| | - Howard B Lieberman
- Department of Environmental Health Sciences; Mailman School of Public Health; Columbia University Medical Center; New York, NY USA
| |
Collapse
|
32
|
Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated Lens Opacities in Catheterization Personnel: Results of a Survey and Direct Assessments. J Vasc Interv Radiol 2013; 24:197-204. [DOI: 10.1016/j.jvir.2012.10.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022] Open
|
33
|
Blakely EA. Lauriston S. Taylor Lecture on radiation protection and measurements: what makes particle radiation so effective? HEALTH PHYSICS 2012; 103:508-28. [PMID: 23032880 PMCID: PMC3507469 DOI: 10.1097/hp.0b013e31826a5b85] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The scientific basis for the physical and biological effectiveness of particle radiations has emerged from many decades of meticulous basic research. A diverse array of biologically relevant consequences at the molecular, cellular, tissue, and organism level have been reported, but what are the key processes and mechanisms that make particle radiation so effective, and what competing processes define dose dependences? Recent studies have shown that individual genotypes control radiation-regulated genes and pathways in response to radiations of varying ionization density. The fact that densely ionizing radiations can affect different gene families than sparsely ionizing radiations, and that the effects are dose- and time-dependent, has opened up new areas of future research. The complex microenvironment of the stroma and the significant contributions of the immune response have added to our understanding of tissue-specific differences across the linear energy transfer (LET) spectrum. The importance of targeted versus nontargeted effects remains a thorny but elusive and important contributor to chronic low dose radiation effects of variable LET that still needs further research. The induction of cancer is also LET-dependent, suggesting different mechanisms of action across the gradient of ionization density. The focus of this 35th Lauriston S. Taylor Lecture is to chronicle the step-by-step acquisition of experimental clues that have refined our understanding of what makes particle radiation so effective, with emphasis on the example of radiation effects on the crystalline lens of the human eye.
Collapse
Affiliation(s)
- Eleanor A Blakely
- Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 977, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Abstract
Until very recently, ocular exposure guidelines were based on the assumption that radiation cataract is a deterministic event requiring threshold doses generally greater than 2 Gy. This view was, in part, based on older studies which generally had short follow-up periods, failed to take into account increasing latency as dose decreased, had relatively few subjects with doses below a few Gy, and were not designed to detect early lens changes. Newer findings, including those in populations exposed to much lower radiation doses and in subjects as diverse as astronauts, medical workers, atomic bomb survivors, accidentally exposed individuals, and those undergoing diagnostic or radiotherapeutic procedures, strongly suggest dose-related lens opacification at significantly lower doses. These observations resulted in a recent re-evaluation of current lens occupational exposure guidelines, and a proposed lowering of the presumptive radiation cataract threshold to 0.5 Gy/year and the occupational lens exposure limit to 20 mSv/year, regardless of whether received as an acute, protracted, or chronic exposure. Experimental animal studies support these conclusions and suggest a role for genotoxicity in the development of radiation cataract. Recent findings of a low or even zero threshold for radiation-induced lens opacification are likely to influence current research efforts and directions concerning the cellular and molecular mechanisms underlying this pathology. Furthermore, new guidelines are likely to have significant implications for occupational and/or accidental exposure, and the need for occupational eye protection (e.g. in fields such as interventional medicine).
Collapse
Affiliation(s)
- N J Kleiman
- Eye Radiation and Environmental Research Laboratory, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
35
|
Young EF, Smilenov LB, Lieberman HB, Hall EJ. Combined haploinsufficiency and genetic control of the G2/M checkpoint in irradiated cells. Radiat Res 2012; 177:743-50. [PMID: 22607586 DOI: 10.1667/rr2875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
When cells are exposed to a dose of radiation large enough to cause chromosome aberrations, they become arrested at the G(2)/M checkpoint, facilitating DNA repair. Defects in checkpoint control genes can impart radiosensitivity. Arrest kinetics were monitored in mouse embryo fibroblasts at doses ranging from 10 mGy to 5.0 Gy of γ radiation over a time course of 0 to 12 h. We observe no significant checkpoint engagement at doses below 100 mGy. The checkpoint is only fully activated at doses where most of the cells are either bound for mitotic catastrophe or are reproductively dead. Atm null cells with ablated checkpoint function exhibited no robust arrest. Surprisingly, haploinsufficiency for ATM alone or in combination with other radioresistance genes did not alter checkpoint activation. We have shown previously that haploinsufficiency for several radioresistance genes imparts intermediate phenotypes for several end points including apoptosis, transformation and survival. These findings suggest that checkpoint control does not contribute toward these intermediate phenotypes and that different biological processes can be activated at high doses compared to low doses.
Collapse
Affiliation(s)
- Erik F Young
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
36
|
Wang J, Su F, Smilenov LB, Zhou L, Hu W, Ding N, Zhou G. Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity. Radiat Oncol 2011; 6:96. [PMID: 21849032 PMCID: PMC3169458 DOI: 10.1186/1748-717x-6-96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/17/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that Atm/Brca1 double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in Atm and Brca1 heterozygosity. METHODS Wild type cells, Atm or Brca1 single heterozygous cells, and Atm/Brca1 double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation. RESULTS Remarkable high transformation frequency was confirmed in Atm/Brca1 double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways. CONCLUSIONS The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.
Collapse
Affiliation(s)
- Jufang Wang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P R China
| | | | | | | | | | | | | |
Collapse
|
37
|
Prins R, Dauer LT, Colosi DC, Quinn B, Kleiman NJ, Bohle GC, Holohan B, Al-Najjar A, Fernandez T, Bonvento M, Faber RD, Ching H, Goren AD. Significant reduction in dental cone beam computed tomography (CBCT) eye dose through the use of leaded glasses. ACTA ACUST UNITED AC 2011; 112:502-7. [PMID: 21802322 DOI: 10.1016/j.tripleo.2011.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/23/2011] [Accepted: 04/14/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE In light of the increased recognition of the potential for lens opacification after low-dose radiation exposures, we investigated the effect of leaded eyeglasses worn during dental cone-beam computerized tomography (CBCT) procedures on the radiation absorbed dose to the eye and suggest simple methods to reduce risk of radiation cataract development. STUDY DESIGN Dose measurements were conducted with the use of 3 anthropomorphic phantoms: male (Alderson radiation therapy phantom), female (CIRS), and juvenile male (CIRS). All exposures were performed on the same dental CBCT machine (Imtec, Ardmore, OK) using 2 different scanning techniques but with identical machine parameters (120 kVp, 3.8 mA, 7.8 s). Scans were performed with and without leaded glasses and repeated 3 times. All measurements were recorded using calibrated thermoluminescent dosimeters and optical luminescent dosimetry. RESULTS Leaded glasses worn by adult and pediatric patients during CBCT scans may reduce radiation dose to the lens of the eye by as much as 67% (from 0.135 ± 0.004 mGy to 0.044 ± 0.002 mGy in pediatric patients). CONCLUSIONS Leaded glasses do not appear to have a deleterious effect on the image quality in the area of clinical significance for dental imaging.
Collapse
Affiliation(s)
- R Prins
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamamoto ML, Hafer K, Reliene R, Fleming S, Kelly O, Hacke K, Schiestl RH. Effects of 1 GeV/nucleon56Fe Particles on Longevity, Carcinogenesis and Neuromotor Ability inAtm-Deficient Mice. Radiat Res 2011; 175:231-9. [DOI: 10.1667/rr2312.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, McCollough CH, Mettler FA, Pearce MS, Suleiman OH, Thrall JH, Wagner LK. Managing radiation use in medical imaging: a multifaceted challenge. Radiology 2010; 258:889-905. [PMID: 21163918 DOI: 10.1148/radiol.10101157] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This special report aims to inform the medical community about the many challenges involved in managing radiation exposure in a way that maximizes the benefit-risk ratio. The report discusses the state of current knowledge and key questions in regard to sources of medical imaging radiation exposure, radiation risk estimation, dose reduction strategies, and regulatory options.
Collapse
Affiliation(s)
- Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Suite C-278, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation Cataract Risk in Interventional Cardiology Personnel. Radiat Res 2010; 174:490-5. [DOI: 10.1667/rr2207.1] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Zhou G, Smilenov LB, Lieberman HB, Ludwig T, Hall EJ. RADIOSENSITIVITY TO HIGH ENERGY IRON IONS IS INFLUENCED BY HETEROZYGOSITY for ATM, RAD9 and BRCA1. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2010; 46:681-686. [PMID: 24431481 PMCID: PMC3890108 DOI: 10.1016/j.asr.2010.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Atm, Rad9 and Brca1 on cell oncogenic transformation and cell survival induced by 1GeV/n 56Fe ions. Our results show that cells heterozygous for both Atm and Rad9 or Atm and Brca1 have high survival rates and are more sensitive to transformation by high energy Iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose-response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation.
Collapse
Affiliation(s)
- G Zhou
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| | - L B Smilenov
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| | - H B Lieberman
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| | - T Ludwig
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - E J Hall
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| |
Collapse
|
42
|
Shore RE, Neriishi K, Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation doses: (not) seeing is believing. Radiat Res 2010; 174:889-94. [PMID: 21128813 DOI: 10.1667/rr1884.1] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevailing belief for some decades has been that human radiation-related cataract occurs only after relatively high doses; for instance, the ICRP estimates that brief exposures of at least 0.5-2 Sv are required to cause detectable lens opacities and 5 Sv for vision-impairing cataracts. For protracted exposures, the ICRP estimates the corresponding dose thresholds as 5 Sv and 8 Sv, respectively. However, several studies, especially in the last decade, indicate that radiation-associated opacities occur at much lower doses. Several studies suggest that medical or environmental radiation exposure to the lens confers risk of opacities at doses well under 1 Sv. Among Japanese A-bomb survivors, risks for cataracts necessitating lens surgery were seen at doses under 1 Gy. The confidence interval on the A-bomb dose threshold for cataract surgery prevalence indicated that the data are compatible with a dose threshold ranging from none up to only 0.8 Gy, similar to the dose threshold for minor opacities seen among Chernobyl clean-up workers with primarily protracted exposures. Findings from various studies indicate that radiation risk estimates are probably not due to confounding by other cataract risk factors and that risk is seen after both childhood and adult exposures. The recent data are instigating reassessments of guidelines by various radiation protection bodies regarding permissible levels of radiation to the eye. Among the future epidemiological research directions, the most important research need is for adequate studies of vision-impairing cataract after protracted radiation exposure.
Collapse
Affiliation(s)
- Roy E Shore
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan.
| | | | | |
Collapse
|
43
|
Blakely EA, Kleiman NJ, Neriishi K, Chodick G, Chylack LT, Cucinotta FA, Minamoto A, Nakashima E, Kumagami T, Kitaoka T, Kanamoto T, Kiuchi Y, Chang P, Fujii N, Shore RE. Radiation cataractogenesis: epidemiology and biology. Radiat Res 2010; 173:709-17. [PMID: 20426671 DOI: 10.1667/rrxx19.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- E A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ainsbury EA, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, Cooper J. Radiation cataractogenesis: a review of recent studies. Radiat Res 2009; 172:1-9. [PMID: 19580502 DOI: 10.1667/rr1688.1] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lens of the eye is recognized as one of the most radiosensitive tissues in the human body, and it is known that cataracts can be induced by acute doses of less than 2 Gy of low-LET ionizing radiation and less than 5 Gy of protracted radiation. Although much work has been carried out in this area, the exact mechanisms of radiation cataractogenesis are still not fully understood. In particular, the question of the threshold dose for cataract development is not resolved. Cataracts have been classified as a deterministic effect of radiation exposure with a threshold of approximately 2 Gy. Here we review the combined results of recent mechanistic and human studies regarding induction of cataracts by ionizing radiation. These studies indicate that the threshold for cataract development is certainly less than was previously estimated, of the order of 0.5 Gy, or that radiation cataractogenesis may in fact be more accurately described by a linear, no-threshold model.
Collapse
Affiliation(s)
- E A Ainsbury
- Health Protection Agency, Radiation Protection Division, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 0RQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Before the human exploration of Mars or long-duration missions on the Earth's moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared with radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, and obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics group at GSI, Planckstrasse 1, 64291 Darmstadt, Germany.
| | | |
Collapse
|